1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Tests for the core driver model code
4  *
5  * Copyright (c) 2013 Google, Inc
6  */
7 
8 #include <common.h>
9 #include <errno.h>
10 #include <dm.h>
11 #include <fdtdec.h>
12 #include <log.h>
13 #include <malloc.h>
14 #include <asm/global_data.h>
15 #include <dm/device-internal.h>
16 #include <dm/root.h>
17 #include <dm/util.h>
18 #include <dm/test.h>
19 #include <dm/uclass-internal.h>
20 #include <test/test.h>
21 #include <test/ut.h>
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 enum {
26 	TEST_INTVAL1		= 0,
27 	TEST_INTVAL2		= 3,
28 	TEST_INTVAL3		= 6,
29 	TEST_INTVAL_MANUAL	= 101112,
30 	TEST_INTVAL_PRE_RELOC	= 7,
31 };
32 
33 static const struct dm_test_pdata test_pdata[] = {
34 	{ .ping_add		= TEST_INTVAL1, },
35 	{ .ping_add		= TEST_INTVAL2, },
36 	{ .ping_add		= TEST_INTVAL3, },
37 };
38 
39 static const struct dm_test_pdata test_pdata_manual = {
40 	.ping_add		= TEST_INTVAL_MANUAL,
41 };
42 
43 static const struct dm_test_pdata test_pdata_pre_reloc = {
44 	.ping_add		= TEST_INTVAL_PRE_RELOC,
45 };
46 
47 U_BOOT_DRVINFO(dm_test_info1) = {
48 	.name = "test_drv",
49 	.plat = &test_pdata[0],
50 };
51 
52 U_BOOT_DRVINFO(dm_test_info2) = {
53 	.name = "test_drv",
54 	.plat = &test_pdata[1],
55 };
56 
57 U_BOOT_DRVINFO(dm_test_info3) = {
58 	.name = "test_drv",
59 	.plat = &test_pdata[2],
60 };
61 
62 static struct driver_info driver_info_manual = {
63 	.name = "test_manual_drv",
64 	.plat = &test_pdata_manual,
65 };
66 
67 static struct driver_info driver_info_pre_reloc = {
68 	.name = "test_pre_reloc_drv",
69 	.plat = &test_pdata_pre_reloc,
70 };
71 
72 static struct driver_info driver_info_act_dma = {
73 	.name = "test_act_dma_drv",
74 };
75 
76 static struct driver_info driver_info_vital_clk = {
77 	.name = "test_vital_clk_drv",
78 };
79 
80 static struct driver_info driver_info_act_dma_vital_clk = {
81 	.name = "test_act_dma_vital_clk_drv",
82 };
83 
dm_leak_check_start(struct unit_test_state * uts)84 void dm_leak_check_start(struct unit_test_state *uts)
85 {
86 	uts->start = mallinfo();
87 	if (!uts->start.uordblks)
88 		puts("Warning: Please add '#define DEBUG' to the top of common/dlmalloc.c\n");
89 }
90 
dm_leak_check_end(struct unit_test_state * uts)91 int dm_leak_check_end(struct unit_test_state *uts)
92 {
93 	struct mallinfo end;
94 	int id, diff;
95 
96 	/* Don't delete the root class, since we started with that */
97 	for (id = UCLASS_ROOT + 1; id < UCLASS_COUNT; id++) {
98 		struct uclass *uc;
99 
100 		uc = uclass_find(id);
101 		if (!uc)
102 			continue;
103 		ut_assertok(uclass_destroy(uc));
104 	}
105 
106 	end = mallinfo();
107 	diff = end.uordblks - uts->start.uordblks;
108 	if (diff > 0)
109 		printf("Leak: lost %#xd bytes\n", diff);
110 	else if (diff < 0)
111 		printf("Leak: gained %#xd bytes\n", -diff);
112 	ut_asserteq(uts->start.uordblks, end.uordblks);
113 
114 	return 0;
115 }
116 
117 /* Test that binding with plat occurs correctly */
dm_test_autobind(struct unit_test_state * uts)118 static int dm_test_autobind(struct unit_test_state *uts)
119 {
120 	struct udevice *dev;
121 
122 	/*
123 	 * We should have a single class (UCLASS_ROOT) and a single root
124 	 * device with no children.
125 	 */
126 	ut_assert(uts->root);
127 	ut_asserteq(1, list_count_items(gd->uclass_root));
128 	ut_asserteq(0, list_count_items(&gd->dm_root->child_head));
129 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
130 
131 	ut_assertok(dm_scan_plat(false));
132 
133 	/* We should have our test class now at least, plus more children */
134 	ut_assert(1 < list_count_items(gd->uclass_root));
135 	ut_assert(0 < list_count_items(&gd->dm_root->child_head));
136 
137 	/* Our 3 dm_test_infox children should be bound to the test uclass */
138 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_BIND]);
139 
140 	/* No devices should be probed */
141 	list_for_each_entry(dev, &gd->dm_root->child_head, sibling_node)
142 		ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
143 
144 	/* Our test driver should have been bound 3 times */
145 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND] == 3);
146 
147 	return 0;
148 }
149 DM_TEST(dm_test_autobind, 0);
150 
151 /* Test that binding with uclass plat allocation occurs correctly */
dm_test_autobind_uclass_pdata_alloc(struct unit_test_state * uts)152 static int dm_test_autobind_uclass_pdata_alloc(struct unit_test_state *uts)
153 {
154 	struct dm_test_perdev_uc_pdata *uc_pdata;
155 	struct udevice *dev;
156 	struct uclass *uc;
157 
158 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
159 	ut_assert(uc);
160 
161 	/**
162 	 * Test if test uclass driver requires allocation for the uclass
163 	 * platform data and then check the dev->uclass_plat pointer.
