1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2021 Waymo LLC
4  * Copyright (C) 2011 Michal Simek <monstr@monstr.eu>
5  * Copyright (C) 2011 PetaLogix
6  * Copyright (C) 2010 Xilinx, Inc. All rights reserved.
7  */
8 
9 #include <config.h>
10 #include <common.h>
11 #include <cpu_func.h>
12 #include <dm.h>
13 #include <log.h>
14 #include <net.h>
15 #include <malloc.h>
16 #include <asm/global_data.h>
17 #include <asm/io.h>
18 #include <phy.h>
19 #include <miiphy.h>
20 #include <wait_bit.h>
21 #include <linux/delay.h>
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 /* Link setup */
26 #define XAE_EMMC_LINKSPEED_MASK	0xC0000000 /* Link speed */
27 #define XAE_EMMC_LINKSPD_10	0x00000000 /* Link Speed mask for 10 Mbit */
28 #define XAE_EMMC_LINKSPD_100	0x40000000 /* Link Speed mask for 100 Mbit */
29 #define XAE_EMMC_LINKSPD_1000	0x80000000 /* Link Speed mask for 1000 Mbit */
30 
31 /* Interrupt Status/Enable/Mask Registers bit definitions */
32 #define XAE_INT_RXRJECT_MASK	0x00000008 /* Rx frame rejected */
33 #define XAE_INT_MGTRDY_MASK	0x00000080 /* MGT clock Lock */
34 
35 /* Receive Configuration Word 1 (RCW1) Register bit definitions */
36 #define XAE_RCW1_RX_MASK	0x10000000 /* Receiver enable */
37 
38 /* Transmitter Configuration (TC) Register bit definitions */
39 #define XAE_TC_TX_MASK		0x10000000 /* Transmitter enable */
40 
41 #define XAE_UAW1_UNICASTADDR_MASK	0x0000FFFF
42 
43 /* MDIO Management Configuration (MC) Register bit definitions */
44 #define XAE_MDIO_MC_MDIOEN_MASK		0x00000040 /* MII management enable*/
45 
46 /* MDIO Management Control Register (MCR) Register bit definitions */
47 #define XAE_MDIO_MCR_PHYAD_MASK		0x1F000000 /* Phy Address Mask */
48 #define XAE_MDIO_MCR_PHYAD_SHIFT	24	   /* Phy Address Shift */
49 #define XAE_MDIO_MCR_REGAD_MASK		0x001F0000 /* Reg Address Mask */
50 #define XAE_MDIO_MCR_REGAD_SHIFT	16	   /* Reg Address Shift */
51 #define XAE_MDIO_MCR_OP_READ_MASK	0x00008000 /* Op Code Read Mask */
52 #define XAE_MDIO_MCR_OP_WRITE_MASK	0x00004000 /* Op Code Write Mask */
53 #define XAE_MDIO_MCR_INITIATE_MASK	0x00000800 /* Ready Mask */
54 #define XAE_MDIO_MCR_READY_MASK		0x00000080 /* Ready Mask */
55 
56 #define XAE_MDIO_DIV_DFT	29	/* Default MDIO clock divisor */
57 
58 #define XAXIDMA_BD_STS_ACTUAL_LEN_MASK	0x007FFFFF /* Actual len */
59 
60 /* DMA macros */
61 /* Bitmasks of XAXIDMA_CR_OFFSET register */
62 #define XAXIDMA_CR_RUNSTOP_MASK	0x00000001 /* Start/stop DMA channel */
63 #define XAXIDMA_CR_RESET_MASK	0x00000004 /* Reset DMA engine */
64 
65 /* Bitmasks of XAXIDMA_SR_OFFSET register */
66 #define XAXIDMA_HALTED_MASK	0x00000001  /* DMA channel halted */
67 
68 /* Bitmask for interrupts */
69 #define XAXIDMA_IRQ_IOC_MASK	0x00001000 /* Completion intr */
70 #define XAXIDMA_IRQ_DELAY_MASK	0x00002000 /* Delay interrupt */
71 #define XAXIDMA_IRQ_ALL_MASK	0x00007000 /* All interrupts */
72 
73 /* Bitmasks of XAXIDMA_BD_CTRL_OFFSET register */
74 #define XAXIDMA_BD_CTRL_TXSOF_MASK	0x08000000 /* First tx packet */
75 #define XAXIDMA_BD_CTRL_TXEOF_MASK	0x04000000 /* Last tx packet */
76 
77 /* Bitmasks for XXV Ethernet MAC */
78 #define XXV_TC_TX_MASK		0x00000001
79 #define XXV_TC_FCS_MASK		0x00000002
80 #define XXV_RCW1_RX_MASK	0x00000001
81 #define XXV_RCW1_FCS_MASK	0x00000002
82 
83 #define DMAALIGN		128
84 #define XXV_MIN_PKT_SIZE	60
85 
86 static u8 rxframe[PKTSIZE_ALIGN] __attribute((aligned(DMAALIGN)));
87 static u8 txminframe[XXV_MIN_PKT_SIZE] __attribute((aligned(DMAALIGN)));
