1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * - July2000
9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10 */
11
12 /*
13 * This handles all read/write requests to block devices
14 */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/blk-pm.h>
21 #include <linux/blk-integrity.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-throttle.h"
54
55 struct dentry *blk_debugfs_root;
56
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63
64 DEFINE_IDA(blk_queue_ida);
65
66 /*
67 * For queue allocation
68 */
69 struct kmem_cache *blk_requestq_cachep;
70
71 /*
72 * Controlling structure to kblockd
73 */
74 static struct workqueue_struct *kblockd_workqueue;
75
76 /**
77 * blk_queue_flag_set - atomically set a queue flag
78 * @flag: flag to be set
79 * @q: request queue
80 */
blk_queue_flag_set(unsigned int flag,struct request_queue * q)81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86
87 /**
88 * blk_queue_flag_clear - atomically clear a queue flag
89 * @flag: flag to be cleared
90 * @q: request queue
91 */
blk_queue_flag_clear(unsigned int flag,struct request_queue * q)92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97
98 /**
99 * blk_queue_flag_test_and_set - atomically test and set a queue flag
100 * @flag: flag to be set
101 * @q: request queue
102 *
103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104 * the flag was already set.
105 */
blk_queue_flag_test_and_set(unsigned int flag,struct request_queue * q)106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111
blk_rq_init(struct request_queue * q,struct request * rq)112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 memset(rq, 0, sizeof(*rq));
115
116 INIT_LIST_HEAD(&rq->queuelist);
117 rq->q = q;
118 rq->__sector = (sector_t) -1;
119 INIT_HLIST_NODE(&rq->hash);
120 RB_CLEAR_NODE(&rq->rb_node);
121 rq->tag = BLK_MQ_NO_TAG;
122 rq->internal_tag = BLK_MQ_NO_TAG;
123 rq->start_time_ns = ktime_get_ns();
124 rq->part = NULL;
125 blk_crypto_rq_set_defaults(rq);
126 }
127 EXPORT_SYMBOL(blk_rq_init);
128
129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130 static const char *const blk_op_name[] = {
131 REQ_OP_NAME(READ),
132 REQ_OP_NAME(WRITE),
133 REQ_OP_NAME(FLUSH),
134 REQ_OP_NAME(DISCARD),
135 REQ_OP_NAME(SECURE_ERASE),
136 REQ_OP_NAME(ZONE_RESET),
137 REQ_OP_NAME(ZONE_RESET_ALL),
138 REQ_OP_NAME(ZONE_OPEN),
139 REQ_OP_NAME(ZONE_CLOSE),
140 REQ_OP_NAME(ZONE_FINISH),
141 REQ_OP_NAME(ZONE_APPEND),
142 REQ_OP_NAME(WRITE_SAME),
143 REQ_OP_NAME(WRITE_ZEROES),
144 REQ_OP_NAME(DRV_IN),
145 REQ_OP_NAME(DRV_OUT),
146 };
147 #undef REQ_OP_NAME
148
149 /**
150 * blk_op_str - Return string XXX in the REQ_OP_XXX.
151 * @op: REQ_OP_XXX.
152 *
153 * Description: Centralize block layer function to convert REQ_OP_XXX into
154 * string format. Useful in the debugging and tracing bio or request. For
155 * invalid REQ_OP_XXX it returns string "UNKNOWN".
156 */
blk_op_str(unsigned int op)157 inline const char *blk_op_str(unsigned int op)
158 {
159 const char *op_str = "UNKNOWN";
160
161 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
162 op_str = blk_op_name[op];
163
164 return op_str;
165 }
166 EXPORT_SYMBOL_GPL(blk_op_str);
167
168 static const struct {
169 int errno;
170 const char *name;
171 } blk_errors[] = {
172 [BLK_STS_OK] = { 0, "" },
173 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
174 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
175 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
176 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
177 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
178 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
179 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
180 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
181 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
182 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
183 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
184
185 /* device mapper special case, should not leak out: */
186 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
187
188 /* zone device specific errors */
189 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" },
190 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" },
191
192 /* everything else not covered above: */
193 [BLK_STS_IOERR] = { -EIO, "I/O" },
194 };
195
errno_to_blk_status(int errno)196 blk_status_t errno_to_blk_status(int errno)
197 {
198 int i;
199
200 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
201 if (blk_errors[i].errno == errno)
202 return (__force blk_status_t)i;
203 }
204
205 return BLK_STS_IOERR;
206 }
207 EXPORT_SYMBOL_GPL(errno_to_blk_status);
208
blk_status_to_errno(blk_status_t status)209 int blk_status_to_errno(blk_status_t status)
210 {
211 int idx = (__force int)status;
212
213 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
214 return -EIO;
215 return blk_errors[idx].errno;
216 }
217 EXPORT_SYMBOL_GPL(blk_status_to_errno);
218
blk_print_req_error(struct request * req,blk_status_t status)219 void blk_print_req_error(struct request *req, blk_status_t status)
220 {
221 int idx = (__force int)status;
222
223 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
224 return;
225
226 printk_ratelimited(KERN_ERR
227 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
228 "phys_seg %u prio class %u\n",
229 blk_errors[idx].name,
230 req->rq_disk ? req->rq_disk->disk_name : "?",
231 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
232 req->cmd_flags & ~REQ_OP_MASK,
233 req->nr_phys_segments,
234 IOPRIO_PRIO_CLASS(req->ioprio));
235 }
236
blk_dump_rq_flags(struct request * rq,char * msg)237 void blk_dump_rq_flags(struct request *rq, char *msg)
238 {
239 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
240 rq->rq_disk ? rq->rq_disk->disk_name : "?",
241 (unsigned long long) rq->cmd_flags);
242
243 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
244 (unsigned long long)blk_rq_pos(rq),
245 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
246 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
247 rq->bio, rq->biotail, blk_rq_bytes(rq));
248 }
249 EXPORT_SYMBOL(blk_dump_rq_flags);
250
251 /**
252 * blk_sync_queue - cancel any pending callbacks on a queue
253 * @q: the queue
254 *
255 * Description:
256 * The block layer may perform asynchronous callback activity
257 * on a queue, such as calling the unplug function after a timeout.
258 * A block device may call blk_sync_queue to ensure that any
259 * such activity is cancelled, thus allowing it to release resources
260 * that the callbacks might use. The caller must already have made sure
261 * that its ->submit_bio will not re-add plugging prior to calling
262 * this function.
263 *
264 * This function does not cancel any asynchronous activity arising
265 * out of elevator or throttling code. That would require elevator_exit()
266 * and blkcg_exit_queue() to be called with queue lock initialized.
