1 /*
2 * Copyright © 2014-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 #include "intel_ddi.h"
25 #include "intel_ddi_buf_trans.h"
26 #include "intel_de.h"
27 #include "intel_display_types.h"
28 #include "intel_dp.h"
29 #include "intel_dpio_phy.h"
30 #include "vlv_sideband.h"
31
32 /**
33 * DOC: DPIO
34 *
35 * VLV, CHV and BXT have slightly peculiar display PHYs for driving DP/HDMI
36 * ports. DPIO is the name given to such a display PHY. These PHYs
37 * don't follow the standard programming model using direct MMIO
38 * registers, and instead their registers must be accessed trough IOSF
39 * sideband. VLV has one such PHY for driving ports B and C, and CHV
40 * adds another PHY for driving port D. Each PHY responds to specific
41 * IOSF-SB port.
42 *
43 * Each display PHY is made up of one or two channels. Each channel
44 * houses a common lane part which contains the PLL and other common
45 * logic. CH0 common lane also contains the IOSF-SB logic for the
46 * Common Register Interface (CRI) ie. the DPIO registers. CRI clock
47 * must be running when any DPIO registers are accessed.
48 *
49 * In addition to having their own registers, the PHYs are also
50 * controlled through some dedicated signals from the display
51 * controller. These include PLL reference clock enable, PLL enable,
52 * and CRI clock selection, for example.
53 *
54 * Eeach channel also has two splines (also called data lanes), and
55 * each spline is made up of one Physical Access Coding Sub-Layer
56 * (PCS) block and two TX lanes. So each channel has two PCS blocks
57 * and four TX lanes. The TX lanes are used as DP lanes or TMDS
58 * data/clock pairs depending on the output type.
59 *
60 * Additionally the PHY also contains an AUX lane with AUX blocks
61 * for each channel. This is used for DP AUX communication, but
62 * this fact isn't really relevant for the driver since AUX is
63 * controlled from the display controller side. No DPIO registers
64 * need to be accessed during AUX communication,
65 *
66 * Generally on VLV/CHV the common lane corresponds to the pipe and
67 * the spline (PCS/TX) corresponds to the port.
68 *
69 * For dual channel PHY (VLV/CHV):
70 *
71 * pipe A == CMN/PLL/REF CH0
72 *
73 * pipe B == CMN/PLL/REF CH1
74 *
75 * port B == PCS/TX CH0
76 *
77 * port C == PCS/TX CH1
78 *
79 * This is especially important when we cross the streams
80 * ie. drive port B with pipe B, or port C with pipe A.
81 *
82 * For single channel PHY (CHV):
83 *
84 * pipe C == CMN/PLL/REF CH0
85 *
86 * port D == PCS/TX CH0
87 *
88 * On BXT the entire PHY channel corresponds to the port. That means
89 * the PLL is also now associated with the port rather than the pipe,
90 * and so the clock needs to be routed to the appropriate transcoder.
91 * Port A PLL is directly connected to transcoder EDP and port B/C
92 * PLLs can be routed to any transcoder A/B/C.
93 *
94 * Note: DDI0 is digital port B, DD1 is digital port C, and DDI2 is
95 * digital port D (CHV) or port A (BXT). ::
96 *
97 *
98 * Dual channel PHY (VLV/CHV/BXT)
99 * ---------------------------------
100 * | CH0 | CH1 |
101 * | CMN/PLL/REF | CMN/PLL/REF |
102 * |---------------|---------------| Display PHY
103 * | PCS01 | PCS23 | PCS01 | PCS23 |
104 * |-------|-------|-------|-------|
105 * |TX0|TX1|TX2|TX3|TX0|TX1|TX2|TX3|
106 * ---------------------------------
107 * | DDI0 | DDI1 | DP/HDMI ports
108 * ---------------------------------
109 *
110 * Single channel PHY (CHV/BXT)
111 * -----------------
112 * | CH0 |
113 * | CMN/PLL/REF |
114 * |---------------| Display PHY
115 * | PCS01 | PCS23 |
116 * |-------|-------|
117 * |TX0|TX1|TX2|TX3|
118 * -----------------
119 * | DDI2 | DP/HDMI port
120 * -----------------
121 */
122
123 /**
124 * struct bxt_ddi_phy_info - Hold info for a broxton DDI phy
125 */
126 struct bxt_ddi_phy_info {
127 /**
128 * @dual_channel: true if this phy has a second channel.
