1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  *  EFI application memory management
4  *
5  *  Copyright (c) 2016 Alexander Graf
6  */
7 
8 #include <common.h>
9 #include <efi_loader.h>
10 #include <init.h>
11 #include <malloc.h>
12 #include <mapmem.h>
13 #include <watchdog.h>
14 #include <asm/cache.h>
15 #include <asm/global_data.h>
16 #include <linux/list_sort.h>
17 #include <linux/sizes.h>
18 
19 DECLARE_GLOBAL_DATA_PTR;
20 
21 /* Magic number identifying memory allocated from pool */
22 #define EFI_ALLOC_POOL_MAGIC 0x1fe67ddf6491caa2
23 
24 efi_uintn_t efi_memory_map_key;
25 
26 struct efi_mem_list {
27 	struct list_head link;
28 	struct efi_mem_desc desc;
29 };
30 
31 #define EFI_CARVE_NO_OVERLAP		-1
32 #define EFI_CARVE_LOOP_AGAIN		-2
33 #define EFI_CARVE_OVERLAPS_NONRAM	-3
34 
35 /* This list contains all memory map items */
36 LIST_HEAD(efi_mem);
37 
38 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
39 void *efi_bounce_buffer;
40 #endif
41 
42 /**
43  * struct efi_pool_allocation - memory block allocated from pool
44  *
45  * @num_pages:	number of pages allocated
46  * @checksum:	checksum
47  * @data:	allocated pool memory
48  *
49  * U-Boot services each UEFI AllocatePool() request as a separate
50  * (multiple) page allocation. We have to track the number of pages
51  * to be able to free the correct amount later.
52  *
53  * The checksum calculated in function checksum() is used in FreePool() to avoid
54  * freeing memory not allocated by AllocatePool() and duplicate freeing.
55  *
56  * EFI requires 8 byte alignment for pool allocations, so we can
57  * prepend each allocation with these header fields.
58  */
59 struct efi_pool_allocation {
60 	u64 num_pages;
61 	u64 checksum;
62 	char data[] __aligned(ARCH_DMA_MINALIGN);
63 };
64 
65 /**
66  * checksum() - calculate checksum for memory allocated from pool
67  *
68  * @alloc:	allocation header
69  * Return:	checksum, always non-zero
70  */
checksum(struct efi_pool_allocation * alloc)71 static u64 checksum(struct efi_pool_allocation *alloc)
72 {
73 	u64 addr = (uintptr_t)alloc;
74 	u64 ret = (addr >> 32) ^ (addr << 32) ^ alloc->num_pages ^
75 		  EFI_ALLOC_POOL_MAGIC;
76 	if (!ret)
77 		++ret;
78 	return ret;
79 }
80 
81 /*
82  * Sorts the memory list from highest address to lowest address
83  *
84  * When allocating memory we should always start from the highest
85  * address chunk, so sort the memory list such that the first list
86  * iterator gets the highest address and goes lower from there.
