1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2018 Exceet Electronics GmbH
4  * Copyright (C) 2018 Bootlin
5  *
6  * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7  */
8 
9 #ifndef __UBOOT__
10 #include <log.h>
11 #include <dm/devres.h>
12 #include <linux/dmaengine.h>
13 #include <linux/pm_runtime.h>
14 #include "internals.h"
15 #else
16 #include <common.h>
17 #include <dm.h>
18 #include <errno.h>
19 #include <malloc.h>
20 #include <spi.h>
21 #include <spi.h>
22 #include <spi-mem.h>
23 #include <dm/device_compat.h>
24 #endif
25 
26 #ifndef __UBOOT__
27 /**
28  * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
29  *					  memory operation
30  * @ctlr: the SPI controller requesting this dma_map()
31  * @op: the memory operation containing the buffer to map
32  * @sgt: a pointer to a non-initialized sg_table that will be filled by this
33  *	 function
34  *
35  * Some controllers might want to do DMA on the data buffer embedded in @op.
36  * This helper prepares everything for you and provides a ready-to-use
37  * sg_table. This function is not intended to be called from spi drivers.
38  * Only SPI controller drivers should use it.
39  * Note that the caller must ensure the memory region pointed by
40  * op->data.buf.{in,out} is DMA-able before calling this function.
41  *
42  * Return: 0 in case of success, a negative error code otherwise.
43  */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)44 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
45 				       const struct spi_mem_op *op,
46 				       struct sg_table *sgt)
47 {
48 	struct device *dmadev;
49 
50 	if (!op->data.nbytes)
51 		return -EINVAL;
52 
53 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
54 		dmadev = ctlr->dma_tx->device->dev;
55 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
56 		dmadev = ctlr->dma_rx->device->dev;
57 	else
58 		dmadev = ctlr->dev.parent;
59 
60 	if (!dmadev)
61 		return -EINVAL;
62 
63 	return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
64 			   op->data.dir == SPI_MEM_DATA_IN ?
65 			   DMA_FROM_DEVICE : DMA_TO_DEVICE);
66 }
67 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
68 
69 /**
70  * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
71  *					    memory operation
72  * @ctlr: the SPI controller requesting this dma_unmap()
73  * @op: the memory operation containing the buffer to unmap
74  * @sgt: a pointer to an sg_table previously initialized by
75  *	 spi_controller_dma_map_mem_op_data()
76  *
77  * Some controllers might want to do DMA on the data buffer embedded in @op.
78  * This helper prepares things so that the CPU can access the
79  * op->data.buf.{in,out} buffer again.
80  *
81  * This function is not intended to be called from SPI drivers. Only SPI
82  * controller drivers should use it.
83  *
84  * This function should be called after the DMA operation has finished and is
85  * only valid if the previous spi_controller_dma_map_mem_op_data() call
86  * returned 0.
87  *
88  * Return: 0 in case of success, a negative error code otherwise.
89  */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)90 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
91 					  const struct spi_mem_op *op,
92 					  struct sg_table *sgt)
93 {
94 	struct device *dmadev;
95 
96 	if (!op->data.nbytes)
97 		return;
98 
99 	if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
100 		dmadev = ctlr->dma_tx->device->dev;
101 	else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
102 		dmadev = ctlr->dma_rx->device->dev;
103 	else
104 		dmadev = ctlr->dev.parent;
105 
106 	spi_unmap_buf(ctlr, dmadev, sgt,
107 		      op->data.dir == SPI_MEM_DATA_IN ?