88 
89 enum emac_variant {
90 	EMAC_1G = 0,
91 	EMAC_10G_25G = 1,
92 };
93 
94 /* Reflect dma offsets */
95 struct axidma_reg {
96 	u32 control; /* DMACR */
97 	u32 status; /* DMASR */
98 	u32 current; /* CURDESC low 32 bit */
99 	u32 current_hi; /* CURDESC high 32 bit */
100 	u32 tail; /* TAILDESC low 32 bit */
101 	u32 tail_hi; /* TAILDESC high 32 bit */
102 };
103 
104 /* Platform data structures */
105 struct axidma_plat {
106 	struct eth_pdata eth_pdata;
107 	struct axidma_reg *dmatx;
108 	struct axidma_reg *dmarx;
109 	int phyaddr;
110 	u8 eth_hasnobuf;
111 	int phy_of_handle;
112 	enum emac_variant mactype;
113 };
114 
115 /* Private driver structures */
116 struct axidma_priv {
117 	struct axidma_reg *dmatx;
118 	struct axidma_reg *dmarx;
119 	int phyaddr;
120 	struct axi_regs *iobase;
121 	phy_interface_t interface;
122 	struct phy_device *phydev;
123 	struct mii_dev *bus;
124 	u8 eth_hasnobuf;
125 	int phy_of_handle;
126 	enum emac_variant mactype;
127 };
128 
129 /* BD descriptors */
130 struct axidma_bd {
131 	u32 next_desc;	/* Next descriptor pointer */
132 	u32 next_desc_msb;
133 	u32 buf_addr;	/* Buffer address */
134 	u32 buf_addr_msb;
135 	u32 reserved3;
136 	u32 reserved4;
137 	u32 cntrl;	/* Control */
138 	u32 status;	/* Status */
139 	u32 app0;
140 	u32 app1;	/* TX start << 16 | insert */
141 	u32 app2;	/* TX csum seed */
142 	u32 app3;
143 	u32 app4;
144 	u32 sw_id_offset;
145 	u32 reserved5;
146 	u32 reserved6;
147 };
148 
149 /* Static BDs - driver uses only one BD */
150 static struct axidma_bd tx_bd __attribute((aligned(DMAALIGN)));
151 static struct axidma_bd rx_bd __attribute((aligned(DMAALIGN)));
152 
153 struct axi_regs {
154 	u32 reserved[3];
155 	u32 is; /* 0xC: Interrupt status */
156 	u32 reserved2;
157 	u32 ie; /* 0x14: Interrupt enable */
158 	u32 reserved3[251];
159 	u32 rcw1; /* 0x404: Rx Configuration Word 1 */
160 	u32 tc; /* 0x408: Tx Configuration */
161 	u32 reserved4;
162 	u32 emmc; /* 0x410: EMAC mode configuration */
163 	u32 reserved5[59];
164 	u32 mdio_mc; /* 0x500: MII Management Config */
165 	u32 mdio_mcr; /* 0x504: MII Management Control */
166 	u32 mdio_mwd; /* 0x508: MII Management Write Data */
167 	u32 mdio_mrd; /* 0x50C: MII Management Read Data */
168 	u32 reserved6[124];
169 	u32 uaw0; /* 0x700: Unicast address word 0 */
170 	u32 uaw1; /* 0x704: Unicast address word 1 */
171 };
172 
173 struct xxv_axi_regs {
174 	u32 gt_reset;	/* 0x0 */
175 	u32 reserved[2];
176 	u32 tc;		/* 0xC: Tx Configuration */
177 	u32 reserved2;
178 	u32 rcw1;	/* 0x14: Rx Configuration Word 1 */
179 };
180 
181 /* Use MII register 1 (MII status register) to detect PHY */
182 #define PHY_DETECT_REG  1
183 
184 /*
185  * Mask used to verify certain PHY features (or register contents)
186  * in the register above:
187  *  0x1000: 10Mbps full duplex support
188  *  0x0800: 10Mbps half duplex support
189  *  0x0008: Auto-negotiation support
190  */
191 #define PHY_DETECT_MASK 0x1808
192 
mdio_wait(struct axi_regs * regs)193 static inline int mdio_wait(struct axi_regs *regs)
194 {
195 	u32 timeout = 200;
196 
197 	/* Wait till MDIO interface is ready to accept a new transaction. */
198 	while (timeout && (!(readl(&regs->mdio_mcr)
199 						& XAE_MDIO_MCR_READY_MASK))) {
200 		timeout--;
201 		udelay(1);
202 	}
203 	if (!timeout) {
204 		printf("%s: Timeout\n", __func__);
205 		return 1;
206 	}
207 	return 0;
208 }
209 
210 /**
211  * axienet_dma_write -	Memory mapped Axi DMA register Buffer Descriptor write.
