1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
10
11 #include <linux/types.h>
12 #include <linux/mm.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18
19 #include <linux/kvm.h>
20 #include <linux/kvm_para.h>
21 #include <linux/kvm_types.h>
22 #include <linux/perf_event.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/clocksource.h>
25 #include <linux/irqbypass.h>
26 #include <linux/hyperv.h>
27
28 #include <asm/apic.h>
29 #include <asm/pvclock-abi.h>
30 #include <asm/desc.h>
31 #include <asm/mtrr.h>
32 #include <asm/msr-index.h>
33 #include <asm/asm.h>
34 #include <asm/kvm_page_track.h>
35 #include <asm/kvm_vcpu_regs.h>
36 #include <asm/hyperv-tlfs.h>
37
38 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
39
40 #define KVM_MAX_VCPUS 1024
41
42 /*
43 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
44 * might be larger than the actual number of VCPUs because the
45 * APIC ID encodes CPU topology information.
46 *
47 * In the worst case, we'll need less than one extra bit for the
48 * Core ID, and less than one extra bit for the Package (Die) ID,
49 * so ratio of 4 should be enough.
50 */
51 #define KVM_VCPU_ID_RATIO 4
52 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
53
54 /* memory slots that are not exposed to userspace */
55 #define KVM_PRIVATE_MEM_SLOTS 3
56
57 #define KVM_HALT_POLL_NS_DEFAULT 200000
58
59 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
60
61 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
62 KVM_DIRTY_LOG_INITIALLY_SET)
63
64 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
65 KVM_BUS_LOCK_DETECTION_EXIT)
66
67 /* x86-specific vcpu->requests bit members */
68 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
69 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
70 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
71 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
72 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
73 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
74 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
75 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
76 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
77 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
78 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
79 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
80 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
81 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
82 #define KVM_REQ_MCLOCK_INPROGRESS \
83 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
84 #define KVM_REQ_SCAN_IOAPIC \
85 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
86 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
87 #define KVM_REQ_APIC_PAGE_RELOAD \
88 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
89 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
90 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
91 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
92 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
93 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
94 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
95 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
96 #define KVM_REQ_APICV_UPDATE \
97 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
98 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
99 #define KVM_REQ_TLB_FLUSH_GUEST \
100 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
101 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
102 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
103 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
104 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105
106 #define CR0_RESERVED_BITS \
107 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
108 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
109 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
110
111 #define CR4_RESERVED_BITS \
112 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
113 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
114 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
115 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
116 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
117 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
118
119 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
120
121
122
123 #define INVALID_PAGE (~(hpa_t)0)
124 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
125
126 #define UNMAPPED_GVA (~(gpa_t)0)
127 #define INVALID_GPA (~(gpa_t)0)
128
129 /* KVM Hugepage definitions for x86 */
130 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
131 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
132 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
133 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
134 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
135 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
136 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
137
138 #define KVM_PERMILLE_MMU_PAGES 20
139 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
140 #define KVM_MMU_HASH_SHIFT 12
141 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
142 #define KVM_MIN_FREE_MMU_PAGES 5
143 #define KVM_REFILL_PAGES 25
144 #define KVM_MAX_CPUID_ENTRIES 256
145 #define KVM_NR_FIXED_MTRR_REGION 88
146 #define KVM_NR_VAR_MTRR 8
147
148 #define ASYNC_PF_PER_VCPU 64
149
150 enum kvm_reg {
151 VCPU_REGS_RAX = __VCPU_REGS_RAX,
152 VCPU_REGS_RCX = __VCPU_REGS_RCX,
153 VCPU_REGS_RDX = __VCPU_REGS_RDX,
154 VCPU_REGS_RBX = __VCPU_REGS_RBX,
155 VCPU_REGS_RSP = __VCPU_REGS_RSP,
156 VCPU_REGS_RBP = __VCPU_REGS_RBP,
157 VCPU_REGS_RSI = __VCPU_REGS_RSI,
158 VCPU_REGS_RDI = __VCPU_REGS_RDI,
159 #ifdef CONFIG_X86_64
160 VCPU_REGS_R8 = __VCPU_REGS_R8,
161 VCPU_REGS_R9 = __VCPU_REGS_R9,
162 VCPU_REGS_R10 = __VCPU_REGS_R10,
163 VCPU_REGS_R11 = __VCPU_REGS_R11,
164 VCPU_REGS_R12 = __VCPU_REGS_R12,
165 VCPU_REGS_R13 = __VCPU_REGS_R13,
166 VCPU_REGS_R14 = __VCPU_REGS_R14,
167 VCPU_REGS_R15 = __VCPU_REGS_R15,
168 #endif
169 VCPU_REGS_RIP,
170 NR_VCPU_REGS,
171
172 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
173 VCPU_EXREG_CR0,
174 VCPU_EXREG_CR3,
175 VCPU_EXREG_CR4,
176 VCPU_EXREG_RFLAGS,
177 VCPU_EXREG_SEGMENTS,
178 VCPU_EXREG_EXIT_INFO_1,
179 VCPU_EXREG_EXIT_INFO_2,
180 };
181
182 enum {
183 VCPU_SREG_ES,
184 VCPU_SREG_CS,
185 VCPU_SREG_SS,
186 VCPU_SREG_DS,
187 VCPU_SREG_FS,
188 VCPU_SREG_GS,
189 VCPU_SREG_TR,
190 VCPU_SREG_LDTR,
191 };
192
193 enum exit_fastpath_completion {
194 EXIT_FASTPATH_NONE,
195 EXIT_FASTPATH_REENTER_GUEST,
196 EXIT_FASTPATH_EXIT_HANDLED,
197 };
198 typedef enum exit_fastpath_completion fastpath_t;
199
200 struct x86_emulate_ctxt;
201 struct x86_exception;
202 enum x86_intercept;
203 enum x86_intercept_stage;
204
205 #define KVM_NR_DB_REGS 4
206
207 #define DR6_BUS_LOCK (1 << 11)
208 #define DR6_BD (1 << 13)
209 #define DR6_BS (1 << 14)
210 #define DR6_BT (1 << 15)
211 #define DR6_RTM (1 << 16)
212 /*
213 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
214 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
215 * they will never be 0 for now, but when they are defined
216 * in the future it will require no code change.
217 *
218 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
219 */
220 #define DR6_ACTIVE_LOW 0xffff0ff0
221 #define DR6_VOLATILE 0x0001e80f
222 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
223
224 #define DR7_BP_EN_MASK 0x000000ff
225 #define DR7_GE (1 << 9)
226 #define DR7_GD (1 << 13)
227 #define DR7_FIXED_1 0x00000400
228 #define DR7_VOLATILE 0xffff2bff
229
230 #define KVM_GUESTDBG_VALID_MASK \
231 (KVM_GUESTDBG_ENABLE | \
232 KVM_GUESTDBG_SINGLESTEP | \
233 KVM_GUESTDBG_USE_HW_BP | \
234 KVM_GUESTDBG_USE_SW_BP | \
235 KVM_GUESTDBG_INJECT_BP | \
236 KVM_GUESTDBG_INJECT_DB | \
237 KVM_GUESTDBG_BLOCKIRQ)
238
239
240 #define PFERR_PRESENT_BIT 0
241 #define PFERR_WRITE_BIT 1
242 #define PFERR_USER_BIT 2
243 #define PFERR_RSVD_BIT 3
244 #define PFERR_FETCH_BIT 4
245 #define PFERR_PK_BIT 5
246 #define PFERR_SGX_BIT 15
247 #define PFERR_GUEST_FINAL_BIT 32
248 #define PFERR_GUEST_PAGE_BIT 33
249
250 #define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
251 #define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
252 #define PFERR_USER_MASK (1U << PFERR_USER_BIT)
253 #define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
254 #define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
255 #define PFERR_PK_MASK (1U << PFERR_PK_BIT)
256 #define PFERR_SGX_MASK (1U << PFERR_SGX_BIT)
257 #define PFERR_GUEST_FINAL_MASK (1ULL << PFERR_GUEST_FINAL_BIT)
258 #define PFERR_GUEST_PAGE_MASK (1ULL << PFERR_GUEST_PAGE_BIT)
259
260 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
261 PFERR_WRITE_MASK | \
262 PFERR_PRESENT_MASK)
263
264 /* apic attention bits */
265 #define KVM_APIC_CHECK_VAPIC 0
266 /*
267 * The following bit is set with PV-EOI, unset on EOI.
