1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2015-2016 Marvell International Ltd.
4  */
5 
6 #include <common.h>
7 #include <fdtdec.h>
8 #include <log.h>
9 #include <asm/global_data.h>
10 #include <asm/io.h>
11 #include <asm/arch/cpu.h>
12 #include <asm/arch/soc.h>
13 #include <linux/delay.h>
14 
15 #include "comphy_a3700.h"
16 
17 DECLARE_GLOBAL_DATA_PTR;
18 
19 struct comphy_mux_data a3700_comphy_mux_data[] = {
20 	/* Lane 0 */
21 	{
22 		4,
23 		{
24 			{ COMPHY_TYPE_UNCONNECTED,	0x0 },
25 			{ COMPHY_TYPE_SGMII1,	0x0 },
26 			{ COMPHY_TYPE_USB3_HOST0,	0x1 },
27 			{ COMPHY_TYPE_USB3_DEVICE,	0x1 }
28 		}
29 	},
30 	/* Lane 1 */
31 	{
32 		3,
33 		{
34 			{ COMPHY_TYPE_UNCONNECTED,	0x0},
35 			{ COMPHY_TYPE_SGMII0,	0x0},
36 			{ COMPHY_TYPE_PEX0,	0x1}
37 		}
38 	},
39 	/* Lane 2 */
40 	{
41 		4,
42 		{
43 			{ COMPHY_TYPE_UNCONNECTED,	0x0},
44 			{ COMPHY_TYPE_SATA0,	0x0},
45 			{ COMPHY_TYPE_USB3_HOST0,	0x1},
46 			{ COMPHY_TYPE_USB3_DEVICE,	0x1}
47 		}
48 	},
49 };
50 
51 struct sgmii_phy_init_data_fix {
52 	u16 addr;
53 	u16 value;
54 };
55 
56 /* Changes to 40M1G25 mode data required for running 40M3G125 init mode */
57 static struct sgmii_phy_init_data_fix sgmii_phy_init_fix[] = {
58 	{0x005, 0x07CC}, {0x015, 0x0000}, {0x01B, 0x0000}, {0x01D, 0x0000},
59 	{0x01E, 0x0000}, {0x01F, 0x0000}, {0x020, 0x0000}, {0x021, 0x0030},
60 	{0x026, 0x0888}, {0x04D, 0x0152}, {0x04F, 0xA020}, {0x050, 0x07CC},
61 	{0x053, 0xE9CA}, {0x055, 0xBD97}, {0x071, 0x3015}, {0x076, 0x03AA},
62 	{0x07C, 0x0FDF}, {0x0C2, 0x3030}, {0x0C3, 0x8000}, {0x0E2, 0x5550},
63 	{0x0E3, 0x12A4}, {0x0E4, 0x7D00}, {0x0E6, 0x0C83}, {0x101, 0xFCC0},
64 	{0x104, 0x0C10}
65 };
66 
67 /* 40M1G25 mode init data */
68 static u16 sgmii_phy_init[512] = {
69 	/* 0       1       2       3       4       5       6       7 */
70 	/*-----------------------------------------------------------*/
71 	/* 8       9       A       B       C       D       E       F */
72 	0x3110, 0xFD83, 0x6430, 0x412F, 0x82C0, 0x06FA, 0x4500, 0x6D26,	/* 00 */
73 	0xAFC0, 0x8000, 0xC000, 0x0000, 0x2000, 0x49CC, 0x0BC9, 0x2A52,	/* 08 */
74 	0x0BD2, 0x0CDE, 0x13D2, 0x0CE8, 0x1149, 0x10E0, 0x0000, 0x0000,	/* 10 */
75 	0x0000, 0x0000, 0x0000, 0x0001, 0x0000, 0x4134, 0x0D2D, 0xFFFF,	/* 18 */
76 	0xFFE0, 0x4030, 0x1016, 0x0030, 0x0000, 0x0800, 0x0866, 0x0000,	/* 20 */
77 	0x0000, 0x0000, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF, 0xFFFF,	/* 28 */
78 	0xFFFF, 0xFFFF, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* 30 */
79 	0x0000, 0x0000, 0x000F, 0x6A62, 0x1988, 0x3100, 0x3100, 0x3100,	/* 38 */
80 	0x3100, 0xA708, 0x2430, 0x0830, 0x1030, 0x4610, 0xFF00, 0xFF00,	/* 40 */
81 	0x0060, 0x1000, 0x0400, 0x0040, 0x00F0, 0x0155, 0x1100, 0xA02A,	/* 48 */
82 	0x06FA, 0x0080, 0xB008, 0xE3ED, 0x5002, 0xB592, 0x7A80, 0x0001,	/* 50 */
83 	0x020A, 0x8820, 0x6014, 0x8054, 0xACAA, 0xFC88, 0x2A02, 0x45CF,	/* 58 */
84 	0x000F, 0x1817, 0x2860, 0x064F, 0x0000, 0x0204, 0x1800, 0x6000,	/* 60 */
85 	0x810F, 0x4F23, 0x4000, 0x4498, 0x0850, 0x0000, 0x000E, 0x1002,	/* 68 */
86 	0x9D3A, 0x3009, 0xD066, 0x0491, 0x0001, 0x6AB0, 0x0399, 0x3780,	/* 70 */
87 	0x0040, 0x5AC0, 0x4A80, 0x0000, 0x01DF, 0x0000, 0x0007, 0x0000,	/* 78 */
88 	0x2D54, 0x00A1, 0x4000, 0x0100, 0xA20A, 0x0000, 0x0000, 0x0000,	/* 80 */
89 	0x0000, 0x0000, 0x0000, 0x7400, 0x0E81, 0x1000, 0x1242, 0x0210,	/* 88 */
90 	0x80DF, 0x0F1F, 0x2F3F, 0x4F5F, 0x6F7F, 0x0F1F, 0x2F3F, 0x4F5F,	/* 90 */
91 	0x6F7F, 0x4BAD, 0x0000, 0x0000, 0x0800, 0x0000, 0x2400, 0xB651,	/* 98 */
92 	0xC9E0, 0x4247, 0x0A24, 0x0000, 0xAF19, 0x1004, 0x0000, 0x0000,	/* A0 */
93 	0x0000, 0x0013, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* A8 */
94 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/* B0 */
95 	0x0000, 0x0000, 0x0000, 0x0060, 0x0000, 0x0000, 0x0000, 0x0000,	/* B8 */