164 	 */
165 	ut_assert(uc->uc_drv->per_device_plat_auto);
166 
167 	for (uclass_find_first_device(UCLASS_TEST, &dev);
168 	     dev;
169 	     uclass_find_next_device(&dev)) {
170 		ut_assertnonnull(dev);
171 
172 		uc_pdata = dev_get_uclass_plat(dev);
173 		ut_assert(uc_pdata);
174 	}
175 
176 	return 0;
177 }
178 DM_TEST(dm_test_autobind_uclass_pdata_alloc, UT_TESTF_SCAN_PDATA);
179 
180 /* compare node names ignoring the unit address */
dm_test_compare_node_name(struct unit_test_state * uts)181 static int dm_test_compare_node_name(struct unit_test_state *uts)
182 {
183 	ofnode node;
184 
185 	node = ofnode_path("/mmio-bus@0");
186 	ut_assert(ofnode_valid(node));
187 	ut_assert(ofnode_name_eq(node, "mmio-bus"));
188 
189 	return 0;
190 }
191 
192 DM_TEST(dm_test_compare_node_name, UT_TESTF_SCAN_PDATA);
193 
194 /* Test that binding with uclass plat setting occurs correctly */
dm_test_autobind_uclass_pdata_valid(struct unit_test_state * uts)195 static int dm_test_autobind_uclass_pdata_valid(struct unit_test_state *uts)
196 {
197 	struct dm_test_perdev_uc_pdata *uc_pdata;
198 	struct udevice *dev;
199 
200 	/**
201 	 * In the test_postbind() method of test uclass driver, the uclass
202 	 * platform data should be set to three test int values - test it.
203 	 */
204 	for (uclass_find_first_device(UCLASS_TEST, &dev);
205 	     dev;
206 	     uclass_find_next_device(&dev)) {
207 		ut_assertnonnull(dev);
208 
209 		uc_pdata = dev_get_uclass_plat(dev);
210 		ut_assert(uc_pdata);
211 		ut_assert(uc_pdata->intval1 == TEST_UC_PDATA_INTVAL1);
212 		ut_assert(uc_pdata->intval2 == TEST_UC_PDATA_INTVAL2);
213 		ut_assert(uc_pdata->intval3 == TEST_UC_PDATA_INTVAL3);
214 	}
215 
216 	return 0;
217 }
218 DM_TEST(dm_test_autobind_uclass_pdata_valid, UT_TESTF_SCAN_PDATA);
219 
220 /* Test that autoprobe finds all the expected devices */
dm_test_autoprobe(struct unit_test_state * uts)221 static int dm_test_autoprobe(struct unit_test_state *uts)
222 {
223 	int expected_base_add;
224 	struct udevice *dev;
225 	struct uclass *uc;
226 	int i;
227 
228 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
229 	ut_assert(uc);
230 
231 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
232 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
233 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
234 
235 	/* The root device should not be activated until needed */
236 	ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
237 
238 	/*
239 	 * We should be able to find the three test devices, and they should
240 	 * all be activated as they are used (lazy activation, required by
241 	 * U-Boot)
242 	 */
243 	for (i = 0; i < 3; i++) {
244 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
245 		ut_assert(dev);
246 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
247 			   "Driver %d/%s already activated", i, dev->name);
248 
249 		/* This should activate it */
250 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
251 		ut_assert(dev);
252 		ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
253 
254 		/* Activating a device should activate the root device */
255 		if (!i)
256 			ut_assert(dev_get_flags(uts->root) & DM_FLAG_ACTIVATED);
257 	}
258 
259 	/*
260 	 * Our 3 dm_test_info children should be passed to pre_probe and
261 	 * post_probe
262 	 */
263 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_POST_PROBE]);
264 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PRE_PROBE]);
265 
266 	/* Also we can check the per-device data */
267 	expected_base_add = 0;
268 	for (i = 0; i < 3; i++) {
269 		struct dm_test_uclass_perdev_priv *priv;
270 		struct dm_test_pdata *pdata;
271 
272 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
273 		ut_assert(dev);
274 
275 		priv = dev_get_uclass_priv(dev);
276 		ut_assert(priv);
277 		ut_asserteq(expected_base_add, priv->base_add);
278 
279 		pdata = dev_get_plat(dev);
280 		expected_base_add += pdata->ping_add;
281 	}
282 
283 	return 0;
284 }
285 DM_TEST(dm_test_autoprobe, UT_TESTF_SCAN_PDATA);
286 
287 /* Check that we see the correct plat in each device */
dm_test_plat(struct unit_test_state * uts)288 static int dm_test_plat(struct unit_test_state *uts)
289 {
290 	const struct dm_test_pdata *pdata;
291 	struct udevice *dev;
292 	int i;
293 
294 	for (i = 0; i < 3; i++) {
295 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
296 		ut_assert(dev);
297 		pdata = dev_get_plat(dev);
298 		ut_assert(pdata->ping_add == test_pdata[i].ping_add);
299 	}
300 
301 	return 0;
302 }
303 DM_TEST(dm_test_plat, UT_TESTF_SCAN_PDATA);
304 
305 /* Test that we can bind, probe, remove, unbind a driver */
dm_test_lifecycle(struct unit_test_state * uts)306 static int dm_test_lifecycle(struct unit_test_state *uts)
307 {
308 	int op_count[DM_TEST_OP_COUNT];
309 	struct udevice *dev, *test_dev;
310 	int pingret;
311 	int ret;
312 
313 	memcpy(op_count, dm_testdrv_op_count, sizeof(op_count));
314 
315 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
316 					&dev));
317 	ut_assert(dev);
318 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_BIND]
