1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2014 Google, Inc
4  * Written by Simon Glass <sjg@chromium.org>
5  */
6 
7 #define LOG_CATEGORY UCLASS_PCI
8 
9 #include <common.h>
10 #include <dm.h>
11 #include <errno.h>
12 #include <init.h>
13 #include <log.h>
14 #include <malloc.h>
15 #include <pci.h>
16 #include <asm/global_data.h>
17 #include <asm/io.h>
18 #include <dm/device-internal.h>
19 #include <dm/lists.h>
20 #include <dm/uclass-internal.h>
21 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
22 #include <asm/fsp/fsp_support.h>
23 #endif
24 #include <dt-bindings/pci/pci.h>
25 #include <linux/delay.h>
26 #include "pci_internal.h"
27 
28 DECLARE_GLOBAL_DATA_PTR;
29 
pci_get_bus(int busnum,struct udevice ** busp)30 int pci_get_bus(int busnum, struct udevice **busp)
31 {
32 	int ret;
33 
34 	ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
35 
36 	/* Since buses may not be numbered yet try a little harder with bus 0 */
37 	if (ret == -ENODEV) {
38 		ret = uclass_first_device_err(UCLASS_PCI, busp);
39 		if (ret)
40 			return ret;
41 		ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, busp);
42 	}
43 
44 	return ret;
45 }
46 
pci_get_controller(struct udevice * dev)47 struct udevice *pci_get_controller(struct udevice *dev)
48 {
49 	while (device_is_on_pci_bus(dev))
50 		dev = dev->parent;
51 
52 	return dev;
53 }
54 
dm_pci_get_bdf(const struct udevice * dev)55 pci_dev_t dm_pci_get_bdf(const struct udevice *dev)
56 {
57 	struct pci_child_plat *pplat = dev_get_parent_plat(dev);
58 	struct udevice *bus = dev->parent;
59 
60 	/*
61 	 * This error indicates that @dev is a device on an unprobed PCI bus.
62 	 * The bus likely has bus=seq == -1, so the PCI_ADD_BUS() macro below
63 	 * will produce a bad BDF>
64 	 *
65 	 * A common cause of this problem is that this function is called in the
66 	 * of_to_plat() method of @dev. Accessing the PCI bus in that
67 	 * method is not allowed, since it has not yet been probed. To fix this,
68 	 * move that access to the probe() method of @dev instead.
69 	 */
70 	if (!device_active(bus))
71 		log_err("PCI: Device '%s' on unprobed bus '%s'\n", dev->name,
72 			bus->name);
73 	return PCI_ADD_BUS(dev_seq(bus), pplat->devfn);
74 }
75 
76 /**
77  * pci_get_bus_max() - returns the bus number of the last active bus
78  *
79  * @return last bus number, or -1 if no active buses
80  */
pci_get_bus_max(void)81 static int pci_get_bus_max(void)
82 {
83 	struct udevice *bus;
84 	struct uclass *uc;
85 	int ret = -1;
86 
87 	ret = uclass_get(UCLASS_PCI, &uc);
88 	uclass_foreach_dev(bus, uc) {
89 		if (dev_seq(bus) > ret)
90 			ret = dev_seq(bus);
91 	}
92 
93 	debug("%s: ret=%d\n", __func__, ret);
94 
95 	return ret;
96 }
97 
pci_last_busno(void)98 int pci_last_busno(void)
99 {
100 	return pci_get_bus_max();
101 }
102 
pci_get_ff(enum pci_size_t size)103 int pci_get_ff(enum pci_size_t size)
104 {
105 	switch (size) {
106 	case PCI_SIZE_8:
107 		return 0xff;
108 	case PCI_SIZE_16:
109 		return 0xffff;
110 	default:
111 		return 0xffffffff;
112 	}
113 }
114 
pci_dev_find_ofnode(struct udevice * bus,phys_addr_t bdf,ofnode * rnode)115 static void pci_dev_find_ofnode(struct udevice *bus, phys_addr_t bdf,
116 				ofnode *rnode)
117 {
118 	struct fdt_pci_addr addr;
119 	ofnode node;
120 	int ret;
121 
122 	dev_for_each_subnode(node, bus) {
123 		ret = ofnode_read_pci_addr(node, FDT_PCI_SPACE_CONFIG, "reg",
124 					   &addr);
125 		if (ret)
126 			continue;
127 
128 		if (PCI_MASK_BUS(addr.phys_hi) != PCI_MASK_BUS(bdf))
129 			continue;
130 
131 		*rnode = node;
132 		break;
133 	}
134 };
135 
pci_bus_find_devfn(const struct udevice * bus,pci_dev_t find_devfn,struct udevice ** devp)136 int pci_bus_find_devfn(const struct udevice *bus, pci_dev_t find_devfn,
137 		       struct udevice **devp)
138 {
139 	struct udevice *dev;
140 
141 	for (device_find_first_child(bus, &dev);
142 	     dev;
143 	     device_find_next_child(&dev)) {
144 		struct pci_child_plat *pplat;
145 
146 		pplat = dev_get_parent_plat(dev);
147 		if (pplat && pplat->devfn == find_devfn) {
148 			*devp = dev;
149 			return 0;
150 		}
151 	}
152 
153 	return -ENODEV;
154 }
155 
dm_pci_bus_find_bdf(pci_dev_t bdf,struct udevice ** devp)156 int dm_pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp)
157 {
158 	struct udevice *bus;
159 	int ret;
160 
161 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
162 	if (ret)
163 		return ret;
164 	return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp);
165 }
166 
pci_device_matches_ids(struct udevice * dev,const struct pci_device_id * ids)167 static int pci_device_matches_ids(struct udevice *dev,
168 				  const struct pci_device_id *ids)
169 {
170 	struct pci_child_plat *pplat;
171 	int i;
172 
173 	pplat = dev_get_parent_plat(dev);
174 	if (!pplat)
175 		return -EINVAL;
176 	for (i = 0; ids[i].vendor != 0; i++) {
177 		if (pplat->vendor == ids[i].vendor &&
178 		    pplat->device == ids[i].device)
179 			return i;
180 	}
181 
182 	return -EINVAL;
183 }
184 
pci_bus_find_devices(struct udevice * bus,const struct pci_device_id * ids,int * indexp,struct udevice ** devp)185 int pci_bus_find_devices(struct udevice *bus, const struct pci_device_id *ids,
186 			 int *indexp, struct udevice **devp)
187 {
188 	struct udevice *dev;
189 
190 	/* Scan all devices on this bus */
191 	for (device_find_first_child(bus, &dev);
192 	     dev;
193 	     device_find_next_child(&dev)) {
194 		if (pci_device_matches_ids(dev, ids) >= 0) {
195 			if ((*indexp)-- <= 0) {
196 				*devp = dev;
197 				return 0;
198 			}
199 		}
200 	}
201 
202 	return -ENODEV;
203 }
204 
pci_find_device_id(const struct pci_device_id * ids,int index,struct udevice ** devp)205 int pci_find_device_id(const struct pci_device_id *ids, int index,
206 		       struct udevice **devp)
207 {
208 	struct udevice *bus;
209 
210 	/* Scan all known buses */
211 	for (uclass_first_device(UCLASS_PCI, &bus);
212 	     bus;
213 	     uclass_next_device(&bus)) {
214 		if (!pci_bus_find_devices(bus, ids, &index, devp))
215 			return 0;
216 	}
217 	*devp = NULL;
218 
219 	return -ENODEV;
220 }
221 
dm_pci_bus_find_device(struct udevice * bus,unsigned int vendor,unsigned int device,int * indexp,struct udevice ** devp)222 static int dm_pci_bus_find_device(struct udevice *bus, unsigned int vendor,
223 				  unsigned int device, int *indexp,
224 				  struct udevice **devp)
225 {
226 	struct pci_child_plat *pplat;
227 	struct udevice *dev;
228 
229 	for (device_find_first_child(bus, &dev);
230 	     dev;
231 	     device_find_next_child(&dev)) {
232 		pplat = dev_get_parent_plat(dev);
233 		if (pplat->vendor == vendor && pplat->device == device) {
234 			if (!(*indexp)--) {
235 				*devp = dev;
236 				return 0;
237 			}
238 		}
239 	}
240 
241 	return -ENODEV;
242 }
243 
dm_pci_find_device(unsigned int vendor,unsigned int device,int index,struct udevice ** devp)244 int dm_pci_find_device(unsigned int vendor, unsigned int device, int index,
245 		       struct udevice **devp)
246 {
247 	struct udevice *bus;
248 
249 	/* Scan all known buses */
250 	for (uclass_first_device(UCLASS_PCI, &bus);
251 	     bus;
252 	     uclass_next_device(&bus)) {
253 		if (!dm_pci_bus_find_device(bus, vendor, device, &index, devp))
254 			return device_probe(*devp);
255 	}
256 	*devp = NULL;
257 
258 	return -ENODEV;
259 }
260 
dm_pci_find_class(uint find_class,int index,struct udevice ** devp)261 int dm_pci_find_class(uint find_class, int index, struct udevice **devp)
262 {
263 	struct udevice *dev;
264 
265 	/* Scan all known buses */
266 	for (pci_find_first_device(&dev);
267 	     dev;
268 	     pci_find_next_device(&dev)) {
269 		struct pci_child_plat *pplat = dev_get_parent_plat(dev);
270 
271 		if (pplat->class == find_class && !index--) {
272 			*devp = dev;
273 			return device_probe(*devp);
274 		}
275 	}
276 	*devp = NULL;
277 
278 	return -ENODEV;