87  */
efi_mem_cmp(void * priv,struct list_head * a,struct list_head * b)88 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
89 {
90 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
91 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
92 
93 	if (mema->desc.physical_start == memb->desc.physical_start)
94 		return 0;
95 	else if (mema->desc.physical_start < memb->desc.physical_start)
96 		return 1;
97 	else
98 		return -1;
99 }
100 
desc_get_end(struct efi_mem_desc * desc)101 static uint64_t desc_get_end(struct efi_mem_desc *desc)
102 {
103 	return desc->physical_start + (desc->num_pages << EFI_PAGE_SHIFT);
104 }
105 
efi_mem_sort(void)106 static void efi_mem_sort(void)
107 {
108 	struct list_head *lhandle;
109 	struct efi_mem_list *prevmem = NULL;
110 	bool merge_again = true;
111 
112 	list_sort(NULL, &efi_mem, efi_mem_cmp);
113 
114 	/* Now merge entries that can be merged */
115 	while (merge_again) {
116 		merge_again = false;
117 		list_for_each(lhandle, &efi_mem) {
118 			struct efi_mem_list *lmem;
119 			struct efi_mem_desc *prev = &prevmem->desc;
120 			struct efi_mem_desc *cur;
121 			uint64_t pages;
122 
123 			lmem = list_entry(lhandle, struct efi_mem_list, link);
124 			if (!prevmem) {
125 				prevmem = lmem;
126 				continue;
127 			}
128 
129 			cur = &lmem->desc;
130 
131 			if ((desc_get_end(cur) == prev->physical_start) &&
132 			    (prev->type == cur->type) &&
133 			    (prev->attribute == cur->attribute)) {
134 				/* There is an existing map before, reuse it */
135 				pages = cur->num_pages;
136 				prev->num_pages += pages;
137 				prev->physical_start -= pages << EFI_PAGE_SHIFT;
138 				prev->virtual_start -= pages << EFI_PAGE_SHIFT;
139 				list_del(&lmem->link);
140 				free(lmem);
141 
142 				merge_again = true;
143 				break;
144 			}
145 
146 			prevmem = lmem;
147 		}
148 	}
149 }
150 
151 /** efi_mem_carve_out - unmap memory region
152  *
153  * @map:		memory map
154  * @carve_desc:		memory region to unmap
155  * @overlap_only_ram:	the carved out region may only overlap RAM
156  * Return Value:	the number of overlapping pages which have been
157  *			removed from the map,
158  *			EFI_CARVE_NO_OVERLAP, if the regions don't overlap,
159  *			EFI_CARVE_OVERLAPS_NONRAM, if the carve and map overlap,
160  *			and the map contains anything but free ram
161  *			(only when overlap_only_ram is true),
162  *			EFI_CARVE_LOOP_AGAIN, if the mapping list should be
163  *			traversed again, as it has been altered.
164  *
165  * Unmaps all memory occupied by the carve_desc region from the list entry
166  * pointed to by map.
167  *
168  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
169  * to re-add the already carved out pages to the mapping.
170  */
efi_mem_carve_out(struct efi_mem_list * map,struct efi_mem_desc * carve_desc,bool overlap_only_ram)171 static s64 efi_mem_carve_out(struct efi_mem_list *map,
172 			     struct efi_mem_desc *carve_desc,
173 			     bool overlap_only_ram)
174 {
175 	struct efi_mem_list *newmap;
176 	struct efi_mem_desc *map_desc = &map->desc;
177 	uint64_t map_start = map_desc->physical_start;
178 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
179 	uint64_t carve_start = carve_desc->physical_start;
180 	uint64_t carve_end = carve_start +
181 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
182 
183 	/* check whether we're overlapping */
184 	if ((carve_end <= map_start) || (carve_start >= map_end))
185 		return EFI_CARVE_NO_OVERLAP;
186 
187 	/* We're overlapping with non-RAM, warn the caller if desired */
188 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
189 		return EFI_CARVE_OVERLAPS_NONRAM;
190 
191 	/* Sanitize carve_start and carve_end to lie within our bounds */
192 	carve_start = max(carve_start, map_start);
193 	carve_end = min(carve_end, map_end);
194 
195 	/* Carving at the beginning of our map? Just move it! */
196 	if (carve_start == map_start) {
197 		if (map_end == carve_end) {
198 			/* Full overlap, just remove map */
199 			list_del(&map->link);
200 			free(map);
201 		} else {
202 			map->desc.physical_start = carve_end;
203 			map->desc.virtual_start = carve_end;
204 			map->desc.num_pages = (map_end - carve_end)
205 					      >> EFI_PAGE_SHIFT;
206 		}
207 
208 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
209 	}
210 
211 	/*
212 	 * Overlapping maps, just split the list map at carve_start,
213 	 * it will get moved or removed in the next iteration.
