1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* AFS filesystem file handling
3 *
4 * Copyright (C) 2002, 2007 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/pagemap.h>
13 #include <linux/writeback.h>
14 #include <linux/gfp.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include <linux/mm.h>
17 #include <linux/netfs.h>
18 #include "internal.h"
19
20 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma);
21 static int afs_readpage(struct file *file, struct page *page);
22 static int afs_symlink_readpage(struct file *file, struct page *page);
23 static void afs_invalidatepage(struct page *page, unsigned int offset,
24 unsigned int length);
25 static int afs_releasepage(struct page *page, gfp_t gfp_flags);
26
27 static void afs_readahead(struct readahead_control *ractl);
28 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter);
29 static void afs_vm_open(struct vm_area_struct *area);
30 static void afs_vm_close(struct vm_area_struct *area);
31 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff);
32
33 const struct file_operations afs_file_operations = {
34 .open = afs_open,
35 .release = afs_release,
36 .llseek = generic_file_llseek,
37 .read_iter = afs_file_read_iter,
38 .write_iter = afs_file_write,
39 .mmap = afs_file_mmap,
40 .splice_read = generic_file_splice_read,
41 .splice_write = iter_file_splice_write,
42 .fsync = afs_fsync,
43 .lock = afs_lock,
44 .flock = afs_flock,
45 };
46
47 const struct inode_operations afs_file_inode_operations = {
48 .getattr = afs_getattr,
49 .setattr = afs_setattr,
50 .permission = afs_permission,
51 };
52
53 const struct address_space_operations afs_file_aops = {
54 .readpage = afs_readpage,
55 .readahead = afs_readahead,
56 .set_page_dirty = afs_set_page_dirty,
57 .launder_page = afs_launder_page,
58 .releasepage = afs_releasepage,
59 .invalidatepage = afs_invalidatepage,
60 .write_begin = afs_write_begin,
61 .write_end = afs_write_end,
62 .writepage = afs_writepage,
63 .writepages = afs_writepages,
64 };
65
66 const struct address_space_operations afs_symlink_aops = {
67 .readpage = afs_symlink_readpage,
68 .releasepage = afs_releasepage,
69 .invalidatepage = afs_invalidatepage,
70 };
71
72 static const struct vm_operations_struct afs_vm_ops = {
73 .open = afs_vm_open,
74 .close = afs_vm_close,
75 .fault = filemap_fault,
76 .map_pages = afs_vm_map_pages,
77 .page_mkwrite = afs_page_mkwrite,
78 };
79
80 /*
81 * Discard a pin on a writeback key.
82 */
afs_put_wb_key(struct afs_wb_key * wbk)83 void afs_put_wb_key(struct afs_wb_key *wbk)
84 {
85 if (wbk && refcount_dec_and_test(&wbk->usage)) {
86 key_put(wbk->key);
87 kfree(wbk);
88 }
89 }
90
91 /*
92 * Cache key for writeback.
93 */
afs_cache_wb_key(struct afs_vnode * vnode,struct afs_file * af)94 int afs_cache_wb_key(struct afs_vnode *vnode, struct afs_file *af)
95 {
96 struct afs_wb_key *wbk, *p;
97
98 wbk = kzalloc(sizeof(struct afs_wb_key), GFP_KERNEL);
99 if (!wbk)
100 return -ENOMEM;
101 refcount_set(&wbk->usage, 2);
102 wbk->key = af->key;
103
104 spin_lock(&vnode->wb_lock);
105 list_for_each_entry(p, &vnode->wb_keys, vnode_link) {
106 if (p->key == wbk->key)
107 goto found;
108 }
109
110 key_get(wbk->key);
111 list_add_tail(&wbk->vnode_link, &vnode->wb_keys);
112 spin_unlock(&vnode->wb_lock);
113 af->wb = wbk;
114 return 0;
115
116 found:
117 refcount_inc(&p->usage);
118 spin_unlock(&vnode->wb_lock);
119 af->wb = p;
120 kfree(wbk);
121 return 0;
122 }
123
124 /*
125 * open an AFS file or directory and attach a key to it
126 */
afs_open(struct inode * inode,struct file * file)127 int afs_open(struct inode *inode, struct file *file)
128 {
