1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef INT_BLK_MQ_H
3 #define INT_BLK_MQ_H
4
5 #include "blk-stat.h"
6 #include "blk-mq-tag.h"
7
8 struct blk_mq_tag_set;
9
10 struct blk_mq_ctxs {
11 struct kobject kobj;
12 struct blk_mq_ctx __percpu *queue_ctx;
13 };
14
15 /**
16 * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
17 */
18 struct blk_mq_ctx {
19 struct {
20 spinlock_t lock;
21 struct list_head rq_lists[HCTX_MAX_TYPES];
22 } ____cacheline_aligned_in_smp;
23
24 unsigned int cpu;
25 unsigned short index_hw[HCTX_MAX_TYPES];
26 struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
27
28 struct request_queue *queue;
29 struct blk_mq_ctxs *ctxs;
30 struct kobject kobj;
31 } ____cacheline_aligned_in_smp;
32
33 void blk_mq_submit_bio(struct bio *bio);
34 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
35 unsigned int flags);
36 void blk_mq_exit_queue(struct request_queue *q);
37 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
38 void blk_mq_wake_waiters(struct request_queue *q);
39 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
40 unsigned int);
41 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
42 bool kick_requeue_list);
43 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
44 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
45 struct blk_mq_ctx *start);
46 void blk_mq_put_rq_ref(struct request *rq);
47
48 /*
49 * Internal helpers for allocating/freeing the request map
50 */
51 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
52 unsigned int hctx_idx);
53 void blk_mq_free_rq_map(struct blk_mq_tags *tags);
54 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
55 unsigned int hctx_idx, unsigned int depth);
56 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
57 struct blk_mq_tags *tags,
58 unsigned int hctx_idx);
59 /*
60 * Internal helpers for request insertion into sw queues
61 */
62 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
63 bool at_head);
64 void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
65 bool run_queue);
66 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
67 struct list_head *list);
68
69 /* Used by blk_insert_cloned_request() to issue request directly */
70 blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last);
71 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
72 struct list_head *list);
73
74 /*
75 * CPU -> queue mappings
76 */
77 extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
78
79 /*
80 * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
81 * @q: request queue
82 * @type: the hctx type index
83 * @cpu: CPU
84 */
blk_mq_map_queue_type(struct request_queue * q,enum hctx_type type,unsigned int cpu)85 static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
86 enum hctx_type type,
87 unsigned int cpu)
88 {
89 return q->queue_hw_ctx[q->tag_set->map[type].mq_map[cpu]];
90 }
91
blk_mq_get_hctx_type(unsigned int flags)92 static inline enum hctx_type blk_mq_get_hctx_type(unsigned int flags)
93 {
94 enum hctx_type type = HCTX_TYPE_DEFAULT;
95
96 /*
97 * The caller ensure that if REQ_POLLED, poll must be enabled.
98 */
99 if (flags & REQ_POLLED)
100 type = HCTX_TYPE_POLL;
101 else if ((flags & REQ_OP_MASK) == REQ_OP_READ)
102 type = HCTX_TYPE_READ;
103 return type;
104 }
105
106 /*
107 * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
108 * @q: request queue
109 * @flags: request command flags
110 * @ctx: software queue cpu ctx
111 */
blk_mq_map_queue(struct request_queue * q,unsigned int flags,struct blk_mq_ctx * ctx)112 static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
113 unsigned int flags,
114 struct blk_mq_ctx *ctx)
115 {
116 return ctx->hctxs[blk_mq_get_hctx_type(flags)];
117 }
118
119 /*
120 * sysfs helpers
121 */
122 extern void blk_mq_sysfs_init(struct request_queue *q);
123 extern void blk_mq_sysfs_deinit(struct request_queue *q);
124 extern int __blk_mq_register_dev(struct device *dev, struct request_queue *q);
125 extern int blk_mq_sysfs_register(struct request_queue *q);
126 extern void blk_mq_sysfs_unregister(struct request_queue *q);
127 extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
128 void blk_mq_free_plug_rqs(struct blk_plug *plug);
129 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
130
131 void blk_mq_cancel_work_sync(struct request_queue *q);
132
133 void blk_mq_release(struct request_queue *q);
134
__blk_mq_get_ctx(struct request_queue * q,unsigned int cpu)135 static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
136 unsigned int cpu)
137 {
138 return per_cpu_ptr(q->queue_ctx, cpu);
139 }
140
141 /*
142 * This assumes per-cpu software queueing queues. They could be per-node
143 * as well, for instance. For now this is hardcoded as-is. Note that we don't
144 * care about preemption, since we know the ctx's are persistent. This does
145 * mean that we can't rely on ctx always matching the currently running CPU.