129 */
130 bool dual_channel;
131
132 /**
133 * @rcomp_phy: If -1, indicates this phy has its own rcomp resistor.
134 * Otherwise the GRC value will be copied from the phy indicated by
135 * this field.
136 */
137 enum dpio_phy rcomp_phy;
138
139 /**
140 * @reset_delay: delay in us to wait before setting the common reset
141 * bit in BXT_PHY_CTL_FAMILY, which effectively enables the phy.
142 */
143 int reset_delay;
144
145 /**
146 * @pwron_mask: Mask with the appropriate bit set that would cause the
147 * punit to power this phy if written to BXT_P_CR_GT_DISP_PWRON.
148 */
149 u32 pwron_mask;
150
151 /**
152 * @channel: struct containing per channel information.
153 */
154 struct {
155 /**
156 * @channel.port: which port maps to this channel.
157 */
158 enum port port;
159 } channel[2];
160 };
161
162 static const struct bxt_ddi_phy_info bxt_ddi_phy_info[] = {
163 [DPIO_PHY0] = {
164 .dual_channel = true,
165 .rcomp_phy = DPIO_PHY1,
166 .pwron_mask = BIT(0),
167
168 .channel = {
169 [DPIO_CH0] = { .port = PORT_B },
170 [DPIO_CH1] = { .port = PORT_C },
171 }
172 },
173 [DPIO_PHY1] = {
174 .dual_channel = false,
175 .rcomp_phy = -1,
176 .pwron_mask = BIT(1),
177
178 .channel = {
179 [DPIO_CH0] = { .port = PORT_A },
180 }
181 },
182 };
183
184 static const struct bxt_ddi_phy_info glk_ddi_phy_info[] = {
185 [DPIO_PHY0] = {
186 .dual_channel = false,
187 .rcomp_phy = DPIO_PHY1,
188 .pwron_mask = BIT(0),
189 .reset_delay = 20,
190
191 .channel = {
192 [DPIO_CH0] = { .port = PORT_B },
193 }
194 },
195 [DPIO_PHY1] = {
196 .dual_channel = false,
197 .rcomp_phy = -1,
198 .pwron_mask = BIT(3),
199 .reset_delay = 20,
200
201 .channel = {
202 [DPIO_CH0] = { .port = PORT_A },
203 }
204 },
205 [DPIO_PHY2] = {
206 .dual_channel = false,
207 .rcomp_phy = DPIO_PHY1,
208 .pwron_mask = BIT(1),
209 .reset_delay = 20,
210
211 .channel = {
212 [DPIO_CH0] = { .port = PORT_C },
213 }
214 },
215 };
216
217 static const struct bxt_ddi_phy_info *
bxt_get_phy_list(struct drm_i915_private * dev_priv,int * count)218 bxt_get_phy_list(struct drm_i915_private *dev_priv, int *count)
219 {
220 if (IS_GEMINILAKE(dev_priv)) {
221 *count = ARRAY_SIZE(glk_ddi_phy_info);
222 return glk_ddi_phy_info;
223 } else {
224 *count = ARRAY_SIZE(bxt_ddi_phy_info);
225 return bxt_ddi_phy_info;
226 }
227 }
228
229 static const struct bxt_ddi_phy_info *
bxt_get_phy_info(struct drm_i915_private * dev_priv,enum dpio_phy phy)230 bxt_get_phy_info(struct drm_i915_private *dev_priv, enum dpio_phy phy)
231 {
232 int count;
233 const struct bxt_ddi_phy_info *phy_list =
234 bxt_get_phy_list(dev_priv, &count);
235
236 return &phy_list[phy];
237 }
238
bxt_port_to_phy_channel(struct drm_i915_private * dev_priv,enum port port,enum dpio_phy * phy,enum dpio_channel * ch)239 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
240 enum dpio_phy *phy, enum dpio_channel *ch)
241 {
242 const struct bxt_ddi_phy_info *phy_info, *phys;
243 int i, count;
244
245 phys = bxt_get_phy_list(dev_priv, &count);
246
247 for (i = 0; i < count; i++) {
248 phy_info = &phys[i];
249
250 if (port == phy_info->channel[DPIO_CH0].port) {
251 *phy = i;
252 *ch = DPIO_CH0;
253 return;
254 }
255
256 if (phy_info->dual_channel &&
257 port == phy_info->channel[DPIO_CH1].port) {
258 *phy = i;
259 *ch = DPIO_CH1;