129 struct afs_vnode *vnode = AFS_FS_I(inode);
130 struct afs_file *af;
131 struct key *key;
132 int ret;
133
134 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
135
136 key = afs_request_key(vnode->volume->cell);
137 if (IS_ERR(key)) {
138 ret = PTR_ERR(key);
139 goto error;
140 }
141
142 af = kzalloc(sizeof(*af), GFP_KERNEL);
143 if (!af) {
144 ret = -ENOMEM;
145 goto error_key;
146 }
147 af->key = key;
148
149 ret = afs_validate(vnode, key);
150 if (ret < 0)
151 goto error_af;
152
153 if (file->f_mode & FMODE_WRITE) {
154 ret = afs_cache_wb_key(vnode, af);
155 if (ret < 0)
156 goto error_af;
157 }
158
159 if (file->f_flags & O_TRUNC)
160 set_bit(AFS_VNODE_NEW_CONTENT, &vnode->flags);
161
162 file->private_data = af;
163 _leave(" = 0");
164 return 0;
165
166 error_af:
167 kfree(af);
168 error_key:
169 key_put(key);
170 error:
171 _leave(" = %d", ret);
172 return ret;
173 }
174
175 /*
176 * release an AFS file or directory and discard its key
177 */
afs_release(struct inode * inode,struct file * file)178 int afs_release(struct inode *inode, struct file *file)
179 {
180 struct afs_vnode *vnode = AFS_FS_I(inode);
181 struct afs_file *af = file->private_data;
182 int ret = 0;
183
184 _enter("{%llx:%llu},", vnode->fid.vid, vnode->fid.vnode);
185
186 if ((file->f_mode & FMODE_WRITE))
187 ret = vfs_fsync(file, 0);
188
189 file->private_data = NULL;
190 if (af->wb)
191 afs_put_wb_key(af->wb);
192 key_put(af->key);
193 kfree(af);
194 afs_prune_wb_keys(vnode);
195 _leave(" = %d", ret);
196 return ret;
197 }
198
199 /*
200 * Allocate a new read record.
201 */
afs_alloc_read(gfp_t gfp)202 struct afs_read *afs_alloc_read(gfp_t gfp)
203 {
204 struct afs_read *req;
205
206 req = kzalloc(sizeof(struct afs_read), gfp);
207 if (req)
208 refcount_set(&req->usage, 1);
209
210 return req;
211 }
212
213 /*
214 * Dispose of a ref to a read record.
215 */
afs_put_read(struct afs_read * req)216 void afs_put_read(struct afs_read *req)
217 {
218 if (refcount_dec_and_test(&req->usage)) {
219 if (req->cleanup)
220 req->cleanup(req);
221 key_put(req->key);
222 kfree(req);
223 }
224 }
225
afs_fetch_data_notify(struct afs_operation * op)226 static void afs_fetch_data_notify(struct afs_operation *op)
227 {
228 struct afs_read *req = op->fetch.req;
229 struct netfs_read_subrequest *subreq = req->subreq;
230 int error = op->error;
231
232 if (error == -ECONNABORTED)
233 error = afs_abort_to_error(op->ac.abort_code);
234 req->error = error;
235
236 if (subreq) {
237 __set_bit(NETFS_SREQ_CLEAR_TAIL, &subreq->flags);
238 netfs_subreq_terminated(subreq, error ?: req->actual_len, false);
239 req->subreq = NULL;
240 } else if (req->done) {
241 req->done(req);
242 }
243 }
244
afs_fetch_data_success(struct afs_operation * op)245 static void afs_fetch_data_success(struct afs_operation *op)
246 {
247 struct afs_vnode *vnode = op->file[0].vnode;
248
249 _enter("op=%08x", op->debug_id);
250 afs_vnode_commit_status(op, &op->file[0]);
251 afs_stat_v(vnode, n_fetches);
252 atomic_long_add(op->fetch.req->actual_len, &op->net->n_fetch_bytes);
253 afs_fetch_data_notify(op);
254 }
255
afs_fetch_data_put(struct afs_operation * op)256 static void afs_fetch_data_put(struct afs_operation *op)
257 {
258 op->fetch.req->error = op->error;
259 afs_put_read(op->fetch.req);
260 }
261
262 static const struct afs_operation_ops afs_fetch_data_operation = {
263 .issue_afs_rpc = afs_fs_fetch_data,
264 .issue_yfs_rpc = yfs_fs_fetch_data,
265 .success = afs_fetch_data_success,
266 .aborted = afs_check_for_remote_deletion,
267 .failed = afs_fetch_data_notify,
268 .put = afs_fetch_data_put,
269 };
270
271 /*
272 * Fetch file data from the volume.