268 * We detect PV-EOI changes by guest by comparing
269 * this bit with PV-EOI in guest memory.
270 * See the implementation in apic_update_pv_eoi.
271 */
272 #define KVM_APIC_PV_EOI_PENDING 1
273
274 struct kvm_kernel_irq_routing_entry;
275
276 /*
277 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
278 * also includes TDP pages) to determine whether or not a page can be used in
279 * the given MMU context. This is a subset of the overall kvm_mmu_role to
280 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
281 * 2 bytes per gfn instead of 4 bytes per gfn.
282 *
283 * Indirect upper-level shadow pages are tracked for write-protection via
284 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
285 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
286 * gfn_track will overflow and explosions will ensure.
287 *
288 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
289 * cannot be reused. The ability to reuse a SP is tracked by its role, which
290 * incorporates various mode bits and properties of the SP. Roughly speaking,
291 * the number of unique SPs that can theoretically be created is 2^n, where n
292 * is the number of bits that are used to compute the role.
293 *
294 * But, even though there are 18 bits in the mask below, not all combinations
295 * of modes and flags are possible. The maximum number of possible upper-level
296 * shadow pages for a single gfn is in the neighborhood of 2^13.
297 *
298 * - invalid shadow pages are not accounted.
299 * - level is effectively limited to four combinations, not 16 as the number
300 * bits would imply, as 4k SPs are not tracked (allowed to go unsync).
301 * - level is effectively unused for non-PAE paging because there is exactly
302 * one upper level (see 4k SP exception above).
303 * - quadrant is used only for non-PAE paging and is exclusive with
304 * gpte_is_8_bytes.
305 * - execonly and ad_disabled are used only for nested EPT, which makes it
306 * exclusive with quadrant.
307 */
308 union kvm_mmu_page_role {
309 u32 word;
310 struct {
311 unsigned level:4;
312 unsigned gpte_is_8_bytes:1;
313 unsigned quadrant:2;
314 unsigned direct:1;
315 unsigned access:3;
316 unsigned invalid:1;
317 unsigned efer_nx:1;
318 unsigned cr0_wp:1;
319 unsigned smep_andnot_wp:1;
320 unsigned smap_andnot_wp:1;
321 unsigned ad_disabled:1;
322 unsigned guest_mode:1;
323 unsigned :6;
324
325 /*
326 * This is left at the top of the word so that
327 * kvm_memslots_for_spte_role can extract it with a
328 * simple shift. While there is room, give it a whole
329 * byte so it is also faster to load it from memory.
330 */
331 unsigned smm:8;
332 };
333 };
334
335 /*
336 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
337 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
338 * including on nested transitions, if nothing in the full role changes then
339 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
340 * don't treat all-zero structure as valid data.
341 *
342 * The properties that are tracked in the extended role but not the page role
343 * are for things that either (a) do not affect the validity of the shadow page
344 * or (b) are indirectly reflected in the shadow page's role. For example,
345 * CR4.PKE only affects permission checks for software walks of the guest page
346 * tables (because KVM doesn't support Protection Keys with shadow paging), and
347 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
348 *
349 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
350 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
351 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
352 * SMAP aware regardless of CR0.WP.
353 */
354 union kvm_mmu_extended_role {
355 u32 word;
356 struct {
357 unsigned int valid:1;
358 unsigned int execonly:1;
359 unsigned int cr0_pg:1;
360 unsigned int cr4_pae:1;
361 unsigned int cr4_pse:1;
362 unsigned int cr4_pke:1;
363 unsigned int cr4_smap:1;
364 unsigned int cr4_smep:1;
365 unsigned int cr4_la57:1;
366 unsigned int efer_lma:1;
367 };
368 };
369
370 union kvm_mmu_role {
371 u64 as_u64;
372 struct {
373 union kvm_mmu_page_role base;
374 union kvm_mmu_extended_role ext;
375 };
376 };
377
378 struct kvm_rmap_head {
379 unsigned long val;
380 };
381
382 struct kvm_pio_request {
383 unsigned long linear_rip;
384 unsigned long count;
385 int in;
386 int port;
387 int size;
388 };
389
390 #define PT64_ROOT_MAX_LEVEL 5
391
392 struct rsvd_bits_validate {
393 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
394 u64 bad_mt_xwr;
395 };
396
397 struct kvm_mmu_root_info {
398 gpa_t pgd;
399 hpa_t hpa;
400 };
401
402 #define KVM_MMU_ROOT_INFO_INVALID \
403 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
404
405 #define KVM_MMU_NUM_PREV_ROOTS 3
406
407 #define KVM_HAVE_MMU_RWLOCK
408
409 struct kvm_mmu_page;
410 struct kvm_page_fault;
411
412 /*
413 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
414 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
415 * current mmu mode.
416 */
417 struct kvm_mmu {
418 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
419 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
420 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
421 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
422 struct x86_exception *fault);
423 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t gva_or_gpa,
424 u32 access, struct x86_exception *exception);
425 gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
426 struct x86_exception *exception);
427 int (*sync_page)(struct kvm_vcpu *vcpu,
428 struct kvm_mmu_page *sp);
429 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
430 hpa_t root_hpa;
431 gpa_t root_pgd;
432 union kvm_mmu_role mmu_role;
433 u8 root_level;
434 u8 shadow_root_level;
435 u8 ept_ad;
436 bool direct_map;
437 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
438
439 /*
440 * Bitmap; bit set = permission fault
441 * Byte index: page fault error code [4:1]
442 * Bit index: pte permissions in ACC_* format
443 */
444 u8 permissions[16];
445
446 /*
447 * The pkru_mask indicates if protection key checks are needed. It
448 * consists of 16 domains indexed by page fault error code bits [4:1],
449 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
450 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
451 */
452 u32 pkru_mask;
453
454 u64 *pae_root;
455 u64 *pml4_root;
456 u64 *pml5_root;
457
458 /*
459 * check zero bits on shadow page table entries, these
460 * bits include not only hardware reserved bits but also
461 * the bits spte never used.
462 */
463 struct rsvd_bits_validate shadow_zero_check;
464
465 struct rsvd_bits_validate guest_rsvd_check;
466
467 u64 pdptrs[4]; /* pae */
468 };
469
470 struct kvm_tlb_range {
471 u64 start_gfn;
472 u64 pages;
473 };
474
475 enum pmc_type {
476 KVM_PMC_GP = 0,
477 KVM_PMC_FIXED,
478 };
479
480 struct kvm_pmc {
481 enum pmc_type type;
482 u8 idx;
483 u64 counter;
484 u64 eventsel;
485 struct perf_event *perf_event;
486 struct kvm_vcpu *vcpu;
487 /*
488 * eventsel value for general purpose counters,
489 * ctrl value for fixed counters.