267 *
268 */
blk_sync_queue(struct request_queue * q)269 void blk_sync_queue(struct request_queue *q)
270 {
271 del_timer_sync(&q->timeout);
272 cancel_work_sync(&q->timeout_work);
273 }
274 EXPORT_SYMBOL(blk_sync_queue);
275
276 /**
277 * blk_set_pm_only - increment pm_only counter
278 * @q: request queue pointer
279 */
blk_set_pm_only(struct request_queue * q)280 void blk_set_pm_only(struct request_queue *q)
281 {
282 atomic_inc(&q->pm_only);
283 }
284 EXPORT_SYMBOL_GPL(blk_set_pm_only);
285
blk_clear_pm_only(struct request_queue * q)286 void blk_clear_pm_only(struct request_queue *q)
287 {
288 int pm_only;
289
290 pm_only = atomic_dec_return(&q->pm_only);
291 WARN_ON_ONCE(pm_only < 0);
292 if (pm_only == 0)
293 wake_up_all(&q->mq_freeze_wq);
294 }
295 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
296
297 /**
298 * blk_put_queue - decrement the request_queue refcount
299 * @q: the request_queue structure to decrement the refcount for
300 *
301 * Decrements the refcount of the request_queue kobject. When this reaches 0
302 * we'll have blk_release_queue() called.
303 *
304 * Context: Any context, but the last reference must not be dropped from
305 * atomic context.
306 */
blk_put_queue(struct request_queue * q)307 void blk_put_queue(struct request_queue *q)
308 {
309 kobject_put(&q->kobj);
310 }
311 EXPORT_SYMBOL(blk_put_queue);
312
blk_queue_start_drain(struct request_queue * q)313 void blk_queue_start_drain(struct request_queue *q)
314 {
315 /*
316 * When queue DYING flag is set, we need to block new req
317 * entering queue, so we call blk_freeze_queue_start() to
318 * prevent I/O from crossing blk_queue_enter().
319 */
320 blk_freeze_queue_start(q);
321 if (queue_is_mq(q))
322 blk_mq_wake_waiters(q);
323 /* Make blk_queue_enter() reexamine the DYING flag. */
324 wake_up_all(&q->mq_freeze_wq);
325 }
326
blk_set_queue_dying(struct request_queue * q)327 void blk_set_queue_dying(struct request_queue *q)
328 {
329 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
330 blk_queue_start_drain(q);
331 }
332 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
333
334 /**
335 * blk_cleanup_queue - shutdown a request queue
336 * @q: request queue to shutdown
337 *
338 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
339 * put it. All future requests will be failed immediately with -ENODEV.
340 *
341 * Context: can sleep
342 */
blk_cleanup_queue(struct request_queue * q)343 void blk_cleanup_queue(struct request_queue *q)
344 {
345 /* cannot be called from atomic context */
346 might_sleep();
347
348 WARN_ON_ONCE(blk_queue_registered(q));
349
350 /* mark @q DYING, no new request or merges will be allowed afterwards */
351 blk_set_queue_dying(q);
352
353 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
354 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
355
356 /*
357 * Drain all requests queued before DYING marking. Set DEAD flag to
358 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
359 * after draining finished.
360 */
361 blk_freeze_queue(q);
362
363 blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
364
365 blk_sync_queue(q);
366 if (queue_is_mq(q)) {
367 blk_mq_cancel_work_sync(q);
368 blk_mq_exit_queue(q);
369 }
370
371 /*
372 * In theory, request pool of sched_tags belongs to request queue.
373 * However, the current implementation requires tag_set for freeing
374 * requests, so free the pool now.
375 *
376 * Queue has become frozen, there can't be any in-queue requests, so
377 * it is safe to free requests now.
378 */
379 mutex_lock(&q->sysfs_lock);
380 if (q->elevator)
381 blk_mq_sched_free_rqs(q);
382 mutex_unlock(&q->sysfs_lock);
383
384 percpu_ref_exit(&q->q_usage_counter);
385
386 /* @q is and will stay empty, shutdown and put */
387 blk_put_queue(q);
388 }
389 EXPORT_SYMBOL(blk_cleanup_queue);
390
391 /**
392 * blk_queue_enter() - try to increase q->q_usage_counter
393 * @q: request queue pointer
394 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
395 */
blk_queue_enter(struct request_queue * q,blk_mq_req_flags_t flags)396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
397 {
398 const bool pm = flags & BLK_MQ_REQ_PM;
399
400 while (!blk_try_enter_queue(q, pm)) {
401 if (flags & BLK_MQ_REQ_NOWAIT)
402 return -EBUSY;
403
404 /*
405 * read pair of barrier in blk_freeze_queue_start(), we need to
406 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
407 * reading .mq_freeze_depth or queue dying flag, otherwise the
408 * following wait may never return if the two reads are
409 * reordered.
410 */
411 smp_rmb();
412 wait_event(q->mq_freeze_wq,
413 (!q->mq_freeze_depth &&
414 blk_pm_resume_queue(pm, q)) ||
415 blk_queue_dying(q));
416 if (blk_queue_dying(q))
417 return -ENODEV;
418 }
419
420 return 0;
421 }
422
__bio_queue_enter(struct request_queue * q,struct bio * bio)423 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
424 {
425 while (!blk_try_enter_queue(q, false)) {
426 struct gendisk *disk = bio->bi_bdev->bd_disk;
427
428 if (bio->bi_opf & REQ_NOWAIT) {
429 if (test_bit(GD_DEAD, &disk->state))
430 goto dead;
431 bio_wouldblock_error(bio);
432 return -EBUSY;
433 }
434
435 /*
436 * read pair of barrier in blk_freeze_queue_start(), we need to
437 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
438 * reading .mq_freeze_depth or queue dying flag, otherwise the
439 * following wait may never return if the two reads are
440 * reordered.