279 }
280 
pci_bus_write_config(struct udevice * bus,pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)281 int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset,
282 			 unsigned long value, enum pci_size_t size)
283 {
284 	struct dm_pci_ops *ops;
285 
286 	ops = pci_get_ops(bus);
287 	if (!ops->write_config)
288 		return -ENOSYS;
289 	return ops->write_config(bus, bdf, offset, value, size);
290 }
291 
pci_bus_clrset_config32(struct udevice * bus,pci_dev_t bdf,int offset,u32 clr,u32 set)292 int pci_bus_clrset_config32(struct udevice *bus, pci_dev_t bdf, int offset,
293 			    u32 clr, u32 set)
294 {
295 	ulong val;
296 	int ret;
297 
298 	ret = pci_bus_read_config(bus, bdf, offset, &val, PCI_SIZE_32);
299 	if (ret)
300 		return ret;
301 	val &= ~clr;
302 	val |= set;
303 
304 	return pci_bus_write_config(bus, bdf, offset, val, PCI_SIZE_32);
305 }
306 
pci_write_config(pci_dev_t bdf,int offset,unsigned long value,enum pci_size_t size)307 static int pci_write_config(pci_dev_t bdf, int offset, unsigned long value,
308 			    enum pci_size_t size)
309 {
310 	struct udevice *bus;
311 	int ret;
312 
313 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
314 	if (ret)
315 		return ret;
316 
317 	return pci_bus_write_config(bus, bdf, offset, value, size);
318 }
319 
dm_pci_write_config(struct udevice * dev,int offset,unsigned long value,enum pci_size_t size)320 int dm_pci_write_config(struct udevice *dev, int offset, unsigned long value,
321 			enum pci_size_t size)
322 {
323 	struct udevice *bus;
324 
325 	for (bus = dev; device_is_on_pci_bus(bus);)
326 		bus = bus->parent;
327 	return pci_bus_write_config(bus, dm_pci_get_bdf(dev), offset, value,
328 				    size);
329 }
330 
pci_write_config32(pci_dev_t bdf,int offset,u32 value)331 int pci_write_config32(pci_dev_t bdf, int offset, u32 value)
332 {
333 	return pci_write_config(bdf, offset, value, PCI_SIZE_32);
334 }
335 
pci_write_config16(pci_dev_t bdf,int offset,u16 value)336 int pci_write_config16(pci_dev_t bdf, int offset, u16 value)
337 {
338 	return pci_write_config(bdf, offset, value, PCI_SIZE_16);
339 }
340 
pci_write_config8(pci_dev_t bdf,int offset,u8 value)341 int pci_write_config8(pci_dev_t bdf, int offset, u8 value)
342 {
343 	return pci_write_config(bdf, offset, value, PCI_SIZE_8);
344 }
345 
dm_pci_write_config8(struct udevice * dev,int offset,u8 value)346 int dm_pci_write_config8(struct udevice *dev, int offset, u8 value)
347 {
348 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_8);
349 }
350 
dm_pci_write_config16(struct udevice * dev,int offset,u16 value)351 int dm_pci_write_config16(struct udevice *dev, int offset, u16 value)
352 {
353 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_16);
354 }
355 
dm_pci_write_config32(struct udevice * dev,int offset,u32 value)356 int dm_pci_write_config32(struct udevice *dev, int offset, u32 value)
357 {
358 	return dm_pci_write_config(dev, offset, value, PCI_SIZE_32);
359 }
360 
pci_bus_read_config(const struct udevice * bus,pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)361 int pci_bus_read_config(const struct udevice *bus, pci_dev_t bdf, int offset,
362 			unsigned long *valuep, enum pci_size_t size)
363 {
364 	struct dm_pci_ops *ops;
365 
366 	ops = pci_get_ops(bus);
367 	if (!ops->read_config)
368 		return -ENOSYS;
369 	return ops->read_config(bus, bdf, offset, valuep, size);
370 }
371 
pci_read_config(pci_dev_t bdf,int offset,unsigned long * valuep,enum pci_size_t size)372 static int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep,
373 			   enum pci_size_t size)
374 {
375 	struct udevice *bus;
376 	int ret;
377 
378 	ret = pci_get_bus(PCI_BUS(bdf), &bus);
379 	if (ret)
380 		return ret;
381 
382 	return pci_bus_read_config(bus, bdf, offset, valuep, size);
383 }
384 
dm_pci_read_config(const struct udevice * dev,int offset,unsigned long * valuep,enum pci_size_t size)385 int dm_pci_read_config(const struct udevice *dev, int offset,
386 		       unsigned long *valuep, enum pci_size_t size)
387 {
388 	const struct udevice *bus;
389 
390 	for (bus = dev; device_is_on_pci_bus(bus);)
391 		bus = bus->parent;
392 	return pci_bus_read_config(bus, dm_pci_get_bdf(dev), offset, valuep,
393 				   size);
394 }
395 
pci_read_config32(pci_dev_t bdf,int offset,u32 * valuep)396 int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep)
397 {
398 	unsigned long value;
399 	int ret;
400 
401 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32);
402 	if (ret)
403 		return ret;
404 	*valuep = value;
405 
406 	return 0;
407 }
408 
pci_read_config16(pci_dev_t bdf,int offset,u16 * valuep)409 int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep)
410 {
411 	unsigned long value;
412 	int ret;
413 
414 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16);
415 	if (ret)
416 		return ret;
417 	*valuep = value;
418 
419 	return 0;
420 }
421 
pci_read_config8(pci_dev_t bdf,int offset,u8 * valuep)422 int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep)
423 {
424 	unsigned long value;
425 	int ret;
426 
427 	ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8);
428 	if (ret)
429 		return ret;
430 	*valuep = value;
431 
432 	return 0;
433 }
434 
dm_pci_read_config8(const struct udevice * dev,int offset,u8 * valuep)435 int dm_pci_read_config8(const struct udevice *dev, int offset, u8 *valuep)
436 {
437 	unsigned long value;
438 	int ret;
439 
440 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_8);
441 	if (ret)
442 		return ret;
443 	*valuep = value;
444 
445 	return 0;
446 }
447 
dm_pci_read_config16(const struct udevice * dev,int offset,u16 * valuep)448 int dm_pci_read_config16(const struct udevice *dev, int offset, u16 *valuep)
449 {
450 	unsigned long value;
451 	int ret;
452 
453 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_16);
454 	if (ret)
455 		return ret;
456 	*valuep = value;
457 
458 	return 0;
459 }
460 
dm_pci_read_config32(const struct udevice * dev,int offset,u32 * valuep)461 int dm_pci_read_config32(const struct udevice *dev, int offset, u32 *valuep)
462 {
463 	unsigned long value;
464 	int ret;
465 
466 	ret = dm_pci_read_config(dev, offset, &value, PCI_SIZE_32);
467 	if (ret)
468 		return ret;
469 	*valuep = value;
470 
471 	return 0;
472 }
473 
dm_pci_clrset_config8(struct udevice * dev,int offset,u32 clr,u32 set)474 int dm_pci_clrset_config8(struct udevice *dev, int offset, u32 clr, u32 set)
475 {
476 	u8 val;
477 	int ret;
478 
479 	ret = dm_pci_read_config8(dev, offset, &val);
480 	if (ret)
481 		return ret;
482 	val &= ~clr;
483 	val |= set;
484 
485 	return dm_pci_write_config8(dev, offset, val);
486 }
487 
dm_pci_clrset_config16(struct udevice * dev,int offset,u32 clr,u32 set)488 int dm_pci_clrset_config16(struct udevice *dev, int offset, u32 clr, u32 set)
489 {
490 	u16 val;
491 	int ret;
492 
493 	ret = dm_pci_read_config16(dev, offset, &val);
494 	if (ret)
495 		return ret;
496 	val &= ~clr;
497 	val |= set;
498 
499 	return dm_pci_write_config16(dev, offset, val);
500 }
501 
dm_pci_clrset_config32(struct udevice * dev,int offset,u32 clr,u32 set)502 int dm_pci_clrset_config32(struct udevice *dev, int offset, u32 clr, u32 set)
503 {
504 	u32 val;
505 	int ret;
506 
507 	ret = dm_pci_read_config32(dev, offset, &val);
508 	if (ret)
509 		return ret;
510 	val &= ~clr;
511 	val |= set;
512 
513 	return dm_pci_write_config32(dev, offset, val);
514 }
515 
set_vga_bridge_bits(struct udevice * dev)516 static void set_vga_bridge_bits(struct udevice *dev)
517 {
518 	struct udevice *parent = dev->parent;
519 	u16 bc;
520 
521 	while (dev_seq(parent) != 0) {
522 		dm_pci_read_config16(parent, PCI_BRIDGE_CONTROL, &bc);
523 		bc |= PCI_BRIDGE_CTL_VGA;
524 		dm_pci_write_config16(parent, PCI_BRIDGE_CONTROL, bc);
525 		parent = parent->parent;
526 	}
527 }
528 
pci_auto_config_devices(struct udevice * bus)529 int pci_auto_config_devices(struct udevice *bus)
530 {