108 		      DMA_FROM_DEVICE : DMA_TO_DEVICE);
109 }
110 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
111 #endif /* __UBOOT__ */
112 
spi_check_buswidth_req(struct spi_slave * slave,u8 buswidth,bool tx)113 static int spi_check_buswidth_req(struct spi_slave *slave, u8 buswidth, bool tx)
114 {
115 	u32 mode = slave->mode;
116 
117 	switch (buswidth) {
118 	case 1:
119 		return 0;
120 
121 	case 2:
122 		if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
123 		    (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
124 			return 0;
125 
126 		break;
127 
128 	case 4:
129 		if ((tx && (mode & SPI_TX_QUAD)) ||
130 		    (!tx && (mode & SPI_RX_QUAD)))
131 			return 0;
132 
133 		break;
134 	case 8:
135 		if ((tx && (mode & SPI_TX_OCTAL)) ||
136 		    (!tx && (mode & SPI_RX_OCTAL)))
137 			return 0;
138 
139 		break;
140 
141 	default:
142 		break;
143 	}
144 
145 	return -ENOTSUPP;
146 }
147 
spi_mem_check_buswidth(struct spi_slave * slave,const struct spi_mem_op * op)148 static bool spi_mem_check_buswidth(struct spi_slave *slave,
149 				   const struct spi_mem_op *op)
150 {
151 	if (spi_check_buswidth_req(slave, op->cmd.buswidth, true))
152 		return false;
153 
154 	if (op->addr.nbytes &&
155 	    spi_check_buswidth_req(slave, op->addr.buswidth, true))
156 		return false;
157 
158 	if (op->dummy.nbytes &&
159 	    spi_check_buswidth_req(slave, op->dummy.buswidth, true))
160 		return false;
161 
162 	if (op->data.dir != SPI_MEM_NO_DATA &&
163 	    spi_check_buswidth_req(slave, op->data.buswidth,
164 				   op->data.dir == SPI_MEM_DATA_OUT))
165 		return false;
166 
167 	return true;
168 }
169 
spi_mem_dtr_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)170 bool spi_mem_dtr_supports_op(struct spi_slave *slave,
171 			     const struct spi_mem_op *op)
172 {
173 	if (op->cmd.buswidth == 8 && op->cmd.nbytes % 2)
174 		return false;
175 
176 	if (op->addr.nbytes && op->addr.buswidth == 8 && op->addr.nbytes % 2)
177 		return false;
178 
179 	if (op->dummy.nbytes && op->dummy.buswidth == 8 && op->dummy.nbytes % 2)
180 		return false;
181 
182 	if (op->data.dir != SPI_MEM_NO_DATA &&
183 	    op->dummy.buswidth == 8 && op->data.nbytes % 2)
184 		return false;
185 
186 	return spi_mem_check_buswidth(slave, op);
187 }
188 EXPORT_SYMBOL_GPL(spi_mem_dtr_supports_op);
189 
spi_mem_default_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)190 bool spi_mem_default_supports_op(struct spi_slave *slave,
191 				 const struct spi_mem_op *op)
192 {
193 	if (op->cmd.dtr || op->addr.dtr || op->dummy.dtr || op->data.dtr)
194 		return false;
195 
196 	if (op->cmd.nbytes != 1)
197 		return false;
198 
199 	return spi_mem_check_buswidth(slave, op);
200 }
201 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
202 
203 /**
204  * spi_mem_supports_op() - Check if a memory device and the controller it is
205  *			   connected to support a specific memory operation
206  * @slave: the SPI device
207  * @op: the memory operation to check
208  *
209  * Some controllers are only supporting Single or Dual IOs, others might only
210  * support specific opcodes, or it can even be that the controller and device
211  * both support Quad IOs but the hardware prevents you from using it because
212  * only 2 IO lines are connected.
213  *
214  * This function checks whether a specific operation is supported.
215  *
216  * Return: true if @op is supported, false otherwise.
217  */
spi_mem_supports_op(struct spi_slave * slave,const struct spi_mem_op * op)218 bool spi_mem_supports_op(struct spi_slave *slave,
219 			 const struct spi_mem_op *op)
220 {
221 	struct udevice *bus = slave->dev->parent;
222 	struct dm_spi_ops *ops = spi_get_ops(bus);
223 
224 	if (ops->mem_ops && ops->mem_ops->supports_op)
225 		return ops->mem_ops->supports_op(slave, op);
226 
227 	return spi_mem_default_supports_op(slave, op);
228 }
229 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
230 
231 /**
232  * spi_mem_exec_op() - Execute a memory operation
233  * @slave: the SPI device
234  * @op: the memory operation to execute
235  *
236  * Executes a memory operation.