319 			== op_count[DM_TEST_OP_BIND] + 1);
320 	ut_assert(!dev_get_priv(dev));
321 
322 	/* Probe the device - it should fail allocating private data */
323 	uts->force_fail_alloc = 1;
324 	ret = device_probe(dev);
325 	ut_assert(ret == -ENOMEM);
326 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
327 			== op_count[DM_TEST_OP_PROBE] + 1);
328 	ut_assert(!dev_get_priv(dev));
329 
330 	/* Try again without the alloc failure */
331 	uts->force_fail_alloc = 0;
332 	ut_assertok(device_probe(dev));
333 	ut_assert(dm_testdrv_op_count[DM_TEST_OP_PROBE]
334 			== op_count[DM_TEST_OP_PROBE] + 2);
335 	ut_assert(dev_get_priv(dev));
336 
337 	/* This should be device 3 in the uclass */
338 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
339 	ut_assert(dev == test_dev);
340 
341 	/* Try ping */
342 	ut_assertok(test_ping(dev, 100, &pingret));
343 	ut_assert(pingret == 102);
344 
345 	/* Now remove device 3 */
346 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
347 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
348 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_REMOVE]);
349 
350 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
351 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
352 	ut_assertok(device_unbind(dev));
353 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
354 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_PRE_UNBIND]);
355 
356 	return 0;
357 }
358 DM_TEST(dm_test_lifecycle, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
359 
360 /* Test that we can bind/unbind and the lists update correctly */
dm_test_ordering(struct unit_test_state * uts)361 static int dm_test_ordering(struct unit_test_state *uts)
362 {
363 	struct udevice *dev, *dev_penultimate, *dev_last, *test_dev;
364 	int pingret;
365 
366 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
367 					&dev));
368 	ut_assert(dev);
369 
370 	/* Bind two new devices (numbers 4 and 5) */
371 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
372 					&dev_penultimate));
373 	ut_assert(dev_penultimate);
374 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
375 					&dev_last));
376 	ut_assert(dev_last);
377 
378 	/* Now remove device 3 */
379 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
380 	ut_assertok(device_unbind(dev));
381 
382 	/* The device numbering should have shifted down one */
383 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
384 	ut_assert(dev_penultimate == test_dev);
385 	ut_assertok(uclass_find_device(UCLASS_TEST, 4, &test_dev));
386 	ut_assert(dev_last == test_dev);
387 
388 	/* Add back the original device 3, now in position 5 */
389 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
390 					&dev));
391 	ut_assert(dev);
392 
393 	/* Try ping */
394 	ut_assertok(test_ping(dev, 100, &pingret));
395 	ut_assert(pingret == 102);
396 
397 	/* Remove 3 and 4 */
398 	ut_assertok(device_remove(dev_penultimate, DM_REMOVE_NORMAL));
399 	ut_assertok(device_unbind(dev_penultimate));
400 	ut_assertok(device_remove(dev_last, DM_REMOVE_NORMAL));
401 	ut_assertok(device_unbind(dev_last));
402 
403 	/* Our device should now be in position 3 */
404 	ut_assertok(uclass_find_device(UCLASS_TEST, 3, &test_dev));
405 	ut_assert(dev == test_dev);
406 
407 	/* Now remove device 3 */
408 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
409 	ut_assertok(device_unbind(dev));
410 
411 	return 0;
412 }
413 DM_TEST(dm_test_ordering, UT_TESTF_SCAN_PDATA);
414 
415 /* Check that we can perform operations on a device (do a ping) */
dm_check_operations(struct unit_test_state * uts,struct udevice * dev,uint32_t base,struct dm_test_priv * priv)416 int dm_check_operations(struct unit_test_state *uts, struct udevice *dev,
417 			uint32_t base, struct dm_test_priv *priv)
418 {
419 	int expected;
420 	int pingret;
421 
422 	/* Getting the child device should allocate plat / priv */
423 	ut_assertok(testfdt_ping(dev, 10, &pingret));
424 	ut_assert(dev_get_priv(dev));
425 	ut_assert(dev_get_plat(dev));
426 
427 	expected = 10 + base;
428 	ut_asserteq(expected, pingret);
429 
430 	/* Do another ping */
431 	ut_assertok(testfdt_ping(dev, 20, &pingret));
432 	expected = 20 + base;
433 	ut_asserteq(expected, pingret);
434 
435 	/* Now check the ping_total */
436 	priv = dev_get_priv(dev);
437 	ut_asserteq(DM_TEST_START_TOTAL + 10 + 20 + base * 2,
438 		    priv->ping_total);
439 
440 	return 0;
441 }
442 
443 /* Check that we can perform operations on devices */
dm_test_operations(struct unit_test_state * uts)444 static int dm_test_operations(struct unit_test_state *uts)
445 {
446 	struct udevice *dev;
447 	int i;
448 
449 	/*
450 	 * Now check that the ping adds are what we expect. This is using the
451 	 * ping-add property in each node.
452 	 */
453 	for (i = 0; i < ARRAY_SIZE(test_pdata); i++) {
454 		uint32_t base;
455 
456 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
457 
458 		/*
459 		 * Get the 'reg' property, which tells us what the ping add
460 		 * should be. We don't use the plat because we want
461 		 * to test the code that sets that up (testfdt_drv_probe()).