531 	struct pci_controller *hose = dev_get_uclass_priv(bus);
532 	struct pci_child_plat *pplat;
533 	unsigned int sub_bus;
534 	struct udevice *dev;
535 	int ret;
536 
537 	sub_bus = dev_seq(bus);
538 	debug("%s: start\n", __func__);
539 	pciauto_config_init(hose);
540 	for (ret = device_find_first_child(bus, &dev);
541 	     !ret && dev;
542 	     ret = device_find_next_child(&dev)) {
543 		unsigned int max_bus;
544 		int ret;
545 
546 		debug("%s: device %s\n", __func__, dev->name);
547 		if (dev_has_ofnode(dev) &&
548 		    dev_read_bool(dev, "pci,no-autoconfig"))
549 			continue;
550 		ret = dm_pciauto_config_device(dev);
551 		if (ret < 0)
552 			return log_msg_ret("auto", ret);
553 		max_bus = ret;
554 		sub_bus = max(sub_bus, max_bus);
555 
556 		if (dev_get_parent(dev) == bus)
557 			continue;
558 
559 		pplat = dev_get_parent_plat(dev);
560 		if (pplat->class == (PCI_CLASS_DISPLAY_VGA << 8))
561 			set_vga_bridge_bits(dev);
562 	}
563 	debug("%s: done\n", __func__);
564 
565 	return log_msg_ret("sub", sub_bus);
566 }
567 
pci_generic_mmap_write_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)568 int pci_generic_mmap_write_config(
569 	const struct udevice *bus,
570 	int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
571 		      void **addrp),
572 	pci_dev_t bdf,
573 	uint offset,
574 	ulong value,
575 	enum pci_size_t size)
576 {
577 	void *address;
578 
579 	if (addr_f(bus, bdf, offset, &address) < 0)
580 		return 0;
581 
582 	switch (size) {
583 	case PCI_SIZE_8:
584 		writeb(value, address);
585 		return 0;
586 	case PCI_SIZE_16:
587 		writew(value, address);
588 		return 0;
589 	case PCI_SIZE_32:
590 		writel(value, address);
591 		return 0;
592 	default:
593 		return -EINVAL;
594 	}
595 }
596 
pci_generic_mmap_read_config(const struct udevice * bus,int (* addr_f)(const struct udevice * bus,pci_dev_t bdf,uint offset,void ** addrp),pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)597 int pci_generic_mmap_read_config(
598 	const struct udevice *bus,
599 	int (*addr_f)(const struct udevice *bus, pci_dev_t bdf, uint offset,
600 		      void **addrp),
601 	pci_dev_t bdf,
602 	uint offset,
603 	ulong *valuep,
604 	enum pci_size_t size)
605 {
606 	void *address;
607 
608 	if (addr_f(bus, bdf, offset, &address) < 0) {
609 		*valuep = pci_get_ff(size);
610 		return 0;
611 	}
612 
613 	switch (size) {
614 	case PCI_SIZE_8:
615 		*valuep = readb(address);
616 		return 0;
617 	case PCI_SIZE_16:
618 		*valuep = readw(address);
619 		return 0;
620 	case PCI_SIZE_32:
621 		*valuep = readl(address);
622 		return 0;
623 	default:
624 		return -EINVAL;
625 	}
626 }
627 
dm_pci_hose_probe_bus(struct udevice * bus)628 int dm_pci_hose_probe_bus(struct udevice *bus)
629 {
630 	u8 header_type;
631 	int sub_bus;
632 	int ret;
633 	int ea_pos;
634 	u8 reg;
635 
636 	debug("%s\n", __func__);
637 
638 	dm_pci_read_config8(bus, PCI_HEADER_TYPE, &header_type);
639 	header_type &= 0x7f;
640 	if (header_type != PCI_HEADER_TYPE_BRIDGE) {
641 		debug("%s: Skipping PCI device %d with Non-Bridge Header Type 0x%x\n",
642 		      __func__, PCI_DEV(dm_pci_get_bdf(bus)), header_type);
643 		return log_msg_ret("probe", -EINVAL);
644 	}
645 
646 	ea_pos = dm_pci_find_capability(bus, PCI_CAP_ID_EA);
647 	if (ea_pos) {
648 		dm_pci_read_config8(bus, ea_pos + sizeof(u32) + sizeof(u8),
649 				    &reg);
650 		sub_bus = reg;
651 	} else {
652 		sub_bus = pci_get_bus_max() + 1;
653 	}
654 	debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name);
655 	dm_pciauto_prescan_setup_bridge(bus, sub_bus);
656 
657 	ret = device_probe(bus);
658 	if (ret) {
659 		debug("%s: Cannot probe bus %s: %d\n", __func__, bus->name,
660 		      ret);
661 		return log_msg_ret("probe", ret);
662 	}
663 
664 	if (!ea_pos)
665 		sub_bus = pci_get_bus_max();
666 
667 	dm_pciauto_postscan_setup_bridge(bus, sub_bus);
668 
669 	return sub_bus;
670 }
671 
672 /**
673  * pci_match_one_device - Tell if a PCI device structure has a matching
674  *                        PCI device id structure
675  * @id: single PCI device id structure to match
676  * @find: the PCI device id structure to match against
677  *
678  * Returns true if the finding pci_device_id structure matched or false if
679  * there is no match.
680  */
pci_match_one_id(const struct pci_device_id * id,const struct pci_device_id * find)681 static bool pci_match_one_id(const struct pci_device_id *id,
682 			     const struct pci_device_id *find)
683 {
684 	if ((id->vendor == PCI_ANY_ID || id->vendor == find->vendor) &&
685 	    (id->device == PCI_ANY_ID || id->device == find->device) &&
686 	    (id->subvendor == PCI_ANY_ID || id->subvendor == find->subvendor) &&
687 	    (id->subdevice == PCI_ANY_ID || id->subdevice == find->subdevice) &&
688 	    !((id->class ^ find->class) & id->class_mask))
689 		return true;
690 
691 	return false;
692 }
693 
694 /**
695  * pci_need_device_pre_reloc() - Check if a device should be bound
696  *
697  * This checks a list of vendor/device-ID values indicating devices that should
698  * be bound before relocation.
699  *
700  * @bus: Bus to check
701  * @vendor: Vendor ID to check
702  * @device: Device ID to check
703  * @return true if the vendor/device is in the list, false if not
704  */
pci_need_device_pre_reloc(struct udevice * bus,uint vendor,uint device)705 static bool pci_need_device_pre_reloc(struct udevice *bus, uint vendor,
706 				      uint device)
707 {
708 	u32 vendev;
709 	int index;
710 
711 	for (index = 0;
712 	     !dev_read_u32_index(bus, "u-boot,pci-pre-reloc", index,
713 				 &vendev);
714 	     index++) {
715 		if (vendev == PCI_VENDEV(vendor, device))
716 			return true;
717 	}
718 
719 	return false;
720 }
721 
722 /**
723  * pci_find_and_bind_driver() - Find and bind the right PCI driver
724  *
725  * This only looks at certain fields in the descriptor.
726  *
727  * @parent:	Parent bus
728  * @find_id:	Specification of the driver to find
729  * @bdf:	Bus/device/function addreess - see PCI_BDF()
730  * @devp:	Returns a pointer to the device created
731  * @return 0 if OK, -EPERM if the device is not needed before relocation and
732  *	   therefore was not created, other -ve value on error
733  */
pci_find_and_bind_driver(struct udevice * parent,struct pci_device_id * find_id,pci_dev_t bdf,struct udevice ** devp)734 static int pci_find_and_bind_driver(struct udevice *parent,
735 				    struct pci_device_id *find_id,
736 				    pci_dev_t bdf, struct udevice **devp)
737 {
738 	struct pci_driver_entry *start, *entry;
739 	ofnode node = ofnode_null();
740 	const char *drv;
741 	int n_ents;
742 	int ret;
743 	char name[30], *str;
744 	bool bridge;
745 
746 	*devp = NULL;
747 
748 	debug("%s: Searching for driver: vendor=%x, device=%x\n", __func__,
749 	      find_id->vendor, find_id->device);
750 
751 	/* Determine optional OF node */
752 	if (ofnode_valid(dev_ofnode(parent)))
753 		pci_dev_find_ofnode(parent, bdf, &node);
754 
755 	if (ofnode_valid(node) && !ofnode_is_available(node)) {
756 		debug("%s: Ignoring disabled device\n", __func__);
757 		return log_msg_ret("dis", -EPERM);
758 	}
759 
760 	start = ll_entry_start(struct pci_driver_entry, pci_driver_entry);
761 	n_ents = ll_entry_count(struct pci_driver_entry, pci_driver_entry);
762 	for (entry = start; entry != start + n_ents; entry++) {
763 		const struct pci_device_id *id;
764 		struct udevice *dev;
765 		const struct driver *drv;
766 
767 		for (id = entry->match;
768 		     id->vendor || id->subvendor || id->class_mask;
769 		     id++) {
770 			if (!pci_match_one_id(id, find_id))
771 				continue;
772 
773 			drv = entry->driver;
774 
775 			/*
776 			 * In the pre-relocation phase, we only bind devices
777 			 * whose driver has the DM_FLAG_PRE_RELOC set, to save
778 			 * precious memory space as on some platforms as that
779 			 * space is pretty limited (ie: using Cache As RAM).