214 	 *
215 	 * [ map_desc |__carve_start__| newmap ]
216 	 */
217 
218 	/* Create a new map from [ carve_start ... map_end ] */
219 	newmap = calloc(1, sizeof(*newmap));
220 	newmap->desc = map->desc;
221 	newmap->desc.physical_start = carve_start;
222 	newmap->desc.virtual_start = carve_start;
223 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
224 	/* Insert before current entry (descending address order) */
225 	list_add_tail(&newmap->link, &map->link);
226 
227 	/* Shrink the map to [ map_start ... carve_start ] */
228 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
229 
230 	return EFI_CARVE_LOOP_AGAIN;
231 }
232 
233 /**
234  * efi_add_memory_map_pg() - add pages to the memory map
235  *
236  * @start:		start address, must be a multiple of EFI_PAGE_SIZE
237  * @pages:		number of pages to add
238  * @memory_type:	type of memory added
239  * @overlap_only_ram:	region may only overlap RAM
240  * Return:		status code
241  */
efi_add_memory_map_pg(u64 start,u64 pages,int memory_type,bool overlap_only_ram)242 static efi_status_t efi_add_memory_map_pg(u64 start, u64 pages,
243 					  int memory_type,
244 					  bool overlap_only_ram)
245 {
246 	struct list_head *lhandle;
247 	struct efi_mem_list *newlist;
248 	bool carve_again;
249 	uint64_t carved_pages = 0;
250 	struct efi_event *evt;
251 
252 	EFI_PRINT("%s: 0x%llx 0x%llx %d %s\n", __func__,
253 		  start, pages, memory_type, overlap_only_ram ? "yes" : "no");
254 
255 	if (memory_type >= EFI_MAX_MEMORY_TYPE)
256 		return EFI_INVALID_PARAMETER;
257 
258 	if (!pages)
259 		return EFI_SUCCESS;
260 
261 	++efi_memory_map_key;
262 	newlist = calloc(1, sizeof(*newlist));
263 	newlist->desc.type = memory_type;
264 	newlist->desc.physical_start = start;
265 	newlist->desc.virtual_start = start;
266 	newlist->desc.num_pages = pages;
267 
268 	switch (memory_type) {
269 	case EFI_RUNTIME_SERVICES_CODE:
270 	case EFI_RUNTIME_SERVICES_DATA:
271 		newlist->desc.attribute = EFI_MEMORY_WB | EFI_MEMORY_RUNTIME;
272 		break;
273 	case EFI_MMAP_IO:
274 		newlist->desc.attribute = EFI_MEMORY_RUNTIME;
275 		break;
276 	default:
277 		newlist->desc.attribute = EFI_MEMORY_WB;
278 		break;
279 	}
280 
281 	/* Add our new map */
282 	do {
283 		carve_again = false;
284 		list_for_each(lhandle, &efi_mem) {
285 			struct efi_mem_list *lmem;
286 			s64 r;
287 
288 			lmem = list_entry(lhandle, struct efi_mem_list, link);
289 			r = efi_mem_carve_out(lmem, &newlist->desc,
290 					      overlap_only_ram);
291 			switch (r) {
292 			case EFI_CARVE_OVERLAPS_NONRAM:
293 				/*
294 				 * The user requested to only have RAM overlaps,
295 				 * but we hit a non-RAM region. Error out.
296 				 */
297 				return EFI_NO_MAPPING;
298 			case EFI_CARVE_NO_OVERLAP:
299 				/* Just ignore this list entry */
300 				break;
301 			case EFI_CARVE_LOOP_AGAIN:
302 				/*
303 				 * We split an entry, but need to loop through
304 				 * the list again to actually carve it.
305 				 */
306 				carve_again = true;
307 				break;
308 			default:
309 				/* We carved a number of pages */
310 				carved_pages += r;
311 				carve_again = true;
312 				break;
313 			}
314 
315 			if (carve_again) {
316 				/* The list changed, we need to start over */
317 				break;
318 			}
319 		}
320 	} while (carve_again);
321 
322 	if (overlap_only_ram && (carved_pages != pages)) {
323 		/*
324 		 * The payload wanted to have RAM overlaps, but we overlapped
325 		 * with an unallocated region. Error out.