212  * @bd:		pointer to BD descriptor structure
213  * @desc:	Address offset of DMA descriptors
214  *
215  * This function writes the value into the corresponding Axi DMA register.
216  */
axienet_dma_write(struct axidma_bd * bd,u32 * desc)217 static inline void axienet_dma_write(struct axidma_bd *bd, u32 *desc)
218 {
219 #if defined(CONFIG_PHYS_64BIT)
220 	writeq((unsigned long)bd, desc);
221 #else
222 	writel((u32)bd, desc);
223 #endif
224 }
225 
phyread(struct axidma_priv * priv,u32 phyaddress,u32 registernum,u16 * val)226 static u32 phyread(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
227 		   u16 *val)
228 {
229 	struct axi_regs *regs = priv->iobase;
230 	u32 mdioctrlreg = 0;
231 
232 	if (mdio_wait(regs))
233 		return 1;
234 
235 	mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
236 			XAE_MDIO_MCR_PHYAD_MASK) |
237 			((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
238 			& XAE_MDIO_MCR_REGAD_MASK) |
239 			XAE_MDIO_MCR_INITIATE_MASK |
240 			XAE_MDIO_MCR_OP_READ_MASK;
241 
242 	writel(mdioctrlreg, &regs->mdio_mcr);
243 
244 	if (mdio_wait(regs))
245 		return 1;
246 
247 	/* Read data */
248 	*val = readl(&regs->mdio_mrd);
249 	return 0;
250 }
251 
phywrite(struct axidma_priv * priv,u32 phyaddress,u32 registernum,u32 data)252 static u32 phywrite(struct axidma_priv *priv, u32 phyaddress, u32 registernum,
253 		    u32 data)
254 {
255 	struct axi_regs *regs = priv->iobase;
256 	u32 mdioctrlreg = 0;
257 
258 	if (mdio_wait(regs))
259 		return 1;
260 
261 	mdioctrlreg = ((phyaddress << XAE_MDIO_MCR_PHYAD_SHIFT) &
262 			XAE_MDIO_MCR_PHYAD_MASK) |
263 			((registernum << XAE_MDIO_MCR_REGAD_SHIFT)
264 			& XAE_MDIO_MCR_REGAD_MASK) |
265 			XAE_MDIO_MCR_INITIATE_MASK |
266 			XAE_MDIO_MCR_OP_WRITE_MASK;
267 
268 	/* Write data */
269 	writel(data, &regs->mdio_mwd);
270 
271 	writel(mdioctrlreg, &regs->mdio_mcr);
272 
273 	if (mdio_wait(regs))
274 		return 1;
275 
276 	return 0;
277 }
278 
axiemac_phy_init(struct udevice * dev)279 static int axiemac_phy_init(struct udevice *dev)
280 {
281 	u16 phyreg;
282 	int i;
283 	u32 ret;
284 	struct axidma_priv *priv = dev_get_priv(dev);
285 	struct axi_regs *regs = priv->iobase;
286 	struct phy_device *phydev;
287 
288 	u32 supported = SUPPORTED_10baseT_Half |
289 			SUPPORTED_10baseT_Full |
290 			SUPPORTED_100baseT_Half |
291 			SUPPORTED_100baseT_Full |
292 			SUPPORTED_1000baseT_Half |
293 			SUPPORTED_1000baseT_Full;
294 
295 	/* Set default MDIO divisor */
296 	writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
297 
298 	if (priv->phyaddr == -1) {
299 		/* Detect the PHY address */
300 		for (i = 31; i >= 0; i--) {
301 			ret = phyread(priv, i, PHY_DETECT_REG, &phyreg);
302 			if (!ret && (phyreg != 0xFFFF) &&
303 			((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
304 				/* Found a valid PHY address */
305 				priv->phyaddr = i;
306 				debug("axiemac: Found valid phy address, %x\n",
307 				      i);
308 				break;
309 			}
310 		}
311 	}
312 
313 	/* Interface - look at tsec */
314 	phydev = phy_connect(priv->bus, priv->phyaddr, dev, priv->interface);
315 
316 	phydev->supported &= supported;
317 	phydev->advertising = phydev->supported;
318 	priv->phydev = phydev;
319 	if (priv->phy_of_handle)
320 		priv->phydev->node = offset_to_ofnode(priv->phy_of_handle);
321 	phy_config(phydev);
322 
323 	return 0;
324 }
325 
326 /* Setting axi emac and phy to proper setting */
setup_phy(struct udevice * dev)327 static int setup_phy(struct udevice *dev)
328 {
329 	u16 temp;
330 	u32 speed, emmc_reg, ret;
331 	struct axidma_priv *priv = dev_get_priv(dev);
332 	struct axi_regs *regs = priv->iobase;
333 	struct phy_device *phydev = priv->phydev;
334 
335 	if (priv->interface == PHY_INTERFACE_MODE_SGMII) {
336 		/*
337 		 * In SGMII cases the isolate bit might set
338 		 * after DMA and ethernet resets and hence
339 		 * check and clear if set.