780 			 */
781 			if (!(gd->flags & GD_FLG_RELOC) &&
782 			    !(drv->flags & DM_FLAG_PRE_RELOC))
783 				return log_msg_ret("pre", -EPERM);
784 
785 			/*
786 			 * We could pass the descriptor to the driver as
787 			 * plat (instead of NULL) and allow its bind()
788 			 * method to return -ENOENT if it doesn't support this
789 			 * device. That way we could continue the search to
790 			 * find another driver. For now this doesn't seem
791 			 * necesssary, so just bind the first match.
792 			 */
793 			ret = device_bind(parent, drv, drv->name, NULL, node,
794 					  &dev);
795 			if (ret)
796 				goto error;
797 			debug("%s: Match found: %s\n", __func__, drv->name);
798 			dev->driver_data = id->driver_data;
799 			*devp = dev;
800 			return 0;
801 		}
802 	}
803 
804 	bridge = (find_id->class >> 8) == PCI_CLASS_BRIDGE_PCI;
805 	/*
806 	 * In the pre-relocation phase, we only bind bridge devices to save
807 	 * precious memory space as on some platforms as that space is pretty
808 	 * limited (ie: using Cache As RAM).
809 	 */
810 	if (!(gd->flags & GD_FLG_RELOC) && !bridge &&
811 	    !pci_need_device_pre_reloc(parent, find_id->vendor,
812 				       find_id->device))
813 		return log_msg_ret("notbr", -EPERM);
814 
815 	/* Bind a generic driver so that the device can be used */
816 	sprintf(name, "pci_%x:%x.%x", dev_seq(parent), PCI_DEV(bdf),
817 		PCI_FUNC(bdf));
818 	str = strdup(name);
819 	if (!str)
820 		return -ENOMEM;
821 	drv = bridge ? "pci_bridge_drv" : "pci_generic_drv";
822 
823 	ret = device_bind_driver_to_node(parent, drv, str, node, devp);
824 	if (ret) {
825 		debug("%s: Failed to bind generic driver: %d\n", __func__, ret);
826 		free(str);
827 		return ret;
828 	}
829 	debug("%s: No match found: bound generic driver instead\n", __func__);
830 
831 	return 0;
832 
833 error:
834 	debug("%s: No match found: error %d\n", __func__, ret);
835 	return ret;
836 }
837 
board_pci_fixup_dev(struct udevice * bus,struct udevice * dev)838 __weak extern void board_pci_fixup_dev(struct udevice *bus, struct udevice *dev)
839 {
840 }
841 
pci_bind_bus_devices(struct udevice * bus)842 int pci_bind_bus_devices(struct udevice *bus)
843 {
844 	ulong vendor, device;
845 	ulong header_type;
846 	pci_dev_t bdf, end;
847 	bool found_multi;
848 	int ari_off;
849 	int ret;
850 
851 	found_multi = false;
852 	end = PCI_BDF(dev_seq(bus), PCI_MAX_PCI_DEVICES - 1,
853 		      PCI_MAX_PCI_FUNCTIONS - 1);
854 	for (bdf = PCI_BDF(dev_seq(bus), 0, 0); bdf <= end;
855 	     bdf += PCI_BDF(0, 0, 1)) {
856 		struct pci_child_plat *pplat;
857 		struct udevice *dev;
858 		ulong class;
859 
860 		if (!PCI_FUNC(bdf))
861 			found_multi = false;
862 		if (PCI_FUNC(bdf) && !found_multi)
863 			continue;
864 
865 		/* Check only the first access, we don't expect problems */
866 		ret = pci_bus_read_config(bus, bdf, PCI_VENDOR_ID, &vendor,
867 					  PCI_SIZE_16);
868 		if (ret || vendor == 0xffff || vendor == 0x0000)
869 			continue;
870 
871 		pci_bus_read_config(bus, bdf, PCI_HEADER_TYPE,
872 				    &header_type, PCI_SIZE_8);
873 
874 		if (!PCI_FUNC(bdf))
875 			found_multi = header_type & 0x80;
876 
877 		debug("%s: bus %d/%s: found device %x, function %d", __func__,
878 		      dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
879 		pci_bus_read_config(bus, bdf, PCI_DEVICE_ID, &device,
880 				    PCI_SIZE_16);
881 		pci_bus_read_config(bus, bdf, PCI_CLASS_REVISION, &class,
882 				    PCI_SIZE_32);
883 		class >>= 8;
884 
885 		/* Find this device in the device tree */
886 		ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
887 		debug(": find ret=%d\n", ret);
888 
889 		/* If nothing in the device tree, bind a device */
890 		if (ret == -ENODEV) {
891 			struct pci_device_id find_id;
892 			ulong val;
893 
894 			memset(&find_id, '\0', sizeof(find_id));
895 			find_id.vendor = vendor;
896 			find_id.device = device;
897 			find_id.class = class;
898 			if ((header_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) {
899 				pci_bus_read_config(bus, bdf,
900 						    PCI_SUBSYSTEM_VENDOR_ID,
901 						    &val, PCI_SIZE_32);
902 				find_id.subvendor = val & 0xffff;
903 				find_id.subdevice = val >> 16;
904 			}
905 			ret = pci_find_and_bind_driver(bus, &find_id, bdf,
906 						       &dev);
907 		}
908 		if (ret == -EPERM)
909 			continue;
910 		else if (ret)
911 			return ret;
912 
913 		/* Update the platform data */
914 		pplat = dev_get_parent_plat(dev);
915 		pplat->devfn = PCI_MASK_BUS(bdf);
916 		pplat->vendor = vendor;
917 		pplat->device = device;
918 		pplat->class = class;
919 
920 		if (IS_ENABLED(CONFIG_PCI_ARID)) {
921 			ari_off = dm_pci_find_ext_capability(dev,
922 							     PCI_EXT_CAP_ID_ARI);
923 			if (ari_off) {
924 				u16 ari_cap;
925 
926 				/*
927 				 * Read Next Function number in ARI Cap
928 				 * Register
929 				 */
930 				dm_pci_read_config16(dev, ari_off + 4,
931 						     &ari_cap);
932 				/*
933 				 * Update next scan on this function number,
934 				 * subtract 1 in BDF to satisfy loop increment.