326 		 */
327 		return EFI_NO_MAPPING;
328 	}
329 
330 	/* Add our new map */
331         list_add_tail(&newlist->link, &efi_mem);
332 
333 	/* And make sure memory is listed in descending order */
334 	efi_mem_sort();
335 
336 	/* Notify that the memory map was changed */
337 	list_for_each_entry(evt, &efi_events, link) {
338 		if (evt->group &&
339 		    !guidcmp(evt->group,
340 			     &efi_guid_event_group_memory_map_change)) {
341 			efi_signal_event(evt);
342 			break;
343 		}
344 	}
345 
346 	return EFI_SUCCESS;
347 }
348 
349 /**
350  * efi_add_memory_map() - add memory area to the memory map
351  *
352  * @start:		start address of the memory area
353  * @size:		length in bytes of the memory area
354  * @memory_type:	type of memory added
355  *
356  * Return:		status code
357  *
358  * This function automatically aligns the start and size of the memory area
359  * to EFI_PAGE_SIZE.
360  */
efi_add_memory_map(u64 start,u64 size,int memory_type)361 efi_status_t efi_add_memory_map(u64 start, u64 size, int memory_type)
362 {
363 	u64 pages;
364 
365 	pages = efi_size_in_pages(size + (start & EFI_PAGE_MASK));
366 	start &= ~EFI_PAGE_MASK;
367 
368 	return efi_add_memory_map_pg(start, pages, memory_type, false);
369 }
370 
371 /**
372  * efi_check_allocated() - validate address to be freed
373  *
374  * Check that the address is within allocated memory:
375  *
376  * * The address must be in a range of the memory map.
377  * * The address may not point to EFI_CONVENTIONAL_MEMORY.
378  *
379  * Page alignment is not checked as this is not a requirement of
380  * efi_free_pool().
381  *
382  * @addr:		address of page to be freed
383  * @must_be_allocated:	return success if the page is allocated
384  * Return:		status code
385  */
efi_check_allocated(u64 addr,bool must_be_allocated)386 static efi_status_t efi_check_allocated(u64 addr, bool must_be_allocated)
387 {
388 	struct efi_mem_list *item;
389 
390 	list_for_each_entry(item, &efi_mem, link) {
391 		u64 start = item->desc.physical_start;
392 		u64 end = start + (item->desc.num_pages << EFI_PAGE_SHIFT);
393 
394 		if (addr >= start && addr < end) {
395 			if (must_be_allocated ^
396 			    (item->desc.type == EFI_CONVENTIONAL_MEMORY))
397 				return EFI_SUCCESS;
398 			else
399 				return EFI_NOT_FOUND;
400 		}
401 	}
402 
403 	return EFI_NOT_FOUND;
404 }
405 
efi_find_free_memory(uint64_t len,uint64_t max_addr)406 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
407 {
408 	struct list_head *lhandle;
409 
410 	/*
411 	 * Prealign input max address, so we simplify our matching
412 	 * logic below and can just reuse it as return pointer.
413 	 */
414 	max_addr &= ~EFI_PAGE_MASK;
415 
416 	list_for_each(lhandle, &efi_mem) {
417 		struct efi_mem_list *lmem = list_entry(lhandle,
418 			struct efi_mem_list, link);
419 		struct efi_mem_desc *desc = &lmem->desc;
420 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
421 		uint64_t desc_end = desc->physical_start + desc_len;
422 		uint64_t curmax = min(max_addr, desc_end);
423 		uint64_t ret = curmax - len;
424 
425 		/* We only take memory from free RAM */
426 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
427 			continue;
428 
429 		/* Out of bounds for max_addr */
430 		if ((ret + len) > max_addr)
431 			continue;
432 
433 		/* Out of bounds for upper map limit */
434 		if ((ret + len) > desc_end)
435 			continue;
436 
437 		/* Out of bounds for lower map limit */
438 		if (ret < desc->physical_start)
439 			continue;
440 
441 		/* Return the highest address in this map within bounds */
442 		return ret;
443 	}
444 
445 	return 0;
446 }
447 
448 /*
449  * Allocate memory pages.