260 return;
261 }
262 }
263
264 drm_WARN(&dev_priv->drm, 1, "PHY not found for PORT %c",
265 port_name(port));
266 *phy = DPIO_PHY0;
267 *ch = DPIO_CH0;
268 }
269
bxt_ddi_phy_set_signal_levels(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)270 void bxt_ddi_phy_set_signal_levels(struct intel_encoder *encoder,
271 const struct intel_crtc_state *crtc_state)
272 {
273 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
274 int level = intel_ddi_level(encoder, crtc_state, 0);
275 const struct intel_ddi_buf_trans *trans;
276 enum dpio_channel ch;
277 enum dpio_phy phy;
278 int n_entries;
279 u32 val;
280
281 trans = encoder->get_buf_trans(encoder, crtc_state, &n_entries);
282 if (drm_WARN_ON_ONCE(&dev_priv->drm, !trans))
283 return;
284
285 bxt_port_to_phy_channel(dev_priv, encoder->port, &phy, &ch);
286
287 /*
288 * While we write to the group register to program all lanes at once we
289 * can read only lane registers and we pick lanes 0/1 for that.
290 */
291 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
292 val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
293 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
294
295 val = intel_de_read(dev_priv, BXT_PORT_TX_DW2_LN0(phy, ch));
296 val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
297 val |= trans->entries[level].bxt.margin << MARGIN_000_SHIFT |
298 trans->entries[level].bxt.scale << UNIQ_TRANS_SCALE_SHIFT;
299 intel_de_write(dev_priv, BXT_PORT_TX_DW2_GRP(phy, ch), val);
300
301 val = intel_de_read(dev_priv, BXT_PORT_TX_DW3_LN0(phy, ch));
302 val &= ~SCALE_DCOMP_METHOD;
303 if (trans->entries[level].bxt.enable)
304 val |= SCALE_DCOMP_METHOD;
305
306 if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
307 drm_err(&dev_priv->drm,
308 "Disabled scaling while ouniqetrangenmethod was set");
309
310 intel_de_write(dev_priv, BXT_PORT_TX_DW3_GRP(phy, ch), val);
311
312 val = intel_de_read(dev_priv, BXT_PORT_TX_DW4_LN0(phy, ch));
313 val &= ~DE_EMPHASIS;
314 val |= trans->entries[level].bxt.deemphasis << DEEMPH_SHIFT;
315 intel_de_write(dev_priv, BXT_PORT_TX_DW4_GRP(phy, ch), val);
316
317 val = intel_de_read(dev_priv, BXT_PORT_PCS_DW10_LN01(phy, ch));
318 val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
319 intel_de_write(dev_priv, BXT_PORT_PCS_DW10_GRP(phy, ch), val);
320 }
321
bxt_ddi_phy_is_enabled(struct drm_i915_private * dev_priv,enum dpio_phy phy)322 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
323 enum dpio_phy phy)
324 {
325 const struct bxt_ddi_phy_info *phy_info;
326
327 phy_info = bxt_get_phy_info(dev_priv, phy);
328
329 if (!(intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON) & phy_info->pwron_mask))
330 return false;
331
332 if ((intel_de_read(dev_priv, BXT_PORT_CL1CM_DW0(phy)) &
333 (PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
334 drm_dbg(&dev_priv->drm,
335 "DDI PHY %d powered, but power hasn't settled\n", phy);
336
337 return false;
338 }
339
340 if (!(intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
341 drm_dbg(&dev_priv->drm,
342 "DDI PHY %d powered, but still in reset\n", phy);
343
344 return false;
345 }
346
347 return true;
348 }
349
bxt_get_grc(struct drm_i915_private * dev_priv,enum dpio_phy phy)350 static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
351 {