490 */
491 u64 current_config;
492 bool is_paused;
493 };
494
495 struct kvm_pmu {
496 unsigned nr_arch_gp_counters;
497 unsigned nr_arch_fixed_counters;
498 unsigned available_event_types;
499 u64 fixed_ctr_ctrl;
500 u64 global_ctrl;
501 u64 global_status;
502 u64 counter_bitmask[2];
503 u64 global_ctrl_mask;
504 u64 global_ovf_ctrl_mask;
505 u64 reserved_bits;
506 u8 version;
507 struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];
508 struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];
509 struct irq_work irq_work;
510 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
511 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
512 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
513
514 /*
515 * The gate to release perf_events not marked in
516 * pmc_in_use only once in a vcpu time slice.
517 */
518 bool need_cleanup;
519
520 /*
521 * The total number of programmed perf_events and it helps to avoid
522 * redundant check before cleanup if guest don't use vPMU at all.
523 */
524 u8 event_count;
525 };
526
527 struct kvm_pmu_ops;
528
529 enum {
530 KVM_DEBUGREG_BP_ENABLED = 1,
531 KVM_DEBUGREG_WONT_EXIT = 2,
532 };
533
534 struct kvm_mtrr_range {
535 u64 base;
536 u64 mask;
537 struct list_head node;
538 };
539
540 struct kvm_mtrr {
541 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
542 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
543 u64 deftype;
544
545 struct list_head head;
546 };
547
548 /* Hyper-V SynIC timer */
549 struct kvm_vcpu_hv_stimer {
550 struct hrtimer timer;
551 int index;
552 union hv_stimer_config config;
553 u64 count;
554 u64 exp_time;
555 struct hv_message msg;
556 bool msg_pending;
557 };
558
559 /* Hyper-V synthetic interrupt controller (SynIC)*/
560 struct kvm_vcpu_hv_synic {
561 u64 version;
562 u64 control;
563 u64 msg_page;
564 u64 evt_page;
565 atomic64_t sint[HV_SYNIC_SINT_COUNT];
566 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
567 DECLARE_BITMAP(auto_eoi_bitmap, 256);
568 DECLARE_BITMAP(vec_bitmap, 256);
569 bool active;
570 bool dont_zero_synic_pages;
571 };
572
573 /* Hyper-V per vcpu emulation context */
574 struct kvm_vcpu_hv {
575 struct kvm_vcpu *vcpu;
576 u32 vp_index;
577 u64 hv_vapic;
578 s64 runtime_offset;
579 struct kvm_vcpu_hv_synic synic;
580 struct kvm_hyperv_exit exit;
581 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
582 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
583 bool enforce_cpuid;
584 struct {
585 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
586 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
587 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
588 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
589 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
590 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
591 } cpuid_cache;
592 };
593
594 /* Xen HVM per vcpu emulation context */
595 struct kvm_vcpu_xen {
596 u64 hypercall_rip;
597 u32 current_runstate;
598 bool vcpu_info_set;
599 bool vcpu_time_info_set;
600 bool runstate_set;
601 struct gfn_to_hva_cache vcpu_info_cache;
602 struct gfn_to_hva_cache vcpu_time_info_cache;
603 struct gfn_to_hva_cache runstate_cache;
604 u64 last_steal;
605 u64 runstate_entry_time;
606 u64 runstate_times[4];
607 };
608
609 struct kvm_vcpu_arch {
610 /*
611 * rip and regs accesses must go through
612 * kvm_{register,rip}_{read,write} functions.
613 */
614 unsigned long regs[NR_VCPU_REGS];
615 u32 regs_avail;
616 u32 regs_dirty;
617
618 unsigned long cr0;
619 unsigned long cr0_guest_owned_bits;
620 unsigned long cr2;
621 unsigned long cr3;
622 unsigned long cr4;
623 unsigned long cr4_guest_owned_bits;
624 unsigned long cr4_guest_rsvd_bits;
625 unsigned long cr8;
626 u32 host_pkru;
627 u32 pkru;
628 u32 hflags;
629 u64 efer;
630 u64 apic_base;
631 struct kvm_lapic *apic; /* kernel irqchip context */
632 bool apicv_active;
633 bool load_eoi_exitmap_pending;
634 DECLARE_BITMAP(ioapic_handled_vectors, 256);
635 unsigned long apic_attention;
636 int32_t apic_arb_prio;
637 int mp_state;
638 u64 ia32_misc_enable_msr;
639 u64 smbase;
640 u64 smi_count;
641 bool tpr_access_reporting;
642 bool xsaves_enabled;
643 u64 ia32_xss;
644 u64 microcode_version;
645 u64 arch_capabilities;
646 u64 perf_capabilities;
647
648 /*
649 * Paging state of the vcpu
650 *
651 * If the vcpu runs in guest mode with two level paging this still saves
652 * the paging mode of the l1 guest. This context is always used to
653 * handle faults.
654 */
655 struct kvm_mmu *mmu;
656
657 /* Non-nested MMU for L1 */
658 struct kvm_mmu root_mmu;
659
660 /* L1 MMU when running nested */
661 struct kvm_mmu guest_mmu;
662
663 /*
664 * Paging state of an L2 guest (used for nested npt)
665 *
666 * This context will save all necessary information to walk page tables
667 * of an L2 guest. This context is only initialized for page table
668 * walking and not for faulting since we never handle l2 page faults on
669 * the host.
670 */
671 struct kvm_mmu nested_mmu;
672
673 /*
674 * Pointer to the mmu context currently used for
675 * gva_to_gpa translations.
676 */
677 struct kvm_mmu *walk_mmu;
678
679 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
680 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
681 struct kvm_mmu_memory_cache mmu_gfn_array_cache;
682 struct kvm_mmu_memory_cache mmu_page_header_cache;
683
684 /*
685 * QEMU userspace and the guest each have their own FPU state.
686 * In vcpu_run, we switch between the user and guest FPU contexts.
687 * While running a VCPU, the VCPU thread will have the guest FPU
688 * context.
689 *
690 * Note that while the PKRU state lives inside the fpu registers,
691 * it is switched out separately at VMENTER and VMEXIT time. The
692 * "guest_fpstate" state here contains the guest FPU context, with the
693 * host PRKU bits.