450  *
451  * @type		type of allocation to be performed
452  * @memory_type		usage type of the allocated memory
453  * @pages		number of pages to be allocated
454  * @memory		allocated memory
455  * @return		status code
456  */
efi_allocate_pages(enum efi_allocate_type type,enum efi_memory_type memory_type,efi_uintn_t pages,uint64_t * memory)457 efi_status_t efi_allocate_pages(enum efi_allocate_type type,
458 				enum efi_memory_type memory_type,
459 				efi_uintn_t pages, uint64_t *memory)
460 {
461 	u64 len = pages << EFI_PAGE_SHIFT;
462 	efi_status_t ret;
463 	uint64_t addr;
464 
465 	/* Check import parameters */
466 	if (memory_type >= EFI_PERSISTENT_MEMORY_TYPE &&
467 	    memory_type <= 0x6FFFFFFF)
468 		return EFI_INVALID_PARAMETER;
469 	if (!memory)
470 		return EFI_INVALID_PARAMETER;
471 
472 	switch (type) {
473 	case EFI_ALLOCATE_ANY_PAGES:
474 		/* Any page */
475 		addr = efi_find_free_memory(len, -1ULL);
476 		if (!addr)
477 			return EFI_OUT_OF_RESOURCES;
478 		break;
479 	case EFI_ALLOCATE_MAX_ADDRESS:
480 		/* Max address */
481 		addr = efi_find_free_memory(len, *memory);
482 		if (!addr)
483 			return EFI_OUT_OF_RESOURCES;
484 		break;
485 	case EFI_ALLOCATE_ADDRESS:
486 		/* Exact address, reserve it. The addr is already in *memory. */
487 		ret = efi_check_allocated(*memory, false);
488 		if (ret != EFI_SUCCESS)
489 			return EFI_NOT_FOUND;
490 		addr = *memory;
491 		break;
492 	default:
493 		/* UEFI doesn't specify other allocation types */
494 		return EFI_INVALID_PARAMETER;
495 	}
496 
497 	/* Reserve that map in our memory maps */
498 	ret = efi_add_memory_map_pg(addr, pages, memory_type, true);
499 	if (ret != EFI_SUCCESS)
500 		/* Map would overlap, bail out */
501 		return  EFI_OUT_OF_RESOURCES;
502 
503 	*memory = addr;
504 
505 	return EFI_SUCCESS;
506 }
507 
efi_alloc(uint64_t len,int memory_type)508 void *efi_alloc(uint64_t len, int memory_type)
509 {
510 	uint64_t ret = 0;
511 	uint64_t pages = efi_size_in_pages(len);
512 	efi_status_t r;
513 
514 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type, pages,
515 			       &ret);
516 	if (r == EFI_SUCCESS)
517 		return (void*)(uintptr_t)ret;
518 
519 	return NULL;
520 }
521 
522 /**
523  * efi_free_pages() - free memory pages
524  *
525  * @memory:	start of the memory area to be freed
526  * @pages:	number of pages to be freed
527  * Return:	status code
528  */
efi_free_pages(uint64_t memory,efi_uintn_t pages)529 efi_status_t efi_free_pages(uint64_t memory, efi_uintn_t pages)
530 {
531 	efi_status_t ret;
532 
533 	ret = efi_check_allocated(memory, true);
534 	if (ret != EFI_SUCCESS)
535 		return ret;
536 
537 	/* Sanity check */
538 	if (!memory || (memory & EFI_PAGE_MASK) || !pages) {
539 		printf("%s: illegal free 0x%llx, 0x%zx\n", __func__,
540 		       memory, pages);
541 		return EFI_INVALID_PARAMETER;
542 	}
543 
544 	ret = efi_add_memory_map_pg(memory, pages, EFI_CONVENTIONAL_MEMORY,
545 				    false);
546 	if (ret != EFI_SUCCESS)
547 		return EFI_NOT_FOUND;
548 
549 	return ret;
550 }
551 
552 /**
553  * efi_alloc_aligned_pages - allocate
554  *
555  * @len:		len in bytes
556  * @memory_type:	usage type of the allocated memory
557  * @align:		alignment in bytes
558  * Return:		aligned memory or NULL
559  */
efi_alloc_aligned_pages(u64 len,int memory_type,size_t align)560 void *efi_alloc_aligned_pages(u64 len, int memory_type, size_t align)