352 u32 val = intel_de_read(dev_priv, BXT_PORT_REF_DW6(phy));
353
354 return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
355 }
356
bxt_phy_wait_grc_done(struct drm_i915_private * dev_priv,enum dpio_phy phy)357 static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
358 enum dpio_phy phy)
359 {
360 if (intel_de_wait_for_set(dev_priv, BXT_PORT_REF_DW3(phy),
361 GRC_DONE, 10))
362 drm_err(&dev_priv->drm, "timeout waiting for PHY%d GRC\n",
363 phy);
364 }
365
_bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)366 static void _bxt_ddi_phy_init(struct drm_i915_private *dev_priv,
367 enum dpio_phy phy)
368 {
369 const struct bxt_ddi_phy_info *phy_info;
370 u32 val;
371
372 phy_info = bxt_get_phy_info(dev_priv, phy);
373
374 if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
375 /* Still read out the GRC value for state verification */
376 if (phy_info->rcomp_phy != -1)
377 dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
378
379 if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
380 drm_dbg(&dev_priv->drm, "DDI PHY %d already enabled, "
381 "won't reprogram it\n", phy);
382 return;
383 }
384
385 drm_dbg(&dev_priv->drm,
386 "DDI PHY %d enabled with invalid state, "
387 "force reprogramming it\n", phy);
388 }
389
390 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
391 val |= phy_info->pwron_mask;
392 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
393
394 /*
395 * The PHY registers start out inaccessible and respond to reads with
396 * all 1s. Eventually they become accessible as they power up, then
397 * the reserved bit will give the default 0. Poll on the reserved bit
398 * becoming 0 to find when the PHY is accessible.
399 * The flag should get set in 100us according to the HW team, but
400 * use 1ms due to occasional timeouts observed with that.
401 */
402 if (intel_wait_for_register_fw(&dev_priv->uncore,
403 BXT_PORT_CL1CM_DW0(phy),
404 PHY_RESERVED | PHY_POWER_GOOD,
405 PHY_POWER_GOOD,
406 1))
407 drm_err(&dev_priv->drm, "timeout during PHY%d power on\n",
408 phy);
409
410 /* Program PLL Rcomp code offset */
411 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW9(phy));
412 val &= ~IREF0RC_OFFSET_MASK;
413 val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
414 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW9(phy), val);
415
416 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW10(phy));
417 val &= ~IREF1RC_OFFSET_MASK;
418 val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
419 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW10(phy), val);
420
421 /* Program power gating */
422 val = intel_de_read(dev_priv, BXT_PORT_CL1CM_DW28(phy));
423 val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
424 SUS_CLK_CONFIG;
425 intel_de_write(dev_priv, BXT_PORT_CL1CM_DW28(phy), val);
426
427 if (phy_info->dual_channel) {
428 val = intel_de_read(dev_priv, BXT_PORT_CL2CM_DW6(phy));
429 val |= DW6_OLDO_DYN_PWR_DOWN_EN;
430 intel_de_write(dev_priv, BXT_PORT_CL2CM_DW6(phy), val);
431 }
432
433 if (phy_info->rcomp_phy != -1) {
434 u32 grc_code;
435
436 bxt_phy_wait_grc_done(dev_priv, phy_info->rcomp_phy);
437
438 /*
439 * PHY0 isn't connected to an RCOMP resistor so copy over
440 * the corresponding calibrated value from PHY1, and disable
441 * the automatic calibration on PHY0.