441 */
442 smp_rmb();
443 wait_event(q->mq_freeze_wq,
444 (!q->mq_freeze_depth &&
445 blk_pm_resume_queue(false, q)) ||
446 test_bit(GD_DEAD, &disk->state));
447 if (test_bit(GD_DEAD, &disk->state))
448 goto dead;
449 }
450
451 return 0;
452 dead:
453 bio_io_error(bio);
454 return -ENODEV;
455 }
456
blk_queue_exit(struct request_queue * q)457 void blk_queue_exit(struct request_queue *q)
458 {
459 percpu_ref_put(&q->q_usage_counter);
460 }
461
blk_queue_usage_counter_release(struct percpu_ref * ref)462 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
463 {
464 struct request_queue *q =
465 container_of(ref, struct request_queue, q_usage_counter);
466
467 wake_up_all(&q->mq_freeze_wq);
468 }
469
blk_rq_timed_out_timer(struct timer_list * t)470 static void blk_rq_timed_out_timer(struct timer_list *t)
471 {
472 struct request_queue *q = from_timer(q, t, timeout);
473
474 kblockd_schedule_work(&q->timeout_work);
475 }
476
blk_timeout_work(struct work_struct * work)477 static void blk_timeout_work(struct work_struct *work)
478 {
479 }
480
blk_alloc_queue(int node_id)481 struct request_queue *blk_alloc_queue(int node_id)
482 {
483 struct request_queue *q;
484 int ret;
485
486 q = kmem_cache_alloc_node(blk_requestq_cachep,
487 GFP_KERNEL | __GFP_ZERO, node_id);
488 if (!q)
489 return NULL;
490
491 q->last_merge = NULL;
492
493 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
494 if (q->id < 0)
495 goto fail_q;
496
497 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
498 if (ret)
499 goto fail_id;
500
501 q->stats = blk_alloc_queue_stats();
502 if (!q->stats)
503 goto fail_split;
504
505 q->node = node_id;
506
507 atomic_set(&q->nr_active_requests_shared_tags, 0);
508
509 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
510 INIT_WORK(&q->timeout_work, blk_timeout_work);
511 INIT_LIST_HEAD(&q->icq_list);
512 #ifdef CONFIG_BLK_CGROUP
513 INIT_LIST_HEAD(&q->blkg_list);
514 #endif
515
516 kobject_init(&q->kobj, &blk_queue_ktype);
517
518 mutex_init(&q->debugfs_mutex);
519 mutex_init(&q->sysfs_lock);
520 mutex_init(&q->sysfs_dir_lock);
521 spin_lock_init(&q->queue_lock);
522
523 init_waitqueue_head(&q->mq_freeze_wq);
524 mutex_init(&q->mq_freeze_lock);
525
526 /*
527 * Init percpu_ref in atomic mode so that it's faster to shutdown.
528 * See blk_register_queue() for details.
529 */
530 if (percpu_ref_init(&q->q_usage_counter,
531 blk_queue_usage_counter_release,
532 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
533 goto fail_stats;
534
535 if (blkcg_init_queue(q))
536 goto fail_ref;
537
538 blk_queue_dma_alignment(q, 511);
539 blk_set_default_limits(&q->limits);
540 q->nr_requests = BLKDEV_DEFAULT_RQ;
541
542 return q;
543
544 fail_ref:
545 percpu_ref_exit(&q->q_usage_counter);
546 fail_stats:
547 blk_free_queue_stats(q->stats);
548 fail_split:
549 bioset_exit(&q->bio_split);
550 fail_id:
551 ida_simple_remove(&blk_queue_ida, q->id);
552 fail_q:
553 kmem_cache_free(blk_requestq_cachep, q);
554 return NULL;
555 }
556
557 /**
558 * blk_get_queue - increment the request_queue refcount
559 * @q: the request_queue structure to increment the refcount for
560 *
561 * Increment the refcount of the request_queue kobject.
562 *
563 * Context: Any context.
564 */
blk_get_queue(struct request_queue * q)565 bool blk_get_queue(struct request_queue *q)
566 {
567 if (likely(!blk_queue_dying(q))) {
568 __blk_get_queue(q);
569 return true;
570 }
571
572 return false;
573 }
574 EXPORT_SYMBOL(blk_get_queue);
575
handle_bad_sector(struct bio * bio,sector_t maxsector)576 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
577 {
578 char b[BDEVNAME_SIZE];
579
580 pr_info_ratelimited("%s: attempt to access beyond end of device\n"
581 "%s: rw=%d, want=%llu, limit=%llu\n",
582 current->comm,
583 bio_devname(bio, b), bio->bi_opf,
584 bio_end_sector(bio), maxsector);
585 }
586
587 #ifdef CONFIG_FAIL_MAKE_REQUEST
588
589 static DECLARE_FAULT_ATTR(fail_make_request);
590
setup_fail_make_request(char * str)591 static int __init setup_fail_make_request(char *str)
592 {
593 return setup_fault_attr(&fail_make_request, str);
594 }
595 __setup("fail_make_request=", setup_fail_make_request);
596
should_fail_request(struct block_device * part,unsigned int bytes)597 static bool should_fail_request(struct block_device *part, unsigned int bytes)
598 {
599 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
600 }
601
fail_make_request_debugfs(void)602 static int __init fail_make_request_debugfs(void)
603 {
604 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
605 NULL, &fail_make_request);
606
607 return PTR_ERR_OR_ZERO(dir);
608 }
609
610 late_initcall(fail_make_request_debugfs);
611
612 #else /* CONFIG_FAIL_MAKE_REQUEST */
613
should_fail_request(struct block_device * part,unsigned int bytes)614 static inline bool should_fail_request(struct block_device *part,
615 unsigned int bytes)
616 {
617 return false;
618 }
619
620 #endif /* CONFIG_FAIL_MAKE_REQUEST */
621
bio_check_ro(struct bio * bio)622 static inline bool bio_check_ro(struct bio *bio)
623 {
624 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
625 char b[BDEVNAME_SIZE];
626
627 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
628 return false;
629
630 WARN_ONCE(1,
631 "Trying to write to read-only block-device %s (partno %d)\n",
632 bio_devname(bio, b), bio->bi_bdev->bd_partno);
633 /* Older lvm-tools actually trigger this */
634 return false;
635 }
636
637 return false;
638 }
639
should_fail_bio(struct bio * bio)640 static noinline int should_fail_bio(struct bio *bio)
641 {
642 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
643 return -EIO;
644 return 0;
645 }
646 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
647
648 /*
649 * Check whether this bio extends beyond the end of the device or partition.
650 * This may well happen - the kernel calls bread() without checking the size of
651 * the device, e.g., when mounting a file system.
652 */
bio_check_eod(struct bio * bio)653 static inline int bio_check_eod(struct bio *bio)
654 {
655 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
656 unsigned int nr_sectors = bio_sectors(bio);
657
658 if (nr_sectors && maxsector &&
659 (nr_sectors > maxsector ||
660 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
661 handle_bad_sector(bio, maxsector);
662 return -EIO;
663 }
664 return 0;
665 }
666
667 /*
668 * Remap block n of partition p to block n+start(p) of the disk.
669 */
blk_partition_remap(struct bio * bio)670 static int blk_partition_remap(struct bio *bio)
671 {
672 struct block_device *p = bio->bi_bdev;
673
674 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
675 return -EIO;
676 if (bio_sectors(bio)) {
677 bio->bi_iter.bi_sector += p->bd_start_sect;
678 trace_block_bio_remap(bio, p->bd_dev,
679 bio->bi_iter.bi_sector -
680 p->bd_start_sect);
681 }
682 bio_set_flag(bio, BIO_REMAPPED);
683 return 0;
684 }
685
686 /*
687 * Check write append to a zoned block device.