273 */
afs_fetch_data(struct afs_vnode * vnode,struct afs_read * req)274 int afs_fetch_data(struct afs_vnode *vnode, struct afs_read *req)
275 {
276 struct afs_operation *op;
277
278 _enter("%s{%llx:%llu.%u},%x,,,",
279 vnode->volume->name,
280 vnode->fid.vid,
281 vnode->fid.vnode,
282 vnode->fid.unique,
283 key_serial(req->key));
284
285 op = afs_alloc_operation(req->key, vnode->volume);
286 if (IS_ERR(op)) {
287 if (req->subreq)
288 netfs_subreq_terminated(req->subreq, PTR_ERR(op), false);
289 return PTR_ERR(op);
290 }
291
292 afs_op_set_vnode(op, 0, vnode);
293
294 op->fetch.req = afs_get_read(req);
295 op->ops = &afs_fetch_data_operation;
296 return afs_do_sync_operation(op);
297 }
298
afs_req_issue_op(struct netfs_read_subrequest * subreq)299 static void afs_req_issue_op(struct netfs_read_subrequest *subreq)
300 {
301 struct afs_vnode *vnode = AFS_FS_I(subreq->rreq->inode);
302 struct afs_read *fsreq;
303
304 fsreq = afs_alloc_read(GFP_NOFS);
305 if (!fsreq)
306 return netfs_subreq_terminated(subreq, -ENOMEM, false);
307
308 fsreq->subreq = subreq;
309 fsreq->pos = subreq->start + subreq->transferred;
310 fsreq->len = subreq->len - subreq->transferred;
311 fsreq->key = key_get(subreq->rreq->netfs_priv);
312 fsreq->vnode = vnode;
313 fsreq->iter = &fsreq->def_iter;
314
315 iov_iter_xarray(&fsreq->def_iter, READ,
316 &fsreq->vnode->vfs_inode.i_mapping->i_pages,
317 fsreq->pos, fsreq->len);
318
319 afs_fetch_data(fsreq->vnode, fsreq);
320 afs_put_read(fsreq);
321 }
322
afs_symlink_readpage(struct file * file,struct page * page)323 static int afs_symlink_readpage(struct file *file, struct page *page)
324 {
325 struct afs_vnode *vnode = AFS_FS_I(page->mapping->host);
326 struct afs_read *fsreq;
327 struct folio *folio = page_folio(page);
328 int ret;
329
330 fsreq = afs_alloc_read(GFP_NOFS);
331 if (!fsreq)
332 return -ENOMEM;
333
334 fsreq->pos = folio_pos(folio);
335 fsreq->len = folio_size(folio);
336 fsreq->vnode = vnode;
337 fsreq->iter = &fsreq->def_iter;
338 iov_iter_xarray(&fsreq->def_iter, READ, &page->mapping->i_pages,
339 fsreq->pos, fsreq->len);
340
341 ret = afs_fetch_data(fsreq->vnode, fsreq);
342 if (ret == 0)
343 SetPageUptodate(page);
344 unlock_page(page);
345 return ret;
346 }
347
afs_init_rreq(struct netfs_read_request * rreq,struct file * file)348 static void afs_init_rreq(struct netfs_read_request *rreq, struct file *file)
349 {
350 rreq->netfs_priv = key_get(afs_file_key(file));
351 }
352
afs_is_cache_enabled(struct inode * inode)353 static bool afs_is_cache_enabled(struct inode *inode)
354 {
355 struct fscache_cookie *cookie = afs_vnode_cache(AFS_FS_I(inode));
356
357 return fscache_cookie_enabled(cookie) && !hlist_empty(&cookie->backing_objects);
358 }
359
afs_begin_cache_operation(struct netfs_read_request * rreq)360 static int afs_begin_cache_operation(struct netfs_read_request *rreq)
361 {
362 struct afs_vnode *vnode = AFS_FS_I(rreq->inode);
363
364 return fscache_begin_read_operation(rreq, afs_vnode_cache(vnode));
365 }
366
afs_check_write_begin(struct file * file,loff_t pos,unsigned len,struct folio * folio,void ** _fsdata)367 static int afs_check_write_begin(struct file *file, loff_t pos, unsigned len,
368 struct folio *folio, void **_fsdata)
369 {
370 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
371
372 return test_bit(AFS_VNODE_DELETED, &vnode->flags) ? -ESTALE : 0;
373 }
374
afs_priv_cleanup(struct address_space * mapping,void * netfs_priv)375 static void afs_priv_cleanup(struct address_space *mapping, void *netfs_priv)