96 	0x0000, 0x0000, 0x3010, 0xFA00, 0x0000, 0x0000, 0x0000, 0x0003,	/* C0 */
97 	0x1618, 0x8200, 0x8000, 0x0400, 0x050F, 0x0000, 0x0000, 0x0000,	/* C8 */
98 	0x4C93, 0x0000, 0x1000, 0x1120, 0x0010, 0x1242, 0x1242, 0x1E00,	/* D0 */
99 	0x0000, 0x0000, 0x0000, 0x00F8, 0x0000, 0x0041, 0x0800, 0x0000,	/* D8 */
100 	0x82A0, 0x572E, 0x2490, 0x14A9, 0x4E00, 0x0000, 0x0803, 0x0541,	/* E0 */
101 	0x0C15, 0x0000, 0x0000, 0x0400, 0x2626, 0x0000, 0x0000, 0x4200,	/* E8 */
102 	0x0000, 0xAA55, 0x1020, 0x0000, 0x0000, 0x5010, 0x0000, 0x0000,	/* F0 */
103 	0x0000, 0x0000, 0x5000, 0x0000, 0x0000, 0x0000, 0x02F2, 0x0000,	/* F8 */
104 	0x101F, 0xFDC0, 0x4000, 0x8010, 0x0110, 0x0006, 0x0000, 0x0000,	/*100 */
105 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*108 */
106 	0x04CF, 0x0000, 0x04CF, 0x0000, 0x04CF, 0x0000, 0x04C6, 0x0000,	/*110 */
107 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*118 */
108 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*120 */
109 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*128 */
110 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*130 */
111 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*138 */
112 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*140 */
113 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*148 */
114 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*150 */
115 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*158 */
116 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*160 */
117 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*168 */
118 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*170 */
119 	0x0000, 0x0000, 0x0000, 0x00F0, 0x08A2, 0x3112, 0x0A14, 0x0000,	/*178 */
120 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*180 */
121 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*188 */
122 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*190 */
123 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*198 */
124 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A0 */
125 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1A8 */
126 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B0 */
127 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1B8 */
128 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C0 */
129 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1C8 */
130 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D0 */
131 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1D8 */
132 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E0 */
133 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1E8 */
134 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,	/*1F0 */
135 	0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000	/*1F8 */
136 };
137 
138 /*
139  * comphy_poll_reg
140  *
141  * return: 1 on success, 0 on timeout
142  */
comphy_poll_reg(void * addr,u32 val,u32 mask,u8 op_type)143 static u32 comphy_poll_reg(void *addr, u32 val, u32 mask, u8 op_type)
144 {
145 	u32 rval = 0xDEAD, timeout;
146 
147 	for (timeout = PLL_LOCK_TIMEOUT; timeout > 0; timeout--) {
148 		if (op_type == POLL_16B_REG)
149 			rval = readw(addr);	/* 16 bit */
150 		else
151 			rval = readl(addr) ;	/* 32 bit */
152 
153 		if ((rval & mask) == val)
154 			return 1;
155 
156 		udelay(10000);
157 	}
158 
159 	debug("Time out waiting (%p = %#010x)\n", addr, rval);
160 	return 0;
161 }
162 
163 /*
164  * comphy_pcie_power_up
165  *
166  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
167  */
comphy_pcie_power_up(u32 speed,u32 invert)168 static int comphy_pcie_power_up(u32 speed, u32 invert)
169 {
170 	int ret;
171 
172 	debug_enter();
173 
174 	/*
175 	 * 1. Enable max PLL.
176 	 */
177 	reg_set16(phy_addr(PCIE, LANE_CFG1), bf_use_max_pll_rate, 0);
178 
179 	/*
180 	 * 2. Select 20 bit SERDES interface.