688 */
blk_check_zone_append(struct request_queue * q,struct bio * bio)689 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
690 struct bio *bio)
691 {
692 sector_t pos = bio->bi_iter.bi_sector;
693 int nr_sectors = bio_sectors(bio);
694
695 /* Only applicable to zoned block devices */
696 if (!blk_queue_is_zoned(q))
697 return BLK_STS_NOTSUPP;
698
699 /* The bio sector must point to the start of a sequential zone */
700 if (pos & (blk_queue_zone_sectors(q) - 1) ||
701 !blk_queue_zone_is_seq(q, pos))
702 return BLK_STS_IOERR;
703
704 /*
705 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
706 * split and could result in non-contiguous sectors being written in
707 * different zones.
708 */
709 if (nr_sectors > q->limits.chunk_sectors)
710 return BLK_STS_IOERR;
711
712 /* Make sure the BIO is small enough and will not get split */
713 if (nr_sectors > q->limits.max_zone_append_sectors)
714 return BLK_STS_IOERR;
715
716 bio->bi_opf |= REQ_NOMERGE;
717
718 return BLK_STS_OK;
719 }
720
submit_bio_checks(struct bio * bio)721 noinline_for_stack bool submit_bio_checks(struct bio *bio)
722 {
723 struct block_device *bdev = bio->bi_bdev;
724 struct request_queue *q = bdev_get_queue(bdev);
725 blk_status_t status = BLK_STS_IOERR;
726 struct blk_plug *plug;
727
728 might_sleep();
729
730 plug = blk_mq_plug(q, bio);
731 if (plug && plug->nowait)
732 bio->bi_opf |= REQ_NOWAIT;
733
734 /*
735 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
736 * if queue does not support NOWAIT.
737 */
738 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
739 goto not_supported;
740
741 if (should_fail_bio(bio))
742 goto end_io;
743 if (unlikely(bio_check_ro(bio)))
744 goto end_io;
745 if (!bio_flagged(bio, BIO_REMAPPED)) {
746 if (unlikely(bio_check_eod(bio)))
747 goto end_io;
748 if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
749 goto end_io;
750 }
751
752 /*
753 * Filter flush bio's early so that bio based drivers without flush
754 * support don't have to worry about them.
755 */
756 if (op_is_flush(bio->bi_opf) &&
757 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
758 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
759 if (!bio_sectors(bio)) {
760 status = BLK_STS_OK;
761 goto end_io;
762 }
763 }
764
765 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
766 bio_clear_polled(bio);
767
768 switch (bio_op(bio)) {
769 case REQ_OP_DISCARD:
770 if (!blk_queue_discard(q))
771 goto not_supported;
772 break;
773 case REQ_OP_SECURE_ERASE:
774 if (!blk_queue_secure_erase(q))
775 goto not_supported;
776 break;
777 case REQ_OP_WRITE_SAME:
778 if (!q->limits.max_write_same_sectors)
779 goto not_supported;
780 break;
781 case REQ_OP_ZONE_APPEND:
782 status = blk_check_zone_append(q, bio);
783 if (status != BLK_STS_OK)
784 goto end_io;
785 break;
786 case REQ_OP_ZONE_RESET:
787 case REQ_OP_ZONE_OPEN:
788 case REQ_OP_ZONE_CLOSE:
789 case REQ_OP_ZONE_FINISH:
790 if (!blk_queue_is_zoned(q))
791 goto not_supported;
792 break;
793 case REQ_OP_ZONE_RESET_ALL:
794 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
795 goto not_supported;
796 break;
797 case REQ_OP_WRITE_ZEROES:
798 if (!q->limits.max_write_zeroes_sectors)
799 goto not_supported;
800 break;
801 default:
802 break;
803 }
804
805 /*
806 * Various block parts want %current->io_context, so allocate it up
807 * front rather than dealing with lots of pain to allocate it only
808 * where needed. This may fail and the block layer knows how to live
809 * with it.
810 */
811 if (unlikely(!current->io_context))
812 create_task_io_context(current, GFP_ATOMIC, q->node);
813
814 if (blk_throtl_bio(bio))
815 return false;
816
817 blk_cgroup_bio_start(bio);
818 blkcg_bio_issue_init(bio);
819
820 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
821 trace_block_bio_queue(bio);
822 /* Now that enqueuing has been traced, we need to trace
823 * completion as well.
824 */
825 bio_set_flag(bio, BIO_TRACE_COMPLETION);
826 }
827 return true;
828
829 not_supported:
830 status = BLK_STS_NOTSUPP;
831 end_io:
832 bio->bi_status = status;
833 bio_endio(bio);
834 return false;
835 }
836
__submit_bio_fops(struct gendisk * disk,struct bio * bio)837 static void __submit_bio_fops(struct gendisk *disk, struct bio *bio)
838 {
839 if (unlikely(bio_queue_enter(bio) != 0))
840 return;
841 if (submit_bio_checks(bio) && blk_crypto_bio_prep(&bio))
842 disk->fops->submit_bio(bio);
843 blk_queue_exit(disk->queue);
844 }
845
__submit_bio(struct bio * bio)846 static void __submit_bio(struct bio *bio)
847 {
848 struct gendisk *disk = bio->bi_bdev->bd_disk;
849
850 if (!disk->fops->submit_bio)
851 blk_mq_submit_bio(bio);
852 else
853 __submit_bio_fops(disk, bio);
854 }
855
856 /*
857 * The loop in this function may be a bit non-obvious, and so deserves some
858 * explanation:
859 *
860 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure
861 * that), so we have a list with a single bio.
862 * - We pretend that we have just taken it off a longer list, so we assign
863 * bio_list to a pointer to the bio_list_on_stack, thus initialising the
864 * bio_list of new bios to be added. ->submit_bio() may indeed add some more
865 * bios through a recursive call to submit_bio_noacct. If it did, we find a
866 * non-NULL value in bio_list and re-enter the loop from the top.
867 * - In this case we really did just take the bio of the top of the list (no
868 * pretending) and so remove it from bio_list, and call into ->submit_bio()
869 * again.
870 *
871 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
872 * bio_list_on_stack[1] contains bios that were submitted before the current
873 * ->submit_bio_bio, but that haven't been processed yet.
874 */
__submit_bio_noacct(struct bio * bio)875 static void __submit_bio_noacct(struct bio *bio)
876 {
877 struct bio_list bio_list_on_stack[2];
878
879 BUG_ON(bio->bi_next);
880
881 bio_list_init(&bio_list_on_stack[0]);
882 current->bio_list = bio_list_on_stack;
883
884 do {
885 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
886 struct bio_list lower, same;
887
888 /*
889 * Create a fresh bio_list for all subordinate requests.