462 		 */
463 		base = test_pdata[i].ping_add;
464 		debug("dev=%d, base=%d\n", i, base);
465 
466 		ut_assert(!dm_check_operations(uts, dev, base, dev_get_priv(dev)));
467 	}
468 
469 	return 0;
470 }
471 DM_TEST(dm_test_operations, UT_TESTF_SCAN_PDATA);
472 
473 /* Remove all drivers and check that things work */
dm_test_remove(struct unit_test_state * uts)474 static int dm_test_remove(struct unit_test_state *uts)
475 {
476 	struct udevice *dev;
477 	int i;
478 
479 	for (i = 0; i < 3; i++) {
480 		ut_assertok(uclass_find_device(UCLASS_TEST, i, &dev));
481 		ut_assert(dev);
482 		ut_assertf(dev_get_flags(dev) & DM_FLAG_ACTIVATED,
483 			   "Driver %d/%s not activated", i, dev->name);
484 		ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
485 		ut_assertf(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED),
486 			   "Driver %d/%s should have deactivated", i,
487 			   dev->name);
488 		ut_assert(!dev_get_priv(dev));
489 	}
490 
491 	return 0;
492 }
493 DM_TEST(dm_test_remove, UT_TESTF_SCAN_PDATA | UT_TESTF_PROBE_TEST);
494 
495 /* Remove and recreate everything, check for memory leaks */
dm_test_leak(struct unit_test_state * uts)496 static int dm_test_leak(struct unit_test_state *uts)
497 {
498 	int i;
499 
500 	for (i = 0; i < 2; i++) {
501 		struct udevice *dev;
502 		int ret;
503 		int id;
504 
505 		dm_leak_check_start(uts);
506 
507 		ut_assertok(dm_scan_plat(false));
508 		ut_assertok(dm_scan_fdt(false));
509 
510 		/* Scanning the uclass is enough to probe all the devices */
511 		for (id = UCLASS_ROOT; id < UCLASS_COUNT; id++) {
512 			for (ret = uclass_first_device(UCLASS_TEST, &dev);
513 			     dev;
514 			     ret = uclass_next_device(&dev))
515 				;
516 			ut_assertok(ret);
517 		}
518 
519 		ut_assertok(dm_leak_check_end(uts));
520 	}
521 
522 	return 0;
523 }
524 DM_TEST(dm_test_leak, 0);
525 
526 /* Test uclass init/destroy methods */
dm_test_uclass(struct unit_test_state * uts)527 static int dm_test_uclass(struct unit_test_state *uts)
528 {
529 	struct uclass *uc;
530 
531 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
532 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
533 	ut_asserteq(0, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
534 	ut_assert(uclass_get_priv(uc));
535 
536 	ut_assertok(uclass_destroy(uc));
537 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_INIT]);
538 	ut_asserteq(1, dm_testdrv_op_count[DM_TEST_OP_DESTROY]);
539 
540 	return 0;
541 }
542 DM_TEST(dm_test_uclass, 0);
543 
544 /**
545  * create_children() - Create children of a parent node
546  *
547  * @dms:	Test system state
548  * @parent:	Parent device
549  * @count:	Number of children to create
550  * @key:	Key value to put in first child. Subsequence children
551  *		receive an incrementing value
552  * @child:	If not NULL, then the child device pointers are written into
553  *		this array.
554  * @return 0 if OK, -ve on error
555  */
create_children(struct unit_test_state * uts,struct udevice * parent,int count,int key,struct udevice * child[])556 static int create_children(struct unit_test_state *uts, struct udevice *parent,
557 			   int count, int key, struct udevice *child[])
558 {
559 	struct udevice *dev;
560 	int i;
561 
562 	for (i = 0; i < count; i++) {
563 		struct dm_test_pdata *pdata;
564 
565 		ut_assertok(device_bind_by_name(parent, false,
566 						&driver_info_manual, &dev));
567 		pdata = calloc(1, sizeof(*pdata));
568 		pdata->ping_add = key + i;
569 		dev_set_plat(dev, pdata);
570 		if (child)
571 			child[i] = dev;
572 	}
573 
574 	return 0;
575 }
576 
577 #define NODE_COUNT	10
578 
dm_test_children(struct unit_test_state * uts)579 static int dm_test_children(struct unit_test_state *uts)
580 {
581 	struct udevice *top[NODE_COUNT];
582 	struct udevice *child[NODE_COUNT];
583 	struct udevice *grandchild[NODE_COUNT];
584 	struct udevice *dev;
585 	int total;
586 	int ret;
587 	int i;
588 
589 	/* We don't care about the numbering for this test */
590 	uts->skip_post_probe = 1;
591 
592 	ut_assert(NODE_COUNT > 5);
593 
594 	/* First create 10 top-level children */
595 	ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
596 
597 	/* Now a few have their own children */
598 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
599 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
600 
601 	/* And grandchildren */
602 	for (i = 0; i < NODE_COUNT; i++)
603 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
604 					    i == 2 ? grandchild : NULL));
605 
606 	/* Check total number of devices */
607 	total = NODE_COUNT * (3 + NODE_COUNT);
608 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
609 
610 	/* Try probing one of the grandchildren */
611 	ut_assertok(uclass_get_device(UCLASS_TEST,
612 				      NODE_COUNT * 3 + 2 * NODE_COUNT, &dev));
613 	ut_asserteq_ptr(grandchild[0], dev);
614 
615 	/*
616 	 * This should have probed the child and top node also, for a total
617 	 * of 3 nodes.