340 		 */
341 		ret = phyread(priv, priv->phyaddr, MII_BMCR, &temp);
342 		if (ret)
343 			return 0;
344 		if (temp & BMCR_ISOLATE) {
345 			temp &= ~BMCR_ISOLATE;
346 			ret = phywrite(priv, priv->phyaddr, MII_BMCR, temp);
347 			if (ret)
348 				return 0;
349 		}
350 	}
351 
352 	if (phy_startup(phydev)) {
353 		printf("axiemac: could not initialize PHY %s\n",
354 		       phydev->dev->name);
355 		return 0;
356 	}
357 	if (!phydev->link) {
358 		printf("%s: No link.\n", phydev->dev->name);
359 		return 0;
360 	}
361 
362 	switch (phydev->speed) {
363 	case 1000:
364 		speed = XAE_EMMC_LINKSPD_1000;
365 		break;
366 	case 100:
367 		speed = XAE_EMMC_LINKSPD_100;
368 		break;
369 	case 10:
370 		speed = XAE_EMMC_LINKSPD_10;
371 		break;
372 	default:
373 		return 0;
374 	}
375 
376 	/* Setup the emac for the phy speed */
377 	emmc_reg = readl(&regs->emmc);
378 	emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
379 	emmc_reg |= speed;
380 
381 	/* Write new speed setting out to Axi Ethernet */
382 	writel(emmc_reg, &regs->emmc);
383 
384 	/*
385 	* Setting the operating speed of the MAC needs a delay. There
386 	* doesn't seem to be register to poll, so please consider this
387 	* during your application design.
388 	*/
389 	udelay(1);
390 
391 	return 1;
392 }
393 
394 /* STOP DMA transfers */
axiemac_stop(struct udevice * dev)395 static void axiemac_stop(struct udevice *dev)
396 {
397 	struct axidma_priv *priv = dev_get_priv(dev);
398 	u32 temp;
399 
400 	/* Stop the hardware */
401 	temp = readl(&priv->dmatx->control);
402 	temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
403 	writel(temp, &priv->dmatx->control);
404 
405 	temp = readl(&priv->dmarx->control);
406 	temp &= ~XAXIDMA_CR_RUNSTOP_MASK;
407 	writel(temp, &priv->dmarx->control);
408 
409 	debug("axiemac: Halted\n");
410 }
411 
xxv_axi_ethernet_init(struct axidma_priv * priv)412 static int xxv_axi_ethernet_init(struct axidma_priv *priv)
413 {
414 	struct xxv_axi_regs *regs = (struct xxv_axi_regs *)priv->iobase;
415 
416 	writel(readl(&regs->rcw1) | XXV_RCW1_FCS_MASK, &regs->rcw1);
417 	writel(readl(&regs->tc) | XXV_TC_FCS_MASK, &regs->tc);
418 	writel(readl(&regs->tc) | XXV_TC_TX_MASK, &regs->tc);
419 	writel(readl(&regs->rcw1) | XXV_RCW1_RX_MASK, &regs->rcw1);
420 
421 	return 0;
422 }
423 
axi_ethernet_init(struct axidma_priv * priv)424 static int axi_ethernet_init(struct axidma_priv *priv)
425 {
426 	struct axi_regs *regs = priv->iobase;
427 	int err;
428 
429 	/*
430 	 * Check the status of the MgtRdy bit in the interrupt status
431 	 * registers. This must be done to allow the MGT clock to become stable
432 	 * for the Sgmii and 1000BaseX PHY interfaces. No other register reads
433 	 * will be valid until this bit is valid.
434 	 * The bit is always a 1 for all other PHY interfaces.
435 	 * Interrupt status and enable registers are not available in non
436 	 * processor mode and hence bypass in this mode
437 	 */
438 	if (!priv->eth_hasnobuf) {
439 		err = wait_for_bit_le32(&regs->is, XAE_INT_MGTRDY_MASK,
440 					true, 200, false);
441 		if (err) {
442 			printf("%s: Timeout\n", __func__);
443 			return 1;
444 		}
445 
446 		/*
447 		 * Stop the device and reset HW
448 		 * Disable interrupts
449 		 */
450 		writel(0, &regs->ie);
451 	}
452 
453 	/* Disable the receiver */
454 	writel(readl(&regs->rcw1) & ~XAE_RCW1_RX_MASK, &regs->rcw1);
455 
456 	/*
457 	 * Stopping the receiver in mid-packet causes a dropped packet
458 	 * indication from HW. Clear it.