442 */
443 val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv,
444 phy_info->rcomp_phy);
445 grc_code = val << GRC_CODE_FAST_SHIFT |
446 val << GRC_CODE_SLOW_SHIFT |
447 val;
448 intel_de_write(dev_priv, BXT_PORT_REF_DW6(phy), grc_code);
449
450 val = intel_de_read(dev_priv, BXT_PORT_REF_DW8(phy));
451 val |= GRC_DIS | GRC_RDY_OVRD;
452 intel_de_write(dev_priv, BXT_PORT_REF_DW8(phy), val);
453 }
454
455 if (phy_info->reset_delay)
456 udelay(phy_info->reset_delay);
457
458 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
459 val |= COMMON_RESET_DIS;
460 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
461 }
462
bxt_ddi_phy_uninit(struct drm_i915_private * dev_priv,enum dpio_phy phy)463 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
464 {
465 const struct bxt_ddi_phy_info *phy_info;
466 u32 val;
467
468 phy_info = bxt_get_phy_info(dev_priv, phy);
469
470 val = intel_de_read(dev_priv, BXT_PHY_CTL_FAMILY(phy));
471 val &= ~COMMON_RESET_DIS;
472 intel_de_write(dev_priv, BXT_PHY_CTL_FAMILY(phy), val);
473
474 val = intel_de_read(dev_priv, BXT_P_CR_GT_DISP_PWRON);
475 val &= ~phy_info->pwron_mask;
476 intel_de_write(dev_priv, BXT_P_CR_GT_DISP_PWRON, val);
477 }
478
bxt_ddi_phy_init(struct drm_i915_private * dev_priv,enum dpio_phy phy)479 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
480 {
481 const struct bxt_ddi_phy_info *phy_info =
482 bxt_get_phy_info(dev_priv, phy);
483 enum dpio_phy rcomp_phy = phy_info->rcomp_phy;
484 bool was_enabled;
485
486 lockdep_assert_held(&dev_priv->power_domains.lock);
487
488 was_enabled = true;
489 if (rcomp_phy != -1)
490 was_enabled = bxt_ddi_phy_is_enabled(dev_priv, rcomp_phy);
491
492 /*
493 * We need to copy the GRC calibration value from rcomp_phy,
494 * so make sure it's powered up.
495 */
496 if (!was_enabled)
497 _bxt_ddi_phy_init(dev_priv, rcomp_phy);
498
499 _bxt_ddi_phy_init(dev_priv, phy);
500
501 if (!was_enabled)
502 bxt_ddi_phy_uninit(dev_priv, rcomp_phy);
503 }
504
505 static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy,i915_reg_t reg,u32 mask,u32 expected,const char * reg_fmt,...)506 __phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
507 i915_reg_t reg, u32 mask, u32 expected,
508 const char *reg_fmt, ...)
509 {
510 struct va_format vaf;
511 va_list args;
512 u32 val;
513
514 val = intel_de_read(dev_priv, reg);
515 if ((val & mask) == expected)
516 return true;
517
518 va_start(args, reg_fmt);
519 vaf.fmt = reg_fmt;
520 vaf.va = &args;
521
522 drm_dbg(&dev_priv->drm, "DDI PHY %d reg %pV [%08x] state mismatch: "
523 "current %08x, expected %08x (mask %08x)\n",
524 phy, &vaf, reg.reg, val, (val & ~mask) | expected,
525 mask);
526
527 va_end(args);
528
529 return false;
530 }
531
bxt_ddi_phy_verify_state(struct drm_i915_private * dev_priv,enum dpio_phy phy)532 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
533 enum dpio_phy phy)
534 {
535 const struct bxt_ddi_phy_info *phy_info;
536 u32 mask;
537 bool ok;
538
539 phy_info = bxt_get_phy_info(dev_priv, phy);
540
541 #define _CHK(reg, mask, exp, fmt, ...) \
542 __phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
543 ## __VA_ARGS__)
544
545 if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
546 return false;
547
548 ok = true;
549
550 /* PLL Rcomp code offset */
551 ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
552 IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
553 "BXT_PORT_CL1CM_DW9(%d)", phy);
554 ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
555 IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
556 "BXT_PORT_CL1CM_DW10(%d)", phy);
557
558 /* Power gating */
559 mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
560 ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
561 "BXT_PORT_CL1CM_DW28(%d)", phy);
562
563 if (phy_info->dual_channel)
564 ok &= _CHK(BXT_PORT_CL2CM_DW6(phy),
565 DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
566 "BXT_PORT_CL2CM_DW6(%d)", phy);
567
568 if (phy_info->rcomp_phy != -1) {
569 u32 grc_code = dev_priv->bxt_phy_grc;
570
571 grc_code = grc_code << GRC_CODE_FAST_SHIFT |
572 grc_code << GRC_CODE_SLOW_SHIFT |
573 grc_code;
574 mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
575 GRC_CODE_NOM_MASK;
576 ok &= _CHK(BXT_PORT_REF_DW6(phy), mask, grc_code,
577 "BXT_PORT_REF_DW6(%d)", phy);
578
579 mask = GRC_DIS | GRC_RDY_OVRD;
580 ok &= _CHK(BXT_PORT_REF_DW8(phy), mask, mask,
581 "BXT_PORT_REF_DW8(%d)", phy);