237  *
238  * This function first checks that @op is supported and then tries to execute
239  * it.
240  *
241  * Return: 0 in case of success, a negative error code otherwise.
242  */
spi_mem_exec_op(struct spi_slave * slave,const struct spi_mem_op * op)243 int spi_mem_exec_op(struct spi_slave *slave, const struct spi_mem_op *op)
244 {
245 	struct udevice *bus = slave->dev->parent;
246 	struct dm_spi_ops *ops = spi_get_ops(bus);
247 	unsigned int pos = 0;
248 	const u8 *tx_buf = NULL;
249 	u8 *rx_buf = NULL;
250 	int op_len;
251 	u32 flag;
252 	int ret;
253 	int i;
254 
255 	if (!spi_mem_supports_op(slave, op))
256 		return -ENOTSUPP;
257 
258 	ret = spi_claim_bus(slave);
259 	if (ret < 0)
260 		return ret;
261 
262 	if (ops->mem_ops && ops->mem_ops->exec_op) {
263 #ifndef __UBOOT__
264 		/*
265 		 * Flush the message queue before executing our SPI memory
266 		 * operation to prevent preemption of regular SPI transfers.
267 		 */
268 		spi_flush_queue(ctlr);
269 
270 		if (ctlr->auto_runtime_pm) {
271 			ret = pm_runtime_get_sync(ctlr->dev.parent);
272 			if (ret < 0) {
273 				dev_err(&ctlr->dev,
274 					"Failed to power device: %d\n",
275 					ret);
276 				return ret;
277 			}
278 		}
279 
280 		mutex_lock(&ctlr->bus_lock_mutex);
281 		mutex_lock(&ctlr->io_mutex);
282 #endif
283 		ret = ops->mem_ops->exec_op(slave, op);
284 
285 #ifndef __UBOOT__
286 		mutex_unlock(&ctlr->io_mutex);
287 		mutex_unlock(&ctlr->bus_lock_mutex);
288 
289 		if (ctlr->auto_runtime_pm)
290 			pm_runtime_put(ctlr->dev.parent);
291 #endif
292 
293 		/*
294 		 * Some controllers only optimize specific paths (typically the
295 		 * read path) and expect the core to use the regular SPI
296 		 * interface in other cases.
297 		 */
298 		if (!ret || ret != -ENOTSUPP) {
299 			spi_release_bus(slave);
300 			return ret;
301 		}
302 	}
303 
304 #ifndef __UBOOT__
305 	tmpbufsize = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
306 
307 	/*
308 	 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
309 	 * we're guaranteed that this buffer is DMA-able, as required by the
310 	 * SPI layer.
311 	 */
312 	tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
313 	if (!tmpbuf)
314 		return -ENOMEM;
315 
316 	spi_message_init(&msg);
317 
318 	tmpbuf[0] = op->cmd.opcode;
319 	xfers[xferpos].tx_buf = tmpbuf;
320 	xfers[xferpos].len = op->cmd.nbytes;
321 	xfers[xferpos].tx_nbits = op->cmd.buswidth;
322 	spi_message_add_tail(&xfers[xferpos], &msg);
323 	xferpos++;
324 	totalxferlen++;
325 
326 	if (op->addr.nbytes) {
327 		int i;
328 
329 		for (i = 0; i < op->addr.nbytes; i++)
330 			tmpbuf[i + 1] = op->addr.val >>
331 					(8 * (op->addr.nbytes - i - 1));
332 
333 		xfers[xferpos].tx_buf = tmpbuf + 1;
334 		xfers[xferpos].len = op->addr.nbytes;
335 		xfers[xferpos].tx_nbits = op->addr.buswidth;
336 		spi_message_add_tail(&xfers[xferpos], &msg);
337 		xferpos++;
338 		totalxferlen += op->addr.nbytes;
339 	}
340 
341 	if (op->dummy.nbytes) {
342 		memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
343 		xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
344 		xfers[xferpos].len = op->dummy.nbytes;
345 		xfers[xferpos].tx_nbits = op->dummy.buswidth;
346 		spi_message_add_tail(&xfers[xferpos], &msg);
347 		xferpos++;
