1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_shared.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_defer.h"
15 #include "xfs_btree.h"
16 #include "xfs_rmap.h"
17 #include "xfs_alloc_btree.h"
18 #include "xfs_alloc.h"
19 #include "xfs_extent_busy.h"
20 #include "xfs_errortag.h"
21 #include "xfs_error.h"
22 #include "xfs_trace.h"
23 #include "xfs_trans.h"
24 #include "xfs_buf_item.h"
25 #include "xfs_log.h"
26 #include "xfs_ag.h"
27 #include "xfs_ag_resv.h"
28 #include "xfs_bmap.h"
29
30 struct kmem_cache *xfs_extfree_item_cache;
31
32 struct workqueue_struct *xfs_alloc_wq;
33
34 #define XFS_ABSDIFF(a,b) (((a) <= (b)) ? ((b) - (a)) : ((a) - (b)))
35
36 #define XFSA_FIXUP_BNO_OK 1
37 #define XFSA_FIXUP_CNT_OK 2
38
39 STATIC int xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t *);
40 STATIC int xfs_alloc_ag_vextent_near(xfs_alloc_arg_t *);
41 STATIC int xfs_alloc_ag_vextent_size(xfs_alloc_arg_t *);
42
43 /*
44 * Size of the AGFL. For CRC-enabled filesystes we steal a couple of slots in
45 * the beginning of the block for a proper header with the location information
46 * and CRC.
47 */
48 unsigned int
xfs_agfl_size(struct xfs_mount * mp)49 xfs_agfl_size(
50 struct xfs_mount *mp)
51 {
52 unsigned int size = mp->m_sb.sb_sectsize;
53
54 if (xfs_has_crc(mp))
55 size -= sizeof(struct xfs_agfl);
56
57 return size / sizeof(xfs_agblock_t);
58 }
59
60 unsigned int
xfs_refc_block(struct xfs_mount * mp)61 xfs_refc_block(
62 struct xfs_mount *mp)
63 {
64 if (xfs_has_rmapbt(mp))
65 return XFS_RMAP_BLOCK(mp) + 1;
66 if (xfs_has_finobt(mp))
67 return XFS_FIBT_BLOCK(mp) + 1;
68 return XFS_IBT_BLOCK(mp) + 1;
69 }
70
71 xfs_extlen_t
xfs_prealloc_blocks(struct xfs_mount * mp)72 xfs_prealloc_blocks(
73 struct xfs_mount *mp)
74 {
75 if (xfs_has_reflink(mp))
76 return xfs_refc_block(mp) + 1;
77 if (xfs_has_rmapbt(mp))
78 return XFS_RMAP_BLOCK(mp) + 1;
79 if (xfs_has_finobt(mp))
80 return XFS_FIBT_BLOCK(mp) + 1;
81 return XFS_IBT_BLOCK(mp) + 1;
82 }
83
84 /*
85 * In order to avoid ENOSPC-related deadlock caused by out-of-order locking of
86 * AGF buffer (PV 947395), we place constraints on the relationship among
87 * actual allocations for data blocks, freelist blocks, and potential file data
88 * bmap btree blocks. However, these restrictions may result in no actual space
89 * allocated for a delayed extent, for example, a data block in a certain AG is
90 * allocated but there is no additional block for the additional bmap btree
91 * block due to a split of the bmap btree of the file. The result of this may
92 * lead to an infinite loop when the file gets flushed to disk and all delayed
93 * extents need to be actually allocated. To get around this, we explicitly set
94 * aside a few blocks which will not be reserved in delayed allocation.
95 *
96 * We need to reserve 4 fsbs _per AG_ for the freelist and 4 more to handle a
97 * potential split of the file's bmap btree.
98 */
99 unsigned int
xfs_alloc_set_aside(struct xfs_mount * mp)100 xfs_alloc_set_aside(
101 struct xfs_mount *mp)
102 {
103 return mp->m_sb.sb_agcount * (XFS_ALLOC_AGFL_RESERVE + 4);
104 }
105
106 /*
107 * When deciding how much space to allocate out of an AG, we limit the
108 * allocation maximum size to the size the AG. However, we cannot use all the
109 * blocks in the AG - some are permanently used by metadata. These
110 * blocks are generally:
111 * - the AG superblock, AGF, AGI and AGFL
112 * - the AGF (bno and cnt) and AGI btree root blocks, and optionally
113 * the AGI free inode and rmap btree root blocks.
114 * - blocks on the AGFL according to xfs_alloc_set_aside() limits
115 * - the rmapbt root block
116 *
117 * The AG headers are sector sized, so the amount of space they take up is
118 * dependent on filesystem geometry. The others are all single blocks.
119 */
120 unsigned int
xfs_alloc_ag_max_usable(struct xfs_mount * mp)121 xfs_alloc_ag_max_usable(
122 struct xfs_mount *mp)
123 {
124 unsigned int blocks;
125
126 blocks = XFS_BB_TO_FSB(mp, XFS_FSS_TO_BB(mp, 4)); /* ag headers */
127 blocks += XFS_ALLOC_AGFL_RESERVE;
128 blocks += 3; /* AGF, AGI btree root blocks */
129 if (xfs_has_finobt(mp))
130 blocks++; /* finobt root block */
131 if (xfs_has_rmapbt(mp))
132 blocks++; /* rmap root block */
133 if (xfs_has_reflink(mp))
134 blocks++; /* refcount root block */
135
136 return mp->m_sb.sb_agblocks - blocks;
137 }
138
139 /*
140 * Lookup the record equal to [bno, len] in the btree given by cur.
141 */
142 STATIC int /* error */
xfs_alloc_lookup_eq(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)143 xfs_alloc_lookup_eq(
144 struct xfs_btree_cur *cur, /* btree cursor */
145 xfs_agblock_t bno, /* starting block of extent */
146 xfs_extlen_t len, /* length of extent */
147 int *stat) /* success/failure */
148 {
149 int error;
150
151 cur->bc_rec.a.ar_startblock = bno;
152 cur->bc_rec.a.ar_blockcount = len;
153 error = xfs_btree_lookup(cur, XFS_LOOKUP_EQ, stat);
154 cur->bc_ag.abt.active = (*stat == 1);
155 return error;
156 }
157
158 /*
159 * Lookup the first record greater than or equal to [bno, len]
160 * in the btree given by cur.
161 */
162 int /* error */
xfs_alloc_lookup_ge(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)163 xfs_alloc_lookup_ge(
164 struct xfs_btree_cur *cur, /* btree cursor */
165 xfs_agblock_t bno, /* starting block of extent */
166 xfs_extlen_t len, /* length of extent */
167 int *stat) /* success/failure */
168 {
169 int error;
170
171 cur->bc_rec.a.ar_startblock = bno;
172 cur->bc_rec.a.ar_blockcount = len;
173 error = xfs_btree_lookup(cur, XFS_LOOKUP_GE, stat);
174 cur->bc_ag.abt.active = (*stat == 1);
175 return error;
176 }
177
178 /*
179 * Lookup the first record less than or equal to [bno, len]
180 * in the btree given by cur.
181 */
182 int /* error */
xfs_alloc_lookup_le(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,int * stat)183 xfs_alloc_lookup_le(
184 struct xfs_btree_cur *cur, /* btree cursor */
185 xfs_agblock_t bno, /* starting block of extent */
186 xfs_extlen_t len, /* length of extent */
187 int *stat) /* success/failure */
188 {
189 int error;
190 cur->bc_rec.a.ar_startblock = bno;
191 cur->bc_rec.a.ar_blockcount = len;
192 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, stat);
193 cur->bc_ag.abt.active = (*stat == 1);
194 return error;
195 }
196
197 static inline bool
xfs_alloc_cur_active(struct xfs_btree_cur * cur)198 xfs_alloc_cur_active(
199 struct xfs_btree_cur *cur)
200 {
201 return cur && cur->bc_ag.abt.active;
202 }
203
204 /*
205 * Update the record referred to by cur to the value given
206 * by [bno, len].
207 * This either works (return 0) or gets an EFSCORRUPTED error.
208 */
209 STATIC int /* error */
xfs_alloc_update(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len)210 xfs_alloc_update(
211 struct xfs_btree_cur *cur, /* btree cursor */
212 xfs_agblock_t bno, /* starting block of extent */
213 xfs_extlen_t len) /* length of extent */
214 {
215 union xfs_btree_rec rec;
216
217 rec.alloc.ar_startblock = cpu_to_be32(bno);
218 rec.alloc.ar_blockcount = cpu_to_be32(len);
219 return xfs_btree_update(cur, &rec);
220 }
221
222 /*
223 * Get the data from the pointed-to record.
224 */
225 int /* error */
xfs_alloc_get_rec(struct xfs_btree_cur * cur,xfs_agblock_t * bno,xfs_extlen_t * len,int * stat)226 xfs_alloc_get_rec(
227 struct xfs_btree_cur *cur, /* btree cursor */
228 xfs_agblock_t *bno, /* output: starting block of extent */
229 xfs_extlen_t *len, /* output: length of extent */
230 int *stat) /* output: success/failure */
231 {
232 struct xfs_mount *mp = cur->bc_mp;
233 xfs_agnumber_t agno = cur->bc_ag.pag->pag_agno;
234 union xfs_btree_rec *rec;
235 int error;
236
237 error = xfs_btree_get_rec(cur, &rec, stat);
238 if (error || !(*stat))
239 return error;
240
241 *bno = be32_to_cpu(rec->alloc.ar_startblock);
242 *len = be32_to_cpu(rec->alloc.ar_blockcount);
243
244 if (*len == 0)
245 goto out_bad_rec;
246
247 /* check for valid extent range, including overflow */
248 if (!xfs_verify_agbno(mp, agno, *bno))
249 goto out_bad_rec;
250 if (*bno > *bno + *len)
251 goto out_bad_rec;
252 if (!xfs_verify_agbno(mp, agno, *bno + *len - 1))
253 goto out_bad_rec;
254
255 return 0;
256
257 out_bad_rec:
258 xfs_warn(mp,
259 "%s Freespace BTree record corruption in AG %d detected!",
260 cur->bc_btnum == XFS_BTNUM_BNO ? "Block" : "Size", agno);
261 xfs_warn(mp,
262 "start block 0x%x block count 0x%x", *bno, *len);
263 return -EFSCORRUPTED;
264 }
265
266 /*
267 * Compute aligned version of the found extent.
268 * Takes alignment and min length into account.
269 */
270 STATIC bool
xfs_alloc_compute_aligned(xfs_alloc_arg_t * args,xfs_agblock_t foundbno,xfs_extlen_t foundlen,xfs_agblock_t * resbno,xfs_extlen_t * reslen,unsigned * busy_gen)271 xfs_alloc_compute_aligned(
272 xfs_alloc_arg_t *args, /* allocation argument structure */
273 xfs_agblock_t foundbno, /* starting block in found extent */
274 xfs_extlen_t foundlen, /* length in found extent */
275 xfs_agblock_t *resbno, /* result block number */
276 xfs_extlen_t *reslen, /* result length */
277 unsigned *busy_gen)
278 {
279 xfs_agblock_t bno = foundbno;
280 xfs_extlen_t len = foundlen;
281 xfs_extlen_t diff;
282 bool busy;
283
284 /* Trim busy sections out of found extent */
285 busy = xfs_extent_busy_trim(args, &bno, &len, busy_gen);
286
287 /*
288 * If we have a largish extent that happens to start before min_agbno,
289 * see if we can shift it into range...
290 */
291 if (bno < args->min_agbno && bno + len > args->min_agbno) {
292 diff = args->min_agbno - bno;
293 if (len > diff) {
294 bno += diff;
295 len -= diff;
296 }
297 }
298
299 if (args->alignment > 1 && len >= args->minlen) {
300 xfs_agblock_t aligned_bno = roundup(bno, args->alignment);
301
302 diff = aligned_bno - bno;
303
304 *resbno = aligned_bno;
305 *reslen = diff >= len ? 0 : len - diff;
306 } else {
307 *resbno = bno;
308 *reslen = len;
309 }
310
311 return busy;
312 }
313
314 /*
315 * Compute best start block and diff for "near" allocations.
316 * freelen >= wantlen already checked by caller.
317 */
318 STATIC xfs_extlen_t /* difference value (absolute) */
xfs_alloc_compute_diff(xfs_agblock_t wantbno,xfs_extlen_t wantlen,xfs_extlen_t alignment,int datatype,xfs_agblock_t freebno,xfs_extlen_t freelen,xfs_agblock_t * newbnop)319 xfs_alloc_compute_diff(
320 xfs_agblock_t wantbno, /* target starting block */
321 xfs_extlen_t wantlen, /* target length */
322 xfs_extlen_t alignment, /* target alignment */
323 int datatype, /* are we allocating data? */
324 xfs_agblock_t freebno, /* freespace's starting block */
325 xfs_extlen_t freelen, /* freespace's length */
326 xfs_agblock_t *newbnop) /* result: best start block from free */
327 {
328 xfs_agblock_t freeend; /* end of freespace extent */
329 xfs_agblock_t newbno1; /* return block number */
330 xfs_agblock_t newbno2; /* other new block number */
331 xfs_extlen_t newlen1=0; /* length with newbno1 */
332 xfs_extlen_t newlen2=0; /* length with newbno2 */
333 xfs_agblock_t wantend; /* end of target extent */
334 bool userdata = datatype & XFS_ALLOC_USERDATA;
335
336 ASSERT(freelen >= wantlen);
337 freeend = freebno + freelen;
338 wantend = wantbno + wantlen;
339 /*
340 * We want to allocate from the start of a free extent if it is past
341 * the desired block or if we are allocating user data and the free
342 * extent is before desired block. The second case is there to allow
343 * for contiguous allocation from the remaining free space if the file
344 * grows in the short term.
345 */
346 if (freebno >= wantbno || (userdata && freeend < wantend)) {
347 if ((newbno1 = roundup(freebno, alignment)) >= freeend)
348 newbno1 = NULLAGBLOCK;
349 } else if (freeend >= wantend && alignment > 1) {
350 newbno1 = roundup(wantbno, alignment);
351 newbno2 = newbno1 - alignment;
352 if (newbno1 >= freeend)
353 newbno1 = NULLAGBLOCK;
354 else
355 newlen1 = XFS_EXTLEN_MIN(wantlen, freeend - newbno1);
356 if (newbno2 < freebno)
357 newbno2 = NULLAGBLOCK;
358 else
359 newlen2 = XFS_EXTLEN_MIN(wantlen, freeend - newbno2);
360 if (newbno1 != NULLAGBLOCK && newbno2 != NULLAGBLOCK) {
361 if (newlen1 < newlen2 ||
362 (newlen1 == newlen2 &&
363 XFS_ABSDIFF(newbno1, wantbno) >
364 XFS_ABSDIFF(newbno2, wantbno)))
365 newbno1 = newbno2;
366 } else if (newbno2 != NULLAGBLOCK)
367 newbno1 = newbno2;
368 } else if (freeend >= wantend) {
369 newbno1 = wantbno;
370 } else if (alignment > 1) {
371 newbno1 = roundup(freeend - wantlen, alignment);
372 if (newbno1 > freeend - wantlen &&
373 newbno1 - alignment >= freebno)
374 newbno1 -= alignment;
375 else if (newbno1 >= freeend)
376 newbno1 = NULLAGBLOCK;
377 } else
378 newbno1 = freeend - wantlen;
379 *newbnop = newbno1;
380 return newbno1 == NULLAGBLOCK ? 0 : XFS_ABSDIFF(newbno1, wantbno);
381 }
382
383 /*
384 * Fix up the length, based on mod and prod.
385 * len should be k * prod + mod for some k.
386 * If len is too small it is returned unchanged.
387 * If len hits maxlen it is left alone.
388 */
389 STATIC void
xfs_alloc_fix_len(xfs_alloc_arg_t * args)390 xfs_alloc_fix_len(
391 xfs_alloc_arg_t *args) /* allocation argument structure */
392 {
393 xfs_extlen_t k;
394 xfs_extlen_t rlen;
395
396 ASSERT(args->mod < args->prod);
397 rlen = args->len;
398 ASSERT(rlen >= args->minlen);
399 ASSERT(rlen <= args->maxlen);
400 if (args->prod <= 1 || rlen < args->mod || rlen == args->maxlen ||
401 (args->mod == 0 && rlen < args->prod))
402 return;
403 k = rlen % args->prod;
404 if (k == args->mod)
405 return;
406 if (k > args->mod)
407 rlen = rlen - (k - args->mod);
408 else
409 rlen = rlen - args->prod + (args->mod - k);
410 /* casts to (int) catch length underflows */
411 if ((int)rlen < (int)args->minlen)
412 return;
413 ASSERT(rlen >= args->minlen && rlen <= args->maxlen);
414 ASSERT(rlen % args->prod == args->mod);
415 ASSERT(args->pag->pagf_freeblks + args->pag->pagf_flcount >=
416 rlen + args->minleft);
417 args->len = rlen;
418 }
419
420 /*
421 * Update the two btrees, logically removing from freespace the extent
422 * starting at rbno, rlen blocks. The extent is contained within the
423 * actual (current) free extent fbno for flen blocks.
424 * Flags are passed in indicating whether the cursors are set to the
425 * relevant records.