890 */
891 bio_list_on_stack[1] = bio_list_on_stack[0];
892 bio_list_init(&bio_list_on_stack[0]);
893
894 __submit_bio(bio);
895
896 /*
897 * Sort new bios into those for a lower level and those for the
898 * same level.
899 */
900 bio_list_init(&lower);
901 bio_list_init(&same);
902 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
903 if (q == bdev_get_queue(bio->bi_bdev))
904 bio_list_add(&same, bio);
905 else
906 bio_list_add(&lower, bio);
907
908 /*
909 * Now assemble so we handle the lowest level first.
910 */
911 bio_list_merge(&bio_list_on_stack[0], &lower);
912 bio_list_merge(&bio_list_on_stack[0], &same);
913 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
914 } while ((bio = bio_list_pop(&bio_list_on_stack[0])));
915
916 current->bio_list = NULL;
917 }
918
__submit_bio_noacct_mq(struct bio * bio)919 static void __submit_bio_noacct_mq(struct bio *bio)
920 {
921 struct bio_list bio_list[2] = { };
922
923 current->bio_list = bio_list;
924
925 do {
926 __submit_bio(bio);
927 } while ((bio = bio_list_pop(&bio_list[0])));
928
929 current->bio_list = NULL;
930 }
931
932 /**
933 * submit_bio_noacct - re-submit a bio to the block device layer for I/O
934 * @bio: The bio describing the location in memory and on the device.
935 *
936 * This is a version of submit_bio() that shall only be used for I/O that is
937 * resubmitted to lower level drivers by stacking block drivers. All file
938 * systems and other upper level users of the block layer should use
939 * submit_bio() instead.
940 */
submit_bio_noacct(struct bio * bio)941 void submit_bio_noacct(struct bio *bio)
942 {
943 /*
944 * We only want one ->submit_bio to be active at a time, else stack
945 * usage with stacked devices could be a problem. Use current->bio_list
946 * to collect a list of requests submited by a ->submit_bio method while
947 * it is active, and then process them after it returned.
948 */
949 if (current->bio_list)
950 bio_list_add(¤t->bio_list[0], bio);
951 else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
952 __submit_bio_noacct_mq(bio);
953 else
954 __submit_bio_noacct(bio);
955 }
956 EXPORT_SYMBOL(submit_bio_noacct);
957
958 /**
959 * submit_bio - submit a bio to the block device layer for I/O
960 * @bio: The &struct bio which describes the I/O
961 *
962 * submit_bio() is used to submit I/O requests to block devices. It is passed a
963 * fully set up &struct bio that describes the I/O that needs to be done. The
964 * bio will be send to the device described by the bi_bdev field.
965 *
966 * The success/failure status of the request, along with notification of
967 * completion, is delivered asynchronously through the ->bi_end_io() callback
968 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has
969 * been called.
970 */
submit_bio(struct bio * bio)971 void submit_bio(struct bio *bio)
972 {
973 if (blkcg_punt_bio_submit(bio))
974 return;
975
976 /*
977 * If it's a regular read/write or a barrier with data attached,
978 * go through the normal accounting stuff before submission.
979 */
980 if (bio_has_data(bio)) {
981 unsigned int count;
982
983 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
984 count = queue_logical_block_size(
985 bdev_get_queue(bio->bi_bdev)) >> 9;
986 else
987 count = bio_sectors(bio);
988
989 if (op_is_write(bio_op(bio))) {
990 count_vm_events(PGPGOUT, count);
991 } else {
992 task_io_account_read(bio->bi_iter.bi_size);
993 count_vm_events(PGPGIN, count);
994 }
995 }
996
997 /*
998 * If we're reading data that is part of the userspace workingset, count
999 * submission time as memory stall. When the device is congested, or
1000 * the submitting cgroup IO-throttled, submission can be a significant
1001 * part of overall IO time.
1002 */
1003 if (unlikely(bio_op(bio) == REQ_OP_READ &&
1004 bio_flagged(bio, BIO_WORKINGSET))) {
1005 unsigned long pflags;
1006
1007 psi_memstall_enter(&pflags);
1008 submit_bio_noacct(bio);
1009 psi_memstall_leave(&pflags);
1010 return;
1011 }
1012
1013 submit_bio_noacct(bio);
1014 }
1015 EXPORT_SYMBOL(submit_bio);
1016
1017 /**
1018 * bio_poll - poll for BIO completions
1019 * @bio: bio to poll for
1020 * @iob: batches of IO
1021 * @flags: BLK_POLL_* flags that control the behavior
1022 *
1023 * Poll for completions on queue associated with the bio. Returns number of
1024 * completed entries found.
1025 *
1026 * Note: the caller must either be the context that submitted @bio, or
1027 * be in a RCU critical section to prevent freeing of @bio.
1028 */
bio_poll(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)1029 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
1030 {
1031 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1032 blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
1033 int ret;
1034
1035 if (cookie == BLK_QC_T_NONE ||
1036 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1037 return 0;
1038
1039 if (current->plug)
1040 blk_flush_plug(current->plug, false);
1041
1042 if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
1043 return 0;
1044 if (WARN_ON_ONCE(!queue_is_mq(q)))
1045 ret = 0; /* not yet implemented, should not happen */
1046 else
1047 ret = blk_mq_poll(q, cookie, iob, flags);
1048 blk_queue_exit(q);
1049 return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(bio_poll);
1052
1053 /*
1054 * Helper to implement file_operations.iopoll. Requires the bio to be stored
1055 * in iocb->private, and cleared before freeing the bio.
1056 */
iocb_bio_iopoll(struct kiocb * kiocb,struct io_comp_batch * iob,unsigned int flags)1057 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
1058 unsigned int flags)
1059 {
1060 struct bio *bio;
1061 int ret = 0;
1062
1063 /*
1064 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
1065 * point to a freshly allocated bio at this point. If that happens
1066 * we have a few cases to consider:
1067 *
1068 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just
1069 * simply nothing in this case
1070 * 2) the bio points to a not poll enabled device. bio_poll will catch
1071 * this and return 0
1072 * 3) the bio points to a poll capable device, including but not
1073 * limited to the one that the original bio pointed to. In this
1074 * case we will call into the actual poll method and poll for I/O,
1075 * even if we don't need to, but it won't cause harm either.
1076 *
1077 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
1078 * is still allocated. Because partitions hold a reference to the whole
1079 * device bdev and thus disk, the disk is also still valid. Grabbing
1080 * a reference to the queue in bio_poll() ensures the hctxs and requests
1081 * are still valid as well.