582 }
583
584 return ok;
585 #undef _CHK
586 }
587
588 u8
bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)589 bxt_ddi_phy_calc_lane_lat_optim_mask(u8 lane_count)
590 {
591 switch (lane_count) {
592 case 1:
593 return 0;
594 case 2:
595 return BIT(2) | BIT(0);
596 case 4:
597 return BIT(3) | BIT(2) | BIT(0);
598 default:
599 MISSING_CASE(lane_count);
600
601 return 0;
602 }
603 }
604
bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder * encoder,u8 lane_lat_optim_mask)605 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
606 u8 lane_lat_optim_mask)
607 {
608 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
609 enum port port = encoder->port;
610 enum dpio_phy phy;
611 enum dpio_channel ch;
612 int lane;
613
614 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
615
616 for (lane = 0; lane < 4; lane++) {
617 u32 val = intel_de_read(dev_priv,
618 BXT_PORT_TX_DW14_LN(phy, ch, lane));
619
620 /*
621 * Note that on CHV this flag is called UPAR, but has
622 * the same function.
623 */
624 val &= ~LATENCY_OPTIM;
625 if (lane_lat_optim_mask & BIT(lane))
626 val |= LATENCY_OPTIM;
627
628 intel_de_write(dev_priv, BXT_PORT_TX_DW14_LN(phy, ch, lane),
629 val);
630 }
631 }
632
633 u8
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder * encoder)634 bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
635 {
636 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
637 enum port port = encoder->port;
638 enum dpio_phy phy;
639 enum dpio_channel ch;
640 int lane;
641 u8 mask;
642
643 bxt_port_to_phy_channel(dev_priv, port, &phy, &ch);
644
645 mask = 0;
646 for (lane = 0; lane < 4; lane++) {
647 u32 val = intel_de_read(dev_priv,
648 BXT_PORT_TX_DW14_LN(phy, ch, lane));
649
650 if (val & LATENCY_OPTIM)
651 mask |= BIT(lane);
652 }
653
654 return mask;
655 }
656
chv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 deemph_reg_value,u32 margin_reg_value,bool uniq_trans_scale)657 void chv_set_phy_signal_level(struct intel_encoder *encoder,
658 const struct intel_crtc_state *crtc_state,
659 u32 deemph_reg_value, u32 margin_reg_value,
660 bool uniq_trans_scale)
661 {
662 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
663 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
664 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
665 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
666 enum pipe pipe = crtc->pipe;
667 u32 val;
668 int i;
669
670 vlv_dpio_get(dev_priv);
671
672 /* Clear calc init */
673 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
674 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
675 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
676 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
677 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
678
679 if (crtc_state->lane_count > 2) {
680 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
681 val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
682 val &= ~(DPIO_PCS_TX1DEEMP_MASK | DPIO_PCS_TX2DEEMP_MASK);
683 val |= DPIO_PCS_TX1DEEMP_9P5 | DPIO_PCS_TX2DEEMP_9P5;
684 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
685 }
686
687 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW9(ch));
688 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
689 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
690 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW9(ch), val);
691
692 if (crtc_state->lane_count > 2) {
693 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW9(ch));
694 val &= ~(DPIO_PCS_TX1MARGIN_MASK | DPIO_PCS_TX2MARGIN_MASK);
695 val |= DPIO_PCS_TX1MARGIN_000 | DPIO_PCS_TX2MARGIN_000;
696 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW9(ch), val);
697 }
698
699 /* Program swing deemph */
700 for (i = 0; i < crtc_state->lane_count; i++) {
701 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
702 val &= ~DPIO_SWING_DEEMPH9P5_MASK;
703 val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
704 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
705 }
706
707 /* Program swing margin */
708 for (i = 0; i < crtc_state->lane_count; i++) {
709 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
710
711 val &= ~DPIO_SWING_MARGIN000_MASK;
712 val |= margin_reg_value << DPIO_SWING_MARGIN000_SHIFT;
713
714 /*
715 * Supposedly this value shouldn't matter when unique transition
716 * scale is disabled, but in fact it does matter. Let's just
717 * always program the same value and hope it's OK.