426 */
427 STATIC int /* error code */
xfs_alloc_fixup_trees(struct xfs_btree_cur * cnt_cur,struct xfs_btree_cur * bno_cur,xfs_agblock_t fbno,xfs_extlen_t flen,xfs_agblock_t rbno,xfs_extlen_t rlen,int flags)428 xfs_alloc_fixup_trees(
429 struct xfs_btree_cur *cnt_cur, /* cursor for by-size btree */
430 struct xfs_btree_cur *bno_cur, /* cursor for by-block btree */
431 xfs_agblock_t fbno, /* starting block of free extent */
432 xfs_extlen_t flen, /* length of free extent */
433 xfs_agblock_t rbno, /* starting block of returned extent */
434 xfs_extlen_t rlen, /* length of returned extent */
435 int flags) /* flags, XFSA_FIXUP_... */
436 {
437 int error; /* error code */
438 int i; /* operation results */
439 xfs_agblock_t nfbno1; /* first new free startblock */
440 xfs_agblock_t nfbno2; /* second new free startblock */
441 xfs_extlen_t nflen1=0; /* first new free length */
442 xfs_extlen_t nflen2=0; /* second new free length */
443 struct xfs_mount *mp;
444
445 mp = cnt_cur->bc_mp;
446
447 /*
448 * Look up the record in the by-size tree if necessary.
449 */
450 if (flags & XFSA_FIXUP_CNT_OK) {
451 #ifdef DEBUG
452 if ((error = xfs_alloc_get_rec(cnt_cur, &nfbno1, &nflen1, &i)))
453 return error;
454 if (XFS_IS_CORRUPT(mp,
455 i != 1 ||
456 nfbno1 != fbno ||
457 nflen1 != flen))
458 return -EFSCORRUPTED;
459 #endif
460 } else {
461 if ((error = xfs_alloc_lookup_eq(cnt_cur, fbno, flen, &i)))
462 return error;
463 if (XFS_IS_CORRUPT(mp, i != 1))
464 return -EFSCORRUPTED;
465 }
466 /*
467 * Look up the record in the by-block tree if necessary.
468 */
469 if (flags & XFSA_FIXUP_BNO_OK) {
470 #ifdef DEBUG
471 if ((error = xfs_alloc_get_rec(bno_cur, &nfbno1, &nflen1, &i)))
472 return error;
473 if (XFS_IS_CORRUPT(mp,
474 i != 1 ||
475 nfbno1 != fbno ||
476 nflen1 != flen))
477 return -EFSCORRUPTED;
478 #endif
479 } else {
480 if ((error = xfs_alloc_lookup_eq(bno_cur, fbno, flen, &i)))
481 return error;
482 if (XFS_IS_CORRUPT(mp, i != 1))
483 return -EFSCORRUPTED;
484 }
485
486 #ifdef DEBUG
487 if (bno_cur->bc_nlevels == 1 && cnt_cur->bc_nlevels == 1) {
488 struct xfs_btree_block *bnoblock;
489 struct xfs_btree_block *cntblock;
490
491 bnoblock = XFS_BUF_TO_BLOCK(bno_cur->bc_levels[0].bp);
492 cntblock = XFS_BUF_TO_BLOCK(cnt_cur->bc_levels[0].bp);
493
494 if (XFS_IS_CORRUPT(mp,
495 bnoblock->bb_numrecs !=
496 cntblock->bb_numrecs))
497 return -EFSCORRUPTED;
498 }
499 #endif
500
501 /*
502 * Deal with all four cases: the allocated record is contained
503 * within the freespace record, so we can have new freespace
504 * at either (or both) end, or no freespace remaining.
505 */
506 if (rbno == fbno && rlen == flen)
507 nfbno1 = nfbno2 = NULLAGBLOCK;
508 else if (rbno == fbno) {
509 nfbno1 = rbno + rlen;
510 nflen1 = flen - rlen;
511 nfbno2 = NULLAGBLOCK;
512 } else if (rbno + rlen == fbno + flen) {
513 nfbno1 = fbno;
514 nflen1 = flen - rlen;
515 nfbno2 = NULLAGBLOCK;
516 } else {
517 nfbno1 = fbno;
518 nflen1 = rbno - fbno;
519 nfbno2 = rbno + rlen;
520 nflen2 = (fbno + flen) - nfbno2;
521 }
522 /*
523 * Delete the entry from the by-size btree.
524 */
525 if ((error = xfs_btree_delete(cnt_cur, &i)))
526 return error;
527 if (XFS_IS_CORRUPT(mp, i != 1))
528 return -EFSCORRUPTED;
529 /*
530 * Add new by-size btree entry(s).
531 */
532 if (nfbno1 != NULLAGBLOCK) {
533 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno1, nflen1, &i)))
534 return error;
535 if (XFS_IS_CORRUPT(mp, i != 0))
536 return -EFSCORRUPTED;
537 if ((error = xfs_btree_insert(cnt_cur, &i)))
538 return error;
539 if (XFS_IS_CORRUPT(mp, i != 1))
540 return -EFSCORRUPTED;
541 }
542 if (nfbno2 != NULLAGBLOCK) {
543 if ((error = xfs_alloc_lookup_eq(cnt_cur, nfbno2, nflen2, &i)))
544 return error;
545 if (XFS_IS_CORRUPT(mp, i != 0))
546 return -EFSCORRUPTED;
547 if ((error = xfs_btree_insert(cnt_cur, &i)))
548 return error;
549 if (XFS_IS_CORRUPT(mp, i != 1))
550 return -EFSCORRUPTED;
551 }
552 /*
553 * Fix up the by-block btree entry(s).
554 */
555 if (nfbno1 == NULLAGBLOCK) {
556 /*
557 * No remaining freespace, just delete the by-block tree entry.
558 */
559 if ((error = xfs_btree_delete(bno_cur, &i)))
560 return error;
561 if (XFS_IS_CORRUPT(mp, i != 1))
562 return -EFSCORRUPTED;
563 } else {
564 /*
565 * Update the by-block entry to start later|be shorter.
566 */
567 if ((error = xfs_alloc_update(bno_cur, nfbno1, nflen1)))
568 return error;
569 }
570 if (nfbno2 != NULLAGBLOCK) {
571 /*
572 * 2 resulting free entries, need to add one.
573 */
574 if ((error = xfs_alloc_lookup_eq(bno_cur, nfbno2, nflen2, &i)))
575 return error;
576 if (XFS_IS_CORRUPT(mp, i != 0))
577 return -EFSCORRUPTED;
578 if ((error = xfs_btree_insert(bno_cur, &i)))
579 return error;
580 if (XFS_IS_CORRUPT(mp, i != 1))
581 return -EFSCORRUPTED;
582 }
583 return 0;
584 }
585
586 static xfs_failaddr_t
xfs_agfl_verify(struct xfs_buf * bp)587 xfs_agfl_verify(
588 struct xfs_buf *bp)
589 {
590 struct xfs_mount *mp = bp->b_mount;
591 struct xfs_agfl *agfl = XFS_BUF_TO_AGFL(bp);
592 __be32 *agfl_bno = xfs_buf_to_agfl_bno(bp);
593 int i;
594
595 /*
596 * There is no verification of non-crc AGFLs because mkfs does not
597 * initialise the AGFL to zero or NULL. Hence the only valid part of the
598 * AGFL is what the AGF says is active. We can't get to the AGF, so we
599 * can't verify just those entries are valid.
600 */
601 if (!xfs_has_crc(mp))
602 return NULL;
603
604 if (!xfs_verify_magic(bp, agfl->agfl_magicnum))
605 return __this_address;
606 if (!uuid_equal(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid))
607 return __this_address;
608 /*
609 * during growfs operations, the perag is not fully initialised,
610 * so we can't use it for any useful checking. growfs ensures we can't
611 * use it by using uncached buffers that don't have the perag attached
612 * so we can detect and avoid this problem.
613 */
614 if (bp->b_pag && be32_to_cpu(agfl->agfl_seqno) != bp->b_pag->pag_agno)
615 return __this_address;
616
617 for (i = 0; i < xfs_agfl_size(mp); i++) {
618 if (be32_to_cpu(agfl_bno[i]) != NULLAGBLOCK &&
619 be32_to_cpu(agfl_bno[i]) >= mp->m_sb.sb_agblocks)
620 return __this_address;
621 }
622
623 if (!xfs_log_check_lsn(mp, be64_to_cpu(XFS_BUF_TO_AGFL(bp)->agfl_lsn)))
624 return __this_address;
625 return NULL;
626 }
627
628 static void
xfs_agfl_read_verify(struct xfs_buf * bp)629 xfs_agfl_read_verify(
630 struct xfs_buf *bp)
631 {
632 struct xfs_mount *mp = bp->b_mount;
633 xfs_failaddr_t fa;
634
635 /*
636 * There is no verification of non-crc AGFLs because mkfs does not
637 * initialise the AGFL to zero or NULL. Hence the only valid part of the
638 * AGFL is what the AGF says is active. We can't get to the AGF, so we
639 * can't verify just those entries are valid.
640 */
641 if (!xfs_has_crc(mp))
642 return;
643
644 if (!xfs_buf_verify_cksum(bp, XFS_AGFL_CRC_OFF))
645 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
646 else {
647 fa = xfs_agfl_verify(bp);
648 if (fa)
649 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
650 }
651 }
652
653 static void
xfs_agfl_write_verify(struct xfs_buf * bp)654 xfs_agfl_write_verify(
655 struct xfs_buf *bp)
656 {
657 struct xfs_mount *mp = bp->b_mount;
658 struct xfs_buf_log_item *bip = bp->b_log_item;
659 xfs_failaddr_t fa;
660
661 /* no verification of non-crc AGFLs */
662 if (!xfs_has_crc(mp))
663 return;
664
665 fa = xfs_agfl_verify(bp);
666 if (fa) {
667 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
668 return;
669 }
670
671 if (bip)
672 XFS_BUF_TO_AGFL(bp)->agfl_lsn = cpu_to_be64(bip->bli_item.li_lsn);
673
674 xfs_buf_update_cksum(bp, XFS_AGFL_CRC_OFF);
675 }
676
677 const struct xfs_buf_ops xfs_agfl_buf_ops = {
678 .name = "xfs_agfl",
679 .magic = { cpu_to_be32(XFS_AGFL_MAGIC), cpu_to_be32(XFS_AGFL_MAGIC) },
680 .verify_read = xfs_agfl_read_verify,
681 .verify_write = xfs_agfl_write_verify,
682 .verify_struct = xfs_agfl_verify,
683 };
684
685 /*
686 * Read in the allocation group free block array.
687 */
688 int /* error */
xfs_alloc_read_agfl(xfs_mount_t * mp,xfs_trans_t * tp,xfs_agnumber_t agno,struct xfs_buf ** bpp)689 xfs_alloc_read_agfl(
690 xfs_mount_t *mp, /* mount point structure */
691 xfs_trans_t *tp, /* transaction pointer */
692 xfs_agnumber_t agno, /* allocation group number */
693 struct xfs_buf **bpp) /* buffer for the ag free block array */
694 {
695 struct xfs_buf *bp; /* return value */
696 int error;
697
698 ASSERT(agno != NULLAGNUMBER);
699 error = xfs_trans_read_buf(
700 mp, tp, mp->m_ddev_targp,
701 XFS_AG_DADDR(mp, agno, XFS_AGFL_DADDR(mp)),
702 XFS_FSS_TO_BB(mp, 1), 0, &bp, &xfs_agfl_buf_ops);
703 if (error)
704 return error;
705 xfs_buf_set_ref(bp, XFS_AGFL_REF);
706 *bpp = bp;
707 return 0;
708 }
709
710 STATIC int
xfs_alloc_update_counters(struct xfs_trans * tp,struct xfs_buf * agbp,long len)711 xfs_alloc_update_counters(
712 struct xfs_trans *tp,
713 struct xfs_buf *agbp,
714 long len)
715 {
716 struct xfs_agf *agf = agbp->b_addr;
717
718 agbp->b_pag->pagf_freeblks += len;
719 be32_add_cpu(&agf->agf_freeblks, len);
720
721 if (unlikely(be32_to_cpu(agf->agf_freeblks) >
722 be32_to_cpu(agf->agf_length))) {
723 xfs_buf_mark_corrupt(agbp);
724 return -EFSCORRUPTED;
725 }
726
727 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FREEBLKS);
728 return 0;
729 }
730
731 /*
732 * Block allocation algorithm and data structures.
733 */
734 struct xfs_alloc_cur {
735 struct xfs_btree_cur *cnt; /* btree cursors */
736 struct xfs_btree_cur *bnolt;
737 struct xfs_btree_cur *bnogt;
738 xfs_extlen_t cur_len;/* current search length */
739 xfs_agblock_t rec_bno;/* extent startblock */
740 xfs_extlen_t rec_len;/* extent length */
741 xfs_agblock_t bno; /* alloc bno */
742 xfs_extlen_t len; /* alloc len */
743 xfs_extlen_t diff; /* diff from search bno */
744 unsigned int busy_gen;/* busy state */
745 bool busy;
746 };
747
748 /*
749 * Set up cursors, etc. in the extent allocation cursor. This function can be
750 * called multiple times to reset an initialized structure without having to
751 * reallocate cursors.
752 */
753 static int
xfs_alloc_cur_setup(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)754 xfs_alloc_cur_setup(
755 struct xfs_alloc_arg *args,
756 struct xfs_alloc_cur *acur)
757 {
758 int error;
759 int i;
760
761 ASSERT(args->alignment == 1 || args->type != XFS_ALLOCTYPE_THIS_BNO);
762
763 acur->cur_len = args->maxlen;
764 acur->rec_bno = 0;
765 acur->rec_len = 0;
766 acur->bno = 0;
767 acur->len = 0;
768 acur->diff = -1;
769 acur->busy = false;
770 acur->busy_gen = 0;
771
772 /*
773 * Perform an initial cntbt lookup to check for availability of maxlen
774 * extents. If this fails, we'll return -ENOSPC to signal the caller to
775 * attempt a small allocation.
776 */
777 if (!acur->cnt)
778 acur->cnt = xfs_allocbt_init_cursor(args->mp, args->tp,
779 args->agbp, args->pag, XFS_BTNUM_CNT);
780 error = xfs_alloc_lookup_ge(acur->cnt, 0, args->maxlen, &i);
781 if (error)
782 return error;
783
784 /*
785 * Allocate the bnobt left and right search cursors.
786 */
787 if (!acur->bnolt)
788 acur->bnolt = xfs_allocbt_init_cursor(args->mp, args->tp,
789 args->agbp, args->pag, XFS_BTNUM_BNO);
790 if (!acur->bnogt)
791 acur->bnogt = xfs_allocbt_init_cursor(args->mp, args->tp,
792 args->agbp, args->pag, XFS_BTNUM_BNO);
793 return i == 1 ? 0 : -ENOSPC;
794 }
795
796 static void
xfs_alloc_cur_close(struct xfs_alloc_cur * acur,bool error)797 xfs_alloc_cur_close(
798 struct xfs_alloc_cur *acur,
799 bool error)
800 {
801 int cur_error = XFS_BTREE_NOERROR;
802
803 if (error)
804 cur_error = XFS_BTREE_ERROR;
805
806 if (acur->cnt)
807 xfs_btree_del_cursor(acur->cnt, cur_error);
808 if (acur->bnolt)
809 xfs_btree_del_cursor(acur->bnolt, cur_error);
810 if (acur->bnogt)
811 xfs_btree_del_cursor(acur->bnogt, cur_error);
812 acur->cnt = acur->bnolt = acur->bnogt = NULL;
813 }
814
815 /*
816 * Check an extent for allocation and track the best available candidate in the
817 * allocation structure. The cursor is deactivated if it has entered an out of
818 * range state based on allocation arguments. Optionally return the extent
819 * extent geometry and allocation status if requested by the caller.
820 */
821 static int
xfs_alloc_cur_check(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,int * new)822 xfs_alloc_cur_check(
823 struct xfs_alloc_arg *args,
824 struct xfs_alloc_cur *acur,
825 struct xfs_btree_cur *cur,
826 int *new)
827 {
828 int error, i;
829 xfs_agblock_t bno, bnoa, bnew;
830 xfs_extlen_t len, lena, diff = -1;
831 bool busy;
832 unsigned busy_gen = 0;
833 bool deactivate = false;
834 bool isbnobt = cur->bc_btnum == XFS_BTNUM_BNO;
835
836 *new = 0;
837
838 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
839 if (error)
840 return error;
841 if (XFS_IS_CORRUPT(args->mp, i != 1))
842 return -EFSCORRUPTED;
843
844 /*
845 * Check minlen and deactivate a cntbt cursor if out of acceptable size
846 * range (i.e., walking backwards looking for a minlen extent).
847 */
848 if (len < args->minlen) {
849 deactivate = !isbnobt;
850 goto out;
851 }
852
853 busy = xfs_alloc_compute_aligned(args, bno, len, &bnoa, &lena,
854 &busy_gen);
855 acur->busy |= busy;
856 if (busy)
857 acur->busy_gen = busy_gen;
858 /* deactivate a bnobt cursor outside of locality range */
859 if (bnoa < args->min_agbno || bnoa > args->max_agbno) {
860 deactivate = isbnobt;
861 goto out;
862 }
863 if (lena < args->minlen)
864 goto out;
865
866 args->len = XFS_EXTLEN_MIN(lena, args->maxlen);
867 xfs_alloc_fix_len(args);
868 ASSERT(args->len >= args->minlen);
869 if (args->len < acur->len)
870 goto out;
871
872 /*
873 * We have an aligned record that satisfies minlen and beats or matches
874 * the candidate extent size. Compare locality for near allocation mode.