181 	 */
182 	reg_set16(phy_addr(PCIE, GLOB_CLK_SRC_LO), bf_cfg_sel_20b, 0);
183 
184 	/*
185 	 * 3. Force to use reg setting for PCIe mode
186 	 */
187 	reg_set16(phy_addr(PCIE, MISC_REG1), bf_sel_bits_pcie_force, 0);
188 
189 	/*
190 	 * 4. Change RX wait
191 	 */
192 	reg_set16(phy_addr(PCIE, PWR_MGM_TIM1), 0x10C, 0xFFFF);
193 
194 	/*
195 	 * 5. Enable idle sync
196 	 */
197 	reg_set16(phy_addr(PCIE, UNIT_CTRL), 0x60 | rb_idle_sync_en, 0xFFFF);
198 
199 	/*
200 	 * 6. Enable the output of 100M/125M/500M clock
201 	 */
202 	reg_set16(phy_addr(PCIE, MISC_REG0),
203 		  0xA00D | rb_clk500m_en | rb_txdclk_2x_sel | rb_clk100m_125m_en, 0xFFFF);
204 
205 	/*
206 	 * 7. Enable TX
207 	 */
208 	reg_set(PCIE_REF_CLK_ADDR, 0x1342, 0xFFFFFFFF);
209 
210 	/*
211 	 * 8. Check crystal jumper setting and program the Power and PLL
212 	 *    Control accordingly
213 	 */
214 	if (get_ref_clk() == 40) {
215 		/* 40 MHz */
216 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC63, 0xFFFF);
217 	} else {
218 		/* 25 MHz */
219 		reg_set16(phy_addr(PCIE, PWR_PLL_CTRL), 0xFC62, 0xFFFF);
220 	}
221 
222 	/*
223 	 * 9. Override Speed_PLL value and use MAC PLL
224 	 */
225 	reg_set16(phy_addr(PCIE, KVCO_CAL_CTRL), 0x0040 | rb_use_max_pll_rate,
226 		  0xFFFF);
227 
228 	/*
229 	 * 10. Check the Polarity invert bit
230 	 */
231 	if (invert & COMPHY_POLARITY_TXD_INVERT)
232 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_txd_inv, 0);
233 	else
234 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_txd_inv);
235 
236 	if (invert & COMPHY_POLARITY_RXD_INVERT)
237 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), phy_rxd_inv, 0);
238 	else
239 		reg_set16(phy_addr(PCIE, SYNC_PATTERN), 0, phy_rxd_inv);
240 
241 	/*
242 	 * 11. Release SW reset
243 	 */
244 	reg_set16(phy_addr(PCIE, GLOB_PHY_CTRL0),
245 		  rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32,
246 		  bf_soft_rst | bf_mode_refdiv);
247 
248 	/* Wait for > 55 us to allow PCLK be enabled */
249 	udelay(PLL_SET_DELAY_US);
250 
251 	/* Assert PCLK enabled */
252 	ret = comphy_poll_reg(phy_addr(PCIE, LANE_STAT1),	/* address */
253 			      rb_txdclk_pclk_en,		/* value */
254 			      rb_txdclk_pclk_en,		/* mask */
255 			      POLL_16B_REG);			/* 16bit */
256 	if (!ret)
257 		printf("Failed to lock PCIe PLL\n");
258 
259 	debug_exit();
260 
261 	/* Return the status of the PLL */
262 	return ret;
263 }
264 
265 /*
266  * reg_set_indirect
267  *
268  * return: void
269  */
reg_set_indirect(u32 reg,u16 data,u16 mask)270 static void reg_set_indirect(u32 reg, u16 data, u16 mask)
271 {
272 	reg_set(rh_vsreg_addr, reg, 0xFFFFFFFF);
273 	reg_set(rh_vsreg_data, data, mask);
274 }
275 
276 /*
277  * comphy_sata_power_up
278  *
279  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
280  */
comphy_sata_power_up(u32 invert)281 static int comphy_sata_power_up(u32 invert)
282 {
283 	int ret;
284 	u32 data = 0;
285 
286 	debug_enter();
287 
288 	/*
289 	 * 0. Check the Polarity invert bits
290 	 */
291 	if (invert & COMPHY_POLARITY_TXD_INVERT)
292 		data |= bs_txd_inv;
293 
294 	if (invert & COMPHY_POLARITY_RXD_INVERT)
295 		data |= bs_rxd_inv;
296 
297 	reg_set_indirect(vphy_sync_pattern_reg, data, bs_txd_inv | bs_rxd_inv);
298 
299 	/*
300 	 * 1. Select 40-bit data width width
301 	 */
302 	reg_set_indirect(vphy_loopback_reg0, 0x800, bs_phyintf_40bit);
303 
304 	/*
305 	 * 2. Select reference clock and PHY mode (SATA)
306 	 */
307 	if (get_ref_clk() == 40) {
308 		/* 40 MHz */
309 		reg_set_indirect(vphy_power_reg0, 0x3, 0x00FF);
310 	} else {
311 		/* 20 MHz */
312 		reg_set_indirect(vphy_power_reg0, 0x1, 0x00FF);
313 	}
314 
315 	/*
316 	 * 3. Use maximum PLL rate (no power save)
317 	 */
318 	reg_set_indirect(vphy_calctl_reg, bs_max_pll_rate, bs_max_pll_rate);
319 
320 	/*
321 	 * 4. Reset reserved bit (??)
322 	 */
323 	reg_set_indirect(vphy_reserve_reg, 0, bs_phyctrl_frm_pin);
324 
325 	/*
326 	 * 5. Set vendor-specific configuration (??)