376 {
377 key_put(netfs_priv);
378 }
379
380 const struct netfs_read_request_ops afs_req_ops = {
381 .init_rreq = afs_init_rreq,
382 .is_cache_enabled = afs_is_cache_enabled,
383 .begin_cache_operation = afs_begin_cache_operation,
384 .check_write_begin = afs_check_write_begin,
385 .issue_op = afs_req_issue_op,
386 .cleanup = afs_priv_cleanup,
387 };
388
afs_readpage(struct file * file,struct page * page)389 static int afs_readpage(struct file *file, struct page *page)
390 {
391 struct folio *folio = page_folio(page);
392
393 return netfs_readpage(file, folio, &afs_req_ops, NULL);
394 }
395
afs_readahead(struct readahead_control * ractl)396 static void afs_readahead(struct readahead_control *ractl)
397 {
398 netfs_readahead(ractl, &afs_req_ops, NULL);
399 }
400
401 /*
402 * Adjust the dirty region of the page on truncation or full invalidation,
403 * getting rid of the markers altogether if the region is entirely invalidated.
404 */
afs_invalidate_dirty(struct folio * folio,unsigned int offset,unsigned int length)405 static void afs_invalidate_dirty(struct folio *folio, unsigned int offset,
406 unsigned int length)
407 {
408 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
409 unsigned long priv;
410 unsigned int f, t, end = offset + length;
411
412 priv = (unsigned long)folio_get_private(folio);
413
414 /* we clean up only if the entire page is being invalidated */
415 if (offset == 0 && length == folio_size(folio))
416 goto full_invalidate;
417
418 /* If the page was dirtied by page_mkwrite(), the PTE stays writable
419 * and we don't get another notification to tell us to expand it
420 * again.
421 */
422 if (afs_is_folio_dirty_mmapped(priv))
423 return;
424
425 /* We may need to shorten the dirty region */
426 f = afs_folio_dirty_from(folio, priv);
427 t = afs_folio_dirty_to(folio, priv);
428
429 if (t <= offset || f >= end)
430 return; /* Doesn't overlap */
431
432 if (f < offset && t > end)
433 return; /* Splits the dirty region - just absorb it */
434
435 if (f >= offset && t <= end)
436 goto undirty;
437
438 if (f < offset)
439 t = offset;
440 else
441 f = end;
442 if (f == t)
443 goto undirty;
444
445 priv = afs_folio_dirty(folio, f, t);
446 folio_change_private(folio, (void *)priv);
447 trace_afs_folio_dirty(vnode, tracepoint_string("trunc"), folio);
448 return;
449
450 undirty:
451 trace_afs_folio_dirty(vnode, tracepoint_string("undirty"), folio);
452 folio_clear_dirty_for_io(folio);
453 full_invalidate:
454 trace_afs_folio_dirty(vnode, tracepoint_string("inval"), folio);
455 folio_detach_private(folio);
456 }
457
458 /*
459 * invalidate part or all of a page
460 * - release a page and clean up its private data if offset is 0 (indicating
461 * the entire page)
462 */
afs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)463 static void afs_invalidatepage(struct page *page, unsigned int offset,
464 unsigned int length)
465 {
466 struct folio *folio = page_folio(page);
467
468 _enter("{%lu},%u,%u", folio_index(folio), offset, length);
469
470 BUG_ON(!PageLocked(page));
471
472 if (PagePrivate(page))
473 afs_invalidate_dirty(folio, offset, length);
474
475 folio_wait_fscache(folio);
476 _leave("");
477 }
478
479 /*
480 * release a page and clean up its private state if it's not busy
481 * - return true if the page can now be released, false if not
482 */
afs_releasepage(struct page * page,gfp_t gfp_flags)483 static int afs_releasepage(struct page *page, gfp_t gfp_flags)