875 */
876 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
877 diff = xfs_alloc_compute_diff(args->agbno, args->len,
878 args->alignment, args->datatype,
879 bnoa, lena, &bnew);
880 if (bnew == NULLAGBLOCK)
881 goto out;
882
883 /*
884 * Deactivate a bnobt cursor with worse locality than the current best.
885 */
886 if (diff > acur->diff) {
887 deactivate = isbnobt;
888 goto out;
889 }
890
891 ASSERT(args->len > acur->len ||
892 (args->len == acur->len && diff <= acur->diff));
893 acur->rec_bno = bno;
894 acur->rec_len = len;
895 acur->bno = bnew;
896 acur->len = args->len;
897 acur->diff = diff;
898 *new = 1;
899
900 /*
901 * We're done if we found a perfect allocation. This only deactivates
902 * the current cursor, but this is just an optimization to terminate a
903 * cntbt search that otherwise runs to the edge of the tree.
904 */
905 if (acur->diff == 0 && acur->len == args->maxlen)
906 deactivate = true;
907 out:
908 if (deactivate)
909 cur->bc_ag.abt.active = false;
910 trace_xfs_alloc_cur_check(args->mp, cur->bc_btnum, bno, len, diff,
911 *new);
912 return 0;
913 }
914
915 /*
916 * Complete an allocation of a candidate extent. Remove the extent from both
917 * trees and update the args structure.
918 */
919 STATIC int
xfs_alloc_cur_finish(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)920 xfs_alloc_cur_finish(
921 struct xfs_alloc_arg *args,
922 struct xfs_alloc_cur *acur)
923 {
924 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
925 int error;
926
927 ASSERT(acur->cnt && acur->bnolt);
928 ASSERT(acur->bno >= acur->rec_bno);
929 ASSERT(acur->bno + acur->len <= acur->rec_bno + acur->rec_len);
930 ASSERT(acur->rec_bno + acur->rec_len <= be32_to_cpu(agf->agf_length));
931
932 error = xfs_alloc_fixup_trees(acur->cnt, acur->bnolt, acur->rec_bno,
933 acur->rec_len, acur->bno, acur->len, 0);
934 if (error)
935 return error;
936
937 args->agbno = acur->bno;
938 args->len = acur->len;
939 args->wasfromfl = 0;
940
941 trace_xfs_alloc_cur(args);
942 return 0;
943 }
944
945 /*
946 * Locality allocation lookup algorithm. This expects a cntbt cursor and uses
947 * bno optimized lookup to search for extents with ideal size and locality.
948 */
949 STATIC int
xfs_alloc_cntbt_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur)950 xfs_alloc_cntbt_iter(
951 struct xfs_alloc_arg *args,
952 struct xfs_alloc_cur *acur)
953 {
954 struct xfs_btree_cur *cur = acur->cnt;
955 xfs_agblock_t bno;
956 xfs_extlen_t len, cur_len;
957 int error;
958 int i;
959
960 if (!xfs_alloc_cur_active(cur))
961 return 0;
962
963 /* locality optimized lookup */
964 cur_len = acur->cur_len;
965 error = xfs_alloc_lookup_ge(cur, args->agbno, cur_len, &i);
966 if (error)
967 return error;
968 if (i == 0)
969 return 0;
970 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
971 if (error)
972 return error;
973
974 /* check the current record and update search length from it */
975 error = xfs_alloc_cur_check(args, acur, cur, &i);
976 if (error)
977 return error;
978 ASSERT(len >= acur->cur_len);
979 acur->cur_len = len;
980
981 /*
982 * We looked up the first record >= [agbno, len] above. The agbno is a
983 * secondary key and so the current record may lie just before or after
984 * agbno. If it is past agbno, check the previous record too so long as
985 * the length matches as it may be closer. Don't check a smaller record
986 * because that could deactivate our cursor.
987 */
988 if (bno > args->agbno) {
989 error = xfs_btree_decrement(cur, 0, &i);
990 if (!error && i) {
991 error = xfs_alloc_get_rec(cur, &bno, &len, &i);
992 if (!error && i && len == acur->cur_len)
993 error = xfs_alloc_cur_check(args, acur, cur,
994 &i);
995 }
996 if (error)
997 return error;
998 }
999
1000 /*
1001 * Increment the search key until we find at least one allocation
1002 * candidate or if the extent we found was larger. Otherwise, double the
1003 * search key to optimize the search. Efficiency is more important here
1004 * than absolute best locality.
1005 */
1006 cur_len <<= 1;
1007 if (!acur->len || acur->cur_len >= cur_len)
1008 acur->cur_len++;
1009 else
1010 acur->cur_len = cur_len;
1011
1012 return error;
1013 }
1014
1015 /*
1016 * Deal with the case where only small freespaces remain. Either return the
1017 * contents of the last freespace record, or allocate space from the freelist if
1018 * there is nothing in the tree.
1019 */
1020 STATIC int /* error */
xfs_alloc_ag_vextent_small(struct xfs_alloc_arg * args,struct xfs_btree_cur * ccur,xfs_agblock_t * fbnop,xfs_extlen_t * flenp,int * stat)1021 xfs_alloc_ag_vextent_small(
1022 struct xfs_alloc_arg *args, /* allocation argument structure */
1023 struct xfs_btree_cur *ccur, /* optional by-size cursor */
1024 xfs_agblock_t *fbnop, /* result block number */
1025 xfs_extlen_t *flenp, /* result length */
1026 int *stat) /* status: 0-freelist, 1-normal/none */
1027 {
1028 struct xfs_agf *agf = args->agbp->b_addr;
1029 int error = 0;
1030 xfs_agblock_t fbno = NULLAGBLOCK;
1031 xfs_extlen_t flen = 0;
1032 int i = 0;
1033
1034 /*
1035 * If a cntbt cursor is provided, try to allocate the largest record in
1036 * the tree. Try the AGFL if the cntbt is empty, otherwise fail the
1037 * allocation. Make sure to respect minleft even when pulling from the
1038 * freelist.
1039 */
1040 if (ccur)
1041 error = xfs_btree_decrement(ccur, 0, &i);
1042 if (error)
1043 goto error;
1044 if (i) {
1045 error = xfs_alloc_get_rec(ccur, &fbno, &flen, &i);
1046 if (error)
1047 goto error;
1048 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1049 error = -EFSCORRUPTED;
1050 goto error;
1051 }
1052 goto out;
1053 }
1054
1055 if (args->minlen != 1 || args->alignment != 1 ||
1056 args->resv == XFS_AG_RESV_AGFL ||
1057 be32_to_cpu(agf->agf_flcount) <= args->minleft)
1058 goto out;
1059
1060 error = xfs_alloc_get_freelist(args->tp, args->agbp, &fbno, 0);
1061 if (error)
1062 goto error;
1063 if (fbno == NULLAGBLOCK)
1064 goto out;
1065
1066 xfs_extent_busy_reuse(args->mp, args->pag, fbno, 1,
1067 (args->datatype & XFS_ALLOC_NOBUSY));
1068
1069 if (args->datatype & XFS_ALLOC_USERDATA) {
1070 struct xfs_buf *bp;
1071
1072 error = xfs_trans_get_buf(args->tp, args->mp->m_ddev_targp,
1073 XFS_AGB_TO_DADDR(args->mp, args->agno, fbno),
1074 args->mp->m_bsize, 0, &bp);
1075 if (error)
1076 goto error;
1077 xfs_trans_binval(args->tp, bp);
1078 }
1079 *fbnop = args->agbno = fbno;
1080 *flenp = args->len = 1;
1081 if (XFS_IS_CORRUPT(args->mp, fbno >= be32_to_cpu(agf->agf_length))) {
1082 error = -EFSCORRUPTED;
1083 goto error;
1084 }
1085 args->wasfromfl = 1;
1086 trace_xfs_alloc_small_freelist(args);
1087
1088 /*
1089 * If we're feeding an AGFL block to something that doesn't live in the
1090 * free space, we need to clear out the OWN_AG rmap.
1091 */
1092 error = xfs_rmap_free(args->tp, args->agbp, args->pag, fbno, 1,
1093 &XFS_RMAP_OINFO_AG);
1094 if (error)
1095 goto error;
1096
1097 *stat = 0;
1098 return 0;
1099
1100 out:
1101 /*
1102 * Can't do the allocation, give up.
1103 */
1104 if (flen < args->minlen) {
1105 args->agbno = NULLAGBLOCK;
1106 trace_xfs_alloc_small_notenough(args);
1107 flen = 0;
1108 }
1109 *fbnop = fbno;
1110 *flenp = flen;
1111 *stat = 1;
1112 trace_xfs_alloc_small_done(args);
1113 return 0;
1114
1115 error:
1116 trace_xfs_alloc_small_error(args);
1117 return error;
1118 }
1119
1120 /*
1121 * Allocate a variable extent in the allocation group agno.
1122 * Type and bno are used to determine where in the allocation group the
1123 * extent will start.
1124 * Extent's length (returned in *len) will be between minlen and maxlen,
1125 * and of the form k * prod + mod unless there's nothing that large.
1126 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1127 */
1128 STATIC int /* error */
xfs_alloc_ag_vextent(xfs_alloc_arg_t * args)1129 xfs_alloc_ag_vextent(
1130 xfs_alloc_arg_t *args) /* argument structure for allocation */
1131 {
1132 int error=0;
1133
1134 ASSERT(args->minlen > 0);
1135 ASSERT(args->maxlen > 0);
1136 ASSERT(args->minlen <= args->maxlen);
1137 ASSERT(args->mod < args->prod);
1138 ASSERT(args->alignment > 0);
1139
1140 /*
1141 * Branch to correct routine based on the type.
1142 */
1143 args->wasfromfl = 0;
1144 switch (args->type) {
1145 case XFS_ALLOCTYPE_THIS_AG:
1146 error = xfs_alloc_ag_vextent_size(args);
1147 break;
1148 case XFS_ALLOCTYPE_NEAR_BNO:
1149 error = xfs_alloc_ag_vextent_near(args);
1150 break;
1151 case XFS_ALLOCTYPE_THIS_BNO:
1152 error = xfs_alloc_ag_vextent_exact(args);
1153 break;
1154 default:
1155 ASSERT(0);
1156 /* NOTREACHED */
1157 }
1158
1159 if (error || args->agbno == NULLAGBLOCK)
1160 return error;
1161
1162 ASSERT(args->len >= args->minlen);
1163 ASSERT(args->len <= args->maxlen);
1164 ASSERT(!args->wasfromfl || args->resv != XFS_AG_RESV_AGFL);
1165 ASSERT(args->agbno % args->alignment == 0);
1166
1167 /* if not file data, insert new block into the reverse map btree */
1168 if (!xfs_rmap_should_skip_owner_update(&args->oinfo)) {
1169 error = xfs_rmap_alloc(args->tp, args->agbp, args->pag,
1170 args->agbno, args->len, &args->oinfo);
1171 if (error)
1172 return error;
1173 }
1174
1175 if (!args->wasfromfl) {
1176 error = xfs_alloc_update_counters(args->tp, args->agbp,
1177 -((long)(args->len)));
1178 if (error)
1179 return error;
1180
1181 ASSERT(!xfs_extent_busy_search(args->mp, args->pag,
1182 args->agbno, args->len));
1183 }
1184
1185 xfs_ag_resv_alloc_extent(args->pag, args->resv, args);
1186
1187 XFS_STATS_INC(args->mp, xs_allocx);
1188 XFS_STATS_ADD(args->mp, xs_allocb, args->len);
1189 return error;
1190 }
1191
1192 /*
1193 * Allocate a variable extent at exactly agno/bno.
1194 * Extent's length (returned in *len) will be between minlen and maxlen,
1195 * and of the form k * prod + mod unless there's nothing that large.
1196 * Return the starting a.g. block (bno), or NULLAGBLOCK if we can't do it.
1197 */
1198 STATIC int /* error */
xfs_alloc_ag_vextent_exact(xfs_alloc_arg_t * args)1199 xfs_alloc_ag_vextent_exact(
1200 xfs_alloc_arg_t *args) /* allocation argument structure */
1201 {
1202 struct xfs_agf __maybe_unused *agf = args->agbp->b_addr;
1203 struct xfs_btree_cur *bno_cur;/* by block-number btree cursor */
1204 struct xfs_btree_cur *cnt_cur;/* by count btree cursor */
1205 int error;
1206 xfs_agblock_t fbno; /* start block of found extent */
1207 xfs_extlen_t flen; /* length of found extent */
1208 xfs_agblock_t tbno; /* start block of busy extent */
1209 xfs_extlen_t tlen; /* length of busy extent */
1210 xfs_agblock_t tend; /* end block of busy extent */
1211 int i; /* success/failure of operation */
1212 unsigned busy_gen;
1213
1214 ASSERT(args->alignment == 1);
1215
1216 /*
1217 * Allocate/initialize a cursor for the by-number freespace btree.
1218 */
1219 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1220 args->pag, XFS_BTNUM_BNO);
1221
1222 /*
1223 * Lookup bno and minlen in the btree (minlen is irrelevant, really).
1224 * Look for the closest free block <= bno, it must contain bno
1225 * if any free block does.
1226 */
1227 error = xfs_alloc_lookup_le(bno_cur, args->agbno, args->minlen, &i);
1228 if (error)
1229 goto error0;
1230 if (!i)
1231 goto not_found;
1232
1233 /*
1234 * Grab the freespace record.
1235 */
1236 error = xfs_alloc_get_rec(bno_cur, &fbno, &flen, &i);
1237 if (error)
1238 goto error0;
1239 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1240 error = -EFSCORRUPTED;
1241 goto error0;
1242 }
1243 ASSERT(fbno <= args->agbno);
1244
1245 /*
1246 * Check for overlapping busy extents.
1247 */
1248 tbno = fbno;
1249 tlen = flen;
1250 xfs_extent_busy_trim(args, &tbno, &tlen, &busy_gen);
1251
1252 /*
1253 * Give up if the start of the extent is busy, or the freespace isn't
1254 * long enough for the minimum request.
1255 */
1256 if (tbno > args->agbno)
1257 goto not_found;
1258 if (tlen < args->minlen)
1259 goto not_found;
1260 tend = tbno + tlen;
1261 if (tend < args->agbno + args->minlen)
1262 goto not_found;
1263
1264 /*
1265 * End of extent will be smaller of the freespace end and the
1266 * maximal requested end.
1267 *
1268 * Fix the length according to mod and prod if given.
1269 */
1270 args->len = XFS_AGBLOCK_MIN(tend, args->agbno + args->maxlen)
1271 - args->agbno;
1272 xfs_alloc_fix_len(args);
1273 ASSERT(args->agbno + args->len <= tend);
1274
1275 /*
1276 * We are allocating agbno for args->len
1277 * Allocate/initialize a cursor for the by-size btree.
1278 */
1279 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1280 args->pag, XFS_BTNUM_CNT);
1281 ASSERT(args->agbno + args->len <= be32_to_cpu(agf->agf_length));
1282 error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen, args->agbno,
1283 args->len, XFSA_FIXUP_BNO_OK);
1284 if (error) {
1285 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1286 goto error0;
1287 }
1288
1289 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1290 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1291
1292 args->wasfromfl = 0;
1293 trace_xfs_alloc_exact_done(args);
1294 return 0;
1295
1296 not_found:
1297 /* Didn't find it, return null. */
1298 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1299 args->agbno = NULLAGBLOCK;
1300 trace_xfs_alloc_exact_notfound(args);
1301 return 0;
1302
1303 error0:
1304 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1305 trace_xfs_alloc_exact_error(args);
1306 return error;
1307 }
1308
1309 /*
1310 * Search a given number of btree records in a given direction. Check each
1311 * record against the good extent we've already found.
1312 */
1313 STATIC int
xfs_alloc_walk_iter(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,struct xfs_btree_cur * cur,bool increment,bool find_one,int count,int * stat)1314 xfs_alloc_walk_iter(
1315 struct xfs_alloc_arg *args,
1316 struct xfs_alloc_cur *acur,
1317 struct xfs_btree_cur *cur,
1318 bool increment,
1319 bool find_one, /* quit on first candidate */
1320 int count, /* rec count (-1 for infinite) */
1321 int *stat)
1322 {
1323 int error;
1324 int i;
1325
1326 *stat = 0;
1327
1328 /*
1329 * Search so long as the cursor is active or we find a better extent.
1330 * The cursor is deactivated if it extends beyond the range of the
1331 * current allocation candidate.
1332 */
1333 while (xfs_alloc_cur_active(cur) && count) {
1334 error = xfs_alloc_cur_check(args, acur, cur, &i);
1335 if (error)
1336 return error;
1337 if (i == 1) {
1338 *stat = 1;
1339 if (find_one)
1340 break;
1341 }
1342 if (!xfs_alloc_cur_active(cur))
1343 break;
1344
1345 if (increment)
1346 error = xfs_btree_increment(cur, 0, &i);
1347 else
1348 error = xfs_btree_decrement(cur, 0, &i);
1349 if (error)
1350 return error;
1351 if (i == 0)
1352 cur->bc_ag.abt.active = false;
1353
1354 if (count > 0)
1355 count--;
1356 }
1357
1358 return 0;
1359 }
1360
1361 /*
1362 * Search the by-bno and by-size btrees in parallel in search of an extent with
1363 * ideal locality based on the NEAR mode ->agbno locality hint.