618 	 */
619 	ut_asserteq(3, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
620 
621 	/* Probe the other grandchildren */
622 	for (i = 1; i < NODE_COUNT; i++)
623 		ut_assertok(device_probe(grandchild[i]));
624 
625 	ut_asserteq(2 + NODE_COUNT, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
626 
627 	/* Probe everything */
628 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
629 	     dev;
630 	     ret = uclass_next_device(&dev))
631 		;
632 	ut_assertok(ret);
633 
634 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_PROBE]);
635 
636 	/* Remove a top-level child and check that the children are removed */
637 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
638 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
639 	dm_testdrv_op_count[DM_TEST_OP_REMOVE] = 0;
640 
641 	/* Try one with grandchildren */
642 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
643 	ut_asserteq_ptr(dev, top[5]);
644 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
645 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
646 		    dm_testdrv_op_count[DM_TEST_OP_REMOVE]);
647 
648 	/* Try the same with unbind */
649 	ut_assertok(device_unbind(top[2]));
650 	ut_asserteq(NODE_COUNT + 1, dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
651 	dm_testdrv_op_count[DM_TEST_OP_UNBIND] = 0;
652 
653 	/* Try one with grandchildren */
654 	ut_assertok(uclass_get_device(UCLASS_TEST, 5, &dev));
655 	ut_asserteq_ptr(dev, top[6]);
656 	ut_assertok(device_unbind(top[5]));
657 	ut_asserteq(1 + NODE_COUNT * (1 + NODE_COUNT),
658 		    dm_testdrv_op_count[DM_TEST_OP_UNBIND]);
659 
660 	return 0;
661 }
662 DM_TEST(dm_test_children, 0);
663 
dm_test_device_reparent(struct unit_test_state * uts)664 static int dm_test_device_reparent(struct unit_test_state *uts)
665 {
666 	struct udevice *top[NODE_COUNT];
667 	struct udevice *child[NODE_COUNT];
668 	struct udevice *grandchild[NODE_COUNT];
669 	struct udevice *dev;
670 	int total;
671 	int ret;
672 	int i;
673 
674 	/* We don't care about the numbering for this test */
675 	uts->skip_post_probe = 1;
676 
677 	ut_assert(NODE_COUNT > 5);
678 
679 	/* First create 10 top-level children */
680 	ut_assertok(create_children(uts, uts->root, NODE_COUNT, 0, top));
681 
682 	/* Now a few have their own children */
683 	ut_assertok(create_children(uts, top[2], NODE_COUNT, 2, NULL));
684 	ut_assertok(create_children(uts, top[5], NODE_COUNT, 5, child));
685 
686 	/* And grandchildren */
687 	for (i = 0; i < NODE_COUNT; i++)
688 		ut_assertok(create_children(uts, child[i], NODE_COUNT, 50 * i,
689 					    i == 2 ? grandchild : NULL));
690 
691 	/* Check total number of devices */
692 	total = NODE_COUNT * (3 + NODE_COUNT);
693 	ut_asserteq(total, dm_testdrv_op_count[DM_TEST_OP_BIND]);
694 
695 	/* Probe everything */
696 	for (i = 0; i < total; i++)
697 		ut_assertok(uclass_get_device(UCLASS_TEST, i, &dev));
698 
699 	/* Re-parent top-level children with no grandchildren. */
700 	ut_assertok(device_reparent(top[3], top[0]));
701 	/* try to get devices */
702 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
703 	     dev;
704 	     ret = uclass_find_next_device(&dev)) {
705 		ut_assert(!ret);
706 		ut_assertnonnull(dev);
707 	}
708 
709 	ut_assertok(device_reparent(top[4], top[0]));
710 	/* try to get devices */
711 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
712 	     dev;
713 	     ret = uclass_find_next_device(&dev)) {
714 		ut_assert(!ret);
715 		ut_assertnonnull(dev);
716 	}
717 
718 	/* Re-parent top-level children with grandchildren. */
719 	ut_assertok(device_reparent(top[2], top[0]));
720 	/* try to get devices */
721 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
722 	     dev;
723 	     ret = uclass_find_next_device(&dev)) {
724 		ut_assert(!ret);
725 		ut_assertnonnull(dev);
726 	}
727 
728 	ut_assertok(device_reparent(top[5], top[2]));
729 	/* try to get devices */
730 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
731 	     dev;
732 	     ret = uclass_find_next_device(&dev)) {
733 		ut_assert(!ret);
734 		ut_assertnonnull(dev);
735 	}
736 
737 	/* Re-parent grandchildren. */
738 	ut_assertok(device_reparent(grandchild[0], top[1]));
739 	/* try to get devices */
740 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
741 	     dev;
742 	     ret = uclass_find_next_device(&dev)) {
743 		ut_assert(!ret);
744 		ut_assertnonnull(dev);
745 	}
746 
747 	ut_assertok(device_reparent(grandchild[1], top[1]));
748 	/* try to get devices */
749 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
750 	     dev;
751 	     ret = uclass_find_next_device(&dev)) {
752 		ut_assert(!ret);
753 		ut_assertnonnull(dev);
754 	}
755 
756 	/* Remove re-pareneted devices. */
757 	ut_assertok(device_remove(top[3], DM_REMOVE_NORMAL));
758 	/* try to get devices */
759 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
760 	     dev;
761 	     ret = uclass_find_next_device(&dev)) {
762 		ut_assert(!ret);
763 		ut_assertnonnull(dev);
764 	}
765 
766 	ut_assertok(device_remove(top[4], DM_REMOVE_NORMAL));
767 	/* try to get devices */
768 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
769 	     dev;
770 	     ret = uclass_find_next_device(&dev)) {
771 		ut_assert(!ret);
772 		ut_assertnonnull(dev);
773 	}
774 
775 	ut_assertok(device_remove(top[5], DM_REMOVE_NORMAL));
776 	/* try to get devices */