935 				 */
936 				if (ari_cap & 0xff00) {
937 					bdf = PCI_BDF(PCI_BUS(bdf),
938 						      PCI_DEV(ari_cap),
939 						      PCI_FUNC(ari_cap));
940 					bdf = bdf - 0x100;
941 				}
942 			}
943 		}
944 
945 		board_pci_fixup_dev(bus, dev);
946 	}
947 
948 	return 0;
949 }
950 
decode_regions(struct pci_controller * hose,ofnode parent_node,ofnode node)951 static void decode_regions(struct pci_controller *hose, ofnode parent_node,
952 			   ofnode node)
953 {
954 	int pci_addr_cells, addr_cells, size_cells;
955 	int cells_per_record;
956 	struct bd_info *bd;
957 	const u32 *prop;
958 	int max_regions;
959 	int len;
960 	int i;
961 
962 	prop = ofnode_get_property(node, "ranges", &len);
963 	if (!prop) {
964 		debug("%s: Cannot decode regions\n", __func__);
965 		return;
966 	}
967 
968 	pci_addr_cells = ofnode_read_simple_addr_cells(node);
969 	addr_cells = ofnode_read_simple_addr_cells(parent_node);
970 	size_cells = ofnode_read_simple_size_cells(node);
971 
972 	/* PCI addresses are always 3-cells */
973 	len /= sizeof(u32);
974 	cells_per_record = pci_addr_cells + addr_cells + size_cells;
975 	hose->region_count = 0;
976 	debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
977 	      cells_per_record);
978 
979 	/* Dynamically allocate the regions array */
980 	max_regions = len / cells_per_record + CONFIG_NR_DRAM_BANKS;
981 	hose->regions = (struct pci_region *)
982 		calloc(1, max_regions * sizeof(struct pci_region));
983 
984 	for (i = 0; i < max_regions; i++, len -= cells_per_record) {
985 		u64 pci_addr, addr, size;
986 		int space_code;
987 		u32 flags;
988 		int type;
989 		int pos;
990 
991 		if (len < cells_per_record)
992 			break;
993 		flags = fdt32_to_cpu(prop[0]);
994 		space_code = (flags >> 24) & 3;
995 		pci_addr = fdtdec_get_number(prop + 1, 2);
996 		prop += pci_addr_cells;
997 		addr = fdtdec_get_number(prop, addr_cells);
998 		prop += addr_cells;
999 		size = fdtdec_get_number(prop, size_cells);
1000 		prop += size_cells;
1001 		debug("%s: region %d, pci_addr=%llx, addr=%llx, size=%llx, space_code=%d\n",
1002 		      __func__, hose->region_count, pci_addr, addr, size, space_code);
1003 		if (space_code & 2) {
1004 			type = flags & (1U << 30) ? PCI_REGION_PREFETCH :
1005 					PCI_REGION_MEM;
1006 		} else if (space_code & 1) {
1007 			type = PCI_REGION_IO;
1008 		} else {
1009 			continue;
1010 		}
1011 
1012 		if (!IS_ENABLED(CONFIG_SYS_PCI_64BIT) &&
1013 		    type == PCI_REGION_MEM && upper_32_bits(pci_addr)) {
1014 			debug(" - beyond the 32-bit boundary, ignoring\n");
1015 			continue;
1016 		}
1017 
1018 		pos = -1;
1019 		if (!IS_ENABLED(CONFIG_PCI_REGION_MULTI_ENTRY)) {
1020 			for (i = 0; i < hose->region_count; i++) {
1021 				if (hose->regions[i].flags == type)
1022 					pos = i;
1023 			}
1024 		}
1025 
1026 		if (pos == -1)
1027 			pos = hose->region_count++;
1028 		debug(" - type=%d, pos=%d\n", type, pos);
1029 		pci_set_region(hose->regions + pos, pci_addr, addr, size, type);
1030 	}
1031 
1032 	/* Add a region for our local memory */
1033 	bd = gd->bd;
1034 	if (!bd)
1035 		return;
1036 
1037 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; ++i) {
1038 		if (bd->bi_dram[i].size) {
1039 			phys_addr_t start = bd->bi_dram[i].start;
1040 
1041 			if (IS_ENABLED(CONFIG_PCI_MAP_SYSTEM_MEMORY))
1042 				start = virt_to_phys((void *)(uintptr_t)bd->bi_dram[i].start);
1043 
1044 			pci_set_region(hose->regions + hose->region_count++,
1045 				       start, start, bd->bi_dram[i].size,
1046 				       PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
1047 		}
1048 	}
1049 
1050 	return;
1051 }
1052 
pci_uclass_pre_probe(struct udevice * bus)1053 static int pci_uclass_pre_probe(struct udevice *bus)
1054 {
1055 	struct pci_controller *hose;
1056 	struct uclass *uc;
1057 	int ret;
1058 
1059 	debug("%s, bus=%d/%s, parent=%s\n", __func__, dev_seq(bus), bus->name,
1060 	      bus->parent->name);
1061 	hose = dev_get_uclass_priv(bus);
1062 
1063 	/*
1064 	 * Set the sequence number, if device_bind() doesn't. We want control
1065 	 * of this so that numbers are allocated as devices are probed. That
1066 	 * ensures that sub-bus numbered is correct (sub-buses must get numbers
1067 	 * higher than their parents)
1068 	 */
1069 	if (dev_seq(bus) == -1) {
1070 		ret = uclass_get(UCLASS_PCI, &uc);
1071 		if (ret)
1072 			return ret;
1073 		bus->seq_ = uclass_find_next_free_seq(uc);
1074 	}
1075 
1076 	/* For bridges, use the top-level PCI controller */
1077 	if (!device_is_on_pci_bus(bus)) {
1078 		hose->ctlr = bus;
1079 		decode_regions(hose, dev_ofnode(bus->parent), dev_ofnode(bus));
1080 	} else {
1081 		struct pci_controller *parent_hose;
1082 
1083 		parent_hose = dev_get_uclass_priv(bus->parent);
1084 		hose->ctlr = parent_hose->bus;
1085 	}
1086 
1087 	hose->bus = bus;
1088 	hose->first_busno = dev_seq(bus);
1089 	hose->last_busno = dev_seq(bus);
1090 	if (dev_has_ofnode(bus)) {
1091 		hose->skip_auto_config_until_reloc =
1092 			dev_read_bool(bus,
1093 				      "u-boot,skip-auto-config-until-reloc");
1094 	}
1095 
1096 	return 0;
1097 }
1098 
pci_uclass_post_probe(struct udevice * bus)1099 static int pci_uclass_post_probe(struct udevice *bus)
1100 {
1101 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1102 	int ret;
1103 
1104 	debug("%s: probing bus %d\n", __func__, dev_seq(bus));
1105 	ret = pci_bind_bus_devices(bus);
1106 	if (ret)
1107 		return log_msg_ret("bind", ret);
1108 
1109 	if (CONFIG_IS_ENABLED(PCI_PNP) && ll_boot_init() &&
1110 	    (!hose->skip_auto_config_until_reloc ||
1111 	     (gd->flags & GD_FLG_RELOC))) {
1112 		ret = pci_auto_config_devices(bus);
1113 		if (ret < 0)
1114 			return log_msg_ret("cfg", ret);
1115 	}
1116 
1117 #if defined(CONFIG_X86) && defined(CONFIG_HAVE_FSP)
1118 	/*
1119 	 * Per Intel FSP specification, we should call FSP notify API to
1120 	 * inform FSP that PCI enumeration has been done so that FSP will
1121 	 * do any necessary initialization as required by the chipset's
1122 	 * BIOS Writer's Guide (BWG).
1123 	 *
1124 	 * Unfortunately we have to put this call here as with driver model,
1125 	 * the enumeration is all done on a lazy basis as needed, so until
1126 	 * something is touched on PCI it won't happen.
1127 	 *
1128 	 * Note we only call this 1) after U-Boot is relocated, and 2)
1129 	 * root bus has finished probing.
1130 	 */
1131 	if ((gd->flags & GD_FLG_RELOC) && dev_seq(bus) == 0 && ll_boot_init()) {
1132 		ret = fsp_init_phase_pci();
1133 		if (ret)
1134 			return log_msg_ret("fsp", ret);
1135 	}
1136 #endif
1137 
1138 	return 0;
1139 }
1140 
pci_uclass_child_post_bind(struct udevice * dev)1141 static int pci_uclass_child_post_bind(struct udevice *dev)
1142 {
1143 	struct pci_child_plat *pplat;
1144 
1145 	if (!dev_has_ofnode(dev))
1146 		return 0;
1147 
1148 	pplat = dev_get_parent_plat(dev);
1149 
1150 	/* Extract vendor id and device id if available */
1151 	ofnode_read_pci_vendev(dev_ofnode(dev), &pplat->vendor, &pplat->device);
1152 
1153 	/* Extract the devfn from fdt_pci_addr */
1154 	pplat->devfn = pci_get_devfn(dev);
1155 
1156 	return 0;
1157 }
1158 
pci_bridge_read_config(const struct udevice * bus,pci_dev_t bdf,uint offset,ulong * valuep,enum pci_size_t size)1159 static int pci_bridge_read_config(const struct udevice *bus, pci_dev_t bdf,
1160 				  uint offset, ulong *valuep,
1161 				  enum pci_size_t size)
1162 {
1163 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1164 
1165 	return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size);
1166 }
1167 
pci_bridge_write_config(struct udevice * bus,pci_dev_t bdf,uint offset,ulong value,enum pci_size_t size)1168 static int pci_bridge_write_config(struct udevice *bus, pci_dev_t bdf,
1169 				   uint offset, ulong value,
1170 				   enum pci_size_t size)
1171 {
1172 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1173 
1174 	return pci_bus_write_config(hose->ctlr, bdf, offset, value, size);
1175 }
1176 
skip_to_next_device(struct udevice * bus,struct udevice ** devp)1177 static int skip_to_next_device(struct udevice *bus, struct udevice **devp)
1178 {
1179 	struct udevice *dev;
1180 	int ret = 0;
1181 
1182 	/*
1183 	 * Scan through all the PCI controllers. On x86 there will only be one
1184 	 * but that is not necessarily true on other hardware.