561 {
562 	u64 req_pages = efi_size_in_pages(len);
563 	u64 true_pages = req_pages + efi_size_in_pages(align) - 1;
564 	u64 free_pages;
565 	u64 aligned_mem;
566 	efi_status_t r;
567 	u64 mem;
568 
569 	/* align must be zero or a power of two */
570 	if (align & (align - 1))
571 		return NULL;
572 
573 	/* Check for overflow */
574 	if (true_pages < req_pages)
575 		return NULL;
576 
577 	if (align < EFI_PAGE_SIZE) {
578 		r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
579 				       req_pages, &mem);
580 		return (r == EFI_SUCCESS) ? (void *)(uintptr_t)mem : NULL;
581 	}
582 
583 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, memory_type,
584 			       true_pages, &mem);
585 	if (r != EFI_SUCCESS)
586 		return NULL;
587 
588 	aligned_mem = ALIGN(mem, align);
589 	/* Free pages before alignment */
590 	free_pages = efi_size_in_pages(aligned_mem - mem);
591 	if (free_pages)
592 		efi_free_pages(mem, free_pages);
593 
594 	/* Free trailing pages */
595 	free_pages = true_pages - (req_pages + free_pages);
596 	if (free_pages) {
597 		mem = aligned_mem + req_pages * EFI_PAGE_SIZE;
598 		efi_free_pages(mem, free_pages);
599 	}
600 
601 	return (void *)(uintptr_t)aligned_mem;
602 }
603 
604 /**
605  * efi_allocate_pool - allocate memory from pool
606  *
607  * @pool_type:	type of the pool from which memory is to be allocated
608  * @size:	number of bytes to be allocated
609  * @buffer:	allocated memory
610  * Return:	status code
611  */
efi_allocate_pool(enum efi_memory_type pool_type,efi_uintn_t size,void ** buffer)612 efi_status_t efi_allocate_pool(enum efi_memory_type pool_type, efi_uintn_t size, void **buffer)
613 {
614 	efi_status_t r;
615 	u64 addr;
616 	struct efi_pool_allocation *alloc;
617 	u64 num_pages = efi_size_in_pages(size +
618 					  sizeof(struct efi_pool_allocation));
619 
620 	if (!buffer)
621 		return EFI_INVALID_PARAMETER;
622 
623 	if (size == 0) {
624 		*buffer = NULL;
625 		return EFI_SUCCESS;
626 	}
627 
628 	r = efi_allocate_pages(EFI_ALLOCATE_ANY_PAGES, pool_type, num_pages,
629 			       &addr);
630 	if (r == EFI_SUCCESS) {
631 		alloc = (struct efi_pool_allocation *)(uintptr_t)addr;
632 		alloc->num_pages = num_pages;
633 		alloc->checksum = checksum(alloc);
634 		*buffer = alloc->data;
635 	}
636 
637 	return r;
638 }
639 
640 /**
641  * efi_free_pool() - free memory from pool
642  *
643  * @buffer:	start of memory to be freed
644  * Return:	status code
645  */
efi_free_pool(void * buffer)646 efi_status_t efi_free_pool(void *buffer)
647 {
648 	efi_status_t ret;
649 	struct efi_pool_allocation *alloc;
650 
651 	if (!buffer)
652 		return EFI_INVALID_PARAMETER;
653 
654 	ret = efi_check_allocated((uintptr_t)buffer, true);
655 	if (ret != EFI_SUCCESS)
656 		return ret;
657 
658 	alloc = container_of(buffer, struct efi_pool_allocation, data);
659 
660 	/* Check that this memory was allocated by efi_allocate_pool() */
661 	if (((uintptr_t)alloc & EFI_PAGE_MASK) ||
662 	    alloc->checksum != checksum(alloc)) {
663 		printf("%s: illegal free 0x%p\n", __func__, buffer);
664 		return EFI_INVALID_PARAMETER;
665 	}
666 	/* Avoid double free */
667 	alloc->checksum = 0;
668 
669 	ret = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
670 
671 	return ret;
672 }
673 
674 /*
675  * Get map describing memory usage.