777 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
778 	     dev;
779 	     ret = uclass_find_next_device(&dev)) {
780 		ut_assert(!ret);
781 		ut_assertnonnull(dev);
782 	}
783 
784 	ut_assertok(device_remove(top[2], DM_REMOVE_NORMAL));
785 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
786 	     dev;
787 	     ret = uclass_find_next_device(&dev)) {
788 		ut_assert(!ret);
789 		ut_assertnonnull(dev);
790 	}
791 
792 	ut_assertok(device_remove(grandchild[0], DM_REMOVE_NORMAL));
793 	/* try to get devices */
794 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
795 	     dev;
796 	     ret = uclass_find_next_device(&dev)) {
797 		ut_assert(!ret);
798 		ut_assertnonnull(dev);
799 	}
800 
801 	ut_assertok(device_remove(grandchild[1], DM_REMOVE_NORMAL));
802 	/* try to get devices */
803 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
804 	     dev;
805 	     ret = uclass_find_next_device(&dev)) {
806 		ut_assert(!ret);
807 		ut_assertnonnull(dev);
808 	}
809 
810 	/* Try the same with unbind */
811 	ut_assertok(device_unbind(top[3]));
812 	ut_assertok(device_unbind(top[4]));
813 	ut_assertok(device_unbind(top[5]));
814 	ut_assertok(device_unbind(top[2]));
815 
816 	ut_assertok(device_unbind(grandchild[0]));
817 	ut_assertok(device_unbind(grandchild[1]));
818 
819 	return 0;
820 }
821 DM_TEST(dm_test_device_reparent, 0);
822 
823 /* Test that pre-relocation devices work as expected */
dm_test_pre_reloc(struct unit_test_state * uts)824 static int dm_test_pre_reloc(struct unit_test_state *uts)
825 {
826 	struct udevice *dev;
827 
828 	/* The normal driver should refuse to bind before relocation */
829 	ut_asserteq(-EPERM, device_bind_by_name(uts->root, true,
830 						&driver_info_manual, &dev));
831 
832 	/* But this one is marked pre-reloc */
833 	ut_assertok(device_bind_by_name(uts->root, true,
834 					&driver_info_pre_reloc, &dev));
835 
836 	return 0;
837 }
838 DM_TEST(dm_test_pre_reloc, 0);
839 
840 /*
841  * Test that removal of devices, either via the "normal" device_remove()
842  * API or via the device driver selective flag works as expected
843  */
dm_test_remove_active_dma(struct unit_test_state * uts)844 static int dm_test_remove_active_dma(struct unit_test_state *uts)
845 {
846 	struct udevice *dev;
847 
848 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
849 					&dev));
850 	ut_assert(dev);
851 
852 	/* Probe the device */
853 	ut_assertok(device_probe(dev));
854 
855 	/* Test if device is active right now */
856 	ut_asserteq(true, device_active(dev));
857 
858 	/* Remove the device via selective remove flag */
859 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
860 
861 	/* Test if device is inactive right now */
862 	ut_asserteq(false, device_active(dev));
863 
864 	/* Probe the device again */
865 	ut_assertok(device_probe(dev));
866 
867 	/* Test if device is active right now */
868 	ut_asserteq(true, device_active(dev));
869 
870 	/* Remove the device via "normal" remove API */
871 	ut_assertok(device_remove(dev, DM_REMOVE_NORMAL));
872 
873 	/* Test if device is inactive right now */
874 	ut_asserteq(false, device_active(dev));
875 
876 	/*
877 	 * Test if a device without the active DMA flags is not removed upon
878 	 * the active DMA remove call
879 	 */
880 	ut_assertok(device_unbind(dev));
881 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
882 					&dev));
883 	ut_assert(dev);
884 
885 	/* Probe the device */
886 	ut_assertok(device_probe(dev));
887 
888 	/* Test if device is active right now */
889 	ut_asserteq(true, device_active(dev));
890 
891 	/* Remove the device via selective remove flag */
892 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
893 
894 	/* Test if device is still active right now */
895 	ut_asserteq(true, device_active(dev));
896 
897 	return 0;
898 }
899 DM_TEST(dm_test_remove_active_dma, 0);
900 
901 /* Test removal of 'vital' devices */
dm_test_remove_vital(struct unit_test_state * uts)902 static int dm_test_remove_vital(struct unit_test_state *uts)
903 {
904 	struct udevice *normal, *dma, *vital, *dma_vital;
905 
906 	/* Skip the behaviour in test_post_probe() */
907 	uts->skip_post_probe = 1;
908 
909 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_manual,
910 					&normal));
911 	ut_assertnonnull(normal);
912 
913 	ut_assertok(device_bind_by_name(uts->root, false, &driver_info_act_dma,
914 					&dma));
915 	ut_assertnonnull(dma);
916 
917 	ut_assertok(device_bind_by_name(uts->root, false,
918 					&driver_info_vital_clk, &vital));
919 	ut_assertnonnull(vital);
920 
921 	ut_assertok(device_bind_by_name(uts->root, false,
922 					&driver_info_act_dma_vital_clk,
923 					&dma_vital));
924 	ut_assertnonnull(dma_vital);
925 
926 	/* Probe the devices */
927 	ut_assertok(device_probe(normal));
928 	ut_assertok(device_probe(dma));
929 	ut_assertok(device_probe(vital));
930 	ut_assertok(device_probe(dma_vital));
931 
932 	/* Check that devices are active right now */
933 	ut_asserteq(true, device_active(normal));
934 	ut_asserteq(true, device_active(dma));
935 	ut_asserteq(true, device_active(vital));
936 	ut_asserteq(true, device_active(dma_vital));
937 
938 	/* Remove active devices via selective remove flag */
939 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL | DM_REMOVE_ACTIVE_ALL);
940 
941 	/*
942 	 * Check that this only has an effect on the dma device, since two
943 	 * devices are vital and the third does not have active DMA