1185 	 */
1186 	do {
1187 		device_find_first_child(bus, &dev);
1188 		if (dev) {
1189 			*devp = dev;
1190 			return 0;
1191 		}
1192 		ret = uclass_next_device(&bus);
1193 		if (ret)
1194 			return ret;
1195 	} while (bus);
1196 
1197 	return 0;
1198 }
1199 
pci_find_next_device(struct udevice ** devp)1200 int pci_find_next_device(struct udevice **devp)
1201 {
1202 	struct udevice *child = *devp;
1203 	struct udevice *bus = child->parent;
1204 	int ret;
1205 
1206 	/* First try all the siblings */
1207 	*devp = NULL;
1208 	while (child) {
1209 		device_find_next_child(&child);
1210 		if (child) {
1211 			*devp = child;
1212 			return 0;
1213 		}
1214 	}
1215 
1216 	/* We ran out of siblings. Try the next bus */
1217 	ret = uclass_next_device(&bus);
1218 	if (ret)
1219 		return ret;
1220 
1221 	return bus ? skip_to_next_device(bus, devp) : 0;
1222 }
1223 
pci_find_first_device(struct udevice ** devp)1224 int pci_find_first_device(struct udevice **devp)
1225 {
1226 	struct udevice *bus;
1227 	int ret;
1228 
1229 	*devp = NULL;
1230 	ret = uclass_first_device(UCLASS_PCI, &bus);
1231 	if (ret)
1232 		return ret;
1233 
1234 	return skip_to_next_device(bus, devp);
1235 }
1236 
pci_conv_32_to_size(ulong value,uint offset,enum pci_size_t size)1237 ulong pci_conv_32_to_size(ulong value, uint offset, enum pci_size_t size)
1238 {
1239 	switch (size) {
1240 	case PCI_SIZE_8:
1241 		return (value >> ((offset & 3) * 8)) & 0xff;
1242 	case PCI_SIZE_16:
1243 		return (value >> ((offset & 2) * 8)) & 0xffff;
1244 	default:
1245 		return value;
1246 	}
1247 }
1248 
pci_conv_size_to_32(ulong old,ulong value,uint offset,enum pci_size_t size)1249 ulong pci_conv_size_to_32(ulong old, ulong value, uint offset,
1250 			  enum pci_size_t size)
1251 {
1252 	uint off_mask;
1253 	uint val_mask, shift;
1254 	ulong ldata, mask;
1255 
1256 	switch (size) {
1257 	case PCI_SIZE_8:
1258 		off_mask = 3;
1259 		val_mask = 0xff;
1260 		break;
1261 	case PCI_SIZE_16:
1262 		off_mask = 2;
1263 		val_mask = 0xffff;
1264 		break;
1265 	default:
1266 		return value;
1267 	}
1268 	shift = (offset & off_mask) * 8;
1269 	ldata = (value & val_mask) << shift;
1270 	mask = val_mask << shift;
1271 	value = (old & ~mask) | ldata;
1272 
1273 	return value;
1274 }
1275 
pci_get_dma_regions(struct udevice * dev,struct pci_region * memp,int index)1276 int pci_get_dma_regions(struct udevice *dev, struct pci_region *memp, int index)
1277 {
1278 	int pci_addr_cells, addr_cells, size_cells;
1279 	int cells_per_record;
1280 	const u32 *prop;
1281 	int len;
1282 	int i = 0;
1283 
1284 	prop = ofnode_get_property(dev_ofnode(dev), "dma-ranges", &len);
1285 	if (!prop) {
1286 		log_err("PCI: Device '%s': Cannot decode dma-ranges\n",
1287 			dev->name);
1288 		return -EINVAL;
1289 	}
1290 
1291 	pci_addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev));
1292 	addr_cells = ofnode_read_simple_addr_cells(dev_ofnode(dev->parent));
1293 	size_cells = ofnode_read_simple_size_cells(dev_ofnode(dev));
1294 
1295 	/* PCI addresses are always 3-cells */
1296 	len /= sizeof(u32);
1297 	cells_per_record = pci_addr_cells + addr_cells + size_cells;
1298 	debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
1299 	      cells_per_record);
1300 
1301 	while (len) {
1302 		memp->bus_start = fdtdec_get_number(prop + 1, 2);
1303 		prop += pci_addr_cells;
1304 		memp->phys_start = fdtdec_get_number(prop, addr_cells);
1305 		prop += addr_cells;
1306 		memp->size = fdtdec_get_number(prop, size_cells);
1307 		prop += size_cells;
1308 
1309 		if (i == index)
1310 			return 0;
1311 		i++;
1312 		len -= cells_per_record;
1313 	}
1314 
1315 	return -EINVAL;
1316 }
1317 
pci_get_regions(struct udevice * dev,struct pci_region ** iop,struct pci_region ** memp,struct pci_region ** prefp)1318 int pci_get_regions(struct udevice *dev, struct pci_region **iop,
1319 		    struct pci_region **memp, struct pci_region **prefp)
1320 {
1321 	struct udevice *bus = pci_get_controller(dev);
1322 	struct pci_controller *hose = dev_get_uclass_priv(bus);
1323 	int i;
1324 
1325 	*iop = NULL;
1326 	*memp = NULL;
1327 	*prefp = NULL;
1328 	for (i = 0; i < hose->region_count; i++) {
1329 		switch (hose->regions[i].flags) {
1330 		case PCI_REGION_IO:
1331 			if (!*iop || (*iop)->size < hose->regions[i].size)
1332 				*iop = hose->regions + i;
1333 			break;
1334 		case PCI_REGION_MEM:
1335 			if (!*memp || (*memp)->size < hose->regions[i].size)
1336 				*memp = hose->regions + i;
1337 			break;
1338 		case (PCI_REGION_MEM | PCI_REGION_PREFETCH):
1339 			if (!*prefp || (*prefp)->size < hose->regions[i].size)
1340 				*prefp = hose->regions + i;
1341 			break;
1342 		}
1343 	}
1344 
1345 	return (*iop != NULL) + (*memp != NULL) + (*prefp != NULL);
1346 }
1347 
dm_pci_read_bar32(const struct udevice * dev,int barnum)1348 u32 dm_pci_read_bar32(const struct udevice *dev, int barnum)
1349 {
1350 	u32 addr;
1351 	int bar;
1352 
1353 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1354 	dm_pci_read_config32(dev, bar, &addr);
1355 
1356 	/*
1357 	 * If we get an invalid address, return this so that comparisons with
1358 	 * FDT_ADDR_T_NONE work correctly
1359 	 */
1360 	if (addr == 0xffffffff)
1361 		return addr;
1362 	else if (addr & PCI_BASE_ADDRESS_SPACE_IO)
1363 		return addr & PCI_BASE_ADDRESS_IO_MASK;
1364 	else
1365 		return addr & PCI_BASE_ADDRESS_MEM_MASK;
1366 }
1367 
dm_pci_write_bar32(struct udevice * dev,int barnum,u32 addr)1368 void dm_pci_write_bar32(struct udevice *dev, int barnum, u32 addr)
1369 {
1370 	int bar;
1371 
1372 	bar = PCI_BASE_ADDRESS_0 + barnum * 4;
1373 	dm_pci_write_config32(dev, bar, addr);
1374 }
1375 
_dm_pci_bus_to_phys(struct udevice * ctlr,pci_addr_t bus_addr,unsigned long flags,unsigned long skip_mask,phys_addr_t * pa)1376 static int _dm_pci_bus_to_phys(struct udevice *ctlr,
1377 			       pci_addr_t bus_addr, unsigned long flags,
1378 			       unsigned long skip_mask, phys_addr_t *pa)
1379 {
1380 	struct pci_controller *hose = dev_get_uclass_priv(ctlr);
1381 	struct pci_region *res;
1382 	int i;
1383 
1384 	if (hose->region_count == 0) {
1385 		*pa = bus_addr;
1386 		return 0;
1387 	}
1388 
1389 	for (i = 0; i < hose->region_count; i++) {
1390 		res = &hose->regions[i];
1391 
1392 		if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1393 			continue;
1394 
1395 		if (res->flags & skip_mask)
1396 			continue;
1397 
1398 		if (bus_addr >= res->bus_start &&
1399 		    (bus_addr - res->bus_start) < res->size) {
1400 			*pa = (bus_addr - res->bus_start + res->phys_start);
1401 			return 0;
1402 		}
1403 	}
1404 
1405 	return 1;
1406 }
1407 
dm_pci_bus_to_phys(struct udevice * dev,pci_addr_t bus_addr,unsigned long flags)1408 phys_addr_t dm_pci_bus_to_phys(struct udevice *dev, pci_addr_t bus_addr,
1409 			       unsigned long flags)
1410 {
1411 	phys_addr_t phys_addr = 0;
1412 	struct udevice *ctlr;
1413 	int ret;
1414 
1415 	/* The root controller has the region information */
1416 	ctlr = pci_get_controller(dev);
1417 
1418 	/*
1419 	 * if PCI_REGION_MEM is set we do a two pass search with preference
1420 	 * on matches that don't have PCI_REGION_SYS_MEMORY set
1421 	 */
1422 	if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1423 		ret = _dm_pci_bus_to_phys(ctlr, bus_addr,
1424 					  flags, PCI_REGION_SYS_MEMORY,
1425 					  &phys_addr);
1426 		if (!ret)
1427 			return phys_addr;
1428 	}
1429 
1430 	ret = _dm_pci_bus_to_phys(ctlr, bus_addr, flags, 0, &phys_addr);
1431 
1432 	if (ret)
1433 		puts("pci_hose_bus_to_phys: invalid physical address\n");
1434 
1435 	return phys_addr;
1436 }
1437 
_dm_pci_phys_to_bus(struct udevice * dev,phys_addr_t phys_addr,unsigned long flags,unsigned long skip_mask,pci_addr_t * ba)1438 static int _dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1439 			       unsigned long flags, unsigned long skip_mask,