484 {
485 struct folio *folio = page_folio(page);
486 struct afs_vnode *vnode = AFS_FS_I(folio_inode(folio));
487
488 _enter("{{%llx:%llu}[%lu],%lx},%x",
489 vnode->fid.vid, vnode->fid.vnode, folio_index(folio), folio->flags,
490 gfp_flags);
491
492 /* deny if page is being written to the cache and the caller hasn't
493 * elected to wait */
494 #ifdef CONFIG_AFS_FSCACHE
495 if (folio_test_fscache(folio)) {
496 if (!(gfp_flags & __GFP_DIRECT_RECLAIM) || !(gfp_flags & __GFP_FS))
497 return false;
498 folio_wait_fscache(folio);
499 }
500 #endif
501
502 if (folio_test_private(folio)) {
503 trace_afs_folio_dirty(vnode, tracepoint_string("rel"), folio);
504 folio_detach_private(folio);
505 }
506
507 /* Indicate that the folio can be released */
508 _leave(" = T");
509 return true;
510 }
511
afs_add_open_mmap(struct afs_vnode * vnode)512 static void afs_add_open_mmap(struct afs_vnode *vnode)
513 {
514 if (atomic_inc_return(&vnode->cb_nr_mmap) == 1) {
515 down_write(&vnode->volume->cell->fs_open_mmaps_lock);
516
517 if (list_empty(&vnode->cb_mmap_link))
518 list_add_tail(&vnode->cb_mmap_link,
519 &vnode->volume->cell->fs_open_mmaps);
520
521 up_write(&vnode->volume->cell->fs_open_mmaps_lock);
522 }
523 }
524
afs_drop_open_mmap(struct afs_vnode * vnode)525 static void afs_drop_open_mmap(struct afs_vnode *vnode)
526 {
527 if (!atomic_dec_and_test(&vnode->cb_nr_mmap))
528 return;
529
530 down_write(&vnode->volume->cell->fs_open_mmaps_lock);
531
532 if (atomic_read(&vnode->cb_nr_mmap) == 0)
533 list_del_init(&vnode->cb_mmap_link);
534
535 up_write(&vnode->volume->cell->fs_open_mmaps_lock);
536 flush_work(&vnode->cb_work);
537 }
538
539 /*
540 * Handle setting up a memory mapping on an AFS file.
541 */
afs_file_mmap(struct file * file,struct vm_area_struct * vma)542 static int afs_file_mmap(struct file *file, struct vm_area_struct *vma)
543 {
544 struct afs_vnode *vnode = AFS_FS_I(file_inode(file));
545 int ret;
546
547 afs_add_open_mmap(vnode);
548
549 ret = generic_file_mmap(file, vma);
550 if (ret == 0)
551 vma->vm_ops = &afs_vm_ops;
552 else
553 afs_drop_open_mmap(vnode);
554 return ret;
555 }
556
afs_vm_open(struct vm_area_struct * vma)557 static void afs_vm_open(struct vm_area_struct *vma)
558 {
559 afs_add_open_mmap(AFS_FS_I(file_inode(vma->vm_file)));
560 }
561
afs_vm_close(struct vm_area_struct * vma)562 static void afs_vm_close(struct vm_area_struct *vma)
563 {
564 afs_drop_open_mmap(AFS_FS_I(file_inode(vma->vm_file)));
565 }
566
afs_vm_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)567 static vm_fault_t afs_vm_map_pages(struct vm_fault *vmf, pgoff_t start_pgoff, pgoff_t end_pgoff)
568 {
569 struct afs_vnode *vnode = AFS_FS_I(file_inode(vmf->vma->vm_file));
570 struct afs_file *af = vmf->vma->vm_file->private_data;
571
572 switch (afs_validate(vnode, af->key)) {
573 case 0:
574 return filemap_map_pages(vmf, start_pgoff, end_pgoff);
575 case -ENOMEM:
576 return VM_FAULT_OOM;
577 case -EINTR:
578 case -ERESTARTSYS:
579 return VM_FAULT_RETRY;
580 case -ESTALE:
581 default:
582 return VM_FAULT_SIGBUS;
583 }
584 }
585
afs_file_read_iter(struct kiocb * iocb,struct iov_iter * iter)586 static ssize_t afs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
587 {
588 struct afs_vnode *vnode = AFS_FS_I(file_inode(iocb->ki_filp));
589 struct afs_file *af = iocb->ki_filp->private_data;
590 int ret;
591
592 ret = afs_validate(vnode, af->key);
593 if (ret < 0)
594 return ret;
595
596 return generic_file_read_iter(iocb, iter);
597 }
598