676  *
677  * @memory_map_size	on entry the size, in bytes, of the memory map buffer,
678  *			on exit the size of the copied memory map
679  * @memory_map		buffer to which the memory map is written
680  * @map_key		key for the memory map
681  * @descriptor_size	size of an individual memory descriptor
682  * @descriptor_version	version number of the memory descriptor structure
683  * @return		status code
684  */
efi_get_memory_map(efi_uintn_t * memory_map_size,struct efi_mem_desc * memory_map,efi_uintn_t * map_key,efi_uintn_t * descriptor_size,uint32_t * descriptor_version)685 efi_status_t efi_get_memory_map(efi_uintn_t *memory_map_size,
686 				struct efi_mem_desc *memory_map,
687 				efi_uintn_t *map_key,
688 				efi_uintn_t *descriptor_size,
689 				uint32_t *descriptor_version)
690 {
691 	efi_uintn_t map_size = 0;
692 	int map_entries = 0;
693 	struct list_head *lhandle;
694 	efi_uintn_t provided_map_size;
695 
696 	if (!memory_map_size)
697 		return EFI_INVALID_PARAMETER;
698 
699 	provided_map_size = *memory_map_size;
700 
701 	list_for_each(lhandle, &efi_mem)
702 		map_entries++;
703 
704 	map_size = map_entries * sizeof(struct efi_mem_desc);
705 
706 	*memory_map_size = map_size;
707 
708 	if (descriptor_size)
709 		*descriptor_size = sizeof(struct efi_mem_desc);
710 
711 	if (descriptor_version)
712 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
713 
714 	if (provided_map_size < map_size)
715 		return EFI_BUFFER_TOO_SMALL;
716 
717 	if (!memory_map)
718 		return EFI_INVALID_PARAMETER;
719 
720 	/* Copy list into array */
721 	/* Return the list in ascending order */
722 	memory_map = &memory_map[map_entries - 1];
723 	list_for_each(lhandle, &efi_mem) {
724 		struct efi_mem_list *lmem;
725 
726 		lmem = list_entry(lhandle, struct efi_mem_list, link);
727 		*memory_map = lmem->desc;
728 		memory_map--;
729 	}
730 
731 	if (map_key)
732 		*map_key = efi_memory_map_key;
733 
734 	return EFI_SUCCESS;
735 }
736 
737 /**
738  * efi_add_conventional_memory_map() - add a RAM memory area to the map
739  *
740  * @ram_start:		start address of a RAM memory area
741  * @ram_end:		end address of a RAM memory area
742  * @ram_top:		max address to be used as conventional memory
743  * Return:		status code
744  */
efi_add_conventional_memory_map(u64 ram_start,u64 ram_end,u64 ram_top)745 efi_status_t efi_add_conventional_memory_map(u64 ram_start, u64 ram_end,
746 					     u64 ram_top)
747 {
748 	u64 pages;
749 
750 	/* Remove partial pages */
751 	ram_end &= ~EFI_PAGE_MASK;
752 	ram_start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
753 
754 	if (ram_end <= ram_start) {
755 		/* Invalid mapping */
756 		return EFI_INVALID_PARAMETER;
757 	}
758 
759 	pages = (ram_end - ram_start) >> EFI_PAGE_SHIFT;
760 
761 	efi_add_memory_map_pg(ram_start, pages,
762 			      EFI_CONVENTIONAL_MEMORY, false);
763 
764 	/*
765 	 * Boards may indicate to the U-Boot memory core that they
766 	 * can not support memory above ram_top. Let's honor this
767 	 * in the efi_loader subsystem too by declaring any memory
768 	 * above ram_top as "already occupied by firmware".