348 		totalxferlen += op->dummy.nbytes;
349 	}
350 
351 	if (op->data.nbytes) {
352 		if (op->data.dir == SPI_MEM_DATA_IN) {
353 			xfers[xferpos].rx_buf = op->data.buf.in;
354 			xfers[xferpos].rx_nbits = op->data.buswidth;
355 		} else {
356 			xfers[xferpos].tx_buf = op->data.buf.out;
357 			xfers[xferpos].tx_nbits = op->data.buswidth;
358 		}
359 
360 		xfers[xferpos].len = op->data.nbytes;
361 		spi_message_add_tail(&xfers[xferpos], &msg);
362 		xferpos++;
363 		totalxferlen += op->data.nbytes;
364 	}
365 
366 	ret = spi_sync(slave, &msg);
367 
368 	kfree(tmpbuf);
369 
370 	if (ret)
371 		return ret;
372 
373 	if (msg.actual_length != totalxferlen)
374 		return -EIO;
375 #else
376 
377 	if (op->data.nbytes) {
378 		if (op->data.dir == SPI_MEM_DATA_IN)
379 			rx_buf = op->data.buf.in;
380 		else
381 			tx_buf = op->data.buf.out;
382 	}
383 
384 	op_len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
385 
386 	/*
387 	 * Avoid using malloc() here so that we can use this code in SPL where
388 	 * simple malloc may be used. That implementation does not allow free()
389 	 * so repeated calls to this code can exhaust the space.
390 	 *
391 	 * The value of op_len is small, since it does not include the actual
392 	 * data being sent, only the op-code and address. In fact, it should be
393 	 * possible to just use a small fixed value here instead of op_len.
394 	 */
395 	u8 op_buf[op_len];
396 
397 	op_buf[pos++] = op->cmd.opcode;
398 
399 	if (op->addr.nbytes) {
400 		for (i = 0; i < op->addr.nbytes; i++)
401 			op_buf[pos + i] = op->addr.val >>
402 				(8 * (op->addr.nbytes - i - 1));
403 
404 		pos += op->addr.nbytes;
405 	}
406 
407 	if (op->dummy.nbytes)
408 		memset(op_buf + pos, 0xff, op->dummy.nbytes);
409 
410 	/* 1st transfer: opcode + address + dummy cycles */
411 	flag = SPI_XFER_BEGIN;
412 	/* Make sure to set END bit if no tx or rx data messages follow */
413 	if (!tx_buf && !rx_buf)
414 		flag |= SPI_XFER_END;
415 
416 	ret = spi_xfer(slave, op_len * 8, op_buf, NULL, flag);
417 	if (ret)
418 		return ret;
419 
420 	/* 2nd transfer: rx or tx data path */
421 	if (tx_buf || rx_buf) {
422 		ret = spi_xfer(slave, op->data.nbytes * 8, tx_buf,
423 			       rx_buf, SPI_XFER_END);
424 		if (ret)
425 			return ret;
426 	}
427 
428 	spi_release_bus(slave);
429 
430 	for (i = 0; i < pos; i++)
431 		debug("%02x ", op_buf[i]);
432 	debug("| [%dB %s] ",
433 	      tx_buf || rx_buf ? op->data.nbytes : 0,
434 	      tx_buf || rx_buf ? (tx_buf ? "out" : "in") : "-");
435 	for (i = 0; i < op->data.nbytes; i++)
436 		debug("%02x ", tx_buf ? tx_buf[i] : rx_buf[i]);
437 	debug("[ret %d]\n", ret);
438 
439 	if (ret < 0)
440 		return ret;
441 #endif /* __UBOOT__ */
442 
443 	return 0;
444 }
445 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
446 
447 /**
448  * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
449  *				 match controller limitations
450  * @slave: the SPI device
451  * @op: the operation to adjust
452  *
453  * Some controllers have FIFO limitations and must split a data transfer
454  * operation into multiple ones, others require a specific alignment for
455  * optimized accesses. This function allows SPI mem drivers to split a single
456  * operation into multiple sub-operations when required.