694 */
695 struct fpu_guest guest_fpu;
696
697 u64 xcr0;
698 u64 guest_supported_xcr0;
699
700 struct kvm_pio_request pio;
701 void *pio_data;
702 void *sev_pio_data;
703 unsigned sev_pio_count;
704
705 u8 event_exit_inst_len;
706
707 struct kvm_queued_exception {
708 bool pending;
709 bool injected;
710 bool has_error_code;
711 u8 nr;
712 u32 error_code;
713 unsigned long payload;
714 bool has_payload;
715 u8 nested_apf;
716 } exception;
717
718 struct kvm_queued_interrupt {
719 bool injected;
720 bool soft;
721 u8 nr;
722 } interrupt;
723
724 int halt_request; /* real mode on Intel only */
725
726 int cpuid_nent;
727 struct kvm_cpuid_entry2 *cpuid_entries;
728 u32 kvm_cpuid_base;
729
730 u64 reserved_gpa_bits;
731 int maxphyaddr;
732
733 /* emulate context */
734
735 struct x86_emulate_ctxt *emulate_ctxt;
736 bool emulate_regs_need_sync_to_vcpu;
737 bool emulate_regs_need_sync_from_vcpu;
738 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
739
740 gpa_t time;
741 struct pvclock_vcpu_time_info hv_clock;
742 unsigned int hw_tsc_khz;
743 struct gfn_to_hva_cache pv_time;
744 bool pv_time_enabled;
745 /* set guest stopped flag in pvclock flags field */
746 bool pvclock_set_guest_stopped_request;
747
748 struct {
749 u8 preempted;
750 u64 msr_val;
751 u64 last_steal;
752 struct gfn_to_hva_cache cache;
753 } st;
754
755 u64 l1_tsc_offset;
756 u64 tsc_offset; /* current tsc offset */
757 u64 last_guest_tsc;
758 u64 last_host_tsc;
759 u64 tsc_offset_adjustment;
760 u64 this_tsc_nsec;
761 u64 this_tsc_write;
762 u64 this_tsc_generation;
763 bool tsc_catchup;
764 bool tsc_always_catchup;
765 s8 virtual_tsc_shift;
766 u32 virtual_tsc_mult;
767 u32 virtual_tsc_khz;
768 s64 ia32_tsc_adjust_msr;
769 u64 msr_ia32_power_ctl;
770 u64 l1_tsc_scaling_ratio;
771 u64 tsc_scaling_ratio; /* current scaling ratio */
772
773 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
774 unsigned nmi_pending; /* NMI queued after currently running handler */
775 bool nmi_injected; /* Trying to inject an NMI this entry */
776 bool smi_pending; /* SMI queued after currently running handler */
777
778 struct kvm_mtrr mtrr_state;
779 u64 pat;
780
781 unsigned switch_db_regs;
782 unsigned long db[KVM_NR_DB_REGS];
783 unsigned long dr6;
784 unsigned long dr7;
785 unsigned long eff_db[KVM_NR_DB_REGS];
786 unsigned long guest_debug_dr7;
787 u64 msr_platform_info;
788 u64 msr_misc_features_enables;
789
790 u64 mcg_cap;
791 u64 mcg_status;
792 u64 mcg_ctl;
793 u64 mcg_ext_ctl;
794 u64 *mce_banks;
795
796 /* Cache MMIO info */
797 u64 mmio_gva;
798 unsigned mmio_access;
799 gfn_t mmio_gfn;
800 u64 mmio_gen;
801
802 struct kvm_pmu pmu;
803
804 /* used for guest single stepping over the given code position */
805 unsigned long singlestep_rip;
806
807 bool hyperv_enabled;
808 struct kvm_vcpu_hv *hyperv;
809 struct kvm_vcpu_xen xen;
810
811 cpumask_var_t wbinvd_dirty_mask;
812
813 unsigned long last_retry_eip;
814 unsigned long last_retry_addr;
815
816 struct {
817 bool halted;
818 gfn_t gfns[ASYNC_PF_PER_VCPU];
819 struct gfn_to_hva_cache data;
820 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
821 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
822 u16 vec;
823 u32 id;
824 bool send_user_only;
825 u32 host_apf_flags;
826 unsigned long nested_apf_token;
827 bool delivery_as_pf_vmexit;
828 bool pageready_pending;
829 } apf;
830
831 /* OSVW MSRs (AMD only) */
832 struct {
833 u64 length;
834 u64 status;
835 } osvw;
836
837 struct {
838 u64 msr_val;
839 struct gfn_to_hva_cache data;
840 } pv_eoi;
841
842 u64 msr_kvm_poll_control;
843
844 /*
845 * Indicates the guest is trying to write a gfn that contains one or
846 * more of the PTEs used to translate the write itself, i.e. the access
847 * is changing its own translation in the guest page tables. KVM exits
848 * to userspace if emulation of the faulting instruction fails and this
849 * flag is set, as KVM cannot make forward progress.
850 *
851 * If emulation fails for a write to guest page tables, KVM unprotects
852 * (zaps) the shadow page for the target gfn and resumes the guest to
853 * retry the non-emulatable instruction (on hardware). Unprotecting the
854 * gfn doesn't allow forward progress for a self-changing access because
855 * doing so also zaps the translation for the gfn, i.e. retrying the
856 * instruction will hit a !PRESENT fault, which results in a new shadow
857 * page and sends KVM back to square one.
858 */
859 bool write_fault_to_shadow_pgtable;
860
861 /* set at EPT violation at this point */
862 unsigned long exit_qualification;
863
864 /* pv related host specific info */
865 struct {
866 bool pv_unhalted;
867 } pv;
868
869 int pending_ioapic_eoi;
870 int pending_external_vector;
871
872 /* be preempted when it's in kernel-mode(cpl=0) */
873 bool preempted_in_kernel;
874
875 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
876 bool l1tf_flush_l1d;
877
878 /* Host CPU on which VM-entry was most recently attempted */
879 int last_vmentry_cpu;
880
881 /* AMD MSRC001_0015 Hardware Configuration */
882 u64 msr_hwcr;
883
884 /* pv related cpuid info */
885 struct {
886 /*
887 * value of the eax register in the KVM_CPUID_FEATURES CPUID
888 * leaf.
889 */
890 u32 features;
891
892 /*
893 * indicates whether pv emulation should be disabled if features
894 * are not present in the guest's cpuid
895 */
896 bool enforce;
897 } pv_cpuid;
898
899 /* Protected Guests */
900 bool guest_state_protected;
901
902 /*
903 * Set when PDPTS were loaded directly by the userspace without
904 * reading the guest memory
905 */
906 bool pdptrs_from_userspace;
907
908 #if IS_ENABLED(CONFIG_HYPERV)
909 hpa_t hv_root_tdp;
910 #endif
911 };
912
913 struct kvm_lpage_info {
914 int disallow_lpage;
915 };
916
917 struct kvm_arch_memory_slot {
918 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
919 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
920 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
921 };
922
923 /*
924 * We use as the mode the number of bits allocated in the LDR for the
925 * logical processor ID. It happens that these are all powers of two.
926 * This makes it is very easy to detect cases where the APICs are
927 * configured for multiple modes; in that case, we cannot use the map and
928 * hence cannot use kvm_irq_delivery_to_apic_fast either.