1364 */
1365 STATIC int
xfs_alloc_ag_vextent_locality(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,int * stat)1366 xfs_alloc_ag_vextent_locality(
1367 struct xfs_alloc_arg *args,
1368 struct xfs_alloc_cur *acur,
1369 int *stat)
1370 {
1371 struct xfs_btree_cur *fbcur = NULL;
1372 int error;
1373 int i;
1374 bool fbinc;
1375
1376 ASSERT(acur->len == 0);
1377 ASSERT(args->type == XFS_ALLOCTYPE_NEAR_BNO);
1378
1379 *stat = 0;
1380
1381 error = xfs_alloc_lookup_ge(acur->cnt, args->agbno, acur->cur_len, &i);
1382 if (error)
1383 return error;
1384 error = xfs_alloc_lookup_le(acur->bnolt, args->agbno, 0, &i);
1385 if (error)
1386 return error;
1387 error = xfs_alloc_lookup_ge(acur->bnogt, args->agbno, 0, &i);
1388 if (error)
1389 return error;
1390
1391 /*
1392 * Search the bnobt and cntbt in parallel. Search the bnobt left and
1393 * right and lookup the closest extent to the locality hint for each
1394 * extent size key in the cntbt. The entire search terminates
1395 * immediately on a bnobt hit because that means we've found best case
1396 * locality. Otherwise the search continues until the cntbt cursor runs
1397 * off the end of the tree. If no allocation candidate is found at this
1398 * point, give up on locality, walk backwards from the end of the cntbt
1399 * and take the first available extent.
1400 *
1401 * The parallel tree searches balance each other out to provide fairly
1402 * consistent performance for various situations. The bnobt search can
1403 * have pathological behavior in the worst case scenario of larger
1404 * allocation requests and fragmented free space. On the other hand, the
1405 * bnobt is able to satisfy most smaller allocation requests much more
1406 * quickly than the cntbt. The cntbt search can sift through fragmented
1407 * free space and sets of free extents for larger allocation requests
1408 * more quickly than the bnobt. Since the locality hint is just a hint
1409 * and we don't want to scan the entire bnobt for perfect locality, the
1410 * cntbt search essentially bounds the bnobt search such that we can
1411 * find good enough locality at reasonable performance in most cases.
1412 */
1413 while (xfs_alloc_cur_active(acur->bnolt) ||
1414 xfs_alloc_cur_active(acur->bnogt) ||
1415 xfs_alloc_cur_active(acur->cnt)) {
1416
1417 trace_xfs_alloc_cur_lookup(args);
1418
1419 /*
1420 * Search the bnobt left and right. In the case of a hit, finish
1421 * the search in the opposite direction and we're done.
1422 */
1423 error = xfs_alloc_walk_iter(args, acur, acur->bnolt, false,
1424 true, 1, &i);
1425 if (error)
1426 return error;
1427 if (i == 1) {
1428 trace_xfs_alloc_cur_left(args);
1429 fbcur = acur->bnogt;
1430 fbinc = true;
1431 break;
1432 }
1433 error = xfs_alloc_walk_iter(args, acur, acur->bnogt, true, true,
1434 1, &i);
1435 if (error)
1436 return error;
1437 if (i == 1) {
1438 trace_xfs_alloc_cur_right(args);
1439 fbcur = acur->bnolt;
1440 fbinc = false;
1441 break;
1442 }
1443
1444 /*
1445 * Check the extent with best locality based on the current
1446 * extent size search key and keep track of the best candidate.
1447 */
1448 error = xfs_alloc_cntbt_iter(args, acur);
1449 if (error)
1450 return error;
1451 if (!xfs_alloc_cur_active(acur->cnt)) {
1452 trace_xfs_alloc_cur_lookup_done(args);
1453 break;
1454 }
1455 }
1456
1457 /*
1458 * If we failed to find anything due to busy extents, return empty
1459 * handed so the caller can flush and retry. If no busy extents were
1460 * found, walk backwards from the end of the cntbt as a last resort.
1461 */
1462 if (!xfs_alloc_cur_active(acur->cnt) && !acur->len && !acur->busy) {
1463 error = xfs_btree_decrement(acur->cnt, 0, &i);
1464 if (error)
1465 return error;
1466 if (i) {
1467 acur->cnt->bc_ag.abt.active = true;
1468 fbcur = acur->cnt;
1469 fbinc = false;
1470 }
1471 }
1472
1473 /*
1474 * Search in the opposite direction for a better entry in the case of
1475 * a bnobt hit or walk backwards from the end of the cntbt.
1476 */
1477 if (fbcur) {
1478 error = xfs_alloc_walk_iter(args, acur, fbcur, fbinc, true, -1,
1479 &i);
1480 if (error)
1481 return error;
1482 }
1483
1484 if (acur->len)
1485 *stat = 1;
1486
1487 return 0;
1488 }
1489
1490 /* Check the last block of the cnt btree for allocations. */
1491 static int
xfs_alloc_ag_vextent_lastblock(struct xfs_alloc_arg * args,struct xfs_alloc_cur * acur,xfs_agblock_t * bno,xfs_extlen_t * len,bool * allocated)1492 xfs_alloc_ag_vextent_lastblock(
1493 struct xfs_alloc_arg *args,
1494 struct xfs_alloc_cur *acur,
1495 xfs_agblock_t *bno,
1496 xfs_extlen_t *len,
1497 bool *allocated)
1498 {
1499 int error;
1500 int i;
1501
1502 #ifdef DEBUG
1503 /* Randomly don't execute the first algorithm. */
1504 if (prandom_u32() & 1)
1505 return 0;
1506 #endif
1507
1508 /*
1509 * Start from the entry that lookup found, sequence through all larger
1510 * free blocks. If we're actually pointing at a record smaller than
1511 * maxlen, go to the start of this block, and skip all those smaller
1512 * than minlen.
1513 */
1514 if (*len || args->alignment > 1) {
1515 acur->cnt->bc_levels[0].ptr = 1;
1516 do {
1517 error = xfs_alloc_get_rec(acur->cnt, bno, len, &i);
1518 if (error)
1519 return error;
1520 if (XFS_IS_CORRUPT(args->mp, i != 1))
1521 return -EFSCORRUPTED;
1522 if (*len >= args->minlen)
1523 break;
1524 error = xfs_btree_increment(acur->cnt, 0, &i);
1525 if (error)
1526 return error;
1527 } while (i);
1528 ASSERT(*len >= args->minlen);
1529 if (!i)
1530 return 0;
1531 }
1532
1533 error = xfs_alloc_walk_iter(args, acur, acur->cnt, true, false, -1, &i);
1534 if (error)
1535 return error;
1536
1537 /*
1538 * It didn't work. We COULD be in a case where there's a good record
1539 * somewhere, so try again.
1540 */
1541 if (acur->len == 0)
1542 return 0;
1543
1544 trace_xfs_alloc_near_first(args);
1545 *allocated = true;
1546 return 0;
1547 }
1548
1549 /*
1550 * Allocate a variable extent near bno in the allocation group agno.
1551 * Extent's length (returned in len) will be between minlen and maxlen,
1552 * and of the form k * prod + mod unless there's nothing that large.
1553 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1554 */
1555 STATIC int
xfs_alloc_ag_vextent_near(struct xfs_alloc_arg * args)1556 xfs_alloc_ag_vextent_near(
1557 struct xfs_alloc_arg *args)
1558 {
1559 struct xfs_alloc_cur acur = {};
1560 int error; /* error code */
1561 int i; /* result code, temporary */
1562 xfs_agblock_t bno;
1563 xfs_extlen_t len;
1564
1565 /* handle uninitialized agbno range so caller doesn't have to */
1566 if (!args->min_agbno && !args->max_agbno)
1567 args->max_agbno = args->mp->m_sb.sb_agblocks - 1;
1568 ASSERT(args->min_agbno <= args->max_agbno);
1569
1570 /* clamp agbno to the range if it's outside */
1571 if (args->agbno < args->min_agbno)
1572 args->agbno = args->min_agbno;
1573 if (args->agbno > args->max_agbno)
1574 args->agbno = args->max_agbno;
1575
1576 restart:
1577 len = 0;
1578
1579 /*
1580 * Set up cursors and see if there are any free extents as big as
1581 * maxlen. If not, pick the last entry in the tree unless the tree is
1582 * empty.
1583 */
1584 error = xfs_alloc_cur_setup(args, &acur);
1585 if (error == -ENOSPC) {
1586 error = xfs_alloc_ag_vextent_small(args, acur.cnt, &bno,
1587 &len, &i);
1588 if (error)
1589 goto out;
1590 if (i == 0 || len == 0) {
1591 trace_xfs_alloc_near_noentry(args);
1592 goto out;
1593 }
1594 ASSERT(i == 1);
1595 } else if (error) {
1596 goto out;
1597 }
1598
1599 /*
1600 * First algorithm.
1601 * If the requested extent is large wrt the freespaces available
1602 * in this a.g., then the cursor will be pointing to a btree entry
1603 * near the right edge of the tree. If it's in the last btree leaf
1604 * block, then we just examine all the entries in that block
1605 * that are big enough, and pick the best one.
1606 */
1607 if (xfs_btree_islastblock(acur.cnt, 0)) {
1608 bool allocated = false;
1609
1610 error = xfs_alloc_ag_vextent_lastblock(args, &acur, &bno, &len,
1611 &allocated);
1612 if (error)
1613 goto out;
1614 if (allocated)
1615 goto alloc_finish;
1616 }
1617
1618 /*
1619 * Second algorithm. Combined cntbt and bnobt search to find ideal
1620 * locality.
1621 */
1622 error = xfs_alloc_ag_vextent_locality(args, &acur, &i);
1623 if (error)
1624 goto out;
1625
1626 /*
1627 * If we couldn't get anything, give up.
1628 */
1629 if (!acur.len) {
1630 if (acur.busy) {
1631 trace_xfs_alloc_near_busy(args);
1632 xfs_extent_busy_flush(args->mp, args->pag,
1633 acur.busy_gen);
1634 goto restart;
1635 }
1636 trace_xfs_alloc_size_neither(args);
1637 args->agbno = NULLAGBLOCK;
1638 goto out;
1639 }
1640
1641 alloc_finish:
1642 /* fix up btrees on a successful allocation */
1643 error = xfs_alloc_cur_finish(args, &acur);
1644
1645 out:
1646 xfs_alloc_cur_close(&acur, error);
1647 return error;
1648 }
1649
1650 /*
1651 * Allocate a variable extent anywhere in the allocation group agno.
1652 * Extent's length (returned in len) will be between minlen and maxlen,
1653 * and of the form k * prod + mod unless there's nothing that large.
1654 * Return the starting a.g. block, or NULLAGBLOCK if we can't do it.
1655 */
1656 STATIC int /* error */
xfs_alloc_ag_vextent_size(xfs_alloc_arg_t * args)1657 xfs_alloc_ag_vextent_size(
1658 xfs_alloc_arg_t *args) /* allocation argument structure */
1659 {
1660 struct xfs_agf *agf = args->agbp->b_addr;
1661 struct xfs_btree_cur *bno_cur; /* cursor for bno btree */
1662 struct xfs_btree_cur *cnt_cur; /* cursor for cnt btree */
1663 int error; /* error result */
1664 xfs_agblock_t fbno; /* start of found freespace */
1665 xfs_extlen_t flen; /* length of found freespace */
1666 int i; /* temp status variable */
1667 xfs_agblock_t rbno; /* returned block number */
1668 xfs_extlen_t rlen; /* length of returned extent */
1669 bool busy;
1670 unsigned busy_gen;
1671
1672 restart:
1673 /*
1674 * Allocate and initialize a cursor for the by-size btree.
1675 */
1676 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1677 args->pag, XFS_BTNUM_CNT);
1678 bno_cur = NULL;
1679
1680 /*
1681 * Look for an entry >= maxlen+alignment-1 blocks.
1682 */
1683 if ((error = xfs_alloc_lookup_ge(cnt_cur, 0,
1684 args->maxlen + args->alignment - 1, &i)))
1685 goto error0;
1686
1687 /*
1688 * If none then we have to settle for a smaller extent. In the case that
1689 * there are no large extents, this will return the last entry in the
1690 * tree unless the tree is empty. In the case that there are only busy
1691 * large extents, this will return the largest small extent unless there
1692 * are no smaller extents available.
1693 */
1694 if (!i) {
1695 error = xfs_alloc_ag_vextent_small(args, cnt_cur,
1696 &fbno, &flen, &i);
1697 if (error)
1698 goto error0;
1699 if (i == 0 || flen == 0) {
1700 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1701 trace_xfs_alloc_size_noentry(args);
1702 return 0;
1703 }
1704 ASSERT(i == 1);
1705 busy = xfs_alloc_compute_aligned(args, fbno, flen, &rbno,
1706 &rlen, &busy_gen);
1707 } else {
1708 /*
1709 * Search for a non-busy extent that is large enough.
1710 */
1711 for (;;) {
1712 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, &i);
1713 if (error)
1714 goto error0;
1715 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1716 error = -EFSCORRUPTED;
1717 goto error0;
1718 }
1719
1720 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1721 &rbno, &rlen, &busy_gen);
1722
1723 if (rlen >= args->maxlen)
1724 break;
1725
1726 error = xfs_btree_increment(cnt_cur, 0, &i);
1727 if (error)
1728 goto error0;
1729 if (i == 0) {
1730 /*
1731 * Our only valid extents must have been busy.
1732 * Make it unbusy by forcing the log out and
1733 * retrying.
1734 */
1735 xfs_btree_del_cursor(cnt_cur,
1736 XFS_BTREE_NOERROR);
1737 trace_xfs_alloc_size_busy(args);
1738 xfs_extent_busy_flush(args->mp,
1739 args->pag, busy_gen);
1740 goto restart;
1741 }
1742 }
1743 }
1744
1745 /*
1746 * In the first case above, we got the last entry in the
1747 * by-size btree. Now we check to see if the space hits maxlen
1748 * once aligned; if not, we search left for something better.
1749 * This can't happen in the second case above.
1750 */
1751 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1752 if (XFS_IS_CORRUPT(args->mp,
1753 rlen != 0 &&
1754 (rlen > flen ||
1755 rbno + rlen > fbno + flen))) {
1756 error = -EFSCORRUPTED;
1757 goto error0;
1758 }
1759 if (rlen < args->maxlen) {
1760 xfs_agblock_t bestfbno;
1761 xfs_extlen_t bestflen;
1762 xfs_agblock_t bestrbno;
1763 xfs_extlen_t bestrlen;
1764
1765 bestrlen = rlen;
1766 bestrbno = rbno;
1767 bestflen = flen;
1768 bestfbno = fbno;
1769 for (;;) {
1770 if ((error = xfs_btree_decrement(cnt_cur, 0, &i)))
1771 goto error0;
1772 if (i == 0)
1773 break;
1774 if ((error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen,
1775 &i)))
1776 goto error0;
1777 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1778 error = -EFSCORRUPTED;
1779 goto error0;
1780 }
1781 if (flen < bestrlen)
1782 break;
1783 busy = xfs_alloc_compute_aligned(args, fbno, flen,
1784 &rbno, &rlen, &busy_gen);
1785 rlen = XFS_EXTLEN_MIN(args->maxlen, rlen);
1786 if (XFS_IS_CORRUPT(args->mp,
1787 rlen != 0 &&
1788 (rlen > flen ||
1789 rbno + rlen > fbno + flen))) {
1790 error = -EFSCORRUPTED;
1791 goto error0;
1792 }
1793 if (rlen > bestrlen) {
1794 bestrlen = rlen;
1795 bestrbno = rbno;
1796 bestflen = flen;
1797 bestfbno = fbno;
1798 if (rlen == args->maxlen)
1799 break;
1800 }
1801 }
1802 if ((error = xfs_alloc_lookup_eq(cnt_cur, bestfbno, bestflen,
1803 &i)))
1804 goto error0;
1805 if (XFS_IS_CORRUPT(args->mp, i != 1)) {
1806 error = -EFSCORRUPTED;
1807 goto error0;
1808 }
1809 rlen = bestrlen;
1810 rbno = bestrbno;
1811 flen = bestflen;
1812 fbno = bestfbno;
1813 }
1814 args->wasfromfl = 0;
1815 /*
1816 * Fix up the length.
1817 */
1818 args->len = rlen;
1819 if (rlen < args->minlen) {
1820 if (busy) {
1821 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1822 trace_xfs_alloc_size_busy(args);
1823 xfs_extent_busy_flush(args->mp, args->pag, busy_gen);
1824 goto restart;
1825 }
1826 goto out_nominleft;
1827 }
1828 xfs_alloc_fix_len(args);
1829
1830 rlen = args->len;
1831 if (XFS_IS_CORRUPT(args->mp, rlen > flen)) {
1832 error = -EFSCORRUPTED;
1833 goto error0;
1834 }
1835 /*
1836 * Allocate and initialize a cursor for the by-block tree.
1837 */
1838 bno_cur = xfs_allocbt_init_cursor(args->mp, args->tp, args->agbp,
1839 args->pag, XFS_BTNUM_BNO);
1840 if ((error = xfs_alloc_fixup_trees(cnt_cur, bno_cur, fbno, flen,
1841 rbno, rlen, XFSA_FIXUP_CNT_OK)))
1842 goto error0;
1843 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1844 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
1845 cnt_cur = bno_cur = NULL;
1846 args->len = rlen;
1847 args->agbno = rbno;
1848 if (XFS_IS_CORRUPT(args->mp,
1849 args->agbno + args->len >
1850 be32_to_cpu(agf->agf_length))) {
1851 error = -EFSCORRUPTED;
1852 goto error0;
1853 }
1854 trace_xfs_alloc_size_done(args);
1855 return 0;
1856
1857 error0:
1858 trace_xfs_alloc_size_error(args);
1859 if (cnt_cur)
1860 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
1861 if (bno_cur)
1862 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
1863 return error;
1864
1865 out_nominleft:
1866 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
1867 trace_xfs_alloc_size_nominleft(args);
1868 args->agbno = NULLAGBLOCK;
1869 return 0;
1870 }
1871
1872 /*
1873 * Free the extent starting at agno/bno for length.