1440 			       pci_addr_t *ba)
1441 {
1442 	struct pci_region *res;
1443 	struct udevice *ctlr;
1444 	pci_addr_t bus_addr;
1445 	int i;
1446 	struct pci_controller *hose;
1447 
1448 	/* The root controller has the region information */
1449 	ctlr = pci_get_controller(dev);
1450 	hose = dev_get_uclass_priv(ctlr);
1451 
1452 	if (hose->region_count == 0) {
1453 		*ba = phys_addr;
1454 		return 0;
1455 	}
1456 
1457 	for (i = 0; i < hose->region_count; i++) {
1458 		res = &hose->regions[i];
1459 
1460 		if (((res->flags ^ flags) & PCI_REGION_TYPE) != 0)
1461 			continue;
1462 
1463 		if (res->flags & skip_mask)
1464 			continue;
1465 
1466 		bus_addr = phys_addr - res->phys_start + res->bus_start;
1467 
1468 		if (bus_addr >= res->bus_start &&
1469 		    (bus_addr - res->bus_start) < res->size) {
1470 			*ba = bus_addr;
1471 			return 0;
1472 		}
1473 	}
1474 
1475 	return 1;
1476 }
1477 
dm_pci_phys_to_bus(struct udevice * dev,phys_addr_t phys_addr,unsigned long flags)1478 pci_addr_t dm_pci_phys_to_bus(struct udevice *dev, phys_addr_t phys_addr,
1479 			      unsigned long flags)
1480 {
1481 	pci_addr_t bus_addr = 0;
1482 	int ret;
1483 
1484 	/*
1485 	 * if PCI_REGION_MEM is set we do a two pass search with preference
1486 	 * on matches that don't have PCI_REGION_SYS_MEMORY set
1487 	 */
1488 	if ((flags & PCI_REGION_TYPE) == PCI_REGION_MEM) {
1489 		ret = _dm_pci_phys_to_bus(dev, phys_addr, flags,
1490 					  PCI_REGION_SYS_MEMORY, &bus_addr);
1491 		if (!ret)
1492 			return bus_addr;
1493 	}
1494 
1495 	ret = _dm_pci_phys_to_bus(dev, phys_addr, flags, 0, &bus_addr);
1496 
1497 	if (ret)
1498 		puts("pci_hose_phys_to_bus: invalid physical address\n");
1499 
1500 	return bus_addr;
1501 }
1502 
dm_pci_map_ea_virt(struct udevice * dev,int ea_off,struct pci_child_plat * pdata)1503 static phys_addr_t dm_pci_map_ea_virt(struct udevice *dev, int ea_off,
1504 				      struct pci_child_plat *pdata)
1505 {
1506 	phys_addr_t addr = 0;
1507 
1508 	/*
1509 	 * In the case of a Virtual Function device using BAR
1510 	 * base and size, add offset for VFn BAR(1, 2, 3...n)
1511 	 */
1512 	if (pdata->is_virtfn) {
1513 		size_t sz;
1514 		u32 ea_entry;
1515 
1516 		/* MaxOffset, 1st DW */
1517 		dm_pci_read_config32(dev, ea_off + 8, &ea_entry);
1518 		sz = ea_entry & PCI_EA_FIELD_MASK;
1519 		/* Fill up lower 2 bits */
1520 		sz |= (~PCI_EA_FIELD_MASK);
1521 
1522 		if (ea_entry & PCI_EA_IS_64) {
1523 			/* MaxOffset 2nd DW */
1524 			dm_pci_read_config32(dev, ea_off + 16, &ea_entry);
1525 			sz |= ((u64)ea_entry) << 32;
1526 		}
1527 
1528 		addr = (pdata->virtid - 1) * (sz + 1);
1529 	}
1530 
1531 	return addr;
1532 }
1533 
dm_pci_map_ea_bar(struct udevice * dev,int bar,int flags,int ea_off,struct pci_child_plat * pdata)1534 static void *dm_pci_map_ea_bar(struct udevice *dev, int bar, int flags,
1535 			       int ea_off, struct pci_child_plat *pdata)
1536 {
1537 	int ea_cnt, i, entry_size;
1538 	int bar_id = (bar - PCI_BASE_ADDRESS_0) >> 2;
1539 	u32 ea_entry;
1540 	phys_addr_t addr;
1541 
1542 	if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1543 		/*
1544 		 * In the case of a Virtual Function device, device is
1545 		 * Physical function, so pdata will point to required VF
1546 		 * specific data.
1547 		 */
1548 		if (pdata->is_virtfn)
1549 			bar_id += PCI_EA_BEI_VF_BAR0;
1550 	}
1551 
1552 	/* EA capability structure header */
1553 	dm_pci_read_config32(dev, ea_off, &ea_entry);
1554 	ea_cnt = (ea_entry >> 16) & PCI_EA_NUM_ENT_MASK;
1555 	ea_off += PCI_EA_FIRST_ENT;
1556 
1557 	for (i = 0; i < ea_cnt; i++, ea_off += entry_size) {
1558 		/* Entry header */
1559 		dm_pci_read_config32(dev, ea_off, &ea_entry);
1560 		entry_size = ((ea_entry & PCI_EA_ES) + 1) << 2;
1561 
1562 		if (((ea_entry & PCI_EA_BEI) >> 4) != bar_id)
1563 			continue;
1564 
1565 		/* Base address, 1st DW */
1566 		dm_pci_read_config32(dev, ea_off + 4, &ea_entry);
1567 		addr = ea_entry & PCI_EA_FIELD_MASK;
1568 		if (ea_entry & PCI_EA_IS_64) {
1569 			/* Base address, 2nd DW, skip over 4B MaxOffset */
1570 			dm_pci_read_config32(dev, ea_off + 12, &ea_entry);
1571 			addr |= ((u64)ea_entry) << 32;
1572 		}
1573 
1574 		if (IS_ENABLED(CONFIG_PCI_SRIOV))
1575 			addr += dm_pci_map_ea_virt(dev, ea_off, pdata);
1576 
1577 		/* size ignored for now */
1578 		return map_physmem(addr, 0, flags);
1579 	}
1580 
1581 	return 0;
1582 }
1583 
dm_pci_map_bar(struct udevice * dev,int bar,int flags)1584 void *dm_pci_map_bar(struct udevice *dev, int bar, int flags)
1585 {
1586 	struct pci_child_plat *pdata = dev_get_parent_plat(dev);
1587 	struct udevice *udev = dev;
1588 	pci_addr_t pci_bus_addr;
1589 	u32 bar_response;
1590 	int ea_off;
1591 
1592 	if (IS_ENABLED(CONFIG_PCI_SRIOV)) {
1593 		/*
1594 		 * In case of Virtual Function devices, use PF udevice
1595 		 * as EA capability is defined in Physical Function
1596 		 */
1597 		if (pdata->is_virtfn)
1598 			udev = pdata->pfdev;
1599 	}
1600 
1601 	/*
1602 	 * if the function supports Enhanced Allocation use that instead of
1603 	 * BARs
1604 	 * Incase of virtual functions, pdata will help read VF BEI
1605 	 * and EA entry size.
1606 	 */
1607 	ea_off = dm_pci_find_capability(udev, PCI_CAP_ID_EA);
1608 	if (ea_off)
1609 		return dm_pci_map_ea_bar(udev, bar, flags, ea_off, pdata);
1610 
1611 	/* read BAR address */
1612 	dm_pci_read_config32(udev, bar, &bar_response);
1613 	pci_bus_addr = (pci_addr_t)(bar_response & ~0xf);
1614 
1615 	/*
1616 	 * Pass "0" as the length argument to pci_bus_to_virt.  The arg
1617 	 * isn't actually used on any platform because U-Boot assumes a static
1618 	 * linear mapping.  In the future, this could read the BAR size
1619 	 * and pass that as the size if needed.
1620 	 */
1621 	return dm_pci_bus_to_virt(udev, pci_bus_addr, flags, 0, MAP_NOCACHE);
1622 }
1623 
_dm_pci_find_next_capability(struct udevice * dev,u8 pos,int cap)1624 static int _dm_pci_find_next_capability(struct udevice *dev, u8 pos, int cap)
1625 {
1626 	int ttl = PCI_FIND_CAP_TTL;
1627 	u8 id;
1628 	u16 ent;
1629 
1630 	dm_pci_read_config8(dev, pos, &pos);
1631 
1632 	while (ttl--) {
1633 		if (pos < PCI_STD_HEADER_SIZEOF)
1634 			break;
1635 		pos &= ~3;
1636 		dm_pci_read_config16(dev, pos, &ent);
1637 
1638 		id = ent & 0xff;
1639 		if (id == 0xff)
1640 			break;
1641 		if (id == cap)
1642 			return pos;
1643 		pos = (ent >> 8);
1644 	}
1645 
1646 	return 0;
1647 }
1648 
dm_pci_find_next_capability(struct udevice * dev,u8 start,int cap)1649 int dm_pci_find_next_capability(struct udevice *dev, u8 start, int cap)
1650 {
1651 	return _dm_pci_find_next_capability(dev, start + PCI_CAP_LIST_NEXT,
1652 					    cap);
1653 }
1654 
dm_pci_find_capability(struct udevice * dev,int cap)1655 int dm_pci_find_capability(struct udevice *dev, int cap)
1656 {
1657 	u16 status;
1658 	u8 header_type;
1659 	u8 pos;
1660 
1661 	dm_pci_read_config16(dev, PCI_STATUS, &status);
1662 	if (!(status & PCI_STATUS_CAP_LIST))
1663 		return 0;
1664 
1665 	dm_pci_read_config8(dev, PCI_HEADER_TYPE, &header_type);
1666 	if ((header_type & 0x7f) == PCI_HEADER_TYPE_CARDBUS)
1667 		pos = PCI_CB_CAPABILITY_LIST;
1668 	else
1669 		pos = PCI_CAPABILITY_LIST;
1670 
1671 	return _dm_pci_find_next_capability(dev, pos, cap);
1672 }
1673 
dm_pci_find_next_ext_capability(struct udevice * dev,int start,int cap)1674 int dm_pci_find_next_ext_capability(struct udevice *dev, int start, int cap)
1675 {
1676 	u32 header;
1677 	int ttl;
1678 	int pos = PCI_CFG_SPACE_SIZE;
1679 
1680 	/* minimum 8 bytes per capability */
1681 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
1682 
1683 	if (start)
1684 		pos = start;
1685 
1686 	dm_pci_read_config32(dev, pos, &header);
1687 	/*
1688 	 * If we have no capabilities, this is indicated by cap ID,
1689 	 * cap version and next pointer all being 0.