929 */
930 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
931 #define KVM_APIC_MODE_XAPIC_FLAT 8
932 #define KVM_APIC_MODE_X2APIC 16
933
934 struct kvm_apic_map {
935 struct rcu_head rcu;
936 u8 mode;
937 u32 max_apic_id;
938 union {
939 struct kvm_lapic *xapic_flat_map[8];
940 struct kvm_lapic *xapic_cluster_map[16][4];
941 };
942 struct kvm_lapic *phys_map[];
943 };
944
945 /* Hyper-V synthetic debugger (SynDbg)*/
946 struct kvm_hv_syndbg {
947 struct {
948 u64 control;
949 u64 status;
950 u64 send_page;
951 u64 recv_page;
952 u64 pending_page;
953 } control;
954 u64 options;
955 };
956
957 /* Current state of Hyper-V TSC page clocksource */
958 enum hv_tsc_page_status {
959 /* TSC page was not set up or disabled */
960 HV_TSC_PAGE_UNSET = 0,
961 /* TSC page MSR was written by the guest, update pending */
962 HV_TSC_PAGE_GUEST_CHANGED,
963 /* TSC page MSR was written by KVM userspace, update pending */
964 HV_TSC_PAGE_HOST_CHANGED,
965 /* TSC page was properly set up and is currently active */
966 HV_TSC_PAGE_SET,
967 /* TSC page is currently being updated and therefore is inactive */
968 HV_TSC_PAGE_UPDATING,
969 /* TSC page was set up with an inaccessible GPA */
970 HV_TSC_PAGE_BROKEN,
971 };
972
973 /* Hyper-V emulation context */
974 struct kvm_hv {
975 struct mutex hv_lock;
976 u64 hv_guest_os_id;
977 u64 hv_hypercall;
978 u64 hv_tsc_page;
979 enum hv_tsc_page_status hv_tsc_page_status;
980
981 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
982 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
983 u64 hv_crash_ctl;
984
985 struct ms_hyperv_tsc_page tsc_ref;
986
987 struct idr conn_to_evt;
988
989 u64 hv_reenlightenment_control;
990 u64 hv_tsc_emulation_control;
991 u64 hv_tsc_emulation_status;
992
993 /* How many vCPUs have VP index != vCPU index */
994 atomic_t num_mismatched_vp_indexes;
995
996 /*
997 * How many SynICs use 'AutoEOI' feature
998 * (protected by arch.apicv_update_lock)
999 */
1000 unsigned int synic_auto_eoi_used;
1001
1002 struct hv_partition_assist_pg *hv_pa_pg;
1003 struct kvm_hv_syndbg hv_syndbg;
1004 };
1005
1006 struct msr_bitmap_range {
1007 u32 flags;
1008 u32 nmsrs;
1009 u32 base;
1010 unsigned long *bitmap;
1011 };
1012
1013 /* Xen emulation context */
1014 struct kvm_xen {
1015 bool long_mode;
1016 u8 upcall_vector;
1017 gfn_t shinfo_gfn;
1018 };
1019
1020 enum kvm_irqchip_mode {
1021 KVM_IRQCHIP_NONE,
1022 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1023 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1024 };
1025
1026 struct kvm_x86_msr_filter {
1027 u8 count;
1028 bool default_allow:1;
1029 struct msr_bitmap_range ranges[16];
1030 };
1031
1032 #define APICV_INHIBIT_REASON_DISABLE 0
1033 #define APICV_INHIBIT_REASON_HYPERV 1
1034 #define APICV_INHIBIT_REASON_NESTED 2
1035 #define APICV_INHIBIT_REASON_IRQWIN 3
1036 #define APICV_INHIBIT_REASON_PIT_REINJ 4
1037 #define APICV_INHIBIT_REASON_X2APIC 5
1038 #define APICV_INHIBIT_REASON_BLOCKIRQ 6
1039 #define APICV_INHIBIT_REASON_ABSENT 7
1040
1041 struct kvm_arch {
1042 unsigned long n_used_mmu_pages;
1043 unsigned long n_requested_mmu_pages;
1044 unsigned long n_max_mmu_pages;
1045 unsigned int indirect_shadow_pages;
1046 u8 mmu_valid_gen;
1047 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1048 struct list_head active_mmu_pages;
1049 struct list_head zapped_obsolete_pages;
1050 struct list_head lpage_disallowed_mmu_pages;
1051 struct kvm_page_track_notifier_node mmu_sp_tracker;
1052 struct kvm_page_track_notifier_head track_notifier_head;
1053 /*
1054 * Protects marking pages unsync during page faults, as TDP MMU page
1055 * faults only take mmu_lock for read. For simplicity, the unsync
1056 * pages lock is always taken when marking pages unsync regardless of
1057 * whether mmu_lock is held for read or write.
1058 */
1059 spinlock_t mmu_unsync_pages_lock;
1060
1061 struct list_head assigned_dev_head;
1062 struct iommu_domain *iommu_domain;
1063 bool iommu_noncoherent;
1064 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1065 atomic_t noncoherent_dma_count;
1066 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1067 atomic_t assigned_device_count;
1068 struct kvm_pic *vpic;
1069 struct kvm_ioapic *vioapic;
1070 struct kvm_pit *vpit;
1071 atomic_t vapics_in_nmi_mode;
1072 struct mutex apic_map_lock;
1073 struct kvm_apic_map __rcu *apic_map;
1074 atomic_t apic_map_dirty;
1075
1076 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1077 struct rw_semaphore apicv_update_lock;
1078
1079 bool apic_access_memslot_enabled;
1080 unsigned long apicv_inhibit_reasons;
1081
1082 gpa_t wall_clock;
1083
1084 bool mwait_in_guest;
1085 bool hlt_in_guest;
1086 bool pause_in_guest;
1087 bool cstate_in_guest;
1088
1089 unsigned long irq_sources_bitmap;
1090 s64 kvmclock_offset;
1091
1092 /*
1093 * This also protects nr_vcpus_matched_tsc which is read from a
1094 * preemption-disabled region, so it must be a raw spinlock.
1095 */
1096 raw_spinlock_t tsc_write_lock;
1097 u64 last_tsc_nsec;
1098 u64 last_tsc_write;
1099 u32 last_tsc_khz;
1100 u64 last_tsc_offset;
1101 u64 cur_tsc_nsec;
1102 u64 cur_tsc_write;
1103 u64 cur_tsc_offset;
1104 u64 cur_tsc_generation;
1105 int nr_vcpus_matched_tsc;
1106
1107 seqcount_raw_spinlock_t pvclock_sc;
1108 bool use_master_clock;
1109 u64 master_kernel_ns;
1110 u64 master_cycle_now;
1111 struct delayed_work kvmclock_update_work;
1112 struct delayed_work kvmclock_sync_work;
1113
1114 struct kvm_xen_hvm_config xen_hvm_config;
1115
1116 /* reads protected by irq_srcu, writes by irq_lock */
1117 struct hlist_head mask_notifier_list;
1118
1119 struct kvm_hv hyperv;
1120 struct kvm_xen xen;
1121
1122 #ifdef CONFIG_KVM_MMU_AUDIT
1123 int audit_point;
1124 #endif
1125
1126 bool backwards_tsc_observed;
1127 bool boot_vcpu_runs_old_kvmclock;
1128 u32 bsp_vcpu_id;
1129
1130 u64 disabled_quirks;
1131 int cpu_dirty_logging_count;
1132
1133 enum kvm_irqchip_mode irqchip_mode;
1134 u8 nr_reserved_ioapic_pins;
1135
1136 bool disabled_lapic_found;
1137
1138 bool x2apic_format;
1139 bool x2apic_broadcast_quirk_disabled;
1140
1141 bool guest_can_read_msr_platform_info;
1142 bool exception_payload_enabled;
1143
1144 bool bus_lock_detection_enabled;
1145 /*
1146 * If exit_on_emulation_error is set, and the in-kernel instruction
1147 * emulator fails to emulate an instruction, allow userspace
1148 * the opportunity to look at it.
1149 */
1150 bool exit_on_emulation_error;
1151
1152 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1153 u32 user_space_msr_mask;
1154 struct kvm_x86_msr_filter __rcu *msr_filter;
1155
1156 u32 hypercall_exit_enabled;
1157
1158 /* Guest can access the SGX PROVISIONKEY. */
1159 bool sgx_provisioning_allowed;
1160
1161 struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1162 struct task_struct *nx_lpage_recovery_thread;
1163
1164 #ifdef CONFIG_X86_64
1165 /*
1166 * Whether the TDP MMU is enabled for this VM. This contains a
1167 * snapshot of the TDP MMU module parameter from when the VM was
1168 * created and remains unchanged for the life of the VM. If this is
1169 * true, TDP MMU handler functions will run for various MMU
1170 * operations.
1171 */
1172 bool tdp_mmu_enabled;
1173
1174 /*
1175 * List of struct kvm_mmu_pages being used as roots.
1176 * All struct kvm_mmu_pages in the list should have
1177 * tdp_mmu_page set.
1178 *
1179 * For reads, this list is protected by:
1180 * the MMU lock in read mode + RCU or
1181 * the MMU lock in write mode
1182 *
1183 * For writes, this list is protected by:
1184 * the MMU lock in read mode + the tdp_mmu_pages_lock or
1185 * the MMU lock in write mode
1186 *
1187 * Roots will remain in the list until their tdp_mmu_root_count
1188 * drops to zero, at which point the thread that decremented the
1189 * count to zero should removed the root from the list and clean
1190 * it up, freeing the root after an RCU grace period.