1874 */
1875 STATIC int
xfs_free_ag_extent(struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno,xfs_agblock_t bno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type)1876 xfs_free_ag_extent(
1877 struct xfs_trans *tp,
1878 struct xfs_buf *agbp,
1879 xfs_agnumber_t agno,
1880 xfs_agblock_t bno,
1881 xfs_extlen_t len,
1882 const struct xfs_owner_info *oinfo,
1883 enum xfs_ag_resv_type type)
1884 {
1885 struct xfs_mount *mp;
1886 struct xfs_btree_cur *bno_cur;
1887 struct xfs_btree_cur *cnt_cur;
1888 xfs_agblock_t gtbno; /* start of right neighbor */
1889 xfs_extlen_t gtlen; /* length of right neighbor */
1890 xfs_agblock_t ltbno; /* start of left neighbor */
1891 xfs_extlen_t ltlen; /* length of left neighbor */
1892 xfs_agblock_t nbno; /* new starting block of freesp */
1893 xfs_extlen_t nlen; /* new length of freespace */
1894 int haveleft; /* have a left neighbor */
1895 int haveright; /* have a right neighbor */
1896 int i;
1897 int error;
1898 struct xfs_perag *pag = agbp->b_pag;
1899
1900 bno_cur = cnt_cur = NULL;
1901 mp = tp->t_mountp;
1902
1903 if (!xfs_rmap_should_skip_owner_update(oinfo)) {
1904 error = xfs_rmap_free(tp, agbp, pag, bno, len, oinfo);
1905 if (error)
1906 goto error0;
1907 }
1908
1909 /*
1910 * Allocate and initialize a cursor for the by-block btree.
1911 */
1912 bno_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_BNO);
1913 /*
1914 * Look for a neighboring block on the left (lower block numbers)
1915 * that is contiguous with this space.
1916 */
1917 if ((error = xfs_alloc_lookup_le(bno_cur, bno, len, &haveleft)))
1918 goto error0;
1919 if (haveleft) {
1920 /*
1921 * There is a block to our left.
1922 */
1923 if ((error = xfs_alloc_get_rec(bno_cur, <bno, <len, &i)))
1924 goto error0;
1925 if (XFS_IS_CORRUPT(mp, i != 1)) {
1926 error = -EFSCORRUPTED;
1927 goto error0;
1928 }
1929 /*
1930 * It's not contiguous, though.
1931 */
1932 if (ltbno + ltlen < bno)
1933 haveleft = 0;
1934 else {
1935 /*
1936 * If this failure happens the request to free this
1937 * space was invalid, it's (partly) already free.
1938 * Very bad.
1939 */
1940 if (XFS_IS_CORRUPT(mp, ltbno + ltlen > bno)) {
1941 error = -EFSCORRUPTED;
1942 goto error0;
1943 }
1944 }
1945 }
1946 /*
1947 * Look for a neighboring block on the right (higher block numbers)
1948 * that is contiguous with this space.
1949 */
1950 if ((error = xfs_btree_increment(bno_cur, 0, &haveright)))
1951 goto error0;
1952 if (haveright) {
1953 /*
1954 * There is a block to our right.
1955 */
1956 if ((error = xfs_alloc_get_rec(bno_cur, >bno, >len, &i)))
1957 goto error0;
1958 if (XFS_IS_CORRUPT(mp, i != 1)) {
1959 error = -EFSCORRUPTED;
1960 goto error0;
1961 }
1962 /*
1963 * It's not contiguous, though.
1964 */
1965 if (bno + len < gtbno)
1966 haveright = 0;
1967 else {
1968 /*
1969 * If this failure happens the request to free this
1970 * space was invalid, it's (partly) already free.
1971 * Very bad.
1972 */
1973 if (XFS_IS_CORRUPT(mp, bno + len > gtbno)) {
1974 error = -EFSCORRUPTED;
1975 goto error0;
1976 }
1977 }
1978 }
1979 /*
1980 * Now allocate and initialize a cursor for the by-size tree.
1981 */
1982 cnt_cur = xfs_allocbt_init_cursor(mp, tp, agbp, pag, XFS_BTNUM_CNT);
1983 /*
1984 * Have both left and right contiguous neighbors.
1985 * Merge all three into a single free block.
1986 */
1987 if (haveleft && haveright) {
1988 /*
1989 * Delete the old by-size entry on the left.
1990 */
1991 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
1992 goto error0;
1993 if (XFS_IS_CORRUPT(mp, i != 1)) {
1994 error = -EFSCORRUPTED;
1995 goto error0;
1996 }
1997 if ((error = xfs_btree_delete(cnt_cur, &i)))
1998 goto error0;
1999 if (XFS_IS_CORRUPT(mp, i != 1)) {
2000 error = -EFSCORRUPTED;
2001 goto error0;
2002 }
2003 /*
2004 * Delete the old by-size entry on the right.
2005 */
2006 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2007 goto error0;
2008 if (XFS_IS_CORRUPT(mp, i != 1)) {
2009 error = -EFSCORRUPTED;
2010 goto error0;
2011 }
2012 if ((error = xfs_btree_delete(cnt_cur, &i)))
2013 goto error0;
2014 if (XFS_IS_CORRUPT(mp, i != 1)) {
2015 error = -EFSCORRUPTED;
2016 goto error0;
2017 }
2018 /*
2019 * Delete the old by-block entry for the right block.
2020 */
2021 if ((error = xfs_btree_delete(bno_cur, &i)))
2022 goto error0;
2023 if (XFS_IS_CORRUPT(mp, i != 1)) {
2024 error = -EFSCORRUPTED;
2025 goto error0;
2026 }
2027 /*
2028 * Move the by-block cursor back to the left neighbor.
2029 */
2030 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2031 goto error0;
2032 if (XFS_IS_CORRUPT(mp, i != 1)) {
2033 error = -EFSCORRUPTED;
2034 goto error0;
2035 }
2036 #ifdef DEBUG
2037 /*
2038 * Check that this is the right record: delete didn't
2039 * mangle the cursor.
2040 */
2041 {
2042 xfs_agblock_t xxbno;
2043 xfs_extlen_t xxlen;
2044
2045 if ((error = xfs_alloc_get_rec(bno_cur, &xxbno, &xxlen,
2046 &i)))
2047 goto error0;
2048 if (XFS_IS_CORRUPT(mp,
2049 i != 1 ||
2050 xxbno != ltbno ||
2051 xxlen != ltlen)) {
2052 error = -EFSCORRUPTED;
2053 goto error0;
2054 }
2055 }
2056 #endif
2057 /*
2058 * Update remaining by-block entry to the new, joined block.
2059 */
2060 nbno = ltbno;
2061 nlen = len + ltlen + gtlen;
2062 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2063 goto error0;
2064 }
2065 /*
2066 * Have only a left contiguous neighbor.
2067 * Merge it together with the new freespace.
2068 */
2069 else if (haveleft) {
2070 /*
2071 * Delete the old by-size entry on the left.
2072 */
2073 if ((error = xfs_alloc_lookup_eq(cnt_cur, ltbno, ltlen, &i)))
2074 goto error0;
2075 if (XFS_IS_CORRUPT(mp, i != 1)) {
2076 error = -EFSCORRUPTED;
2077 goto error0;
2078 }
2079 if ((error = xfs_btree_delete(cnt_cur, &i)))
2080 goto error0;
2081 if (XFS_IS_CORRUPT(mp, i != 1)) {
2082 error = -EFSCORRUPTED;
2083 goto error0;
2084 }
2085 /*
2086 * Back up the by-block cursor to the left neighbor, and
2087 * update its length.
2088 */
2089 if ((error = xfs_btree_decrement(bno_cur, 0, &i)))
2090 goto error0;
2091 if (XFS_IS_CORRUPT(mp, i != 1)) {
2092 error = -EFSCORRUPTED;
2093 goto error0;
2094 }
2095 nbno = ltbno;
2096 nlen = len + ltlen;
2097 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2098 goto error0;
2099 }
2100 /*
2101 * Have only a right contiguous neighbor.
2102 * Merge it together with the new freespace.
2103 */
2104 else if (haveright) {
2105 /*
2106 * Delete the old by-size entry on the right.
2107 */
2108 if ((error = xfs_alloc_lookup_eq(cnt_cur, gtbno, gtlen, &i)))
2109 goto error0;
2110 if (XFS_IS_CORRUPT(mp, i != 1)) {
2111 error = -EFSCORRUPTED;
2112 goto error0;
2113 }
2114 if ((error = xfs_btree_delete(cnt_cur, &i)))
2115 goto error0;
2116 if (XFS_IS_CORRUPT(mp, i != 1)) {
2117 error = -EFSCORRUPTED;
2118 goto error0;
2119 }
2120 /*
2121 * Update the starting block and length of the right
2122 * neighbor in the by-block tree.
2123 */
2124 nbno = bno;
2125 nlen = len + gtlen;
2126 if ((error = xfs_alloc_update(bno_cur, nbno, nlen)))
2127 goto error0;
2128 }
2129 /*
2130 * No contiguous neighbors.
2131 * Insert the new freespace into the by-block tree.
2132 */
2133 else {
2134 nbno = bno;
2135 nlen = len;
2136 if ((error = xfs_btree_insert(bno_cur, &i)))
2137 goto error0;
2138 if (XFS_IS_CORRUPT(mp, i != 1)) {
2139 error = -EFSCORRUPTED;
2140 goto error0;
2141 }
2142 }
2143 xfs_btree_del_cursor(bno_cur, XFS_BTREE_NOERROR);
2144 bno_cur = NULL;
2145 /*
2146 * In all cases we need to insert the new freespace in the by-size tree.
2147 */
2148 if ((error = xfs_alloc_lookup_eq(cnt_cur, nbno, nlen, &i)))
2149 goto error0;
2150 if (XFS_IS_CORRUPT(mp, i != 0)) {
2151 error = -EFSCORRUPTED;
2152 goto error0;
2153 }
2154 if ((error = xfs_btree_insert(cnt_cur, &i)))
2155 goto error0;
2156 if (XFS_IS_CORRUPT(mp, i != 1)) {
2157 error = -EFSCORRUPTED;
2158 goto error0;
2159 }
2160 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_NOERROR);
2161 cnt_cur = NULL;
2162
2163 /*
2164 * Update the freespace totals in the ag and superblock.
2165 */
2166 error = xfs_alloc_update_counters(tp, agbp, len);
2167 xfs_ag_resv_free_extent(agbp->b_pag, type, tp, len);
2168 if (error)
2169 goto error0;
2170
2171 XFS_STATS_INC(mp, xs_freex);
2172 XFS_STATS_ADD(mp, xs_freeb, len);
2173
2174 trace_xfs_free_extent(mp, agno, bno, len, type, haveleft, haveright);
2175
2176 return 0;
2177
2178 error0:
2179 trace_xfs_free_extent(mp, agno, bno, len, type, -1, -1);
2180 if (bno_cur)
2181 xfs_btree_del_cursor(bno_cur, XFS_BTREE_ERROR);
2182 if (cnt_cur)
2183 xfs_btree_del_cursor(cnt_cur, XFS_BTREE_ERROR);
2184 return error;
2185 }
2186
2187 /*
2188 * Visible (exported) allocation/free functions.
2189 * Some of these are used just by xfs_alloc_btree.c and this file.
2190 */
2191
2192 /*
2193 * Compute and fill in value of m_alloc_maxlevels.
2194 */
2195 void
xfs_alloc_compute_maxlevels(xfs_mount_t * mp)2196 xfs_alloc_compute_maxlevels(
2197 xfs_mount_t *mp) /* file system mount structure */
2198 {
2199 mp->m_alloc_maxlevels = xfs_btree_compute_maxlevels(mp->m_alloc_mnr,
2200 (mp->m_sb.sb_agblocks + 1) / 2);
2201 ASSERT(mp->m_alloc_maxlevels <= xfs_allocbt_maxlevels_ondisk());
2202 }
2203
2204 /*
2205 * Find the length of the longest extent in an AG. The 'need' parameter
2206 * specifies how much space we're going to need for the AGFL and the
2207 * 'reserved' parameter tells us how many blocks in this AG are reserved for
2208 * other callers.
2209 */
2210 xfs_extlen_t
xfs_alloc_longest_free_extent(struct xfs_perag * pag,xfs_extlen_t need,xfs_extlen_t reserved)2211 xfs_alloc_longest_free_extent(
2212 struct xfs_perag *pag,
2213 xfs_extlen_t need,
2214 xfs_extlen_t reserved)
2215 {
2216 xfs_extlen_t delta = 0;
2217
2218 /*
2219 * If the AGFL needs a recharge, we'll have to subtract that from the
2220 * longest extent.
2221 */
2222 if (need > pag->pagf_flcount)
2223 delta = need - pag->pagf_flcount;
2224
2225 /*
2226 * If we cannot maintain others' reservations with space from the
2227 * not-longest freesp extents, we'll have to subtract /that/ from
2228 * the longest extent too.
2229 */
2230 if (pag->pagf_freeblks - pag->pagf_longest < reserved)
2231 delta += reserved - (pag->pagf_freeblks - pag->pagf_longest);
2232
2233 /*
2234 * If the longest extent is long enough to satisfy all the
2235 * reservations and AGFL rules in place, we can return this extent.
2236 */
2237 if (pag->pagf_longest > delta)
2238 return min_t(xfs_extlen_t, pag->pag_mount->m_ag_max_usable,
2239 pag->pagf_longest - delta);
2240
2241 /* Otherwise, let the caller try for 1 block if there's space. */
2242 return pag->pagf_flcount > 0 || pag->pagf_longest > 0;
2243 }
2244
2245 /*
2246 * Compute the minimum length of the AGFL in the given AG. If @pag is NULL,
2247 * return the largest possible minimum length.
2248 */
2249 unsigned int
xfs_alloc_min_freelist(struct xfs_mount * mp,struct xfs_perag * pag)2250 xfs_alloc_min_freelist(
2251 struct xfs_mount *mp,
2252 struct xfs_perag *pag)
2253 {
2254 /* AG btrees have at least 1 level. */
2255 static const uint8_t fake_levels[XFS_BTNUM_AGF] = {1, 1, 1};
2256 const uint8_t *levels = pag ? pag->pagf_levels : fake_levels;
2257 unsigned int min_free;
2258
2259 ASSERT(mp->m_alloc_maxlevels > 0);
2260
2261 /* space needed by-bno freespace btree */
2262 min_free = min_t(unsigned int, levels[XFS_BTNUM_BNOi] + 1,
2263 mp->m_alloc_maxlevels);
2264 /* space needed by-size freespace btree */
2265 min_free += min_t(unsigned int, levels[XFS_BTNUM_CNTi] + 1,
2266 mp->m_alloc_maxlevels);
2267 /* space needed reverse mapping used space btree */
2268 if (xfs_has_rmapbt(mp))
2269 min_free += min_t(unsigned int, levels[XFS_BTNUM_RMAPi] + 1,
2270 mp->m_rmap_maxlevels);
2271
2272 return min_free;
2273 }
2274
2275 /*
2276 * Check if the operation we are fixing up the freelist for should go ahead or
2277 * not. If we are freeing blocks, we always allow it, otherwise the allocation
2278 * is dependent on whether the size and shape of free space available will
2279 * permit the requested allocation to take place.
2280 */
2281 static bool
xfs_alloc_space_available(struct xfs_alloc_arg * args,xfs_extlen_t min_free,int flags)2282 xfs_alloc_space_available(
2283 struct xfs_alloc_arg *args,
2284 xfs_extlen_t min_free,
2285 int flags)
2286 {
2287 struct xfs_perag *pag = args->pag;
2288 xfs_extlen_t alloc_len, longest;
2289 xfs_extlen_t reservation; /* blocks that are still reserved */
2290 int available;
2291 xfs_extlen_t agflcount;
2292
2293 if (flags & XFS_ALLOC_FLAG_FREEING)
2294 return true;
2295
2296 reservation = xfs_ag_resv_needed(pag, args->resv);
2297
2298 /* do we have enough contiguous free space for the allocation? */
2299 alloc_len = args->minlen + (args->alignment - 1) + args->minalignslop;
2300 longest = xfs_alloc_longest_free_extent(pag, min_free, reservation);
2301 if (longest < alloc_len)
2302 return false;
2303
2304 /*
2305 * Do we have enough free space remaining for the allocation? Don't
2306 * account extra agfl blocks because we are about to defer free them,
2307 * making them unavailable until the current transaction commits.
2308 */
2309 agflcount = min_t(xfs_extlen_t, pag->pagf_flcount, min_free);
2310 available = (int)(pag->pagf_freeblks + agflcount -
2311 reservation - min_free - args->minleft);
2312 if (available < (int)max(args->total, alloc_len))
2313 return false;
2314
2315 /*
2316 * Clamp maxlen to the amount of free space available for the actual
2317 * extent allocation.