1082 */
1083 rcu_read_lock();
1084 bio = READ_ONCE(kiocb->private);
1085 if (bio && bio->bi_bdev)
1086 ret = bio_poll(bio, iob, flags);
1087 rcu_read_unlock();
1088
1089 return ret;
1090 }
1091 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1092
1093 /**
1094 * blk_cloned_rq_check_limits - Helper function to check a cloned request
1095 * for the new queue limits
1096 * @q: the queue
1097 * @rq: the request being checked
1098 *
1099 * Description:
1100 * @rq may have been made based on weaker limitations of upper-level queues
1101 * in request stacking drivers, and it may violate the limitation of @q.
1102 * Since the block layer and the underlying device driver trust @rq
1103 * after it is inserted to @q, it should be checked against @q before
1104 * the insertion using this generic function.
1105 *
1106 * Request stacking drivers like request-based dm may change the queue
1107 * limits when retrying requests on other queues. Those requests need
1108 * to be checked against the new queue limits again during dispatch.
1109 */
blk_cloned_rq_check_limits(struct request_queue * q,struct request * rq)1110 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1111 struct request *rq)
1112 {
1113 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1114
1115 if (blk_rq_sectors(rq) > max_sectors) {
1116 /*
1117 * SCSI device does not have a good way to return if
1118 * Write Same/Zero is actually supported. If a device rejects
1119 * a non-read/write command (discard, write same,etc.) the
1120 * low-level device driver will set the relevant queue limit to
1121 * 0 to prevent blk-lib from issuing more of the offending
1122 * operations. Commands queued prior to the queue limit being
1123 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1124 * errors being propagated to upper layers.
1125 */
1126 if (max_sectors == 0)
1127 return BLK_STS_NOTSUPP;
1128
1129 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1130 __func__, blk_rq_sectors(rq), max_sectors);
1131 return BLK_STS_IOERR;
1132 }
1133
1134 /*
1135 * The queue settings related to segment counting may differ from the
1136 * original queue.
1137 */
1138 rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1139 if (rq->nr_phys_segments > queue_max_segments(q)) {
1140 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1141 __func__, rq->nr_phys_segments, queue_max_segments(q));
1142 return BLK_STS_IOERR;
1143 }
1144
1145 return BLK_STS_OK;
1146 }
1147
1148 /**
1149 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1150 * @q: the queue to submit the request
1151 * @rq: the request being queued
1152 */
blk_insert_cloned_request(struct request_queue * q,struct request * rq)1153 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1154 {
1155 blk_status_t ret;
1156
1157 ret = blk_cloned_rq_check_limits(q, rq);
1158 if (ret != BLK_STS_OK)
1159 return ret;
1160
1161 if (rq->rq_disk &&
1162 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1163 return BLK_STS_IOERR;
1164
1165 if (blk_crypto_insert_cloned_request(rq))
1166 return BLK_STS_IOERR;
1167
1168 blk_account_io_start(rq);
1169
1170 /*
1171 * Since we have a scheduler attached on the top device,
1172 * bypass a potential scheduler on the bottom device for
1173 * insert.
1174 */
1175 return blk_mq_request_issue_directly(rq, true);
1176 }
1177 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1178
1179 /**
1180 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1181 * @rq: request to examine
1182 *
1183 * Description:
1184 * A request could be merge of IOs which require different failure
1185 * handling. This function determines the number of bytes which
1186 * can be failed from the beginning of the request without
1187 * crossing into area which need to be retried further.
1188 *
1189 * Return:
1190 * The number of bytes to fail.
1191 */
blk_rq_err_bytes(const struct request * rq)1192 unsigned int blk_rq_err_bytes(const struct request *rq)
1193 {
1194 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1195 unsigned int bytes = 0;
1196 struct bio *bio;
1197
1198 if (!(rq->rq_flags & RQF_MIXED_MERGE))
1199 return blk_rq_bytes(rq);
1200
1201 /*
1202 * Currently the only 'mixing' which can happen is between
1203 * different fastfail types. We can safely fail portions
1204 * which have all the failfast bits that the first one has -
1205 * the ones which are at least as eager to fail as the first
1206 * one.
1207 */
1208 for (bio = rq->bio; bio; bio = bio->bi_next) {
1209 if ((bio->bi_opf & ff) != ff)
1210 break;
1211 bytes += bio->bi_iter.bi_size;
1212 }
1213
1214 /* this could lead to infinite loop */
1215 BUG_ON(blk_rq_bytes(rq) && !bytes);
1216 return bytes;
1217 }
1218 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1219
update_io_ticks(struct block_device * part,unsigned long now,bool end)1220 static void update_io_ticks(struct block_device *part, unsigned long now,
1221 bool end)
1222 {
1223 unsigned long stamp;
1224 again:
1225 stamp = READ_ONCE(part->bd_stamp);
1226 if (unlikely(time_after(now, stamp))) {
1227 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1228 __part_stat_add(part, io_ticks, end ? now - stamp : 1);
1229 }
1230 if (part->bd_partno) {
1231 part = bdev_whole(part);
1232 goto again;
1233 }
1234 }
1235
__blk_account_io_done(struct request * req,u64 now)1236 void __blk_account_io_done(struct request *req, u64 now)
1237 {
1238 const int sgrp = op_stat_group(req_op(req));
1239
1240 part_stat_lock();
1241 update_io_ticks(req->part, jiffies, true);
1242 part_stat_inc(req->part, ios[sgrp]);
1243 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1244 part_stat_unlock();
1245 }
1246
__blk_account_io_start(struct request * rq)1247 void __blk_account_io_start(struct request *rq)
1248 {
1249 /* passthrough requests can hold bios that do not have ->bi_bdev set */
1250 if (rq->bio && rq->bio->bi_bdev)
1251 rq->part = rq->bio->bi_bdev;
1252 else
1253 rq->part = rq->rq_disk->part0;
1254
1255 part_stat_lock();
1256 update_io_ticks(rq->part, jiffies, false);
1257 part_stat_unlock();
1258 }
1259
__part_start_io_acct(struct block_device * part,unsigned int sectors,unsigned int op)1260 static unsigned long __part_start_io_acct(struct block_device *part,
1261 unsigned int sectors, unsigned int op)
1262 {
1263 const int sgrp = op_stat_group(op);
1264 unsigned long now = READ_ONCE(jiffies);
1265
1266 part_stat_lock();
1267 update_io_ticks(part, now, false);
1268 part_stat_inc(part, ios[sgrp]);
1269 part_stat_add(part, sectors[sgrp], sectors);
1270 part_stat_local_inc(part, in_flight[op_is_write(op)]);
1271 part_stat_unlock();
1272
1273 return now;
1274 }
1275
1276 /**
1277 * bio_start_io_acct - start I/O accounting for bio based drivers
1278 * @bio: bio to start account for
1279 *
1280 * Returns the start time that should be passed back to bio_end_io_acct().