944 	 */
945 	ut_asserteq(true, device_active(normal));
946 	ut_asserteq(false, device_active(dma));
947 	ut_asserteq(true, device_active(vital));
948 	ut_asserteq(true, device_active(dma_vital));
949 
950 	/* Remove active devices via selective remove flag */
951 	ut_assertok(device_probe(dma));
952 	dm_remove_devices_flags(DM_REMOVE_ACTIVE_ALL);
953 
954 	/* This should have affected both active-dma devices */
955 	ut_asserteq(true, device_active(normal));
956 	ut_asserteq(false, device_active(dma));
957 	ut_asserteq(true, device_active(vital));
958 	ut_asserteq(false, device_active(dma_vital));
959 
960 	/* Remove non-vital devices */
961 	ut_assertok(device_probe(dma));
962 	ut_assertok(device_probe(dma_vital));
963 	dm_remove_devices_flags(DM_REMOVE_NON_VITAL);
964 
965 	/* This should have affected only non-vital devices */
966 	ut_asserteq(false, device_active(normal));
967 	ut_asserteq(false, device_active(dma));
968 	ut_asserteq(true, device_active(vital));
969 	ut_asserteq(true, device_active(dma_vital));
970 
971 	/* Remove vital devices via normal remove flag */
972 	ut_assertok(device_probe(normal));
973 	ut_assertok(device_probe(dma));
974 	dm_remove_devices_flags(DM_REMOVE_NORMAL);
975 
976 	/* Check that all devices are inactive right now */
977 	ut_asserteq(false, device_active(normal));
978 	ut_asserteq(false, device_active(dma));
979 	ut_asserteq(false, device_active(vital));
980 	ut_asserteq(false, device_active(dma_vital));
981 
982 	return 0;
983 }
984 DM_TEST(dm_test_remove_vital, 0);
985 
dm_test_uclass_before_ready(struct unit_test_state * uts)986 static int dm_test_uclass_before_ready(struct unit_test_state *uts)
987 {
988 	struct uclass *uc;
989 
990 	ut_assertok(uclass_get(UCLASS_TEST, &uc));
991 
992 	gd->dm_root = NULL;
993 	gd->dm_root_f = NULL;
994 	memset(&gd->uclass_root, '\0', sizeof(gd->uclass_root));
995 
996 	ut_asserteq_ptr(NULL, uclass_find(UCLASS_TEST));
997 	ut_asserteq(-EDEADLK, uclass_get(UCLASS_TEST, &uc));
998 
999 	return 0;
1000 }
1001 DM_TEST(dm_test_uclass_before_ready, 0);
1002 
dm_test_uclass_devices_find(struct unit_test_state * uts)1003 static int dm_test_uclass_devices_find(struct unit_test_state *uts)
1004 {
1005 	struct udevice *dev;
1006 	int ret;
1007 
1008 	for (ret = uclass_find_first_device(UCLASS_TEST, &dev);
1009 	     dev;
1010 	     ret = uclass_find_next_device(&dev)) {
1011 		ut_assert(!ret);
1012 		ut_assertnonnull(dev);
1013 	}
1014 
1015 	ut_assertok(uclass_find_first_device(UCLASS_TEST_DUMMY, &dev));
1016 	ut_assertnull(dev);
1017 
1018 	return 0;
1019 }
1020 DM_TEST(dm_test_uclass_devices_find, UT_TESTF_SCAN_PDATA);
1021 
dm_test_uclass_devices_find_by_name(struct unit_test_state * uts)1022 static int dm_test_uclass_devices_find_by_name(struct unit_test_state *uts)
1023 {
1024 	struct udevice *finddev;
1025 	struct udevice *testdev;
1026 	int findret, ret;
1027 
1028 	/*
1029 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
1030 	 * use its name and try to find it by uclass_find_device_by_name().
1031 	 * Then, on success check if:
1032 	 * - current 'testdev' name is equal to the returned 'finddev' name
1033 	 * - current 'testdev' pointer is equal to the returned 'finddev'
1034 	 *
1035 	 * We assume that, each uclass's device name is unique, so if not, then
1036 	 * this will fail on checking condition: testdev == finddev, since the
1037 	 * uclass_find_device_by_name(), returns the first device by given name.
1038 	*/
1039 	for (ret = uclass_find_first_device(UCLASS_TEST_FDT, &testdev);
1040 	     testdev;
1041 	     ret = uclass_find_next_device(&testdev)) {
1042 		ut_assertok(ret);
1043 		ut_assertnonnull(testdev);
1044 
1045 		findret = uclass_find_device_by_name(UCLASS_TEST_FDT,
1046 						     testdev->name,
1047 						     &finddev);
1048 
1049 		ut_assertok(findret);
1050 		ut_assert(testdev);
1051 		ut_asserteq_str(testdev->name, finddev->name);
1052 		ut_asserteq_ptr(testdev, finddev);
1053 	}
1054 
1055 	return 0;
1056 }
1057 DM_TEST(dm_test_uclass_devices_find_by_name, UT_TESTF_SCAN_FDT);
1058 
dm_test_uclass_devices_get(struct unit_test_state * uts)1059 static int dm_test_uclass_devices_get(struct unit_test_state *uts)
1060 {
1061 	struct udevice *dev;
1062 	int ret;
1063 
1064 	for (ret = uclass_first_device(UCLASS_TEST, &dev);
1065 	     dev;
1066 	     ret = uclass_next_device(&dev)) {
1067 		ut_assert(!ret);
1068 		ut_assert(dev);
1069 		ut_assert(device_active(dev));
1070 	}
1071 
1072 	return 0;
1073 }
1074 DM_TEST(dm_test_uclass_devices_get, UT_TESTF_SCAN_PDATA);
1075 
dm_test_uclass_devices_get_by_name(struct unit_test_state * uts)1076 static int dm_test_uclass_devices_get_by_name(struct unit_test_state *uts)
1077 {
1078 	struct udevice *finddev;
1079 	struct udevice *testdev;
1080 	int ret, findret;
1081 
1082 	/*
1083 	 * For each test device found in fdt like: "a-test", "b-test", etc.,
1084 	 * use its name and try to get it by uclass_get_device_by_name().
1085 	 * On success check if:
1086 	 * - returned finddev' is active
1087 	 * - current 'testdev' name is equal to the returned 'finddev' name
1088 	 * - current 'testdev' pointer is equal to the returned 'finddev'
1089 	 *
1090 	 * We asserts that the 'testdev' is active on each loop entry, so we
1091 	 * could be sure that the 'finddev' is activated too, but for sure
1092 	 * we check it again.