2318 */
2319 if (available < (int)args->maxlen && !(flags & XFS_ALLOC_FLAG_CHECK)) {
2320 args->maxlen = available;
2321 ASSERT(args->maxlen > 0);
2322 ASSERT(args->maxlen >= args->minlen);
2323 }
2324
2325 return true;
2326 }
2327
2328 int
xfs_free_agfl_block(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_agblock_t agbno,struct xfs_buf * agbp,struct xfs_owner_info * oinfo)2329 xfs_free_agfl_block(
2330 struct xfs_trans *tp,
2331 xfs_agnumber_t agno,
2332 xfs_agblock_t agbno,
2333 struct xfs_buf *agbp,
2334 struct xfs_owner_info *oinfo)
2335 {
2336 int error;
2337 struct xfs_buf *bp;
2338
2339 error = xfs_free_ag_extent(tp, agbp, agno, agbno, 1, oinfo,
2340 XFS_AG_RESV_AGFL);
2341 if (error)
2342 return error;
2343
2344 error = xfs_trans_get_buf(tp, tp->t_mountp->m_ddev_targp,
2345 XFS_AGB_TO_DADDR(tp->t_mountp, agno, agbno),
2346 tp->t_mountp->m_bsize, 0, &bp);
2347 if (error)
2348 return error;
2349 xfs_trans_binval(tp, bp);
2350
2351 return 0;
2352 }
2353
2354 /*
2355 * Check the agfl fields of the agf for inconsistency or corruption. The purpose
2356 * is to detect an agfl header padding mismatch between current and early v5
2357 * kernels. This problem manifests as a 1-slot size difference between the
2358 * on-disk flcount and the active [first, last] range of a wrapped agfl. This
2359 * may also catch variants of agfl count corruption unrelated to padding. Either
2360 * way, we'll reset the agfl and warn the user.
2361 *
2362 * Return true if a reset is required before the agfl can be used, false
2363 * otherwise.
2364 */
2365 static bool
xfs_agfl_needs_reset(struct xfs_mount * mp,struct xfs_agf * agf)2366 xfs_agfl_needs_reset(
2367 struct xfs_mount *mp,
2368 struct xfs_agf *agf)
2369 {
2370 uint32_t f = be32_to_cpu(agf->agf_flfirst);
2371 uint32_t l = be32_to_cpu(agf->agf_fllast);
2372 uint32_t c = be32_to_cpu(agf->agf_flcount);
2373 int agfl_size = xfs_agfl_size(mp);
2374 int active;
2375
2376 /* no agfl header on v4 supers */
2377 if (!xfs_has_crc(mp))
2378 return false;
2379
2380 /*
2381 * The agf read verifier catches severe corruption of these fields.
2382 * Repeat some sanity checks to cover a packed -> unpacked mismatch if
2383 * the verifier allows it.
2384 */
2385 if (f >= agfl_size || l >= agfl_size)
2386 return true;
2387 if (c > agfl_size)
2388 return true;
2389
2390 /*
2391 * Check consistency between the on-disk count and the active range. An
2392 * agfl padding mismatch manifests as an inconsistent flcount.
2393 */
2394 if (c && l >= f)
2395 active = l - f + 1;
2396 else if (c)
2397 active = agfl_size - f + l + 1;
2398 else
2399 active = 0;
2400
2401 return active != c;
2402 }
2403
2404 /*
2405 * Reset the agfl to an empty state. Ignore/drop any existing blocks since the
2406 * agfl content cannot be trusted. Warn the user that a repair is required to
2407 * recover leaked blocks.
2408 *
2409 * The purpose of this mechanism is to handle filesystems affected by the agfl
2410 * header padding mismatch problem. A reset keeps the filesystem online with a
2411 * relatively minor free space accounting inconsistency rather than suffer the
2412 * inevitable crash from use of an invalid agfl block.
2413 */
2414 static void
xfs_agfl_reset(struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_perag * pag)2415 xfs_agfl_reset(
2416 struct xfs_trans *tp,
2417 struct xfs_buf *agbp,
2418 struct xfs_perag *pag)
2419 {
2420 struct xfs_mount *mp = tp->t_mountp;
2421 struct xfs_agf *agf = agbp->b_addr;
2422
2423 ASSERT(pag->pagf_agflreset);
2424 trace_xfs_agfl_reset(mp, agf, 0, _RET_IP_);
2425
2426 xfs_warn(mp,
2427 "WARNING: Reset corrupted AGFL on AG %u. %d blocks leaked. "
2428 "Please unmount and run xfs_repair.",
2429 pag->pag_agno, pag->pagf_flcount);
2430
2431 agf->agf_flfirst = 0;
2432 agf->agf_fllast = cpu_to_be32(xfs_agfl_size(mp) - 1);
2433 agf->agf_flcount = 0;
2434 xfs_alloc_log_agf(tp, agbp, XFS_AGF_FLFIRST | XFS_AGF_FLLAST |
2435 XFS_AGF_FLCOUNT);
2436
2437 pag->pagf_flcount = 0;
2438 pag->pagf_agflreset = false;
2439 }
2440
2441 /*
2442 * Defer an AGFL block free. This is effectively equivalent to
2443 * xfs_free_extent_later() with some special handling particular to AGFL blocks.
2444 *
2445 * Deferring AGFL frees helps prevent log reservation overruns due to too many
2446 * allocation operations in a transaction. AGFL frees are prone to this problem
2447 * because for one they are always freed one at a time. Further, an immediate
2448 * AGFL block free can cause a btree join and require another block free before
2449 * the real allocation can proceed. Deferring the free disconnects freeing up
2450 * the AGFL slot from freeing the block.
2451 */
2452 STATIC void
xfs_defer_agfl_block(struct xfs_trans * tp,xfs_agnumber_t agno,xfs_fsblock_t agbno,struct xfs_owner_info * oinfo)2453 xfs_defer_agfl_block(
2454 struct xfs_trans *tp,
2455 xfs_agnumber_t agno,
2456 xfs_fsblock_t agbno,
2457 struct xfs_owner_info *oinfo)
2458 {
2459 struct xfs_mount *mp = tp->t_mountp;
2460 struct xfs_extent_free_item *new; /* new element */
2461
2462 ASSERT(xfs_extfree_item_cache != NULL);
2463 ASSERT(oinfo != NULL);
2464
2465 new = kmem_cache_zalloc(xfs_extfree_item_cache,
2466 GFP_KERNEL | __GFP_NOFAIL);
2467 new->xefi_startblock = XFS_AGB_TO_FSB(mp, agno, agbno);
2468 new->xefi_blockcount = 1;
2469 new->xefi_owner = oinfo->oi_owner;
2470
2471 trace_xfs_agfl_free_defer(mp, agno, 0, agbno, 1);
2472
2473 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_AGFL_FREE, &new->xefi_list);
2474 }
2475
2476 /*
2477 * Add the extent to the list of extents to be free at transaction end.
2478 * The list is maintained sorted (by block number).
2479 */
2480 void
__xfs_free_extent_later(struct xfs_trans * tp,xfs_fsblock_t bno,xfs_filblks_t len,const struct xfs_owner_info * oinfo,bool skip_discard)2481 __xfs_free_extent_later(
2482 struct xfs_trans *tp,
2483 xfs_fsblock_t bno,
2484 xfs_filblks_t len,
2485 const struct xfs_owner_info *oinfo,
2486 bool skip_discard)
2487 {
2488 struct xfs_extent_free_item *new; /* new element */
2489 #ifdef DEBUG
2490 struct xfs_mount *mp = tp->t_mountp;
2491 xfs_agnumber_t agno;
2492 xfs_agblock_t agbno;
2493
2494 ASSERT(bno != NULLFSBLOCK);
2495 ASSERT(len > 0);
2496 ASSERT(len <= MAXEXTLEN);
2497 ASSERT(!isnullstartblock(bno));
2498 agno = XFS_FSB_TO_AGNO(mp, bno);
2499 agbno = XFS_FSB_TO_AGBNO(mp, bno);
2500 ASSERT(agno < mp->m_sb.sb_agcount);
2501 ASSERT(agbno < mp->m_sb.sb_agblocks);
2502 ASSERT(len < mp->m_sb.sb_agblocks);
2503 ASSERT(agbno + len <= mp->m_sb.sb_agblocks);
2504 #endif
2505 ASSERT(xfs_extfree_item_cache != NULL);
2506
2507 new = kmem_cache_zalloc(xfs_extfree_item_cache,
2508 GFP_KERNEL | __GFP_NOFAIL);
2509 new->xefi_startblock = bno;
2510 new->xefi_blockcount = (xfs_extlen_t)len;
2511 if (skip_discard)
2512 new->xefi_flags |= XFS_EFI_SKIP_DISCARD;
2513 if (oinfo) {
2514 ASSERT(oinfo->oi_offset == 0);
2515
2516 if (oinfo->oi_flags & XFS_OWNER_INFO_ATTR_FORK)
2517 new->xefi_flags |= XFS_EFI_ATTR_FORK;
2518 if (oinfo->oi_flags & XFS_OWNER_INFO_BMBT_BLOCK)
2519 new->xefi_flags |= XFS_EFI_BMBT_BLOCK;
2520 new->xefi_owner = oinfo->oi_owner;
2521 } else {
2522 new->xefi_owner = XFS_RMAP_OWN_NULL;
2523 }
2524 trace_xfs_bmap_free_defer(tp->t_mountp,
2525 XFS_FSB_TO_AGNO(tp->t_mountp, bno), 0,
2526 XFS_FSB_TO_AGBNO(tp->t_mountp, bno), len);
2527 xfs_defer_add(tp, XFS_DEFER_OPS_TYPE_FREE, &new->xefi_list);
2528 }
2529
2530 #ifdef DEBUG
2531 /*
2532 * Check if an AGF has a free extent record whose length is equal to
2533 * args->minlen.
2534 */
2535 STATIC int
xfs_exact_minlen_extent_available(struct xfs_alloc_arg * args,struct xfs_buf * agbp,int * stat)2536 xfs_exact_minlen_extent_available(
2537 struct xfs_alloc_arg *args,
2538 struct xfs_buf *agbp,
2539 int *stat)
2540 {
2541 struct xfs_btree_cur *cnt_cur;
2542 xfs_agblock_t fbno;
2543 xfs_extlen_t flen;
2544 int error = 0;
2545
2546 cnt_cur = xfs_allocbt_init_cursor(args->mp, args->tp, agbp,
2547 args->pag, XFS_BTNUM_CNT);
2548 error = xfs_alloc_lookup_ge(cnt_cur, 0, args->minlen, stat);
2549 if (error)
2550 goto out;
2551
2552 if (*stat == 0) {
2553 error = -EFSCORRUPTED;
2554 goto out;
2555 }
2556
2557 error = xfs_alloc_get_rec(cnt_cur, &fbno, &flen, stat);
2558 if (error)
2559 goto out;
2560
2561 if (*stat == 1 && flen != args->minlen)
2562 *stat = 0;
2563
2564 out:
2565 xfs_btree_del_cursor(cnt_cur, error);
2566
2567 return error;
2568 }
2569 #endif
2570
2571 /*
2572 * Decide whether to use this allocation group for this allocation.
2573 * If so, fix up the btree freelist's size.
2574 */
2575 int /* error */
xfs_alloc_fix_freelist(struct xfs_alloc_arg * args,int flags)2576 xfs_alloc_fix_freelist(
2577 struct xfs_alloc_arg *args, /* allocation argument structure */
2578 int flags) /* XFS_ALLOC_FLAG_... */
2579 {
2580 struct xfs_mount *mp = args->mp;
2581 struct xfs_perag *pag = args->pag;
2582 struct xfs_trans *tp = args->tp;
2583 struct xfs_buf *agbp = NULL;
2584 struct xfs_buf *agflbp = NULL;
2585 struct xfs_alloc_arg targs; /* local allocation arguments */
2586 xfs_agblock_t bno; /* freelist block */
2587 xfs_extlen_t need; /* total blocks needed in freelist */
2588 int error = 0;
2589
2590 /* deferred ops (AGFL block frees) require permanent transactions */
2591 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
2592
2593 if (!pag->pagf_init) {
2594 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2595 if (error) {
2596 /* Couldn't lock the AGF so skip this AG. */
2597 if (error == -EAGAIN)
2598 error = 0;
2599 goto out_no_agbp;
2600 }
2601 }
2602
2603 /*
2604 * If this is a metadata preferred pag and we are user data then try
2605 * somewhere else if we are not being asked to try harder at this
2606 * point
2607 */
2608 if (pag->pagf_metadata && (args->datatype & XFS_ALLOC_USERDATA) &&
2609 (flags & XFS_ALLOC_FLAG_TRYLOCK)) {
2610 ASSERT(!(flags & XFS_ALLOC_FLAG_FREEING));
2611 goto out_agbp_relse;
2612 }
2613
2614 need = xfs_alloc_min_freelist(mp, pag);
2615 if (!xfs_alloc_space_available(args, need, flags |
2616 XFS_ALLOC_FLAG_CHECK))
2617 goto out_agbp_relse;
2618
2619 /*
2620 * Get the a.g. freespace buffer.
2621 * Can fail if we're not blocking on locks, and it's held.
2622 */
2623 if (!agbp) {
2624 error = xfs_alloc_read_agf(mp, tp, args->agno, flags, &agbp);
2625 if (error) {
2626 /* Couldn't lock the AGF so skip this AG. */
2627 if (error == -EAGAIN)
2628 error = 0;
2629 goto out_no_agbp;
2630 }
2631 }
2632
2633 /* reset a padding mismatched agfl before final free space check */
2634 if (pag->pagf_agflreset)
2635 xfs_agfl_reset(tp, agbp, pag);
2636
2637 /* If there isn't enough total space or single-extent, reject it. */
2638 need = xfs_alloc_min_freelist(mp, pag);
2639 if (!xfs_alloc_space_available(args, need, flags))
2640 goto out_agbp_relse;
2641
2642 #ifdef DEBUG
2643 if (args->alloc_minlen_only) {
2644 int stat;
2645
2646 error = xfs_exact_minlen_extent_available(args, agbp, &stat);
2647 if (error || !stat)
2648 goto out_agbp_relse;
2649 }
2650 #endif
2651 /*
2652 * Make the freelist shorter if it's too long.
2653 *
2654 * Note that from this point onwards, we will always release the agf and
2655 * agfl buffers on error. This handles the case where we error out and
2656 * the buffers are clean or may not have been joined to the transaction
2657 * and hence need to be released manually. If they have been joined to
2658 * the transaction, then xfs_trans_brelse() will handle them
2659 * appropriately based on the recursion count and dirty state of the
2660 * buffer.
2661 *
2662 * XXX (dgc): When we have lots of free space, does this buy us
2663 * anything other than extra overhead when we need to put more blocks
2664 * back on the free list? Maybe we should only do this when space is
2665 * getting low or the AGFL is more than half full?
2666 *
2667 * The NOSHRINK flag prevents the AGFL from being shrunk if it's too
2668 * big; the NORMAP flag prevents AGFL expand/shrink operations from
2669 * updating the rmapbt. Both flags are used in xfs_repair while we're
2670 * rebuilding the rmapbt, and neither are used by the kernel. They're
2671 * both required to ensure that rmaps are correctly recorded for the
2672 * regenerated AGFL, bnobt, and cntbt. See repair/phase5.c and
2673 * repair/rmap.c in xfsprogs for details.
2674 */
2675 memset(&targs, 0, sizeof(targs));
2676 /* struct copy below */
2677 if (flags & XFS_ALLOC_FLAG_NORMAP)
2678 targs.oinfo = XFS_RMAP_OINFO_SKIP_UPDATE;
2679 else
2680 targs.oinfo = XFS_RMAP_OINFO_AG;
2681 while (!(flags & XFS_ALLOC_FLAG_NOSHRINK) && pag->pagf_flcount > need) {
2682 error = xfs_alloc_get_freelist(tp, agbp, &bno, 0);
2683 if (error)
2684 goto out_agbp_relse;
2685
2686 /* defer agfl frees */
2687 xfs_defer_agfl_block(tp, args->agno, bno, &targs.oinfo);
2688 }
2689
2690 targs.tp = tp;
2691 targs.mp = mp;
2692 targs.agbp = agbp;
2693 targs.agno = args->agno;
2694 targs.alignment = targs.minlen = targs.prod = 1;
2695 targs.type = XFS_ALLOCTYPE_THIS_AG;
2696 targs.pag = pag;
2697 error = xfs_alloc_read_agfl(mp, tp, targs.agno, &agflbp);
2698 if (error)
2699 goto out_agbp_relse;
2700
2701 /* Make the freelist longer if it's too short. */
2702 while (pag->pagf_flcount < need) {
2703 targs.agbno = 0;
2704 targs.maxlen = need - pag->pagf_flcount;
2705 targs.resv = XFS_AG_RESV_AGFL;
2706
2707 /* Allocate as many blocks as possible at once. */
2708 error = xfs_alloc_ag_vextent(&targs);
2709 if (error)
2710 goto out_agflbp_relse;
2711
2712 /*
2713 * Stop if we run out. Won't happen if callers are obeying
2714 * the restrictions correctly. Can happen for free calls
2715 * on a completely full ag.
2716 */
2717 if (targs.agbno == NULLAGBLOCK) {
2718 if (flags & XFS_ALLOC_FLAG_FREEING)
2719 break;
2720 goto out_agflbp_relse;
2721 }
2722 /*
2723 * Put each allocated block on the list.