327 	 */
328 	reg_set(rh_vs0_a, vsata_ctrl_reg, 0xFFFFFFFF);
329 	reg_set(rh_vs0_d, bs_phy_pu_pll, bs_phy_pu_pll);
330 
331 	/* Wait for > 55 us to allow PLL be enabled */
332 	udelay(PLL_SET_DELAY_US);
333 
334 	/* Assert SATA PLL enabled */
335 	reg_set(rh_vsreg_addr, vphy_loopback_reg0, 0xFFFFFFFF);
336 	ret = comphy_poll_reg(rh_vsreg_data,	/* address */
337 			      bs_pll_ready_tx,	/* value */
338 			      bs_pll_ready_tx,	/* mask */
339 			      POLL_32B_REG);	/* 32bit */
340 	if (!ret)
341 		printf("Failed to lock SATA PLL\n");
342 
343 	debug_exit();
344 
345 	return ret;
346 }
347 
348 /*
349  * usb3_reg_set16
350  *
351  * return: void
352  */
usb3_reg_set16(u32 reg,u16 data,u16 mask,u32 lane)353 static void usb3_reg_set16(u32 reg, u16 data, u16 mask, u32 lane)
354 {
355 	/*
356 	 * When Lane 2 PHY is for USB3, access the PHY registers
357 	 * through indirect Address and Data registers INDIR_ACC_PHY_ADDR
358 	 * (RD00E0178h [31:0]) and INDIR_ACC_PHY_DATA (RD00E017Ch [31:0])
359 	 * within the SATA Host Controller registers, Lane 2 base register
360 	 * offset is 0x200
361 	 */
362 
363 	if (lane == 2)
364 		reg_set_indirect(USB3PHY_LANE2_REG_BASE_OFFSET + reg, data,
365 				 mask);
366 	else
367 		reg_set16(phy_addr(USB3, reg), data, mask);
368 }
369 
370 /*
371  * comphy_usb3_power_up
372  *
373  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
374  */
comphy_usb3_power_up(u32 lane,u32 type,u32 speed,u32 invert)375 static int comphy_usb3_power_up(u32 lane, u32 type, u32 speed, u32 invert)
376 {
377 	int ret;
378 
379 	debug_enter();
380 
381 	/*
382 	 * 1. Power up OTG module
383 	 */
384 	reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
385 
386 	/*
387 	 * 2. Set counter for 100us pulse in USB3 Host and Device
388 	 * restore default burst size limit (Reference Clock 31:24)
389 	 */
390 	reg_set(USB3_CTRPUL_VAL_REG, 0x8 << 24, rb_usb3_ctr_100ns);
391 
392 
393 	/* 0xd005c300 = 0x1001 */
394 	/* set PRD_TXDEEMPH (3.5db de-emph) */
395 	usb3_reg_set16(LANE_CFG0, 0x1, 0xFF, lane);
396 
397 	/*
398 	 * Set BIT0: enable transmitter in high impedance mode
399 	 * Set BIT[3:4]: delay 2 clock cycles for HiZ off latency
400 	 * Set BIT6: Tx detect Rx at HiZ mode
401 	 * Unset BIT15: set to 0 to set USB3 De-emphasize level to -3.5db
402 	 *              together with bit 0 of COMPHY_REG_LANE_CFG0_ADDR
403 	 *              register
404 	 */
405 	usb3_reg_set16(LANE_CFG1,
406 		       tx_det_rx_mode | gen2_tx_data_dly_deft
407 		       | tx_elec_idle_mode_en,
408 		       prd_txdeemph1_mask | tx_det_rx_mode
409 		       | gen2_tx_data_dly_mask | tx_elec_idle_mode_en, lane);
410 
411 	/* 0xd005c310 = 0x93: set Spread Spectrum Clock Enabled */
412 	usb3_reg_set16(LANE_CFG4, bf_spread_spectrum_clock_en, 0x80, lane);
413 
414 	/*
415 	 * set Override Margining Controls From the MAC: Use margining signals
416 	 * from lane configuration
417 	 */
418 	usb3_reg_set16(TEST_MODE_CTRL, rb_mode_margin_override, 0xFFFF, lane);
419 
420 	/* set Lane-to-Lane Bundle Clock Sampling Period = per PCLK cycles */
421 	/* set Mode Clock Source = PCLK is generated from REFCLK */
422 	usb3_reg_set16(GLOB_CLK_SRC_LO, 0x0, 0xFF, lane);
423 
424 	/* set G2 Spread Spectrum Clock Amplitude at 4K */
425 	usb3_reg_set16(GEN2_SETTINGS_2, g2_tx_ssc_amp, 0xF000, lane);
426 
427 	/*
428 	 * unset G3 Spread Spectrum Clock Amplitude & set G3 TX and RX Register
429 	 * Master Current Select
430 	 */
431 	usb3_reg_set16(GEN2_SETTINGS_3, 0x0, 0xFFFF, lane);
432 
433 	/*
434 	 * 3. Check crystal jumper setting and program the Power and PLL
435 	 * Control accordingly
436 	 * 4. Change RX wait
437 	 */
438 	if (get_ref_clk() == 40) {
439 		/* 40 MHz */
440 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA3, 0xFFFF, lane);
441 		usb3_reg_set16(PWR_MGM_TIM1, 0x10C, 0xFFFF, lane);
442 	} else {
443 		/* 25 MHz */
444 		usb3_reg_set16(PWR_PLL_CTRL, 0xFCA2, 0xFFFF, lane);
445 		usb3_reg_set16(PWR_MGM_TIM1, 0x107, 0xFFFF, lane);
446 	}
447 
448 	/*
449 	 * 5. Enable idle sync
450 	 */
451 	usb3_reg_set16(UNIT_CTRL, 0x60 | rb_idle_sync_en, 0xFFFF, lane);
452 
453 	/*
454 	 * 6. Enable the output of 500M clock
455 	 */
456 	usb3_reg_set16(MISC_REG0, 0xA00D | rb_clk500m_en, 0xFFFF, lane);
457 
458 	/*
459 	 * 7. Set 20-bit data width
460 	 */
461 	usb3_reg_set16(DIG_LB_EN, 0x0400, 0xFFFF, lane);
462 
463 	/*
464 	 * 8. Override Speed_PLL value and use MAC PLL
465 	 */
466 	usb3_reg_set16(KVCO_CAL_CTRL, 0x0040 | rb_use_max_pll_rate, 0xFFFF,