459 	 */
460 	if (!priv->eth_hasnobuf) {
461 		/* Set the interrupt status register to clear the interrupt */
462 		writel(XAE_INT_RXRJECT_MASK, &regs->is);
463 	}
464 
465 	/* Setup HW */
466 	/* Set default MDIO divisor */
467 	writel(XAE_MDIO_DIV_DFT | XAE_MDIO_MC_MDIOEN_MASK, &regs->mdio_mc);
468 
469 	debug("axiemac: InitHw done\n");
470 	return 0;
471 }
472 
axiemac_write_hwaddr(struct udevice * dev)473 static int axiemac_write_hwaddr(struct udevice *dev)
474 {
475 	struct eth_pdata *pdata = dev_get_plat(dev);
476 	struct axidma_priv *priv = dev_get_priv(dev);
477 	struct axi_regs *regs = priv->iobase;
478 
479 	if (priv->mactype != EMAC_1G)
480 		return 0;
481 
482 	/* Set the MAC address */
483 	int val = ((pdata->enetaddr[3] << 24) | (pdata->enetaddr[2] << 16) |
484 		(pdata->enetaddr[1] << 8) | (pdata->enetaddr[0]));
485 	writel(val, &regs->uaw0);
486 
487 	val = (pdata->enetaddr[5] << 8) | pdata->enetaddr[4];
488 	val |= readl(&regs->uaw1) & ~XAE_UAW1_UNICASTADDR_MASK;
489 	writel(val, &regs->uaw1);
490 	return 0;
491 }
492 
493 /* Reset DMA engine */
axi_dma_init(struct axidma_priv * priv)494 static void axi_dma_init(struct axidma_priv *priv)
495 {
496 	u32 timeout = 500;
497 
498 	/* Reset the engine so the hardware starts from a known state */
499 	writel(XAXIDMA_CR_RESET_MASK, &priv->dmatx->control);
500 	writel(XAXIDMA_CR_RESET_MASK, &priv->dmarx->control);
501 
502 	/* At the initialization time, hardware should finish reset quickly */
503 	while (timeout--) {
504 		/* Check transmit/receive channel */
505 		/* Reset is done when the reset bit is low */
506 		if (!((readl(&priv->dmatx->control) |
507 				readl(&priv->dmarx->control))
508 						& XAXIDMA_CR_RESET_MASK)) {
509 			break;
510 		}
511 	}
512 	if (!timeout)
513 		printf("%s: Timeout\n", __func__);
514 }
515 
axiemac_start(struct udevice * dev)516 static int axiemac_start(struct udevice *dev)
517 {
518 	struct axidma_priv *priv = dev_get_priv(dev);
519 	u32 temp;
520 
521 	debug("axiemac: Init started\n");
522 	/*
523 	 * Initialize AXIDMA engine. AXIDMA engine must be initialized before
524 	 * AxiEthernet. During AXIDMA engine initialization, AXIDMA hardware is
525 	 * reset, and since AXIDMA reset line is connected to AxiEthernet, this
526 	 * would ensure a reset of AxiEthernet.
527 	 */
528 	axi_dma_init(priv);
529 
530 	/* Initialize AxiEthernet hardware. */
531 	if (priv->mactype == EMAC_1G) {
532 		if (axi_ethernet_init(priv))
533 			return -1;
534 	} else {
535 		if (xxv_axi_ethernet_init(priv))
536 			return -1;
537 	}
538 
539 	/* Disable all RX interrupts before RxBD space setup */
540 	temp = readl(&priv->dmarx->control);
541 	temp &= ~XAXIDMA_IRQ_ALL_MASK;
542 	writel(temp, &priv->dmarx->control);
543 
544 	/* Start DMA RX channel. Now it's ready to receive data.*/
545 	axienet_dma_write(&rx_bd, &priv->dmarx->current);
546 
547 	/* Setup the BD. */
548 	memset(&rx_bd, 0, sizeof(rx_bd));
549 	rx_bd.next_desc = lower_32_bits((unsigned long)&rx_bd);
550 	rx_bd.buf_addr = lower_32_bits((unsigned long)&rxframe);
551 #if defined(CONFIG_PHYS_64BIT)
552 	rx_bd.next_desc_msb = upper_32_bits((unsigned long)&rx_bd);
553 	rx_bd.buf_addr_msb = upper_32_bits((unsigned long)&rxframe);
554 #endif
555 	rx_bd.cntrl = sizeof(rxframe);
556 	/* Flush the last BD so DMA core could see the updates */
557 	flush_cache((phys_addr_t)&rx_bd, sizeof(rx_bd));
558 
559 	/* It is necessary to flush rxframe because if you don't do it
560 	 * then cache can contain uninitialized data */
561 	flush_cache((phys_addr_t)&rxframe, sizeof(rxframe));