769 	 */
770 	if (ram_top < ram_start) {
771 		/* ram_top is before this region, reserve all */
772 		efi_add_memory_map_pg(ram_start, pages,
773 				      EFI_BOOT_SERVICES_DATA, true);
774 	} else if ((ram_top >= ram_start) && (ram_top < ram_end)) {
775 		/* ram_top is inside this region, reserve parts */
776 		pages = (ram_end - ram_top) >> EFI_PAGE_SHIFT;
777 
778 		efi_add_memory_map_pg(ram_top, pages,
779 				      EFI_BOOT_SERVICES_DATA, true);
780 	}
781 
782 	return EFI_SUCCESS;
783 }
784 
efi_add_known_memory(void)785 __weak void efi_add_known_memory(void)
786 {
787 	u64 ram_top = board_get_usable_ram_top(0) & ~EFI_PAGE_MASK;
788 	int i;
789 
790 	/*
791 	 * ram_top is just outside mapped memory. So use an offset of one for
792 	 * mapping the sandbox address.
793 	 */
794 	ram_top = (uintptr_t)map_sysmem(ram_top - 1, 0) + 1;
795 
796 	/* Fix for 32bit targets with ram_top at 4G */
797 	if (!ram_top)
798 		ram_top = 0x100000000ULL;
799 
800 	/* Add RAM */
801 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
802 		u64 ram_end, ram_start;
803 
804 		ram_start = (uintptr_t)map_sysmem(gd->bd->bi_dram[i].start, 0);
805 		ram_end = ram_start + gd->bd->bi_dram[i].size;
806 
807 		efi_add_conventional_memory_map(ram_start, ram_end, ram_top);
808 	}
809 }
810 
811 /* Add memory regions for U-Boot's memory and for the runtime services code */
add_u_boot_and_runtime(void)812 static void add_u_boot_and_runtime(void)
813 {
814 	unsigned long runtime_start, runtime_end, runtime_pages;
815 	unsigned long runtime_mask = EFI_PAGE_MASK;
816 	unsigned long uboot_start, uboot_pages;
817 	unsigned long uboot_stack_size = CONFIG_STACK_SIZE;
818 
819 	/* Add U-Boot */
820 	uboot_start = ((uintptr_t)map_sysmem(gd->start_addr_sp, 0) -
821 		       uboot_stack_size) & ~EFI_PAGE_MASK;
822 	uboot_pages = ((uintptr_t)map_sysmem(gd->ram_top - 1, 0) -
823 		       uboot_start + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
824 	efi_add_memory_map_pg(uboot_start, uboot_pages, EFI_LOADER_DATA,
825 			      false);
826 
827 #if defined(__aarch64__)
828 	/*
829 	 * Runtime Services must be 64KiB aligned according to the
830 	 * "AArch64 Platforms" section in the UEFI spec (2.7+).
831 	 */
832 
833 	runtime_mask = SZ_64K - 1;
834 #endif
835 
836 	/*
837 	 * Add Runtime Services. We mark surrounding boottime code as runtime as
838 	 * well to fulfill the runtime alignment constraints but avoid padding.
839 	 */
840 	runtime_start = (ulong)&__efi_runtime_start & ~runtime_mask;
841 	runtime_end = (ulong)&__efi_runtime_stop;
842 	runtime_end = (runtime_end + runtime_mask) & ~runtime_mask;
843 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
844 	efi_add_memory_map_pg(runtime_start, runtime_pages,
845 			      EFI_RUNTIME_SERVICES_CODE, false);
846 }
847 
efi_memory_init(void)848 int efi_memory_init(void)
849 {
850 	efi_add_known_memory();
851 
852 	add_u_boot_and_runtime();
853 
854 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
855 	/* Request a 32bit 64MB bounce buffer region */
856 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
857 
858 	if (efi_allocate_pages(EFI_ALLOCATE_MAX_ADDRESS, EFI_LOADER_DATA,
859 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
860 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
861 		return -1;
862 
863 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
864 #endif
865 
866 	return 0;
867 }
868