467 		       lane);
468 
469 	/*
470 	 * 9. Check the Polarity invert bit
471 	 */
472 	if (invert & COMPHY_POLARITY_TXD_INVERT)
473 		usb3_reg_set16(SYNC_PATTERN, phy_txd_inv, 0, lane);
474 	else
475 		usb3_reg_set16(SYNC_PATTERN, 0, phy_txd_inv, lane);
476 
477 	if (invert & COMPHY_POLARITY_RXD_INVERT)
478 		usb3_reg_set16(SYNC_PATTERN, phy_rxd_inv, 0, lane);
479 	else
480 		usb3_reg_set16(SYNC_PATTERN, 0, phy_rxd_inv, lane);
481 
482 	/*
483 	 * 10. Set max speed generation to USB3.0 5Gbps
484 	 */
485 	usb3_reg_set16(SYNC_MASK_GEN, 0x0400, 0x0C00, lane);
486 
487 	/*
488 	 * 11. Set capacitor value for FFE gain peaking to 0xF
489 	 */
490 	usb3_reg_set16(GEN3_SETTINGS_3, 0xF, 0xF, lane);
491 
492 	/*
493 	 * 12. Release SW reset
494 	 */
495 	usb3_reg_set16(GLOB_PHY_CTRL0,
496 		       rb_mode_core_clk_freq_sel | rb_mode_pipe_width_32
497 		       | 0x20, 0xFFFF, lane);
498 
499 	/* Wait for > 55 us to allow PCLK be enabled */
500 	udelay(PLL_SET_DELAY_US);
501 
502 	/* Assert PCLK enabled */
503 	if (lane == 2) {
504 		reg_set(rh_vsreg_addr,
505 			LANE_STAT1 + USB3PHY_LANE2_REG_BASE_OFFSET,
506 			0xFFFFFFFF);
507 		ret = comphy_poll_reg(rh_vsreg_data,		/* address */
508 				      rb_txdclk_pclk_en,	/* value */
509 				      rb_txdclk_pclk_en,	/* mask */
510 				      POLL_32B_REG);		/* 32bit */
511 	} else {
512 		ret = comphy_poll_reg(phy_addr(USB3, LANE_STAT1), /* address */
513 				      rb_txdclk_pclk_en,	  /* value */
514 				      rb_txdclk_pclk_en,	  /* mask */
515 				      POLL_16B_REG);		  /* 16bit */
516 	}
517 	if (!ret)
518 		printf("Failed to lock USB3 PLL\n");
519 
520 	/*
521 	 * Set Soft ID for Host mode (Device mode works with Hard ID
522 	 * detection)
523 	 */
524 	if (type == COMPHY_TYPE_USB3_HOST0) {
525 		/*
526 		 * set   BIT0: set ID_MODE of Host/Device = "Soft ID" (BIT1)
527 		 * clear BIT1: set SOFT_ID = Host
528 		 * set   BIT4: set INT_MODE = ID. Interrupt Mode: enable
529 		 *             interrupt by ID instead of using both interrupts
530 		 *             of HOST and Device ORed simultaneously
531 		 *             INT_MODE=ID in order to avoid unexpected
532 		 *             behaviour or both interrupts together
533 		 */
534 		reg_set(USB32_CTRL_BASE,
535 			usb32_ctrl_id_mode | usb32_ctrl_int_mode,
536 			usb32_ctrl_id_mode | usb32_ctrl_soft_id |
537 			usb32_ctrl_int_mode);
538 	}
539 
540 	debug_exit();
541 
542 	return ret;
543 }
544 
545 /*
546  * comphy_usb2_power_up
547  *
548  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
549  */
comphy_usb2_power_up(u8 usb32)550 static int comphy_usb2_power_up(u8 usb32)
551 {
552 	int ret;
553 
554 	debug_enter();
555 
556 	if (usb32 != 0 && usb32 != 1) {
557 		printf("invalid usb32 value: (%d), should be either 0 or 1\n",
558 		       usb32);
559 		debug_exit();
560 		return 0;
561 	}
562 
563 	/*
564 	 * 0. Setup PLL. 40MHz clock uses defaults.
565 	 *    See "PLL Settings for Typical REFCLK" table
566 	 */
567 	if (get_ref_clk() == 25) {
568 		reg_set(USB2_PHY_BASE(usb32), 5 | (96 << 16),
569 			0x3F | (0xFF << 16) | (0x3 << 28));
570 	}
571 
572 	/*
573 	 * 1. PHY pull up and disable USB2 suspend
574 	 */
575 	reg_set(USB2_PHY_CTRL_ADDR(usb32),
576 		RB_USB2PHY_SUSPM(usb32) | RB_USB2PHY_PU(usb32), 0);
577 
578 	if (usb32 != 0) {
579 		/*
580 		 * 2. Power up OTG module
581 		 */
582 		reg_set(USB2_PHY_OTG_CTRL_ADDR, rb_pu_otg, 0);
583 
584 		/*
585 		 * 3. Configure PHY charger detection
586 		 */
587 		reg_set(USB2_PHY_CHRGR_DET_ADDR, 0,
588 			rb_cdp_en | rb_dcp_en | rb_pd_en | rb_cdp_dm_auto |
589 			rb_enswitch_dp | rb_enswitch_dm | rb_pu_chrg_dtc);
590 	}
591 
592 	/* Assert PLL calibration done */
593 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
594 			      rb_usb2phy_pllcal_done,	/* value */
595 			      rb_usb2phy_pllcal_done,	/* mask */
596 			      POLL_32B_REG);		/* 32bit */
597 	if (!ret) {
598 		printf("Failed to end USB2 PLL calibration\n");
599 		goto out;
600 	}
601 
602 	/* Assert impedance calibration done */
603 	ret = comphy_poll_reg(USB2_PHY_CAL_CTRL_ADDR(usb32),
604 			      rb_usb2phy_impcal_done,	/* value */
605 			      rb_usb2phy_impcal_done,	/* mask */
606 			      POLL_32B_REG);		/* 32bit */
607 	if (!ret) {
608 		printf("Failed to end USB2 impedance calibration\n");
609 		goto out;
610 	}
611 
612 	/* Assert squetch calibration done */
613 	ret = comphy_poll_reg(USB2_PHY_RX_CHAN_CTRL1_ADDR(usb32),
614 			      rb_usb2phy_sqcal_done,	/* value */