562 
563 	/* Start the hardware */
564 	temp = readl(&priv->dmarx->control);
565 	temp |= XAXIDMA_CR_RUNSTOP_MASK;
566 	writel(temp, &priv->dmarx->control);
567 
568 	/* Rx BD is ready - start */
569 	axienet_dma_write(&rx_bd, &priv->dmarx->tail);
570 
571 	if (priv->mactype == EMAC_1G) {
572 		struct axi_regs *regs = priv->iobase;
573 		/* Enable TX */
574 		writel(XAE_TC_TX_MASK, &regs->tc);
575 		/* Enable RX */
576 		writel(XAE_RCW1_RX_MASK, &regs->rcw1);
577 
578 		/* PHY setup */
579 		if (!setup_phy(dev)) {
580 			axiemac_stop(dev);
581 			return -1;
582 		}
583 	} else {
584 		struct xxv_axi_regs *regs = (struct xxv_axi_regs *)priv->iobase;
585 		/* Enable TX */
586 		writel(readl(&regs->tc) | XXV_TC_TX_MASK, &regs->tc);
587 
588 		/* Enable RX */
589 		writel(readl(&regs->rcw1) | XXV_RCW1_RX_MASK, &regs->rcw1);
590 	}
591 
592 	debug("axiemac: Init complete\n");
593 	return 0;
594 }
595 
axiemac_send(struct udevice * dev,void * ptr,int len)596 static int axiemac_send(struct udevice *dev, void *ptr, int len)
597 {
598 	struct axidma_priv *priv = dev_get_priv(dev);
599 	u32 timeout;
600 
601 	if (len > PKTSIZE_ALIGN)
602 		len = PKTSIZE_ALIGN;
603 
604 	/* If size is less than min packet size, pad to min size */
605 	if (priv->mactype == EMAC_10G_25G && len < XXV_MIN_PKT_SIZE) {
606 		memset(txminframe, 0, XXV_MIN_PKT_SIZE);
607 		memcpy(txminframe, ptr, len);
608 		len = XXV_MIN_PKT_SIZE;
609 		ptr = txminframe;
610 	}
611 
612 	/* Flush packet to main memory to be trasfered by DMA */
613 	flush_cache((phys_addr_t)ptr, len);
614 
615 	/* Setup Tx BD */
616 	memset(&tx_bd, 0, sizeof(tx_bd));
617 	/* At the end of the ring, link the last BD back to the top */
618 	tx_bd.next_desc = lower_32_bits((unsigned long)&tx_bd);
619 	tx_bd.buf_addr = lower_32_bits((unsigned long)ptr);
620 #if defined(CONFIG_PHYS_64BIT)
621 	tx_bd.next_desc_msb = upper_32_bits((unsigned long)&tx_bd);
622 	tx_bd.buf_addr_msb = upper_32_bits((unsigned long)ptr);
623 #endif
624 	/* Save len */
625 	tx_bd.cntrl = len | XAXIDMA_BD_CTRL_TXSOF_MASK |
626 						XAXIDMA_BD_CTRL_TXEOF_MASK;
627 
628 	/* Flush the last BD so DMA core could see the updates */
629 	flush_cache((phys_addr_t)&tx_bd, sizeof(tx_bd));
630 
631 	if (readl(&priv->dmatx->status) & XAXIDMA_HALTED_MASK) {
632 		u32 temp;
633 		axienet_dma_write(&tx_bd, &priv->dmatx->current);
634 		/* Start the hardware */
635 		temp = readl(&priv->dmatx->control);
636 		temp |= XAXIDMA_CR_RUNSTOP_MASK;
637 		writel(temp, &priv->dmatx->control);
638 	}
639 
640 	/* Start transfer */
641 	axienet_dma_write(&tx_bd, &priv->dmatx->tail);
642 
643 	/* Wait for transmission to complete */
644 	debug("axiemac: Waiting for tx to be done\n");
645 	timeout = 200;
646 	while (timeout && (!(readl(&priv->dmatx->status) &
647 			(XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))) {
648 		timeout--;
649 		udelay(1);
650 	}
651 	if (!timeout) {
652 		printf("%s: Timeout\n", __func__);
653 		return 1;
654 	}
655 
656 	debug("axiemac: Sending complete\n");
657 	return 0;
658 }
659 
isrxready(struct axidma_priv * priv)660 static int isrxready(struct axidma_priv *priv)
661 {
662 	u32 status;
663 
664 	/* Read pending interrupts */
665 	status = readl(&priv->dmarx->status);
666 
667 	/* Acknowledge pending interrupts */
668 	writel(status & XAXIDMA_IRQ_ALL_MASK, &priv->dmarx->status);
669 
670 	/*
671 	 * If Reception done interrupt is asserted, call RX call back function
672 	 * to handle the processed BDs and then raise the according flag.