1093 	 *
1094 	 * We assume that, each uclass's device name is unique, so if not, then
1095 	 * this will fail on checking condition: testdev == finddev, since the
1096 	 * uclass_get_device_by_name(), returns the first device by given name.
1097 	*/
1098 	for (ret = uclass_first_device(UCLASS_TEST_FDT, &testdev);
1099 	     testdev;
1100 	     ret = uclass_next_device(&testdev)) {
1101 		ut_assertok(ret);
1102 		ut_assert(testdev);
1103 		ut_assert(device_active(testdev));
1104 
1105 		findret = uclass_get_device_by_name(UCLASS_TEST_FDT,
1106 						    testdev->name,
1107 						    &finddev);
1108 
1109 		ut_assertok(findret);
1110 		ut_assert(finddev);
1111 		ut_assert(device_active(finddev));
1112 		ut_asserteq_str(testdev->name, finddev->name);
1113 		ut_asserteq_ptr(testdev, finddev);
1114 	}
1115 
1116 	return 0;
1117 }
1118 DM_TEST(dm_test_uclass_devices_get_by_name, UT_TESTF_SCAN_FDT);
1119 
dm_test_device_get_uclass_id(struct unit_test_state * uts)1120 static int dm_test_device_get_uclass_id(struct unit_test_state *uts)
1121 {
1122 	struct udevice *dev;
1123 
1124 	ut_assertok(uclass_get_device(UCLASS_TEST, 0, &dev));
1125 	ut_asserteq(UCLASS_TEST, device_get_uclass_id(dev));
1126 
1127 	return 0;
1128 }
1129 DM_TEST(dm_test_device_get_uclass_id, UT_TESTF_SCAN_PDATA);
1130 
dm_test_uclass_names(struct unit_test_state * uts)1131 static int dm_test_uclass_names(struct unit_test_state *uts)
1132 {
1133 	ut_asserteq_str("test", uclass_get_name(UCLASS_TEST));
1134 	ut_asserteq(UCLASS_TEST, uclass_get_by_name("test"));
1135 
1136 	return 0;
1137 }
1138 DM_TEST(dm_test_uclass_names, UT_TESTF_SCAN_PDATA);
1139 
dm_test_inactive_child(struct unit_test_state * uts)1140 static int dm_test_inactive_child(struct unit_test_state *uts)
1141 {
1142 	struct udevice *parent, *dev1, *dev2;
1143 
1144 	/* Skip the behaviour in test_post_probe() */
1145 	uts->skip_post_probe = 1;
1146 
1147 	ut_assertok(uclass_first_device_err(UCLASS_TEST, &parent));
1148 
1149 	/*
1150 	 * Create a child but do not activate it. Calling the function again
1151 	 * should return the same child.
1152 	 */
1153 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1154 							UCLASS_TEST, &dev1));
1155 	ut_assertok(device_bind(parent, DM_DRIVER_GET(test_drv),
1156 				"test_child", 0, ofnode_null(), &dev1));
1157 
1158 	ut_assertok(device_find_first_inactive_child(parent, UCLASS_TEST,
1159 						     &dev2));
1160 	ut_asserteq_ptr(dev1, dev2);
1161 
1162 	ut_assertok(device_probe(dev1));
1163 	ut_asserteq(-ENODEV, device_find_first_inactive_child(parent,
1164 							UCLASS_TEST, &dev2));
1165 
1166 	return 0;
1167 }
1168 DM_TEST(dm_test_inactive_child, UT_TESTF_SCAN_PDATA);
1169 
1170 /* Make sure all bound devices have a sequence number */
dm_test_all_have_seq(struct unit_test_state * uts)1171 static int dm_test_all_have_seq(struct unit_test_state *uts)
1172 {
1173 	struct udevice *dev;
1174 	struct uclass *uc;
1175 
1176 	list_for_each_entry(uc, gd->uclass_root, sibling_node) {
1177 		list_for_each_entry(dev, &uc->dev_head, uclass_node) {
1178 			if (dev->seq_ == -1)
1179 				printf("Device '%s' has no seq (%d)\n",
1180 				       dev->name, dev->seq_);
1181 			ut_assert(dev->seq_ != -1);
1182 		}
1183 	}
1184 
1185 	return 0;
1186 }
1187 DM_TEST(dm_test_all_have_seq, UT_TESTF_SCAN_PDATA);
1188 
1189 #if CONFIG_IS_ENABLED(DM_DMA)
dm_test_dma_offset(struct unit_test_state * uts)1190 static int dm_test_dma_offset(struct unit_test_state *uts)
1191 {
1192        struct udevice *dev;
1193        ofnode node;
1194 
1195        /* Make sure the bus's dma-ranges aren't taken into account here */
1196        node = ofnode_path("/mmio-bus@0");
1197        ut_assert(ofnode_valid(node));
1198        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1199        ut_asserteq_64(0, dev->dma_offset);
1200 
1201        /* Device behind a bus with dma-ranges */
1202        node = ofnode_path("/mmio-bus@0/subnode@0");
1203        ut_assert(ofnode_valid(node));
1204        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1205        ut_asserteq_64(-0x10000000ULL, dev->dma_offset);
1206 
1207        /* This one has no dma-ranges */
1208        node = ofnode_path("/mmio-bus@1");
1209        ut_assert(ofnode_valid(node));
1210        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_BUS, node, &dev));
1211        node = ofnode_path("/mmio-bus@1/subnode@0");
1212        ut_assert(ofnode_valid(node));
1213        ut_assertok(uclass_get_device_by_ofnode(UCLASS_TEST_FDT, node, &dev));
1214        ut_asserteq_64(0, dev->dma_offset);
1215 
1216        return 0;
1217 }
1218 DM_TEST(dm_test_dma_offset, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
1219 #endif
1220