615 			      rb_usb2phy_sqcal_done,	/* mask */
616 			      POLL_32B_REG);		/* 32bit */
617 	if (!ret) {
618 		printf("Failed to end USB2 unknown calibration\n");
619 		goto out;
620 	}
621 
622 	/* Assert PLL is ready */
623 	ret = comphy_poll_reg(USB2_PHY_PLL_CTRL0_ADDR(usb32),
624 			      rb_usb2phy_pll_ready,		/* value */
625 			      rb_usb2phy_pll_ready,		/* mask */
626 			      POLL_32B_REG);		/* 32bit */
627 
628 	if (!ret) {
629 		printf("Failed to lock USB2 PLL\n");
630 		goto out;
631 	}
632 
633 out:
634 	debug_exit();
635 
636 	return ret;
637 }
638 
639 /*
640  * comphy_emmc_power_up
641  *
642  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
643  */
comphy_emmc_power_up(void)644 static int comphy_emmc_power_up(void)
645 {
646 	debug_enter();
647 
648 	/*
649 	 * 1. Bus power ON, Bus voltage 1.8V
650 	 */
651 	reg_set(SDIO_HOST_CTRL1_ADDR, 0xB00, 0xF00);
652 
653 	/*
654 	 * 2. Set FIFO parameters
655 	 */
656 	reg_set(SDIO_SDHC_FIFO_ADDR, 0x315, 0xFFFFFFFF);
657 
658 	/*
659 	 * 3. Set Capabilities 1_2
660 	 */
661 	reg_set(SDIO_CAP_12_ADDR, 0x25FAC8B2, 0xFFFFFFFF);
662 
663 	/*
664 	 * 4. Set Endian
665 	 */
666 	reg_set(SDIO_ENDIAN_ADDR, 0x00c00000, 0);
667 
668 	/*
669 	 * 4. Init PHY
670 	 */
671 	reg_set(SDIO_PHY_TIMING_ADDR, 0x80000000, 0x80000000);
672 	reg_set(SDIO_PHY_PAD_CTRL0_ADDR, 0x50000000, 0xF0000000);
673 
674 	/*
675 	 * 5. DLL reset
676 	 */
677 	reg_set(SDIO_DLL_RST_ADDR, 0xFFFEFFFF, 0);
678 	reg_set(SDIO_DLL_RST_ADDR, 0x00010000, 0);
679 
680 	debug_exit();
681 
682 	return 1;
683 }
684 
685 /*
686  * comphy_sgmii_power_up
687  *
688  * return:
689  */
comphy_sgmii_phy_init(u32 lane,u32 speed)690 static void comphy_sgmii_phy_init(u32 lane, u32 speed)
691 {
692 	const int fix_arr_sz = ARRAY_SIZE(sgmii_phy_init_fix);
693 	int addr, fix_idx;
694 	u16 val;
695 
696 	fix_idx = 0;
697 	for (addr = 0; addr < 512; addr++) {
698 		/*
699 		 * All PHY register values are defined in full for 3.125Gbps
700 		 * SERDES speed. The values required for 1.25 Gbps are almost
701 		 * the same and only few registers should be "fixed" in
702 		 * comparison to 3.125 Gbps values. These register values are
703 		 * stored in "sgmii_phy_init_fix" array.
704 		 */
705 		if (speed != COMPHY_SPEED_1_25G &&
706 		    sgmii_phy_init_fix[fix_idx].addr == addr) {
707 			/* Use new value */
708 			val = sgmii_phy_init_fix[fix_idx].value;
709 			if (fix_idx < fix_arr_sz)
710 				fix_idx++;
711 		} else {
712 			val = sgmii_phy_init[addr];
713 		}
714 
715 		reg_set16(sgmiiphy_addr(lane, addr), val, 0xFFFF);
716 	}
717 }
718 
719 /*
720  * comphy_sgmii_power_up
721  *
722  * return: 1 if PLL locked (OK), 0 otherwise (FAIL)
723  */
comphy_sgmii_power_up(u32 lane,u32 speed,u32 invert)724 static int comphy_sgmii_power_up(u32 lane, u32 speed, u32 invert)
725 {
726 	int ret;
727 	u32 saved_selector;
728 
729 	debug_enter();
730 
731 	/*
732 	 * 1. Configure PHY to SATA/SAS mode by setting pin PIN_PIPE_SEL=0
733 	 */
734 	saved_selector = readl(COMPHY_SEL_ADDR);
735 	reg_set(COMPHY_SEL_ADDR, 0, 0xFFFFFFFF);
736 
737 	/*
738 	 * 2. Reset PHY by setting PHY input port PIN_RESET=1.
739 	 * 3. Set PHY input port PIN_TX_IDLE=1, PIN_PU_IVREF=1 to keep
740 	 *    PHY TXP/TXN output to idle state during PHY initialization
741 	 * 4. Set PHY input port PIN_PU_PLL=0, PIN_PU_RX=0, PIN_PU_TX=0.
742 	 */
743 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
744 		rb_pin_reset_comphy | rb_pin_tx_idle | rb_pin_pu_iveref,
745 		rb_pin_reset_core | rb_pin_pu_pll |
746 		rb_pin_pu_rx | rb_pin_pu_tx);
747 
748 	/*
749 	 * 5. Release reset to the PHY by setting PIN_RESET=0.
750 	 */
751 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0, rb_pin_reset_comphy);
752 
753 	/*
754 	 * 7. Set PIN_PHY_GEN_TX[3:0] and PIN_PHY_GEN_RX[3:0] to decide
755 	 *    COMPHY bit rate
756 	 */
757 	if (speed == COMPHY_SPEED_3_125G) { /* 3.125 GHz */
758 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
759 			(0x8 << rf_gen_rx_sel_shift) |
760 			(0x8 << rf_gen_tx_sel_shift),
761 			rf_gen_rx_select | rf_gen_tx_select);
762 
763 	} else if (speed == COMPHY_SPEED_1_25G) { /* 1.25 GHz */
764 		reg_set(COMPHY_PHY_CFG1_ADDR(lane),
765 			(0x6 << rf_gen_rx_sel_shift) |
766 			(0x6 << rf_gen_tx_sel_shift),
767 			rf_gen_rx_select | rf_gen_tx_select);
768 	} else {
769 		printf("Unsupported COMPHY speed!\n");
770 		return 0;
771 	}
772 
773 	/*
774 	 * 8. Wait 1mS for bandgap and reference clocks to stabilize;
775 	 *    then start SW programming.