673 	 */
674 	if ((status & (XAXIDMA_IRQ_DELAY_MASK | XAXIDMA_IRQ_IOC_MASK)))
675 		return 1;
676 
677 	return 0;
678 }
679 
axiemac_recv(struct udevice * dev,int flags,uchar ** packetp)680 static int axiemac_recv(struct udevice *dev, int flags, uchar **packetp)
681 {
682 	u32 length;
683 	struct axidma_priv *priv = dev_get_priv(dev);
684 	u32 temp;
685 
686 	/* Wait for an incoming packet */
687 	if (!isrxready(priv))
688 		return -1;
689 
690 	debug("axiemac: RX data ready\n");
691 
692 	/* Disable IRQ for a moment till packet is handled */
693 	temp = readl(&priv->dmarx->control);
694 	temp &= ~XAXIDMA_IRQ_ALL_MASK;
695 	writel(temp, &priv->dmarx->control);
696 	if (!priv->eth_hasnobuf  && priv->mactype == EMAC_1G)
697 		length = rx_bd.app4 & 0xFFFF; /* max length mask */
698 	else
699 		length = rx_bd.status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
700 
701 #ifdef DEBUG
702 	print_buffer(&rxframe, &rxframe[0], 1, length, 16);
703 #endif
704 
705 	*packetp = rxframe;
706 	return length;
707 }
708 
axiemac_free_pkt(struct udevice * dev,uchar * packet,int length)709 static int axiemac_free_pkt(struct udevice *dev, uchar *packet, int length)
710 {
711 	struct axidma_priv *priv = dev_get_priv(dev);
712 
713 #ifdef DEBUG
714 	/* It is useful to clear buffer to be sure that it is consistent */
715 	memset(rxframe, 0, sizeof(rxframe));
716 #endif
717 	/* Setup RxBD */
718 	/* Clear the whole buffer and setup it again - all flags are cleared */
719 	memset(&rx_bd, 0, sizeof(rx_bd));
720 	rx_bd.next_desc = lower_32_bits((unsigned long)&rx_bd);
721 	rx_bd.buf_addr = lower_32_bits((unsigned long)&rxframe);
722 #if defined(CONFIG_PHYS_64BIT)
723 	rx_bd.next_desc_msb = upper_32_bits((unsigned long)&rx_bd);
724 	rx_bd.buf_addr_msb = upper_32_bits((unsigned long)&rxframe);
725 #endif
726 	rx_bd.cntrl = sizeof(rxframe);
727 
728 	/* Write bd to HW */
729 	flush_cache((phys_addr_t)&rx_bd, sizeof(rx_bd));
730 
731 	/* It is necessary to flush rxframe because if you don't do it
732 	 * then cache will contain previous packet */
733 	flush_cache((phys_addr_t)&rxframe, sizeof(rxframe));
734 
735 	/* Rx BD is ready - start again */
736 	axienet_dma_write(&rx_bd, &priv->dmarx->tail);
737 
738 	debug("axiemac: RX completed, framelength = %d\n", length);
739 
740 	return 0;
741 }
742 
axiemac_miiphy_read(struct mii_dev * bus,int addr,int devad,int reg)743 static int axiemac_miiphy_read(struct mii_dev *bus, int addr,
744 			       int devad, int reg)
745 {
746 	int ret;
747 	u16 value;
748 
749 	ret = phyread(bus->priv, addr, reg, &value);
750 	debug("axiemac: Read MII 0x%x, 0x%x, 0x%x, %d\n", addr, reg,
751 	      value, ret);
752 	return value;
753 }
754 
axiemac_miiphy_write(struct mii_dev * bus,int addr,int devad,int reg,u16 value)755 static int axiemac_miiphy_write(struct mii_dev *bus, int addr, int devad,
756 				int reg, u16 value)
757 {
758 	debug("axiemac: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, value);
759 	return phywrite(bus->priv, addr, reg, value);
760 }
761 
axi_emac_probe(struct udevice * dev)762 static int axi_emac_probe(struct udevice *dev)
763 {
764 	struct axidma_plat *plat = dev_get_plat(dev);
765 	struct eth_pdata *pdata = &plat->eth_pdata;
766 	struct axidma_priv *priv = dev_get_priv(dev);
767 	int ret;
768 
769 	priv->iobase = (struct axi_regs *)pdata->iobase;
770 	priv->dmatx = plat->dmatx;
771 	/* RX channel offset is 0x30 */
772 	priv->dmarx = (struct axidma_reg *)((phys_addr_t)priv->dmatx + 0x30);