2724 */
2725 for (bno = targs.agbno; bno < targs.agbno + targs.len; bno++) {
2726 error = xfs_alloc_put_freelist(tp, agbp,
2727 agflbp, bno, 0);
2728 if (error)
2729 goto out_agflbp_relse;
2730 }
2731 }
2732 xfs_trans_brelse(tp, agflbp);
2733 args->agbp = agbp;
2734 return 0;
2735
2736 out_agflbp_relse:
2737 xfs_trans_brelse(tp, agflbp);
2738 out_agbp_relse:
2739 if (agbp)
2740 xfs_trans_brelse(tp, agbp);
2741 out_no_agbp:
2742 args->agbp = NULL;
2743 return error;
2744 }
2745
2746 /*
2747 * Get a block from the freelist.
2748 * Returns with the buffer for the block gotten.
2749 */
2750 int
xfs_alloc_get_freelist(struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agblock_t * bnop,int btreeblk)2751 xfs_alloc_get_freelist(
2752 struct xfs_trans *tp,
2753 struct xfs_buf *agbp,
2754 xfs_agblock_t *bnop,
2755 int btreeblk)
2756 {
2757 struct xfs_agf *agf = agbp->b_addr;
2758 struct xfs_buf *agflbp;
2759 xfs_agblock_t bno;
2760 __be32 *agfl_bno;
2761 int error;
2762 int logflags;
2763 struct xfs_mount *mp = tp->t_mountp;
2764 struct xfs_perag *pag;
2765
2766 /*
2767 * Freelist is empty, give up.
2768 */
2769 if (!agf->agf_flcount) {
2770 *bnop = NULLAGBLOCK;
2771 return 0;
2772 }
2773 /*
2774 * Read the array of free blocks.
2775 */
2776 error = xfs_alloc_read_agfl(mp, tp, be32_to_cpu(agf->agf_seqno),
2777 &agflbp);
2778 if (error)
2779 return error;
2780
2781
2782 /*
2783 * Get the block number and update the data structures.
2784 */
2785 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2786 bno = be32_to_cpu(agfl_bno[be32_to_cpu(agf->agf_flfirst)]);
2787 be32_add_cpu(&agf->agf_flfirst, 1);
2788 xfs_trans_brelse(tp, agflbp);
2789 if (be32_to_cpu(agf->agf_flfirst) == xfs_agfl_size(mp))
2790 agf->agf_flfirst = 0;
2791
2792 pag = agbp->b_pag;
2793 ASSERT(!pag->pagf_agflreset);
2794 be32_add_cpu(&agf->agf_flcount, -1);
2795 pag->pagf_flcount--;
2796
2797 logflags = XFS_AGF_FLFIRST | XFS_AGF_FLCOUNT;
2798 if (btreeblk) {
2799 be32_add_cpu(&agf->agf_btreeblks, 1);
2800 pag->pagf_btreeblks++;
2801 logflags |= XFS_AGF_BTREEBLKS;
2802 }
2803
2804 xfs_alloc_log_agf(tp, agbp, logflags);
2805 *bnop = bno;
2806
2807 return 0;
2808 }
2809
2810 /*
2811 * Log the given fields from the agf structure.
2812 */
2813 void
xfs_alloc_log_agf(xfs_trans_t * tp,struct xfs_buf * bp,int fields)2814 xfs_alloc_log_agf(
2815 xfs_trans_t *tp, /* transaction pointer */
2816 struct xfs_buf *bp, /* buffer for a.g. freelist header */
2817 int fields) /* mask of fields to be logged (XFS_AGF_...) */
2818 {
2819 int first; /* first byte offset */
2820 int last; /* last byte offset */
2821 static const short offsets[] = {
2822 offsetof(xfs_agf_t, agf_magicnum),
2823 offsetof(xfs_agf_t, agf_versionnum),
2824 offsetof(xfs_agf_t, agf_seqno),
2825 offsetof(xfs_agf_t, agf_length),
2826 offsetof(xfs_agf_t, agf_roots[0]),
2827 offsetof(xfs_agf_t, agf_levels[0]),
2828 offsetof(xfs_agf_t, agf_flfirst),
2829 offsetof(xfs_agf_t, agf_fllast),
2830 offsetof(xfs_agf_t, agf_flcount),
2831 offsetof(xfs_agf_t, agf_freeblks),
2832 offsetof(xfs_agf_t, agf_longest),
2833 offsetof(xfs_agf_t, agf_btreeblks),
2834 offsetof(xfs_agf_t, agf_uuid),
2835 offsetof(xfs_agf_t, agf_rmap_blocks),
2836 offsetof(xfs_agf_t, agf_refcount_blocks),
2837 offsetof(xfs_agf_t, agf_refcount_root),
2838 offsetof(xfs_agf_t, agf_refcount_level),
2839 /* needed so that we don't log the whole rest of the structure: */
2840 offsetof(xfs_agf_t, agf_spare64),
2841 sizeof(xfs_agf_t)
2842 };
2843
2844 trace_xfs_agf(tp->t_mountp, bp->b_addr, fields, _RET_IP_);
2845
2846 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGF_BUF);
2847
2848 xfs_btree_offsets(fields, offsets, XFS_AGF_NUM_BITS, &first, &last);
2849 xfs_trans_log_buf(tp, bp, (uint)first, (uint)last);
2850 }
2851
2852 /*
2853 * Interface for inode allocation to force the pag data to be initialized.
2854 */
2855 int /* error */
xfs_alloc_pagf_init(xfs_mount_t * mp,xfs_trans_t * tp,xfs_agnumber_t agno,int flags)2856 xfs_alloc_pagf_init(
2857 xfs_mount_t *mp, /* file system mount structure */
2858 xfs_trans_t *tp, /* transaction pointer */
2859 xfs_agnumber_t agno, /* allocation group number */
2860 int flags) /* XFS_ALLOC_FLAGS_... */
2861 {
2862 struct xfs_buf *bp;
2863 int error;
2864
2865 error = xfs_alloc_read_agf(mp, tp, agno, flags, &bp);
2866 if (!error)
2867 xfs_trans_brelse(tp, bp);
2868 return error;
2869 }
2870
2871 /*
2872 * Put the block on the freelist for the allocation group.
2873 */
2874 int
xfs_alloc_put_freelist(struct xfs_trans * tp,struct xfs_buf * agbp,struct xfs_buf * agflbp,xfs_agblock_t bno,int btreeblk)2875 xfs_alloc_put_freelist(
2876 struct xfs_trans *tp,
2877 struct xfs_buf *agbp,
2878 struct xfs_buf *agflbp,
2879 xfs_agblock_t bno,
2880 int btreeblk)
2881 {
2882 struct xfs_mount *mp = tp->t_mountp;
2883 struct xfs_agf *agf = agbp->b_addr;
2884 struct xfs_perag *pag;
2885 __be32 *blockp;
2886 int error;
2887 int logflags;
2888 __be32 *agfl_bno;
2889 int startoff;
2890
2891 if (!agflbp && (error = xfs_alloc_read_agfl(mp, tp,
2892 be32_to_cpu(agf->agf_seqno), &agflbp)))
2893 return error;
2894 be32_add_cpu(&agf->agf_fllast, 1);
2895 if (be32_to_cpu(agf->agf_fllast) == xfs_agfl_size(mp))
2896 agf->agf_fllast = 0;
2897
2898 pag = agbp->b_pag;
2899 ASSERT(!pag->pagf_agflreset);
2900 be32_add_cpu(&agf->agf_flcount, 1);
2901 pag->pagf_flcount++;
2902
2903 logflags = XFS_AGF_FLLAST | XFS_AGF_FLCOUNT;
2904 if (btreeblk) {
2905 be32_add_cpu(&agf->agf_btreeblks, -1);
2906 pag->pagf_btreeblks--;
2907 logflags |= XFS_AGF_BTREEBLKS;
2908 }
2909
2910 xfs_alloc_log_agf(tp, agbp, logflags);
2911
2912 ASSERT(be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp));
2913
2914 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
2915 blockp = &agfl_bno[be32_to_cpu(agf->agf_fllast)];
2916 *blockp = cpu_to_be32(bno);
2917 startoff = (char *)blockp - (char *)agflbp->b_addr;
2918
2919 xfs_alloc_log_agf(tp, agbp, logflags);
2920
2921 xfs_trans_buf_set_type(tp, agflbp, XFS_BLFT_AGFL_BUF);
2922 xfs_trans_log_buf(tp, agflbp, startoff,
2923 startoff + sizeof(xfs_agblock_t) - 1);
2924 return 0;
2925 }
2926
2927 static xfs_failaddr_t
xfs_agf_verify(struct xfs_buf * bp)2928 xfs_agf_verify(
2929 struct xfs_buf *bp)
2930 {
2931 struct xfs_mount *mp = bp->b_mount;
2932 struct xfs_agf *agf = bp->b_addr;
2933
2934 if (xfs_has_crc(mp)) {
2935 if (!uuid_equal(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid))
2936 return __this_address;
2937 if (!xfs_log_check_lsn(mp, be64_to_cpu(agf->agf_lsn)))
2938 return __this_address;
2939 }
2940
2941 if (!xfs_verify_magic(bp, agf->agf_magicnum))
2942 return __this_address;
2943
2944 if (!(XFS_AGF_GOOD_VERSION(be32_to_cpu(agf->agf_versionnum)) &&
2945 be32_to_cpu(agf->agf_freeblks) <= be32_to_cpu(agf->agf_length) &&
2946 be32_to_cpu(agf->agf_flfirst) < xfs_agfl_size(mp) &&
2947 be32_to_cpu(agf->agf_fllast) < xfs_agfl_size(mp) &&
2948 be32_to_cpu(agf->agf_flcount) <= xfs_agfl_size(mp)))
2949 return __this_address;
2950
2951 if (be32_to_cpu(agf->agf_length) > mp->m_sb.sb_dblocks)
2952 return __this_address;
2953
2954 if (be32_to_cpu(agf->agf_freeblks) < be32_to_cpu(agf->agf_longest) ||
2955 be32_to_cpu(agf->agf_freeblks) > be32_to_cpu(agf->agf_length))
2956 return __this_address;
2957
2958 if (be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) < 1 ||
2959 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) < 1 ||
2960 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]) >
2961 mp->m_alloc_maxlevels ||
2962 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]) >
2963 mp->m_alloc_maxlevels)
2964 return __this_address;
2965
2966 if (xfs_has_rmapbt(mp) &&
2967 (be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) < 1 ||
2968 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]) >
2969 mp->m_rmap_maxlevels))
2970 return __this_address;
2971
2972 if (xfs_has_rmapbt(mp) &&
2973 be32_to_cpu(agf->agf_rmap_blocks) > be32_to_cpu(agf->agf_length))
2974 return __this_address;
2975
2976 /*
2977 * during growfs operations, the perag is not fully initialised,
2978 * so we can't use it for any useful checking. growfs ensures we can't
2979 * use it by using uncached buffers that don't have the perag attached
2980 * so we can detect and avoid this problem.
2981 */
2982 if (bp->b_pag && be32_to_cpu(agf->agf_seqno) != bp->b_pag->pag_agno)
2983 return __this_address;
2984
2985 if (xfs_has_lazysbcount(mp) &&
2986 be32_to_cpu(agf->agf_btreeblks) > be32_to_cpu(agf->agf_length))
2987 return __this_address;
2988
2989 if (xfs_has_reflink(mp) &&
2990 be32_to_cpu(agf->agf_refcount_blocks) >
2991 be32_to_cpu(agf->agf_length))
2992 return __this_address;
2993
2994 if (xfs_has_reflink(mp) &&
2995 (be32_to_cpu(agf->agf_refcount_level) < 1 ||
2996 be32_to_cpu(agf->agf_refcount_level) > mp->m_refc_maxlevels))
2997 return __this_address;
2998
2999 return NULL;
3000
3001 }
3002
3003 static void
xfs_agf_read_verify(struct xfs_buf * bp)3004 xfs_agf_read_verify(
3005 struct xfs_buf *bp)
3006 {
3007 struct xfs_mount *mp = bp->b_mount;
3008 xfs_failaddr_t fa;
3009
3010 if (xfs_has_crc(mp) &&
3011 !xfs_buf_verify_cksum(bp, XFS_AGF_CRC_OFF))
3012 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
3013 else {
3014 fa = xfs_agf_verify(bp);
3015 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_ALLOC_READ_AGF))
3016 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3017 }
3018 }
3019
3020 static void
xfs_agf_write_verify(struct xfs_buf * bp)3021 xfs_agf_write_verify(
3022 struct xfs_buf *bp)
3023 {
3024 struct xfs_mount *mp = bp->b_mount;
3025 struct xfs_buf_log_item *bip = bp->b_log_item;
3026 struct xfs_agf *agf = bp->b_addr;
3027 xfs_failaddr_t fa;
3028
3029 fa = xfs_agf_verify(bp);
3030 if (fa) {
3031 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
3032 return;
3033 }
3034
3035 if (!xfs_has_crc(mp))
3036 return;
3037
3038 if (bip)
3039 agf->agf_lsn = cpu_to_be64(bip->bli_item.li_lsn);
3040
3041 xfs_buf_update_cksum(bp, XFS_AGF_CRC_OFF);
3042 }
3043
3044 const struct xfs_buf_ops xfs_agf_buf_ops = {
3045 .name = "xfs_agf",
3046 .magic = { cpu_to_be32(XFS_AGF_MAGIC), cpu_to_be32(XFS_AGF_MAGIC) },
3047 .verify_read = xfs_agf_read_verify,
3048 .verify_write = xfs_agf_write_verify,
3049 .verify_struct = xfs_agf_verify,
3050 };
3051
3052 /*
3053 * Read in the allocation group header (free/alloc section).
3054 */
3055 int /* error */
xfs_read_agf(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,int flags,struct xfs_buf ** bpp)3056 xfs_read_agf(
3057 struct xfs_mount *mp, /* mount point structure */
3058 struct xfs_trans *tp, /* transaction pointer */
3059 xfs_agnumber_t agno, /* allocation group number */
3060 int flags, /* XFS_BUF_ */
3061 struct xfs_buf **bpp) /* buffer for the ag freelist header */
3062 {
3063 int error;
3064
3065 trace_xfs_read_agf(mp, agno);
3066
3067 ASSERT(agno != NULLAGNUMBER);
3068 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
3069 XFS_AG_DADDR(mp, agno, XFS_AGF_DADDR(mp)),
3070 XFS_FSS_TO_BB(mp, 1), flags, bpp, &xfs_agf_buf_ops);
3071 if (error)
3072 return error;
3073
3074 ASSERT(!(*bpp)->b_error);
3075 xfs_buf_set_ref(*bpp, XFS_AGF_REF);
3076 return 0;
3077 }
3078
3079 /*
3080 * Read in the allocation group header (free/alloc section).
3081 */
3082 int /* error */
xfs_alloc_read_agf(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,int flags,struct xfs_buf ** bpp)3083 xfs_alloc_read_agf(
3084 struct xfs_mount *mp, /* mount point structure */
3085 struct xfs_trans *tp, /* transaction pointer */
3086 xfs_agnumber_t agno, /* allocation group number */
3087 int flags, /* XFS_ALLOC_FLAG_... */
3088 struct xfs_buf **bpp) /* buffer for the ag freelist header */
3089 {
3090 struct xfs_agf *agf; /* ag freelist header */
3091 struct xfs_perag *pag; /* per allocation group data */
3092 int error;
3093 int allocbt_blks;
3094
3095 trace_xfs_alloc_read_agf(mp, agno);
3096
3097 /* We don't support trylock when freeing. */
3098 ASSERT((flags & (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK)) !=
3099 (XFS_ALLOC_FLAG_FREEING | XFS_ALLOC_FLAG_TRYLOCK));
3100 ASSERT(agno != NULLAGNUMBER);
3101 error = xfs_read_agf(mp, tp, agno,
3102 (flags & XFS_ALLOC_FLAG_TRYLOCK) ? XBF_TRYLOCK : 0,
3103 bpp);
3104 if (error)
3105 return error;
3106 ASSERT(!(*bpp)->b_error);
3107
3108 agf = (*bpp)->b_addr;
3109 pag = (*bpp)->b_pag;
3110 if (!pag->pagf_init) {
3111 pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
3112 pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
3113 pag->pagf_flcount = be32_to_cpu(agf->agf_flcount);
3114 pag->pagf_longest = be32_to_cpu(agf->agf_longest);
3115 pag->pagf_levels[XFS_BTNUM_BNOi] =
3116 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
3117 pag->pagf_levels[XFS_BTNUM_CNTi] =
3118 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
3119 pag->pagf_levels[XFS_BTNUM_RMAPi] =
3120 be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
3121 pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
3122 pag->pagf_init = 1;
3123 pag->pagf_agflreset = xfs_agfl_needs_reset(mp, agf);
3124
3125 /*
3126 * Update the in-core allocbt counter. Filter out the rmapbt
3127 * subset of the btreeblks counter because the rmapbt is managed
3128 * by perag reservation. Subtract one for the rmapbt root block
3129 * because the rmap counter includes it while the btreeblks
3130 * counter only tracks non-root blocks.