1281 */
bio_start_io_acct(struct bio * bio)1282 unsigned long bio_start_io_acct(struct bio *bio)
1283 {
1284 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1285 }
1286 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1287
disk_start_io_acct(struct gendisk * disk,unsigned int sectors,unsigned int op)1288 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1289 unsigned int op)
1290 {
1291 return __part_start_io_acct(disk->part0, sectors, op);
1292 }
1293 EXPORT_SYMBOL(disk_start_io_acct);
1294
__part_end_io_acct(struct block_device * part,unsigned int op,unsigned long start_time)1295 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1296 unsigned long start_time)
1297 {
1298 const int sgrp = op_stat_group(op);
1299 unsigned long now = READ_ONCE(jiffies);
1300 unsigned long duration = now - start_time;
1301
1302 part_stat_lock();
1303 update_io_ticks(part, now, true);
1304 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1305 part_stat_local_dec(part, in_flight[op_is_write(op)]);
1306 part_stat_unlock();
1307 }
1308
bio_end_io_acct_remapped(struct bio * bio,unsigned long start_time,struct block_device * orig_bdev)1309 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1310 struct block_device *orig_bdev)
1311 {
1312 __part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1313 }
1314 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1315
disk_end_io_acct(struct gendisk * disk,unsigned int op,unsigned long start_time)1316 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1317 unsigned long start_time)
1318 {
1319 __part_end_io_acct(disk->part0, op, start_time);
1320 }
1321 EXPORT_SYMBOL(disk_end_io_acct);
1322
1323 /*
1324 * Steal bios from a request and add them to a bio list.
1325 * The request must not have been partially completed before.
1326 */
blk_steal_bios(struct bio_list * list,struct request * rq)1327 void blk_steal_bios(struct bio_list *list, struct request *rq)
1328 {
1329 if (rq->bio) {
1330 if (list->tail)
1331 list->tail->bi_next = rq->bio;
1332 else
1333 list->head = rq->bio;
1334 list->tail = rq->biotail;
1335
1336 rq->bio = NULL;
1337 rq->biotail = NULL;
1338 }
1339
1340 rq->__data_len = 0;
1341 }
1342 EXPORT_SYMBOL_GPL(blk_steal_bios);
1343
1344 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1345 /**
1346 * rq_flush_dcache_pages - Helper function to flush all pages in a request
1347 * @rq: the request to be flushed
1348 *
1349 * Description:
1350 * Flush all pages in @rq.
1351 */
rq_flush_dcache_pages(struct request * rq)1352 void rq_flush_dcache_pages(struct request *rq)
1353 {
1354 struct req_iterator iter;
1355 struct bio_vec bvec;
1356
1357 rq_for_each_segment(bvec, rq, iter)
1358 flush_dcache_page(bvec.bv_page);
1359 }
1360 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1361 #endif
1362
1363 /**
1364 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1365 * @q : the queue of the device being checked
1366 *
1367 * Description:
1368 * Check if underlying low-level drivers of a device are busy.
1369 * If the drivers want to export their busy state, they must set own
1370 * exporting function using blk_queue_lld_busy() first.
1371 *
1372 * Basically, this function is used only by request stacking drivers
1373 * to stop dispatching requests to underlying devices when underlying
1374 * devices are busy. This behavior helps more I/O merging on the queue
1375 * of the request stacking driver and prevents I/O throughput regression
1376 * on burst I/O load.
1377 *
1378 * Return:
1379 * 0 - Not busy (The request stacking driver should dispatch request)
1380 * 1 - Busy (The request stacking driver should stop dispatching request)
1381 */
blk_lld_busy(struct request_queue * q)1382 int blk_lld_busy(struct request_queue *q)
1383 {
1384 if (queue_is_mq(q) && q->mq_ops->busy)
1385 return q->mq_ops->busy(q);
1386
1387 return 0;
1388 }
1389 EXPORT_SYMBOL_GPL(blk_lld_busy);
1390
1391 /**
1392 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1393 * @rq: the clone request to be cleaned up
1394 *
1395 * Description:
1396 * Free all bios in @rq for a cloned request.
1397 */
blk_rq_unprep_clone(struct request * rq)1398 void blk_rq_unprep_clone(struct request *rq)
1399 {
1400 struct bio *bio;
1401
1402 while ((bio = rq->bio) != NULL) {
1403 rq->bio = bio->bi_next;
1404
1405 bio_put(bio);
1406 }
1407 }
1408 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1409
1410 /**
1411 * blk_rq_prep_clone - Helper function to setup clone request
1412 * @rq: the request to be setup
1413 * @rq_src: original request to be cloned
1414 * @bs: bio_set that bios for clone are allocated from
1415 * @gfp_mask: memory allocation mask for bio
1416 * @bio_ctr: setup function to be called for each clone bio.
1417 * Returns %0 for success, non %0 for failure.
1418 * @data: private data to be passed to @bio_ctr
1419 *
1420 * Description:
1421 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1422 * Also, pages which the original bios are pointing to are not copied
1423 * and the cloned bios just point same pages.
1424 * So cloned bios must be completed before original bios, which means
1425 * the caller must complete @rq before @rq_src.
1426 */
blk_rq_prep_clone(struct request * rq,struct request * rq_src,struct bio_set * bs,gfp_t gfp_mask,int (* bio_ctr)(struct bio *,struct bio *,void *),void * data)1427 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1428 struct bio_set *bs, gfp_t gfp_mask,
1429 int (*bio_ctr)(struct bio *, struct bio *, void *),
1430 void *data)
1431 {
1432 struct bio *bio, *bio_src;
1433
1434 if (!bs)
1435 bs = &fs_bio_set;
1436
1437 __rq_for_each_bio(bio_src, rq_src) {
1438 bio = bio_clone_fast(bio_src, gfp_mask, bs);
1439 if (!bio)
1440 goto free_and_out;
1441
1442 if (bio_ctr && bio_ctr(bio, bio_src, data))
1443 goto free_and_out;
1444
1445 if (rq->bio) {
1446 rq->biotail->bi_next = bio;
1447 rq->biotail = bio;
1448 } else {
1449 rq->bio = rq->biotail = bio;
1450 }
1451 bio = NULL;
1452 }
1453
1454 /* Copy attributes of the original request to the clone request. */
1455 rq->__sector = blk_rq_pos(rq_src);
1456 rq->__data_len = blk_rq_bytes(rq_src);
1457 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1458 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1459 rq->special_vec = rq_src->special_vec;
1460 }
1461 rq->nr_phys_segments = rq_src->nr_phys_segments;
1462 rq->ioprio = rq_src->ioprio;
1463
1464 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1465 goto free_and_out;
1466
1467 return 0;
1468
1469 free_and_out:
1470 if (bio)
1471 bio_put(bio);
1472 blk_rq_unprep_clone(rq);
1473
1474 return -ENOMEM;
1475 }
1476 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1477
kblockd_schedule_work(struct work_struct * work)1478 int kblockd_schedule_work(struct work_struct *work)
1479 {
1480 return queue_work(kblockd_workqueue, work);
1481 }
1482 EXPORT_SYMBOL(kblockd_schedule_work);
1483
kblockd_mod_delayed_work_on(int cpu,struct delayed_work * dwork,unsigned long delay)1484 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1485 unsigned long delay)
1486 {
1487 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1488 }
1489 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1490
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1491 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1492 {
1493 struct task_struct *tsk = current;
1494
1495 /*
1496 * If this is a nested plug, don't actually assign it.