773 	priv->mactype = plat->mactype;
774 
775 	if (priv->mactype == EMAC_1G) {
776 		priv->eth_hasnobuf = plat->eth_hasnobuf;
777 		priv->phyaddr = plat->phyaddr;
778 		priv->phy_of_handle = plat->phy_of_handle;
779 		priv->interface = pdata->phy_interface;
780 
781 		priv->bus = mdio_alloc();
782 		priv->bus->read = axiemac_miiphy_read;
783 		priv->bus->write = axiemac_miiphy_write;
784 		priv->bus->priv = priv;
785 
786 		ret = mdio_register_seq(priv->bus, dev_seq(dev));
787 		if (ret)
788 			return ret;
789 
790 		axiemac_phy_init(dev);
791 	}
792 
793 	return 0;
794 }
795 
axi_emac_remove(struct udevice * dev)796 static int axi_emac_remove(struct udevice *dev)
797 {
798 	struct axidma_priv *priv = dev_get_priv(dev);
799 
800 	if (priv->mactype == EMAC_1G) {
801 		free(priv->phydev);
802 		mdio_unregister(priv->bus);
803 		mdio_free(priv->bus);
804 	}
805 
806 	return 0;
807 }
808 
809 static const struct eth_ops axi_emac_ops = {
810 	.start			= axiemac_start,
811 	.send			= axiemac_send,
812 	.recv			= axiemac_recv,
813 	.free_pkt		= axiemac_free_pkt,
814 	.stop			= axiemac_stop,
815 	.write_hwaddr		= axiemac_write_hwaddr,
816 };
817 
axi_emac_of_to_plat(struct udevice * dev)818 static int axi_emac_of_to_plat(struct udevice *dev)
819 {
820 	struct axidma_plat *plat = dev_get_plat(dev);
821 	struct eth_pdata *pdata = &plat->eth_pdata;
822 	int node = dev_of_offset(dev);
823 	int offset = 0;
824 	const char *phy_mode;
825 
826 	pdata->iobase = dev_read_addr(dev);
827 	plat->mactype = dev_get_driver_data(dev);
828 
829 	offset = fdtdec_lookup_phandle(gd->fdt_blob, node,
830 				       "axistream-connected");
831 	if (offset <= 0) {
832 		printf("%s: axistream is not found\n", __func__);
833 		return -EINVAL;
834 	}
835 	plat->dmatx = (struct axidma_reg *)fdtdec_get_addr(gd->fdt_blob,
836 							  offset, "reg");
837 	if (!plat->dmatx) {
838 		printf("%s: axi_dma register space not found\n", __func__);
839 		return -EINVAL;
840 	}
841 
842 	if (plat->mactype == EMAC_1G) {
843 		plat->phyaddr = -1;
844 
845 		offset = fdtdec_lookup_phandle(gd->fdt_blob, node,
846 					       "phy-handle");
847 		if (offset > 0) {
848 			plat->phyaddr = fdtdec_get_int(gd->fdt_blob, offset,
849 						       "reg", -1);
850 			plat->phy_of_handle = offset;
851 		}
852 
853 		phy_mode = fdt_getprop(gd->fdt_blob, node, "phy-mode", NULL);
854 		if (phy_mode)
855 			pdata->phy_interface = phy_get_interface_by_name(phy_mode);
856 		if (pdata->phy_interface == -1) {
857 			printf("%s: Invalid PHY interface '%s'\n", __func__,
858 			       phy_mode);
859 			return -EINVAL;
860 		}
861 
862 		plat->eth_hasnobuf = fdtdec_get_bool(gd->fdt_blob, node,
863 						     "xlnx,eth-hasnobuf");
864 	}
865 
866 	printf("AXI EMAC: %lx, phyaddr %d, interface %s\n", (ulong)pdata->iobase,
867 	       plat->phyaddr, phy_string_for_interface(pdata->phy_interface));
868 
869 	return 0;
870 }
871 
872 static const struct udevice_id axi_emac_ids[] = {
873 	{ .compatible = "xlnx,axi-ethernet-1.00.a", .data = (uintptr_t)EMAC_1G },
874 	{ .compatible = "xlnx,xxv-ethernet-1.0", .data = (uintptr_t)EMAC_10G_25G },
875 	{ }
876 };
877 
878 U_BOOT_DRIVER(axi_emac) = {
879 	.name	= "axi_emac",
880 	.id	= UCLASS_ETH,
881 	.of_match = axi_emac_ids,
882 	.of_to_plat = axi_emac_of_to_plat,
883 	.probe	= axi_emac_probe,
884 	.remove	= axi_emac_remove,
885 	.ops	= &axi_emac_ops,
886 	.priv_auto	= sizeof(struct axidma_priv),
887 	.plat_auto	= sizeof(struct axidma_plat),
888 };
889