1690 	 */
1691 	if (header == 0)
1692 		return 0;
1693 
1694 	while (ttl--) {
1695 		if (PCI_EXT_CAP_ID(header) == cap)
1696 			return pos;
1697 
1698 		pos = PCI_EXT_CAP_NEXT(header);
1699 		if (pos < PCI_CFG_SPACE_SIZE)
1700 			break;
1701 
1702 		dm_pci_read_config32(dev, pos, &header);
1703 	}
1704 
1705 	return 0;
1706 }
1707 
dm_pci_find_ext_capability(struct udevice * dev,int cap)1708 int dm_pci_find_ext_capability(struct udevice *dev, int cap)
1709 {
1710 	return dm_pci_find_next_ext_capability(dev, 0, cap);
1711 }
1712 
dm_pci_flr(struct udevice * dev)1713 int dm_pci_flr(struct udevice *dev)
1714 {
1715 	int pcie_off;
1716 	u32 cap;
1717 
1718 	/* look for PCI Express Capability */
1719 	pcie_off = dm_pci_find_capability(dev, PCI_CAP_ID_EXP);
1720 	if (!pcie_off)
1721 		return -ENOENT;
1722 
1723 	/* check FLR capability */
1724 	dm_pci_read_config32(dev, pcie_off + PCI_EXP_DEVCAP, &cap);
1725 	if (!(cap & PCI_EXP_DEVCAP_FLR))
1726 		return -ENOENT;
1727 
1728 	dm_pci_clrset_config16(dev, pcie_off + PCI_EXP_DEVCTL, 0,
1729 			       PCI_EXP_DEVCTL_BCR_FLR);
1730 
1731 	/* wait 100ms, per PCI spec */
1732 	mdelay(100);
1733 
1734 	return 0;
1735 }
1736 
1737 #if defined(CONFIG_PCI_SRIOV)
pci_sriov_init(struct udevice * pdev,int vf_en)1738 int pci_sriov_init(struct udevice *pdev, int vf_en)
1739 {
1740 	u16 vendor, device;
1741 	struct udevice *bus;
1742 	struct udevice *dev;
1743 	pci_dev_t bdf;
1744 	u16 ctrl;
1745 	u16 num_vfs;
1746 	u16 total_vf;
1747 	u16 vf_offset;
1748 	u16 vf_stride;
1749 	int vf, ret;
1750 	int pos;
1751 
1752 	pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1753 	if (!pos) {
1754 		debug("Error: SRIOV capability not found\n");
1755 		return -ENOENT;
1756 	}
1757 
1758 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_CTRL, &ctrl);
1759 
1760 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1761 	if (vf_en > total_vf)
1762 		vf_en = total_vf;
1763 	dm_pci_write_config16(pdev, pos + PCI_SRIOV_NUM_VF, vf_en);
1764 
1765 	ctrl |= PCI_SRIOV_CTRL_VFE | PCI_SRIOV_CTRL_MSE;
1766 	dm_pci_write_config16(pdev, pos + PCI_SRIOV_CTRL, ctrl);
1767 
1768 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_NUM_VF, &num_vfs);
1769 	if (num_vfs > vf_en)
1770 		num_vfs = vf_en;
1771 
1772 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_OFFSET, &vf_offset);
1773 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_STRIDE, &vf_stride);
1774 
1775 	dm_pci_read_config16(pdev, PCI_VENDOR_ID, &vendor);
1776 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_VF_DID, &device);
1777 
1778 	bdf = dm_pci_get_bdf(pdev);
1779 
1780 	pci_get_bus(PCI_BUS(bdf), &bus);
1781 
1782 	if (!bus)
1783 		return -ENODEV;
1784 
1785 	bdf += PCI_BDF(0, 0, vf_offset);
1786 
1787 	for (vf = 0; vf < num_vfs; vf++) {
1788 		struct pci_child_plat *pplat;
1789 		ulong class;
1790 
1791 		pci_bus_read_config(bus, bdf, PCI_CLASS_DEVICE,
1792 				    &class, PCI_SIZE_16);
1793 
1794 		debug("%s: bus %d/%s: found VF %x:%x\n", __func__,
1795 		      dev_seq(bus), bus->name, PCI_DEV(bdf), PCI_FUNC(bdf));
1796 
1797 		/* Find this device in the device tree */
1798 		ret = pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), &dev);
1799 
1800 		if (ret == -ENODEV) {
1801 			struct pci_device_id find_id;
1802 
1803 			memset(&find_id, '\0', sizeof(find_id));
1804 			find_id.vendor = vendor;
1805 			find_id.device = device;
1806 			find_id.class = class;
1807 
1808 			ret = pci_find_and_bind_driver(bus, &find_id,
1809 						       bdf, &dev);
1810 
1811 			if (ret)
1812 				return ret;
1813 		}
1814 
1815 		/* Update the platform data */
1816 		pplat = dev_get_parent_plat(dev);
1817 		pplat->devfn = PCI_MASK_BUS(bdf);
1818 		pplat->vendor = vendor;
1819 		pplat->device = device;
1820 		pplat->class = class;
1821 		pplat->is_virtfn = true;
1822 		pplat->pfdev = pdev;
1823 		pplat->virtid = vf * vf_stride + vf_offset;
1824 
1825 		debug("%s: bus %d/%s: found VF %x:%x %x:%x class %lx id %x\n",
1826 		      __func__, dev_seq(dev), dev->name, PCI_DEV(bdf),
1827 		      PCI_FUNC(bdf), vendor, device, class, pplat->virtid);
1828 		bdf += PCI_BDF(0, 0, vf_stride);
1829 	}
1830 
1831 	return 0;
1832 }
1833 
pci_sriov_get_totalvfs(struct udevice * pdev)1834 int pci_sriov_get_totalvfs(struct udevice *pdev)
1835 {
1836 	u16 total_vf;
1837 	int pos;
1838 
1839 	pos = dm_pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
1840 	if (!pos) {
1841 		debug("Error: SRIOV capability not found\n");
1842 		return -ENOENT;
1843 	}
1844 
1845 	dm_pci_read_config16(pdev, pos + PCI_SRIOV_TOTAL_VF, &total_vf);
1846 
1847 	return total_vf;
1848 }
1849 #endif /* SRIOV */
1850 
1851 UCLASS_DRIVER(pci) = {
1852 	.id		= UCLASS_PCI,
1853 	.name		= "pci",
1854 	.flags		= DM_UC_FLAG_SEQ_ALIAS | DM_UC_FLAG_NO_AUTO_SEQ,
1855 	.post_bind	= dm_scan_fdt_dev,
1856 	.pre_probe	= pci_uclass_pre_probe,
1857 	.post_probe	= pci_uclass_post_probe,
1858 	.child_post_bind = pci_uclass_child_post_bind,
1859 	.per_device_auto	= sizeof(struct pci_controller),
1860 	.per_child_plat_auto	= sizeof(struct pci_child_plat),
1861 };
1862 
1863 static const struct dm_pci_ops pci_bridge_ops = {
1864 	.read_config	= pci_bridge_read_config,
1865 	.write_config	= pci_bridge_write_config,
1866 };
1867 
1868 static const struct udevice_id pci_bridge_ids[] = {
1869 	{ .compatible = "pci-bridge" },
1870 	{ }
1871 };
1872 
1873 U_BOOT_DRIVER(pci_bridge_drv) = {
1874 	.name		= "pci_bridge_drv",
1875 	.id		= UCLASS_PCI,
1876 	.of_match	= pci_bridge_ids,
1877 	.ops		= &pci_bridge_ops,
1878 };
1879 
1880 UCLASS_DRIVER(pci_generic) = {
1881 	.id		= UCLASS_PCI_GENERIC,
1882 	.name		= "pci_generic",
1883 };
1884 
1885 static const struct udevice_id pci_generic_ids[] = {
1886 	{ .compatible = "pci-generic" },
1887 	{ }
1888 };
1889 
1890 U_BOOT_DRIVER(pci_generic_drv) = {
1891 	.name		= "pci_generic_drv",
1892 	.id		= UCLASS_PCI_GENERIC,
1893 	.of_match	= pci_generic_ids,
1894 };
1895 
pci_init(void)1896 int pci_init(void)
1897 {
1898 	struct udevice *bus;
1899 
1900 	/*
1901 	 * Enumerate all known controller devices. Enumeration has the side-
1902 	 * effect of probing them, so PCIe devices will be enumerated too.
1903 	 */
1904 	for (uclass_first_device_check(UCLASS_PCI, &bus);
1905 	     bus;
1906 	     uclass_next_device_check(&bus)) {
1907 		;
1908 	}
1909 
1910 	return 0;
1911 }
1912