1497 */
1498 if (tsk->plug)
1499 return;
1500
1501 plug->mq_list = NULL;
1502 plug->cached_rq = NULL;
1503 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1504 plug->rq_count = 0;
1505 plug->multiple_queues = false;
1506 plug->has_elevator = false;
1507 plug->nowait = false;
1508 INIT_LIST_HEAD(&plug->cb_list);
1509
1510 /*
1511 * Store ordering should not be needed here, since a potential
1512 * preempt will imply a full memory barrier
1513 */
1514 tsk->plug = plug;
1515 }
1516
1517 /**
1518 * blk_start_plug - initialize blk_plug and track it inside the task_struct
1519 * @plug: The &struct blk_plug that needs to be initialized
1520 *
1521 * Description:
1522 * blk_start_plug() indicates to the block layer an intent by the caller
1523 * to submit multiple I/O requests in a batch. The block layer may use
1524 * this hint to defer submitting I/Os from the caller until blk_finish_plug()
1525 * is called. However, the block layer may choose to submit requests
1526 * before a call to blk_finish_plug() if the number of queued I/Os
1527 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1528 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if
1529 * the task schedules (see below).
1530 *
1531 * Tracking blk_plug inside the task_struct will help with auto-flushing the
1532 * pending I/O should the task end up blocking between blk_start_plug() and
1533 * blk_finish_plug(). This is important from a performance perspective, but
1534 * also ensures that we don't deadlock. For instance, if the task is blocking
1535 * for a memory allocation, memory reclaim could end up wanting to free a
1536 * page belonging to that request that is currently residing in our private
1537 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
1538 * this kind of deadlock.
1539 */
blk_start_plug(struct blk_plug * plug)1540 void blk_start_plug(struct blk_plug *plug)
1541 {
1542 blk_start_plug_nr_ios(plug, 1);
1543 }
1544 EXPORT_SYMBOL(blk_start_plug);
1545
flush_plug_callbacks(struct blk_plug * plug,bool from_schedule)1546 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1547 {
1548 LIST_HEAD(callbacks);
1549
1550 while (!list_empty(&plug->cb_list)) {
1551 list_splice_init(&plug->cb_list, &callbacks);
1552
1553 while (!list_empty(&callbacks)) {
1554 struct blk_plug_cb *cb = list_first_entry(&callbacks,
1555 struct blk_plug_cb,
1556 list);
1557 list_del(&cb->list);
1558 cb->callback(cb, from_schedule);
1559 }
1560 }
1561 }
1562
blk_check_plugged(blk_plug_cb_fn unplug,void * data,int size)1563 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1564 int size)
1565 {
1566 struct blk_plug *plug = current->plug;
1567 struct blk_plug_cb *cb;
1568
1569 if (!plug)
1570 return NULL;
1571
1572 list_for_each_entry(cb, &plug->cb_list, list)
1573 if (cb->callback == unplug && cb->data == data)
1574 return cb;
1575
1576 /* Not currently on the callback list */
1577 BUG_ON(size < sizeof(*cb));
1578 cb = kzalloc(size, GFP_ATOMIC);
1579 if (cb) {
1580 cb->data = data;
1581 cb->callback = unplug;
1582 list_add(&cb->list, &plug->cb_list);
1583 }
1584 return cb;
1585 }
1586 EXPORT_SYMBOL(blk_check_plugged);
1587
blk_flush_plug(struct blk_plug * plug,bool from_schedule)1588 void blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1589 {
1590 if (!list_empty(&plug->cb_list))
1591 flush_plug_callbacks(plug, from_schedule);
1592 if (!rq_list_empty(plug->mq_list))
1593 blk_mq_flush_plug_list(plug, from_schedule);
1594 /*
1595 * Unconditionally flush out cached requests, even if the unplug
1596 * event came from schedule. Since we know hold references to the
1597 * queue for cached requests, we don't want a blocked task holding
1598 * up a queue freeze/quiesce event.
1599 */
1600 if (unlikely(!rq_list_empty(plug->cached_rq)))
1601 blk_mq_free_plug_rqs(plug);
1602 }
1603
1604 /**
1605 * blk_finish_plug - mark the end of a batch of submitted I/O
1606 * @plug: The &struct blk_plug passed to blk_start_plug()
1607 *
1608 * Description:
1609 * Indicate that a batch of I/O submissions is complete. This function
1610 * must be paired with an initial call to blk_start_plug(). The intent
1611 * is to allow the block layer to optimize I/O submission. See the
1612 * documentation for blk_start_plug() for more information.
1613 */
blk_finish_plug(struct blk_plug * plug)1614 void blk_finish_plug(struct blk_plug *plug)
1615 {
1616 if (plug == current->plug) {
1617 blk_flush_plug(plug, false);
1618 current->plug = NULL;
1619 }
1620 }
1621 EXPORT_SYMBOL(blk_finish_plug);
1622
blk_io_schedule(void)1623 void blk_io_schedule(void)
1624 {
1625 /* Prevent hang_check timer from firing at us during very long I/O */
1626 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1627
1628 if (timeout)
1629 io_schedule_timeout(timeout);
1630 else
1631 io_schedule();
1632 }
1633 EXPORT_SYMBOL_GPL(blk_io_schedule);
1634
blk_dev_init(void)1635 int __init blk_dev_init(void)
1636 {
1637 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1638 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1639 sizeof_field(struct request, cmd_flags));
1640 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1641 sizeof_field(struct bio, bi_opf));
1642
1643 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
1644 kblockd_workqueue = alloc_workqueue("kblockd",
1645 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1646 if (!kblockd_workqueue)
1647 panic("Failed to create kblockd\n");
1648
1649 blk_requestq_cachep = kmem_cache_create("request_queue",
1650 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1651
1652 blk_debugfs_root = debugfs_create_dir("block", NULL);
1653
1654 return 0;
1655 }
1656