3131 */
3132 allocbt_blks = pag->pagf_btreeblks;
3133 if (xfs_has_rmapbt(mp))
3134 allocbt_blks -= be32_to_cpu(agf->agf_rmap_blocks) - 1;
3135 if (allocbt_blks > 0)
3136 atomic64_add(allocbt_blks, &mp->m_allocbt_blks);
3137 }
3138 #ifdef DEBUG
3139 else if (!xfs_is_shutdown(mp)) {
3140 ASSERT(pag->pagf_freeblks == be32_to_cpu(agf->agf_freeblks));
3141 ASSERT(pag->pagf_btreeblks == be32_to_cpu(agf->agf_btreeblks));
3142 ASSERT(pag->pagf_flcount == be32_to_cpu(agf->agf_flcount));
3143 ASSERT(pag->pagf_longest == be32_to_cpu(agf->agf_longest));
3144 ASSERT(pag->pagf_levels[XFS_BTNUM_BNOi] ==
3145 be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]));
3146 ASSERT(pag->pagf_levels[XFS_BTNUM_CNTi] ==
3147 be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]));
3148 }
3149 #endif
3150 return 0;
3151 }
3152
3153 /*
3154 * Allocate an extent (variable-size).
3155 * Depending on the allocation type, we either look in a single allocation
3156 * group or loop over the allocation groups to find the result.
3157 */
3158 int /* error */
xfs_alloc_vextent(struct xfs_alloc_arg * args)3159 xfs_alloc_vextent(
3160 struct xfs_alloc_arg *args) /* allocation argument structure */
3161 {
3162 xfs_agblock_t agsize; /* allocation group size */
3163 int error;
3164 int flags; /* XFS_ALLOC_FLAG_... locking flags */
3165 struct xfs_mount *mp; /* mount structure pointer */
3166 xfs_agnumber_t sagno; /* starting allocation group number */
3167 xfs_alloctype_t type; /* input allocation type */
3168 int bump_rotor = 0;
3169 xfs_agnumber_t rotorstep = xfs_rotorstep; /* inode32 agf stepper */
3170
3171 mp = args->mp;
3172 type = args->otype = args->type;
3173 args->agbno = NULLAGBLOCK;
3174 /*
3175 * Just fix this up, for the case where the last a.g. is shorter
3176 * (or there's only one a.g.) and the caller couldn't easily figure
3177 * that out (xfs_bmap_alloc).
3178 */
3179 agsize = mp->m_sb.sb_agblocks;
3180 if (args->maxlen > agsize)
3181 args->maxlen = agsize;
3182 if (args->alignment == 0)
3183 args->alignment = 1;
3184 ASSERT(XFS_FSB_TO_AGNO(mp, args->fsbno) < mp->m_sb.sb_agcount);
3185 ASSERT(XFS_FSB_TO_AGBNO(mp, args->fsbno) < agsize);
3186 ASSERT(args->minlen <= args->maxlen);
3187 ASSERT(args->minlen <= agsize);
3188 ASSERT(args->mod < args->prod);
3189 if (XFS_FSB_TO_AGNO(mp, args->fsbno) >= mp->m_sb.sb_agcount ||
3190 XFS_FSB_TO_AGBNO(mp, args->fsbno) >= agsize ||
3191 args->minlen > args->maxlen || args->minlen > agsize ||
3192 args->mod >= args->prod) {
3193 args->fsbno = NULLFSBLOCK;
3194 trace_xfs_alloc_vextent_badargs(args);
3195 return 0;
3196 }
3197
3198 switch (type) {
3199 case XFS_ALLOCTYPE_THIS_AG:
3200 case XFS_ALLOCTYPE_NEAR_BNO:
3201 case XFS_ALLOCTYPE_THIS_BNO:
3202 /*
3203 * These three force us into a single a.g.
3204 */
3205 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3206 args->pag = xfs_perag_get(mp, args->agno);
3207 error = xfs_alloc_fix_freelist(args, 0);
3208 if (error) {
3209 trace_xfs_alloc_vextent_nofix(args);
3210 goto error0;
3211 }
3212 if (!args->agbp) {
3213 trace_xfs_alloc_vextent_noagbp(args);
3214 break;
3215 }
3216 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3217 if ((error = xfs_alloc_ag_vextent(args)))
3218 goto error0;
3219 break;
3220 case XFS_ALLOCTYPE_START_BNO:
3221 /*
3222 * Try near allocation first, then anywhere-in-ag after
3223 * the first a.g. fails.
3224 */
3225 if ((args->datatype & XFS_ALLOC_INITIAL_USER_DATA) &&
3226 xfs_is_inode32(mp)) {
3227 args->fsbno = XFS_AGB_TO_FSB(mp,
3228 ((mp->m_agfrotor / rotorstep) %
3229 mp->m_sb.sb_agcount), 0);
3230 bump_rotor = 1;
3231 }
3232 args->agbno = XFS_FSB_TO_AGBNO(mp, args->fsbno);
3233 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3234 fallthrough;
3235 case XFS_ALLOCTYPE_FIRST_AG:
3236 /*
3237 * Rotate through the allocation groups looking for a winner.
3238 */
3239 if (type == XFS_ALLOCTYPE_FIRST_AG) {
3240 /*
3241 * Start with allocation group given by bno.
3242 */
3243 args->agno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3244 args->type = XFS_ALLOCTYPE_THIS_AG;
3245 sagno = 0;
3246 flags = 0;
3247 } else {
3248 /*
3249 * Start with the given allocation group.
3250 */
3251 args->agno = sagno = XFS_FSB_TO_AGNO(mp, args->fsbno);
3252 flags = XFS_ALLOC_FLAG_TRYLOCK;
3253 }
3254 /*
3255 * Loop over allocation groups twice; first time with
3256 * trylock set, second time without.
3257 */
3258 for (;;) {
3259 args->pag = xfs_perag_get(mp, args->agno);
3260 error = xfs_alloc_fix_freelist(args, flags);
3261 if (error) {
3262 trace_xfs_alloc_vextent_nofix(args);
3263 goto error0;
3264 }
3265 /*
3266 * If we get a buffer back then the allocation will fly.
3267 */
3268 if (args->agbp) {
3269 if ((error = xfs_alloc_ag_vextent(args)))
3270 goto error0;
3271 break;
3272 }
3273
3274 trace_xfs_alloc_vextent_loopfailed(args);
3275
3276 /*
3277 * Didn't work, figure out the next iteration.
3278 */
3279 if (args->agno == sagno &&
3280 type == XFS_ALLOCTYPE_START_BNO)
3281 args->type = XFS_ALLOCTYPE_THIS_AG;
3282 /*
3283 * For the first allocation, we can try any AG to get
3284 * space. However, if we already have allocated a
3285 * block, we don't want to try AGs whose number is below
3286 * sagno. Otherwise, we may end up with out-of-order
3287 * locking of AGF, which might cause deadlock.
3288 */
3289 if (++(args->agno) == mp->m_sb.sb_agcount) {
3290 if (args->tp->t_firstblock != NULLFSBLOCK)
3291 args->agno = sagno;
3292 else
3293 args->agno = 0;
3294 }
3295 /*
3296 * Reached the starting a.g., must either be done
3297 * or switch to non-trylock mode.
3298 */
3299 if (args->agno == sagno) {
3300 if (flags == 0) {
3301 args->agbno = NULLAGBLOCK;
3302 trace_xfs_alloc_vextent_allfailed(args);
3303 break;
3304 }
3305
3306 flags = 0;
3307 if (type == XFS_ALLOCTYPE_START_BNO) {
3308 args->agbno = XFS_FSB_TO_AGBNO(mp,
3309 args->fsbno);
3310 args->type = XFS_ALLOCTYPE_NEAR_BNO;
3311 }
3312 }
3313 xfs_perag_put(args->pag);
3314 }
3315 if (bump_rotor) {
3316 if (args->agno == sagno)
3317 mp->m_agfrotor = (mp->m_agfrotor + 1) %
3318 (mp->m_sb.sb_agcount * rotorstep);
3319 else
3320 mp->m_agfrotor = (args->agno * rotorstep + 1) %
3321 (mp->m_sb.sb_agcount * rotorstep);
3322 }
3323 break;
3324 default:
3325 ASSERT(0);
3326 /* NOTREACHED */
3327 }
3328 if (args->agbno == NULLAGBLOCK)
3329 args->fsbno = NULLFSBLOCK;
3330 else {
3331 args->fsbno = XFS_AGB_TO_FSB(mp, args->agno, args->agbno);
3332 #ifdef DEBUG
3333 ASSERT(args->len >= args->minlen);
3334 ASSERT(args->len <= args->maxlen);
3335 ASSERT(args->agbno % args->alignment == 0);
3336 XFS_AG_CHECK_DADDR(mp, XFS_FSB_TO_DADDR(mp, args->fsbno),
3337 args->len);
3338 #endif
3339
3340 }
3341 xfs_perag_put(args->pag);
3342 return 0;
3343 error0:
3344 xfs_perag_put(args->pag);
3345 return error;
3346 }
3347
3348 /* Ensure that the freelist is at full capacity. */
3349 int
xfs_free_extent_fix_freelist(struct xfs_trans * tp,struct xfs_perag * pag,struct xfs_buf ** agbp)3350 xfs_free_extent_fix_freelist(
3351 struct xfs_trans *tp,
3352 struct xfs_perag *pag,
3353 struct xfs_buf **agbp)
3354 {
3355 struct xfs_alloc_arg args;
3356 int error;
3357
3358 memset(&args, 0, sizeof(struct xfs_alloc_arg));
3359 args.tp = tp;
3360 args.mp = tp->t_mountp;
3361 args.agno = pag->pag_agno;
3362 args.pag = pag;
3363
3364 /*
3365 * validate that the block number is legal - the enables us to detect
3366 * and handle a silent filesystem corruption rather than crashing.
3367 */
3368 if (args.agno >= args.mp->m_sb.sb_agcount)
3369 return -EFSCORRUPTED;
3370
3371 error = xfs_alloc_fix_freelist(&args, XFS_ALLOC_FLAG_FREEING);
3372 if (error)
3373 return error;
3374
3375 *agbp = args.agbp;
3376 return 0;
3377 }
3378
3379 /*
3380 * Free an extent.
3381 * Just break up the extent address and hand off to xfs_free_ag_extent
3382 * after fixing up the freelist.
3383 */
3384 int
__xfs_free_extent(struct xfs_trans * tp,xfs_fsblock_t bno,xfs_extlen_t len,const struct xfs_owner_info * oinfo,enum xfs_ag_resv_type type,bool skip_discard)3385 __xfs_free_extent(
3386 struct xfs_trans *tp,
3387 xfs_fsblock_t bno,
3388 xfs_extlen_t len,
3389 const struct xfs_owner_info *oinfo,
3390 enum xfs_ag_resv_type type,
3391 bool skip_discard)
3392 {
3393 struct xfs_mount *mp = tp->t_mountp;
3394 struct xfs_buf *agbp;
3395 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, bno);
3396 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp, bno);
3397 struct xfs_agf *agf;
3398 int error;
3399 unsigned int busy_flags = 0;
3400 struct xfs_perag *pag;
3401
3402 ASSERT(len != 0);
3403 ASSERT(type != XFS_AG_RESV_AGFL);
3404
3405 if (XFS_TEST_ERROR(false, mp,
3406 XFS_ERRTAG_FREE_EXTENT))
3407 return -EIO;
3408
3409 pag = xfs_perag_get(mp, agno);
3410 error = xfs_free_extent_fix_freelist(tp, pag, &agbp);
3411 if (error)
3412 goto err;
3413 agf = agbp->b_addr;
3414
3415 if (XFS_IS_CORRUPT(mp, agbno >= mp->m_sb.sb_agblocks)) {
3416 error = -EFSCORRUPTED;
3417 goto err_release;
3418 }
3419
3420 /* validate the extent size is legal now we have the agf locked */
3421 if (XFS_IS_CORRUPT(mp, agbno + len > be32_to_cpu(agf->agf_length))) {
3422 error = -EFSCORRUPTED;
3423 goto err_release;
3424 }
3425
3426 error = xfs_free_ag_extent(tp, agbp, agno, agbno, len, oinfo, type);
3427 if (error)
3428 goto err_release;
3429
3430 if (skip_discard)
3431 busy_flags |= XFS_EXTENT_BUSY_SKIP_DISCARD;
3432 xfs_extent_busy_insert(tp, pag, agbno, len, busy_flags);
3433 xfs_perag_put(pag);
3434 return 0;
3435
3436 err_release:
3437 xfs_trans_brelse(tp, agbp);
3438 err:
3439 xfs_perag_put(pag);
3440 return error;
3441 }
3442
3443 struct xfs_alloc_query_range_info {
3444 xfs_alloc_query_range_fn fn;
3445 void *priv;
3446 };
3447
3448 /* Format btree record and pass to our callback. */
3449 STATIC int
xfs_alloc_query_range_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)3450 xfs_alloc_query_range_helper(
3451 struct xfs_btree_cur *cur,
3452 const union xfs_btree_rec *rec,
3453 void *priv)
3454 {
3455 struct xfs_alloc_query_range_info *query = priv;
3456 struct xfs_alloc_rec_incore irec;
3457
3458 irec.ar_startblock = be32_to_cpu(rec->alloc.ar_startblock);
3459 irec.ar_blockcount = be32_to_cpu(rec->alloc.ar_blockcount);
3460 return query->fn(cur, &irec, query->priv);
3461 }
3462
3463 /* Find all free space within a given range of blocks. */
3464 int
xfs_alloc_query_range(struct xfs_btree_cur * cur,const struct xfs_alloc_rec_incore * low_rec,const struct xfs_alloc_rec_incore * high_rec,xfs_alloc_query_range_fn fn,void * priv)3465 xfs_alloc_query_range(
3466 struct xfs_btree_cur *cur,
3467 const struct xfs_alloc_rec_incore *low_rec,
3468 const struct xfs_alloc_rec_incore *high_rec,
3469 xfs_alloc_query_range_fn fn,
3470 void *priv)
3471 {
3472 union xfs_btree_irec low_brec;
3473 union xfs_btree_irec high_brec;
3474 struct xfs_alloc_query_range_info query;
3475
3476 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3477 low_brec.a = *low_rec;
3478 high_brec.a = *high_rec;
3479 query.priv = priv;
3480 query.fn = fn;
3481 return xfs_btree_query_range(cur, &low_brec, &high_brec,
3482 xfs_alloc_query_range_helper, &query);
3483 }
3484
3485 /* Find all free space records. */
3486 int
xfs_alloc_query_all(struct xfs_btree_cur * cur,xfs_alloc_query_range_fn fn,void * priv)3487 xfs_alloc_query_all(
3488 struct xfs_btree_cur *cur,
3489 xfs_alloc_query_range_fn fn,
3490 void *priv)
3491 {
3492 struct xfs_alloc_query_range_info query;
3493
3494 ASSERT(cur->bc_btnum == XFS_BTNUM_BNO);
3495 query.priv = priv;
3496 query.fn = fn;
3497 return xfs_btree_query_all(cur, xfs_alloc_query_range_helper, &query);
3498 }
3499
3500 /* Is there a record covering a given extent? */
3501 int
xfs_alloc_has_record(struct xfs_btree_cur * cur,xfs_agblock_t bno,xfs_extlen_t len,bool * exists)3502 xfs_alloc_has_record(
3503 struct xfs_btree_cur *cur,
3504 xfs_agblock_t bno,
3505 xfs_extlen_t len,
3506 bool *exists)
3507 {
3508 union xfs_btree_irec low;
3509 union xfs_btree_irec high;
3510
3511 memset(&low, 0, sizeof(low));
3512 low.a.ar_startblock = bno;
3513 memset(&high, 0xFF, sizeof(high));
3514 high.a.ar_startblock = bno + len - 1;
3515
3516 return xfs_btree_has_record(cur, &low, &high, exists);
3517 }
3518
3519 /*
3520 * Walk all the blocks in the AGFL. The @walk_fn can return any negative
3521 * error code or XFS_ITER_*.
3522 */
3523 int
xfs_agfl_walk(struct xfs_mount * mp,struct xfs_agf * agf,struct xfs_buf * agflbp,xfs_agfl_walk_fn walk_fn,void * priv)3524 xfs_agfl_walk(
3525 struct xfs_mount *mp,
3526 struct xfs_agf *agf,
3527 struct xfs_buf *agflbp,
3528 xfs_agfl_walk_fn walk_fn,
3529 void *priv)
3530 {
3531 __be32 *agfl_bno;
3532 unsigned int i;
3533 int error;
3534
3535 agfl_bno = xfs_buf_to_agfl_bno(agflbp);
3536 i = be32_to_cpu(agf->agf_flfirst);
3537
3538 /* Nothing to walk in an empty AGFL. */
3539 if (agf->agf_flcount == cpu_to_be32(0))
3540 return 0;
3541
3542 /* Otherwise, walk from first to last, wrapping as needed. */
3543 for (;;) {
3544 error = walk_fn(mp, be32_to_cpu(agfl_bno[i]), priv);
3545 if (error)
3546 return error;
3547 if (i == be32_to_cpu(agf->agf_fllast))
3548 break;
3549 if (++i == xfs_agfl_size(mp))
3550 i = 0;
3551 }
3552
3553 return 0;
3554 }
3555
3556 int __init
xfs_extfree_intent_init_cache(void)3557 xfs_extfree_intent_init_cache(void)
3558 {
3559 xfs_extfree_item_cache = kmem_cache_create("xfs_extfree_intent",
3560 sizeof(struct xfs_extent_free_item),
3561 0, 0, NULL);
3562
3563 return xfs_extfree_item_cache != NULL ? 0 : -ENOMEM;
3564 }
3565
3566 void
xfs_extfree_intent_destroy_cache(void)3567 xfs_extfree_intent_destroy_cache(void)
3568 {
3569 kmem_cache_destroy(xfs_extfree_item_cache);
3570 xfs_extfree_item_cache = NULL;
3571 }
3572