457  *
458  * Return: a negative error code if the controller can't properly adjust @op,
459  *	   0 otherwise. Note that @op->data.nbytes will be updated if @op
460  *	   can't be handled in a single step.
461  */
spi_mem_adjust_op_size(struct spi_slave * slave,struct spi_mem_op * op)462 int spi_mem_adjust_op_size(struct spi_slave *slave, struct spi_mem_op *op)
463 {
464 	struct udevice *bus = slave->dev->parent;
465 	struct dm_spi_ops *ops = spi_get_ops(bus);
466 
467 	if (ops->mem_ops && ops->mem_ops->adjust_op_size)
468 		return ops->mem_ops->adjust_op_size(slave, op);
469 
470 	if (!ops->mem_ops || !ops->mem_ops->exec_op) {
471 		unsigned int len;
472 
473 		len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
474 		if (slave->max_write_size && len > slave->max_write_size)
475 			return -EINVAL;
476 
477 		if (op->data.dir == SPI_MEM_DATA_IN) {
478 			if (slave->max_read_size)
479 				op->data.nbytes = min(op->data.nbytes,
480 					      slave->max_read_size);
481 		} else if (slave->max_write_size) {
482 			op->data.nbytes = min(op->data.nbytes,
483 					      slave->max_write_size - len);
484 		}
485 
486 		if (!op->data.nbytes)
487 			return -EINVAL;
488 	}
489 
490 	return 0;
491 }
492 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
493 
494 #ifndef __UBOOT__
to_spi_mem_drv(struct device_driver * drv)495 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
496 {
497 	return container_of(drv, struct spi_mem_driver, spidrv.driver);
498 }
499 
spi_mem_probe(struct spi_device * spi)500 static int spi_mem_probe(struct spi_device *spi)
501 {
502 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
503 	struct spi_mem *mem;
504 
505 	mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
506 	if (!mem)
507 		return -ENOMEM;
508 
509 	mem->spi = spi;
510 	spi_set_drvdata(spi, mem);
511 
512 	return memdrv->probe(mem);
513 }
514 
spi_mem_remove(struct spi_device * spi)515 static int spi_mem_remove(struct spi_device *spi)
516 {
517 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
518 	struct spi_mem *mem = spi_get_drvdata(spi);
519 
520 	if (memdrv->remove)
521 		return memdrv->remove(mem);
522 
523 	return 0;
524 }
525 
spi_mem_shutdown(struct spi_device * spi)526 static void spi_mem_shutdown(struct spi_device *spi)
527 {
528 	struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
529 	struct spi_mem *mem = spi_get_drvdata(spi);
530 
531 	if (memdrv->shutdown)
532 		memdrv->shutdown(mem);
533 }
534 
535 /**
536  * spi_mem_driver_register_with_owner() - Register a SPI memory driver
537  * @memdrv: the SPI memory driver to register
538  * @owner: the owner of this driver
539  *
540  * Registers a SPI memory driver.
541  *
542  * Return: 0 in case of success, a negative error core otherwise.
543  */
544 
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)545 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
546 				       struct module *owner)
547 {
548 	memdrv->spidrv.probe = spi_mem_probe;
549 	memdrv->spidrv.remove = spi_mem_remove;
550 	memdrv->spidrv.shutdown = spi_mem_shutdown;
551 
552 	return __spi_register_driver(owner, &memdrv->spidrv);
553 }
554 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
555 
556 /**
557  * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
558  * @memdrv: the SPI memory driver to unregister
559  *
560  * Unregisters a SPI memory driver.
561  */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)562 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
563 {
564 	spi_unregister_driver(&memdrv->spidrv);
565 }
566 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
567 #endif /* __UBOOT__ */
568