146 */
blk_mq_get_ctx(struct request_queue * q)147 static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
148 {
149 return __blk_mq_get_ctx(q, raw_smp_processor_id());
150 }
151
152 struct blk_mq_alloc_data {
153 /* input parameter */
154 struct request_queue *q;
155 blk_mq_req_flags_t flags;
156 unsigned int shallow_depth;
157 unsigned int cmd_flags;
158 req_flags_t rq_flags;
159
160 /* allocate multiple requests/tags in one go */
161 unsigned int nr_tags;
162 struct request **cached_rq;
163
164 /* input & output parameter */
165 struct blk_mq_ctx *ctx;
166 struct blk_mq_hw_ctx *hctx;
167 };
168
blk_mq_is_shared_tags(unsigned int flags)169 static inline bool blk_mq_is_shared_tags(unsigned int flags)
170 {
171 return flags & BLK_MQ_F_TAG_HCTX_SHARED;
172 }
173
blk_mq_tags_from_data(struct blk_mq_alloc_data * data)174 static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
175 {
176 if (!(data->rq_flags & RQF_ELV))
177 return data->hctx->tags;
178 return data->hctx->sched_tags;
179 }
180
blk_mq_hctx_stopped(struct blk_mq_hw_ctx * hctx)181 static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
182 {
183 return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
184 }
185
blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx * hctx)186 static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
187 {
188 return hctx->nr_ctx && hctx->tags;
189 }
190
191 unsigned int blk_mq_in_flight(struct request_queue *q,
192 struct block_device *part);
193 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
194 unsigned int inflight[2]);
195
blk_mq_put_dispatch_budget(struct request_queue * q,int budget_token)196 static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
197 int budget_token)
198 {
199 if (q->mq_ops->put_budget)
200 q->mq_ops->put_budget(q, budget_token);
201 }
202
blk_mq_get_dispatch_budget(struct request_queue * q)203 static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
204 {
205 if (q->mq_ops->get_budget)
206 return q->mq_ops->get_budget(q);
207 return 0;
208 }
209
blk_mq_set_rq_budget_token(struct request * rq,int token)210 static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
211 {
212 if (token < 0)
213 return;
214
215 if (rq->q->mq_ops->set_rq_budget_token)
216 rq->q->mq_ops->set_rq_budget_token(rq, token);
217 }
218
blk_mq_get_rq_budget_token(struct request * rq)219 static inline int blk_mq_get_rq_budget_token(struct request *rq)
220 {
221 if (rq->q->mq_ops->get_rq_budget_token)
222 return rq->q->mq_ops->get_rq_budget_token(rq);
223 return -1;
224 }
225
__blk_mq_inc_active_requests(struct blk_mq_hw_ctx * hctx)226 static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
227 {
228 if (blk_mq_is_shared_tags(hctx->flags))
229 atomic_inc(&hctx->queue->nr_active_requests_shared_tags);
230 else
231 atomic_inc(&hctx->nr_active);
232 }
233
__blk_mq_sub_active_requests(struct blk_mq_hw_ctx * hctx,int val)234 static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
235 int val)
236 {
237 if (blk_mq_is_shared_tags(hctx->flags))
238 atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
239 else
240 atomic_sub(val, &hctx->nr_active);
241 }
242
__blk_mq_dec_active_requests(struct blk_mq_hw_ctx * hctx)243 static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
244 {
245 __blk_mq_sub_active_requests(hctx, 1);
246 }
247
__blk_mq_active_requests(struct blk_mq_hw_ctx * hctx)248 static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
249 {
250 if (blk_mq_is_shared_tags(hctx->flags))
251 return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
252 return atomic_read(&hctx->nr_active);
253 }
__blk_mq_put_driver_tag(struct blk_mq_hw_ctx * hctx,struct request * rq)254 static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
255 struct request *rq)
256 {
257 blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
258 rq->tag = BLK_MQ_NO_TAG;
259
260 if (rq->rq_flags & RQF_MQ_INFLIGHT) {