1191 */
1192 struct list_head tdp_mmu_roots;
1193
1194 /*
1195 * List of struct kvmp_mmu_pages not being used as roots.
1196 * All struct kvm_mmu_pages in the list should have
1197 * tdp_mmu_page set and a tdp_mmu_root_count of 0.
1198 */
1199 struct list_head tdp_mmu_pages;
1200
1201 /*
1202 * Protects accesses to the following fields when the MMU lock
1203 * is held in read mode:
1204 * - tdp_mmu_roots (above)
1205 * - tdp_mmu_pages (above)
1206 * - the link field of struct kvm_mmu_pages used by the TDP MMU
1207 * - lpage_disallowed_mmu_pages
1208 * - the lpage_disallowed_link field of struct kvm_mmu_pages used
1209 * by the TDP MMU
1210 * It is acceptable, but not necessary, to acquire this lock when
1211 * the thread holds the MMU lock in write mode.
1212 */
1213 spinlock_t tdp_mmu_pages_lock;
1214 #endif /* CONFIG_X86_64 */
1215
1216 /*
1217 * If set, at least one shadow root has been allocated. This flag
1218 * is used as one input when determining whether certain memslot
1219 * related allocations are necessary.
1220 */
1221 bool shadow_root_allocated;
1222
1223 #if IS_ENABLED(CONFIG_HYPERV)
1224 hpa_t hv_root_tdp;
1225 spinlock_t hv_root_tdp_lock;
1226 #endif
1227 };
1228
1229 struct kvm_vm_stat {
1230 struct kvm_vm_stat_generic generic;
1231 u64 mmu_shadow_zapped;
1232 u64 mmu_pte_write;
1233 u64 mmu_pde_zapped;
1234 u64 mmu_flooded;
1235 u64 mmu_recycled;
1236 u64 mmu_cache_miss;
1237 u64 mmu_unsync;
1238 union {
1239 struct {
1240 atomic64_t pages_4k;
1241 atomic64_t pages_2m;
1242 atomic64_t pages_1g;
1243 };
1244 atomic64_t pages[KVM_NR_PAGE_SIZES];
1245 };
1246 u64 nx_lpage_splits;
1247 u64 max_mmu_page_hash_collisions;
1248 u64 max_mmu_rmap_size;
1249 };
1250
1251 struct kvm_vcpu_stat {
1252 struct kvm_vcpu_stat_generic generic;
1253 u64 pf_fixed;
1254 u64 pf_guest;
1255 u64 tlb_flush;
1256 u64 invlpg;
1257
1258 u64 exits;
1259 u64 io_exits;
1260 u64 mmio_exits;
1261 u64 signal_exits;
1262 u64 irq_window_exits;
1263 u64 nmi_window_exits;
1264 u64 l1d_flush;
1265 u64 halt_exits;
1266 u64 request_irq_exits;
1267 u64 irq_exits;
1268 u64 host_state_reload;
1269 u64 fpu_reload;
1270 u64 insn_emulation;
1271 u64 insn_emulation_fail;
1272 u64 hypercalls;
1273 u64 irq_injections;
1274 u64 nmi_injections;
1275 u64 req_event;
1276 u64 nested_run;
1277 u64 directed_yield_attempted;
1278 u64 directed_yield_successful;
1279 u64 guest_mode;
1280 };
1281
1282 struct x86_instruction_info;
1283
1284 struct msr_data {
1285 bool host_initiated;
1286 u32 index;
1287 u64 data;
1288 };
1289
1290 struct kvm_lapic_irq {
1291 u32 vector;
1292 u16 delivery_mode;
1293 u16 dest_mode;
1294 bool level;
1295 u16 trig_mode;
1296 u32 shorthand;
1297 u32 dest_id;
1298 bool msi_redir_hint;
1299 };
1300
kvm_lapic_irq_dest_mode(bool dest_mode_logical)1301 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1302 {
1303 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1304 }
1305
1306 struct kvm_x86_ops {
1307 const char *name;
1308
1309 int (*hardware_enable)(void);
1310 void (*hardware_disable)(void);
1311 void (*hardware_unsetup)(void);
1312 bool (*cpu_has_accelerated_tpr)(void);
1313 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1314 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1315
1316 unsigned int vm_size;
1317 int (*vm_init)(struct kvm *kvm);
1318 void (*vm_destroy)(struct kvm *kvm);
1319
1320 /* Create, but do not attach this VCPU */
1321 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1322 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1323 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1324
1325 void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);
1326 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1327 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1328
1329 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1330 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1331 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1332 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1333 void (*get_segment)(struct kvm_vcpu *vcpu,
1334 struct kvm_segment *var, int seg);
1335 int (*get_cpl)(struct kvm_vcpu *vcpu);
1336 void (*set_segment)(struct kvm_vcpu *vcpu,
1337 struct kvm_segment *var, int seg);
1338 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1339 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1340 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1341 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1342 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1343 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1344 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1345 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1346 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1347 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1348 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1349 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1350 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1351 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1352 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1353
1354 void (*tlb_flush_all)(struct kvm_vcpu *vcpu);
1355 void (*tlb_flush_current)(struct kvm_vcpu *vcpu);
1356 int (*tlb_remote_flush)(struct kvm *kvm);
1357 int (*tlb_remote_flush_with_range)(struct kvm *kvm,
1358 struct kvm_tlb_range *range);
1359
1360 /*
1361 * Flush any TLB entries associated with the given GVA.
1362 * Does not need to flush GPA->HPA mappings.
1363 * Can potentially get non-canonical addresses through INVLPGs, which
1364 * the implementation may choose to ignore if appropriate.
1365 */
1366 void (*tlb_flush_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1367
1368 /*
1369 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1370 * does not need to flush GPA->HPA mappings.
1371 */
1372 void (*tlb_flush_guest)(struct kvm_vcpu *vcpu);
1373
1374 enum exit_fastpath_completion (*run)(struct kvm_vcpu *vcpu);
1375 int (*handle_exit)(struct kvm_vcpu *vcpu,
1376 enum exit_fastpath_completion exit_fastpath);
1377 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1378 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1379 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1380 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1381 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1382 unsigned char *hypercall_addr);
1383 void (*set_irq)(struct kvm_vcpu *vcpu);
1384 void (*set_nmi)(struct kvm_vcpu *vcpu);
1385 void (*queue_exception)(struct kvm_vcpu *vcpu);
1386 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1387 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1388 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1389 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1390 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1391 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1392 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1393 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1394 bool (*check_apicv_inhibit_reasons)(ulong bit);
1395 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1396 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1397 void (*hwapic_isr_update)(struct kvm_vcpu *vcpu, int isr);
1398 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1399 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1400 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1401 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1402 int (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);
1403 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1404 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1405 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1406 u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1407
1408 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1409 int root_level);
1410
1411 bool (*has_wbinvd_exit)(void);
1412
1413 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1414 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1415 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1416 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1417
1418 /*
1419 * Retrieve somewhat arbitrary exit information. Intended to
1420 * be used only from within tracepoints or error paths.
1421 */
1422 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1423 u64 *info1, u64 *info2,
1424 u32 *exit_int_info, u32 *exit_int_info_err_code);
1425
1426 int (*check_intercept)(struct kvm_vcpu *vcpu,
1427 struct x86_instruction_info *info,
1428 enum x86_intercept_stage stage,
1429 struct x86_exception *exception);
1430 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1431
1432 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1433
1434 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1435
1436 /*
1437 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1438 * value indicates CPU dirty logging is unsupported or disabled.