776 	 */
777 	mdelay(10);
778 
779 	/* 9. Program COMPHY register PHY_MODE */
780 	reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
781 		  PHY_MODE_SGMII << rf_phy_mode_shift, rf_phy_mode_mask);
782 
783 	/*
784 	 * 10. Set COMPHY register REFCLK_SEL to select the correct REFCLK
785 	 *     source
786 	 */
787 	reg_set16(sgmiiphy_addr(lane, MISC_REG0), 0, rb_ref_clk_sel);
788 
789 	/*
790 	 * 11. Set correct reference clock frequency in COMPHY register
791 	 *     REF_FREF_SEL.
792 	 */
793 	if (get_ref_clk() == 40) {
794 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
795 			  0x4 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
796 	} else {
797 		/* 25MHz */
798 		reg_set16(sgmiiphy_addr(lane, PWR_PLL_CTRL),
799 			  0x1 << rf_ref_freq_sel_shift, rf_ref_freq_sel_mask);
800 	}
801 
802 	/* 12. Program COMPHY register PHY_GEN_MAX[1:0] */
803 	/*
804 	 * This step is mentioned in the flow received from verification team.
805 	 * However the PHY_GEN_MAX value is only meaningful for other
806 	 * interfaces (not SGMII). For instance, it selects SATA speed
807 	 * 1.5/3/6 Gbps or PCIe speed  2.5/5 Gbps
808 	 */
809 
810 	/*
811 	 * 13. Program COMPHY register SEL_BITS to set correct parallel data
812 	 *     bus width
813 	 */
814 	/* 10bit */
815 	reg_set16(sgmiiphy_addr(lane, DIG_LB_EN), 0, rf_data_width_mask);
816 
817 	/*
818 	 * 14. As long as DFE function needs to be enabled in any mode,
819 	 *     COMPHY register DFE_UPDATE_EN[5:0] shall be programmed to 0x3F
820 	 *     for real chip during COMPHY power on.
821 	 */
822 	/*
823 	 * The step 14 exists (and empty) in the original initialization flow
824 	 * obtained from the verification team. According to the functional
825 	 * specification DFE_UPDATE_EN already has the default value 0x3F
826 	 */
827 
828 	/*
829 	 * 15. Program COMPHY GEN registers.
830 	 *     These registers should be programmed based on the lab testing
831 	 *     result to achieve optimal performance. Please contact the CEA
832 	 *     group to get the related GEN table during real chip bring-up.
833 	 *     We only requred to run though the entire registers programming
834 	 *     flow defined by "comphy_sgmii_phy_init" when the REF clock is
835 	 *     40 MHz. For REF clock 25 MHz the default values stored in PHY
836 	 *     registers are OK.
837 	 */
838 	debug("Running C-DPI phy init %s mode\n",
839 	      speed == COMPHY_SPEED_3_125G ? "2G5" : "1G");
840 	if (get_ref_clk() == 40)
841 		comphy_sgmii_phy_init(lane, speed);
842 
843 	/*
844 	 * 16. [Simulation Only] should not be used for real chip.
845 	 *     By pass power up calibration by programming EXT_FORCE_CAL_DONE
846 	 *     (R02h[9]) to 1 to shorten COMPHY simulation time.
847 	 */
848 	/*
849 	 * 17. [Simulation Only: should not be used for real chip]
850 	 *     Program COMPHY register FAST_DFE_TIMER_EN=1 to shorten RX
851 	 *     training simulation time.
852 	 */
853 
854 	/*
855 	 * 18. Check the PHY Polarity invert bit
856 	 */
857 	if (invert & COMPHY_POLARITY_TXD_INVERT)
858 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_txd_inv, 0);
859 	else
860 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_txd_inv);
861 
862 	if (invert & COMPHY_POLARITY_RXD_INVERT)
863 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), phy_rxd_inv, 0);
864 	else
865 		reg_set16(sgmiiphy_addr(lane, SYNC_PATTERN), 0, phy_rxd_inv);
866 
867 	/*
868 	 * 19. Set PHY input ports PIN_PU_PLL, PIN_PU_TX and PIN_PU_RX to 1
869 	 *     to start PHY power up sequence. All the PHY register
870 	 *     programming should be done before PIN_PU_PLL=1. There should be
871 	 *     no register programming for normal PHY operation from this point.
872 	 */
873 	reg_set(COMPHY_PHY_CFG1_ADDR(lane),
874 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx,
875 		rb_pin_pu_pll | rb_pin_pu_rx | rb_pin_pu_tx);
876 
877 	/*
878 	 * 20. Wait for PHY power up sequence to finish by checking output ports
879 	 *     PIN_PLL_READY_TX=1 and PIN_PLL_READY_RX=1.
880 	 */
881 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane),	/* address */
882 			      rb_pll_ready_tx | rb_pll_ready_rx, /* value */
883 			      rb_pll_ready_tx | rb_pll_ready_rx, /* mask */
884 			      POLL_32B_REG);			/* 32bit */
885 	if (!ret) {
886 		printf("Failed to lock PLL for SGMII PHY %d\n", lane);
887 		goto out;
888 	}
889 
890 	/*
891 	 * 21. Set COMPHY input port PIN_TX_IDLE=0
892 	 */
893 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), 0x0, rb_pin_tx_idle);
894 
895 	/*
896 	 * 22. After valid data appear on PIN_RXDATA bus, set PIN_RX_INIT=1.