261 rq->rq_flags &= ~RQF_MQ_INFLIGHT;
262 __blk_mq_dec_active_requests(hctx);
263 }
264 }
265
blk_mq_put_driver_tag(struct request * rq)266 static inline void blk_mq_put_driver_tag(struct request *rq)
267 {
268 if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
269 return;
270
271 __blk_mq_put_driver_tag(rq->mq_hctx, rq);
272 }
273
274 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq);
275
blk_mq_get_driver_tag(struct request * rq)276 static inline bool blk_mq_get_driver_tag(struct request *rq)
277 {
278 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
279
280 if (rq->tag != BLK_MQ_NO_TAG &&
281 !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
282 hctx->tags->rqs[rq->tag] = rq;
283 return true;
284 }
285
286 return __blk_mq_get_driver_tag(hctx, rq);
287 }
288
blk_mq_clear_mq_map(struct blk_mq_queue_map * qmap)289 static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
290 {
291 int cpu;
292
293 for_each_possible_cpu(cpu)
294 qmap->mq_map[cpu] = 0;
295 }
296
297 /*
298 * blk_mq_plug() - Get caller context plug
299 * @q: request queue
300 * @bio : the bio being submitted by the caller context
301 *
302 * Plugging, by design, may delay the insertion of BIOs into the elevator in
303 * order to increase BIO merging opportunities. This however can cause BIO
304 * insertion order to change from the order in which submit_bio() is being
305 * executed in the case of multiple contexts concurrently issuing BIOs to a
306 * device, even if these context are synchronized to tightly control BIO issuing
307 * order. While this is not a problem with regular block devices, this ordering
308 * change can cause write BIO failures with zoned block devices as these
309 * require sequential write patterns to zones. Prevent this from happening by
310 * ignoring the plug state of a BIO issuing context if the target request queue
311 * is for a zoned block device and the BIO to plug is a write operation.
312 *
313 * Return current->plug if the bio can be plugged and NULL otherwise
314 */
blk_mq_plug(struct request_queue * q,struct bio * bio)315 static inline struct blk_plug *blk_mq_plug(struct request_queue *q,
316 struct bio *bio)
317 {
318 /*
319 * For regular block devices or read operations, use the context plug
320 * which may be NULL if blk_start_plug() was not executed.
321 */
322 if (!blk_queue_is_zoned(q) || !op_is_write(bio_op(bio)))
323 return current->plug;
324
325 /* Zoned block device write operation case: do not plug the BIO */
326 return NULL;
327 }
328
329 /* Free all requests on the list */
blk_mq_free_requests(struct list_head * list)330 static inline void blk_mq_free_requests(struct list_head *list)
331 {
332 while (!list_empty(list)) {
333 struct request *rq = list_entry_rq(list->next);
334
335 list_del_init(&rq->queuelist);
336 blk_mq_free_request(rq);
337 }
338 }
339
340 /*
341 * For shared tag users, we track the number of currently active users
342 * and attempt to provide a fair share of the tag depth for each of them.
343 */
hctx_may_queue(struct blk_mq_hw_ctx * hctx,struct sbitmap_queue * bt)344 static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
345 struct sbitmap_queue *bt)
346 {
347 unsigned int depth, users;
348
349 if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
350 return true;
351
352 /*
353 * Don't try dividing an ant
354 */
355 if (bt->sb.depth == 1)
356 return true;
357
358 if (blk_mq_is_shared_tags(hctx->flags)) {
359 struct request_queue *q = hctx->queue;
360
361 if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
362 return true;
363 } else {
364 if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
365 return true;
366 }
367
368 users = atomic_read(&hctx->tags->active_queues);
369
370 if (!users)
371 return true;
372
373 /*
374 * Allow at least some tags
375 */
376 depth = max((bt->sb.depth + users - 1) / users, 4U);
377 return __blk_mq_active_requests(hctx) < depth;
378 }
379
380
381 #endif
382