1439 */
1440 int cpu_dirty_log_size;
1441 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1442
1443 /* pmu operations of sub-arch */
1444 const struct kvm_pmu_ops *pmu_ops;
1445 const struct kvm_x86_nested_ops *nested_ops;
1446
1447 /*
1448 * Architecture specific hooks for vCPU blocking due to
1449 * HLT instruction.
1450 * Returns for .pre_block():
1451 * - 0 means continue to block the vCPU.
1452 * - 1 means we cannot block the vCPU since some event
1453 * happens during this period, such as, 'ON' bit in
1454 * posted-interrupts descriptor is set.
1455 */
1456 int (*pre_block)(struct kvm_vcpu *vcpu);
1457 void (*post_block)(struct kvm_vcpu *vcpu);
1458
1459 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1460 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1461
1462 int (*update_pi_irte)(struct kvm *kvm, unsigned int host_irq,
1463 uint32_t guest_irq, bool set);
1464 void (*start_assignment)(struct kvm *kvm);
1465 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1466 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1467
1468 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1469 bool *expired);
1470 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1471
1472 void (*setup_mce)(struct kvm_vcpu *vcpu);
1473
1474 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1475 int (*enter_smm)(struct kvm_vcpu *vcpu, char *smstate);
1476 int (*leave_smm)(struct kvm_vcpu *vcpu, const char *smstate);
1477 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1478
1479 int (*mem_enc_op)(struct kvm *kvm, void __user *argp);
1480 int (*mem_enc_reg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1481 int (*mem_enc_unreg_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1482 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1483 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1484
1485 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1486
1487 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, void *insn, int insn_len);
1488
1489 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1490 int (*enable_direct_tlbflush)(struct kvm_vcpu *vcpu);
1491
1492 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1493 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1494 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1495
1496 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1497 };
1498
1499 struct kvm_x86_nested_ops {
1500 int (*check_events)(struct kvm_vcpu *vcpu);
1501 bool (*hv_timer_pending)(struct kvm_vcpu *vcpu);
1502 void (*triple_fault)(struct kvm_vcpu *vcpu);
1503 int (*get_state)(struct kvm_vcpu *vcpu,
1504 struct kvm_nested_state __user *user_kvm_nested_state,
1505 unsigned user_data_size);
1506 int (*set_state)(struct kvm_vcpu *vcpu,
1507 struct kvm_nested_state __user *user_kvm_nested_state,
1508 struct kvm_nested_state *kvm_state);
1509 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1510 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1511
1512 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1513 uint16_t *vmcs_version);
1514 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1515 };
1516
1517 struct kvm_x86_init_ops {
1518 int (*cpu_has_kvm_support)(void);
1519 int (*disabled_by_bios)(void);
1520 int (*check_processor_compatibility)(void);
1521 int (*hardware_setup)(void);
1522
1523 struct kvm_x86_ops *runtime_ops;
1524 };
1525
1526 struct kvm_arch_async_pf {
1527 u32 token;
1528 gfn_t gfn;
1529 unsigned long cr3;
1530 bool direct_map;
1531 };
1532
1533 extern u32 __read_mostly kvm_nr_uret_msrs;
1534 extern u64 __read_mostly host_efer;
1535 extern bool __read_mostly allow_smaller_maxphyaddr;
1536 extern bool __read_mostly enable_apicv;
1537 extern struct kvm_x86_ops kvm_x86_ops;
1538
1539 #define KVM_X86_OP(func) \
1540 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1541 #define KVM_X86_OP_NULL KVM_X86_OP
1542 #include <asm/kvm-x86-ops.h>
1543
kvm_ops_static_call_update(void)1544 static inline void kvm_ops_static_call_update(void)
1545 {
1546 #define KVM_X86_OP(func) \
1547 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
1548 #define KVM_X86_OP_NULL KVM_X86_OP
1549 #include <asm/kvm-x86-ops.h>
1550 }
1551
1552 #define __KVM_HAVE_ARCH_VM_ALLOC
kvm_arch_alloc_vm(void)1553 static inline struct kvm *kvm_arch_alloc_vm(void)
1554 {
1555 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1556 }
1557
1558 #define __KVM_HAVE_ARCH_VM_FREE
1559 void kvm_arch_free_vm(struct kvm *kvm);
1560
1561 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1562 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1563 {
1564 if (kvm_x86_ops.tlb_remote_flush &&
1565 !static_call(kvm_x86_tlb_remote_flush)(kvm))
1566 return 0;
1567 else
1568 return -ENOTSUPP;
1569 }
1570
1571 int kvm_mmu_module_init(void);
1572 void kvm_mmu_module_exit(void);
1573
1574 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1575 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1576 void kvm_mmu_init_vm(struct kvm *kvm);
1577 void kvm_mmu_uninit_vm(struct kvm *kvm);
1578
1579 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1580 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1581 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1582 const struct kvm_memory_slot *memslot,
1583 int start_level);
1584 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1585 const struct kvm_memory_slot *memslot);
1586 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1587 const struct kvm_memory_slot *memslot);
1588 void kvm_mmu_zap_all(struct kvm *kvm);
1589 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1590 unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm);
1591 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1592
1593 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);
1594
1595 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1596 const void *val, int bytes);
1597
1598 struct kvm_irq_mask_notifier {
1599 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1600 int irq;
1601 struct hlist_node link;
1602 };
1603
1604 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1605 struct kvm_irq_mask_notifier *kimn);
1606 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1607 struct kvm_irq_mask_notifier *kimn);
1608 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1609 bool mask);
1610
1611 extern bool tdp_enabled;
1612
1613 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1614
1615 /* control of guest tsc rate supported? */
1616 extern bool kvm_has_tsc_control;
1617 /* maximum supported tsc_khz for guests */
1618 extern u32 kvm_max_guest_tsc_khz;
1619 /* number of bits of the fractional part of the TSC scaling ratio */
1620 extern u8 kvm_tsc_scaling_ratio_frac_bits;
1621 /* maximum allowed value of TSC scaling ratio */
1622 extern u64 kvm_max_tsc_scaling_ratio;
1623 /* 1ull << kvm_tsc_scaling_ratio_frac_bits */
1624 extern u64 kvm_default_tsc_scaling_ratio;
1625 /* bus lock detection supported? */
1626 extern bool kvm_has_bus_lock_exit;
1627
1628 extern u64 kvm_mce_cap_supported;
1629
1630 /*
1631 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1632 * userspace I/O) to indicate that the emulation context
1633 * should be reused as is, i.e. skip initialization of
1634 * emulation context, instruction fetch and decode.
1635 *
1636 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1637 * Indicates that only select instructions (tagged with
1638 * EmulateOnUD) should be emulated (to minimize the emulator
1639 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1640 *
1641 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1642 * decode the instruction length. For use *only* by
1643 * kvm_x86_ops.skip_emulated_instruction() implementations.
1644 *
1645 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1646 * retry native execution under certain conditions,
1647 * Can only be set in conjunction with EMULTYPE_PF.
1648 *
1649 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1650 * triggered by KVM's magic "force emulation" prefix,
1651 * which is opt in via module param (off by default).
1652 * Bypasses EmulateOnUD restriction despite emulating
1653 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1654 * Used to test the full emulator from userspace.
1655 *
1656 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1657 * backdoor emulation, which is opt in via module param.
1658 * VMware backdoor emulation handles select instructions
1659 * and reinjects the #GP for all other cases.