897 	 *     to start RX initialization. PIN_RX_INIT_DONE will be cleared to
898 	 *     0 by the PHY. After RX initialization is done, PIN_RX_INIT_DONE
899 	 *     will be set to 1 by COMPHY. Set PIN_RX_INIT=0 after
900 	 *     PIN_RX_INIT_DONE= 1.
901 	 *     Please refer to RX initialization part for details.
902 	 */
903 	reg_set(COMPHY_PHY_CFG1_ADDR(lane), rb_phy_rx_init, 0x0);
904 
905 	ret = comphy_poll_reg(COMPHY_PHY_STAT1_ADDR(lane), /* address */
906 			      rb_rx_init_done,			/* value */
907 			      rb_rx_init_done,			/* mask */
908 			      POLL_32B_REG);			/* 32bit */
909 	if (!ret) {
910 		printf("Failed to init RX of SGMII PHY %d\n", lane);
911 		goto out;
912 	}
913 
914 	/*
915 	 * Restore saved selector.
916 	 */
917 	reg_set(COMPHY_SEL_ADDR, saved_selector, 0xFFFFFFFF);
918 
919 out:
920 	debug_exit();
921 
922 	return ret;
923 }
924 
comphy_dedicated_phys_init(void)925 void comphy_dedicated_phys_init(void)
926 {
927 	int node, usb32, ret = 1;
928 	const void *blob = gd->fdt_blob;
929 
930 	debug_enter();
931 
932 	for (usb32 = 0; usb32 <= 1; usb32++) {
933 		/*
934 		 * There are 2 UTMI PHYs in this SOC.
935 		 * One is independendent and one is paired with USB3 port (OTG)
936 		 */
937 		if (usb32 == 0) {
938 			node = fdt_node_offset_by_compatible(
939 				blob, -1, "marvell,armada3700-ehci");
940 		} else {
941 			node = fdt_node_offset_by_compatible(
942 				blob, -1, "marvell,armada3700-xhci");
943 		}
944 
945 		if (node > 0) {
946 			if (fdtdec_get_is_enabled(blob, node)) {
947 				ret = comphy_usb2_power_up(usb32);
948 				if (!ret)
949 					printf("Failed to initialize UTMI PHY\n");
950 				else
951 					debug("UTMI PHY init succeed\n");
952 			} else {
953 				debug("USB%d node is disabled\n",
954 				      usb32 == 0 ? 2 : 3);
955 			}
956 		} else {
957 			debug("No USB%d node in DT\n", usb32 == 0 ? 2 : 3);
958 		}
959 	}
960 
961 	node = fdt_node_offset_by_compatible(blob, -1,
962 					     "marvell,armada-8k-sdhci");
963 	if (node <= 0) {
964 		node = fdt_node_offset_by_compatible(
965 			blob, -1, "marvell,armada-3700-sdhci");
966 	}
967 
968 	if (node > 0) {
969 		if (fdtdec_get_is_enabled(blob, node)) {
970 			ret = comphy_emmc_power_up();
971 			if (!ret)
972 				printf("Failed to initialize SDIO/eMMC PHY\n");
973 			else
974 				debug("SDIO/eMMC PHY init succeed\n");
975 		} else {
976 			debug("SDIO/eMMC node is disabled\n");
977 		}
978 	}  else {
979 		debug("No SDIO/eMMC node in DT\n");
980 	}
981 
982 	debug_exit();
983 }
984 
comphy_a3700_init(struct chip_serdes_phy_config * chip_cfg,struct comphy_map * serdes_map)985 int comphy_a3700_init(struct chip_serdes_phy_config *chip_cfg,
986 		      struct comphy_map *serdes_map)
987 {
988 	struct comphy_map *comphy_map;
989 	u32 comphy_max_count = chip_cfg->comphy_lanes_count;
990 	u32 lane, ret = 0;
991 
992 	debug_enter();
993 
994 	/* Initialize PHY mux */
995 	chip_cfg->mux_data = a3700_comphy_mux_data;
996 	comphy_mux_init(chip_cfg, serdes_map, COMPHY_SEL_ADDR);
997 
998 	for (lane = 0, comphy_map = serdes_map; lane < comphy_max_count;
999 	     lane++, comphy_map++) {
1000 		debug("Initialize serdes number %d\n", lane);
1001 		debug("Serdes type = 0x%x invert=%d\n",
1002 		      comphy_map->type, comphy_map->invert);
1003 
1004 		switch (comphy_map->type) {
1005 		case COMPHY_TYPE_UNCONNECTED:
1006 			continue;
1007 			break;
1008 
1009 		case COMPHY_TYPE_PEX0:
1010 			ret = comphy_pcie_power_up(comphy_map->speed,
1011 						   comphy_map->invert);
1012 			break;
1013 
1014 		case COMPHY_TYPE_USB3_HOST0:
1015 		case COMPHY_TYPE_USB3_DEVICE:
1016 			ret = comphy_usb3_power_up(lane,
1017 						   comphy_map->type,
1018 						   comphy_map->speed,
1019 						   comphy_map->invert);
1020 			break;
1021 
1022 		case COMPHY_TYPE_SGMII0:
1023 		case COMPHY_TYPE_SGMII1:
1024 			ret = comphy_sgmii_power_up(lane, comphy_map->speed,
1025 						    comphy_map->invert);
1026 			break;
1027 
1028 		case COMPHY_TYPE_SATA0:
1029 			ret = comphy_sata_power_up(comphy_map->invert);
1030 			break;
1031 
1032 		default:
1033 			debug("Unknown SerDes type, skip initialize SerDes %d\n",
1034 			      lane);
1035 			ret = 1;
1036 			break;
1037 		}
1038 		if (!ret)
1039 			printf("PLL is not locked - Failed to initialize lane %d\n",
1040 			       lane);
1041 	}
1042 
1043 	debug_exit();
1044 	return ret;
1045 }
1046