1660 *
1661 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1662 * case the CR2/GPA value pass on the stack is valid.
1663 */
1664 #define EMULTYPE_NO_DECODE (1 << 0)
1665 #define EMULTYPE_TRAP_UD (1 << 1)
1666 #define EMULTYPE_SKIP (1 << 2)
1667 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
1668 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
1669 #define EMULTYPE_VMWARE_GP (1 << 5)
1670 #define EMULTYPE_PF (1 << 6)
1671
1672 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1673 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1674 void *insn, int insn_len);
1675 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1676 u64 *data, u8 ndata);
1677 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1678
1679 void kvm_enable_efer_bits(u64);
1680 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1681 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1682 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1683 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1684 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1685 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1686 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1687 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1688 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1689 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1690 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1691
1692 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1693 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1694 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1695 int kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1696 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1697 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1698
1699 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1700 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1701 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1702
1703 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1704 int reason, bool has_error_code, u32 error_code);
1705
1706 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1707 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1708 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1709 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1710 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1711 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1712 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1713 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1714 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1715 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1716 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);
1717 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1718
1719 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1720 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1721
1722 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1723 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1724 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1725
1726 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1727 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1728 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1729 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1730 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1731 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1732 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1733 struct x86_exception *fault);
1734 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1735 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1736
__kvm_irq_line_state(unsigned long * irq_state,int irq_source_id,int level)1737 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1738 int irq_source_id, int level)
1739 {
1740 /* Logical OR for level trig interrupt */
1741 if (level)
1742 __set_bit(irq_source_id, irq_state);
1743 else
1744 __clear_bit(irq_source_id, irq_state);
1745
1746 return !!(*irq_state);
1747 }
1748
1749 #define KVM_MMU_ROOT_CURRENT BIT(0)
1750 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1751 #define KVM_MMU_ROOTS_ALL (~0UL)
1752
1753 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1754 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1755
1756 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1757
1758 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1759
1760 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1761 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);
1762 void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1763 ulong roots_to_free);
1764 void kvm_mmu_free_guest_mode_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu);
1765 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
1766 struct x86_exception *exception);
1767 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1768 struct x86_exception *exception);
1769 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
1770 struct x86_exception *exception);
1771 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1772 struct x86_exception *exception);
1773 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1774 struct x86_exception *exception);
1775
1776 bool kvm_apicv_activated(struct kvm *kvm);
1777 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1778 void kvm_request_apicv_update(struct kvm *kvm, bool activate,
1779 unsigned long bit);
1780
1781 void __kvm_request_apicv_update(struct kvm *kvm, bool activate,
1782 unsigned long bit);
1783
1784 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
1785
1786 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
1787 void *insn, int insn_len);
1788 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
1789 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
1790 gva_t gva, hpa_t root_hpa);
1791 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
1792 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
1793
1794 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
1795 int tdp_max_root_level, int tdp_huge_page_level);
1796
kvm_read_ldt(void)1797 static inline u16 kvm_read_ldt(void)
1798 {
1799 u16 ldt;
1800 asm("sldt %0" : "=g"(ldt));
1801 return ldt;
1802 }
1803
kvm_load_ldt(u16 sel)1804 static inline void kvm_load_ldt(u16 sel)
1805 {
1806 asm("lldt %0" : : "rm"(sel));
1807 }
1808
1809 #ifdef CONFIG_X86_64
read_msr(unsigned long msr)1810 static inline unsigned long read_msr(unsigned long msr)
1811 {
1812 u64 value;
1813
1814 rdmsrl(msr, value);
1815 return value;
1816 }
1817 #endif
1818
kvm_inject_gp(struct kvm_vcpu * vcpu,u32 error_code)1819 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
1820 {
1821 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
1822 }
1823
1824 #define TSS_IOPB_BASE_OFFSET 0x66
1825 #define TSS_BASE_SIZE 0x68
1826 #define TSS_IOPB_SIZE (65536 / 8)
1827 #define TSS_REDIRECTION_SIZE (256 / 8)
1828 #define RMODE_TSS_SIZE \
1829 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
1830
1831 enum {
1832 TASK_SWITCH_CALL = 0,
1833 TASK_SWITCH_IRET = 1,
1834 TASK_SWITCH_JMP = 2,
1835 TASK_SWITCH_GATE = 3,
1836 };
1837
1838 #define HF_GIF_MASK (1 << 0)
1839 #define HF_NMI_MASK (1 << 3)
1840 #define HF_IRET_MASK (1 << 4)
1841 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
1842 #define HF_SMM_MASK (1 << 6)
1843 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
1844
1845 #define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
1846 #define KVM_ADDRESS_SPACE_NUM 2
1847
1848 #define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
1849 #define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
1850
1851 #define KVM_ARCH_WANT_MMU_NOTIFIER
1852
1853 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
1854 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
1855 int kvm_cpu_has_extint(struct kvm_vcpu *v);
1856 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
1857 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
1858 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
1859 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu);
1860
1861 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
1862 unsigned long ipi_bitmap_high, u32 min,
1863 unsigned long icr, int op_64_bit);
1864
1865 int kvm_add_user_return_msr(u32 msr);
1866 int kvm_find_user_return_msr(u32 msr);
1867 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
1868
kvm_is_supported_user_return_msr(u32 msr)1869 static inline bool kvm_is_supported_user_return_msr(u32 msr)
1870 {
1871 return kvm_find_user_return_msr(msr) >= 0;
1872 }
1873
1874 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio);
1875 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
1876 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
1877 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
1878
1879 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
1880 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
1881
1882 void kvm_make_scan_ioapic_request(struct kvm *kvm);
1883 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
1884 unsigned long *vcpu_bitmap);
1885
1886 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1887 struct kvm_async_pf *work);
1888 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1889 struct kvm_async_pf *work);
1890 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1891 struct kvm_async_pf *work);
1892 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
1893 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
1894 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1895
1896 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
1897 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
1898 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
1899
1900 int kvm_is_in_guest(void);
1901
1902 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
1903 u32 size);
1904 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
1905 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
1906
1907 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
1908 struct kvm_vcpu **dest_vcpu);
1909
1910 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
1911 struct kvm_lapic_irq *irq);
1912
kvm_irq_is_postable(struct kvm_lapic_irq * irq)1913 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
1914 {
1915 /* We can only post Fixed and LowPrio IRQs */
1916 return (irq->delivery_mode == APIC_DM_FIXED ||
1917 irq->delivery_mode == APIC_DM_LOWEST);
1918 }
1919
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)1920 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
1921 {
1922 static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
1923 }
1924
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)1925 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
1926 {
1927 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
1928 }
1929
kvm_arch_vcpu_block_finish(struct kvm_vcpu * vcpu)1930 static inline void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu) {}
1931
kvm_cpu_get_apicid(int mps_cpu)1932 static inline int kvm_cpu_get_apicid(int mps_cpu)
1933 {
1934 #ifdef CONFIG_X86_LOCAL_APIC
1935 return default_cpu_present_to_apicid(mps_cpu);
1936 #else
1937 WARN_ON_ONCE(1);
1938 return BAD_APICID;
1939 #endif
1940 }
1941
1942 #define put_smstate(type, buf, offset, val) \
1943 *(type *)((buf) + (offset) - 0x7e00) = val
1944
1945 #define GET_SMSTATE(type, buf, offset) \
1946 (*(type *)((buf) + (offset) - 0x7e00))
1947
1948 int kvm_cpu_dirty_log_size(void);
1949
1950 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
1951
1952 #define KVM_CLOCK_VALID_FLAGS \
1953 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
1954
1955 #endif /* _ASM_X86_KVM_HOST_H */
1956