718 */
719 val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
720 val |= 0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT;
721
722 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
723 }
724
725 /*
726 * The document said it needs to set bit 27 for ch0 and bit 26
727 * for ch1. Might be a typo in the doc.
728 * For now, for this unique transition scale selection, set bit
729 * 27 for ch0 and ch1.
730 */
731 for (i = 0; i < crtc_state->lane_count; i++) {
732 val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
733 if (uniq_trans_scale)
734 val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
735 else
736 val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
737 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
738 }
739
740 /* Start swing calculation */
741 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
742 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
743 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);
744
745 if (crtc_state->lane_count > 2) {
746 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
747 val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
748 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
749 }
750
751 vlv_dpio_put(dev_priv);
752 }
753
chv_data_lane_soft_reset(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,bool reset)754 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
755 const struct intel_crtc_state *crtc_state,
756 bool reset)
757 {
758 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
759 enum dpio_channel ch = vlv_dig_port_to_channel(enc_to_dig_port(encoder));
760 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
761 enum pipe pipe = crtc->pipe;
762 u32 val;
763
764 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
765 if (reset)
766 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
767 else
768 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
769 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
770
771 if (crtc_state->lane_count > 2) {
772 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
773 if (reset)
774 val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
775 else
776 val |= DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET;
777 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
778 }
779
780 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
781 val |= CHV_PCS_REQ_SOFTRESET_EN;
782 if (reset)
783 val &= ~DPIO_PCS_CLK_SOFT_RESET;
784 else
785 val |= DPIO_PCS_CLK_SOFT_RESET;
786 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
787
788 if (crtc_state->lane_count > 2) {
789 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
790 val |= CHV_PCS_REQ_SOFTRESET_EN;
791 if (reset)
792 val &= ~DPIO_PCS_CLK_SOFT_RESET;
793 else
794 val |= DPIO_PCS_CLK_SOFT_RESET;
795 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);
796 }
797 }
798
chv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)799 void chv_phy_pre_pll_enable(struct intel_encoder *encoder,
800 const struct intel_crtc_state *crtc_state)
801 {
802 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
803 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
804 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
805 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
806 enum pipe pipe = crtc->pipe;
807 unsigned int lane_mask =
808 intel_dp_unused_lane_mask(crtc_state->lane_count);
809 u32 val;
810
811 /*
812 * Must trick the second common lane into life.
813 * Otherwise we can't even access the PLL.
814 */
815 if (ch == DPIO_CH0 && pipe == PIPE_B)
816 dig_port->release_cl2_override =
817 !chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, true);
818
819 chv_phy_powergate_lanes(encoder, true, lane_mask);
820
821 vlv_dpio_get(dev_priv);
822
823 /* Assert data lane reset */
824 chv_data_lane_soft_reset(encoder, crtc_state, true);
825
826 /* program left/right clock distribution */
827 if (pipe != PIPE_B) {
828 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
829 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
830 if (ch == DPIO_CH0)
831 val |= CHV_BUFLEFTENA1_FORCE;
832 if (ch == DPIO_CH1)
833 val |= CHV_BUFRIGHTENA1_FORCE;
834 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
835 } else {
836 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
837 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
838 if (ch == DPIO_CH0)
839 val |= CHV_BUFLEFTENA2_FORCE;
840 if (ch == DPIO_CH1)
841 val |= CHV_BUFRIGHTENA2_FORCE;
842 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
843 }
844
845 /* program clock channel usage */
846 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
847 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
848 if (pipe != PIPE_B)
849 val &= ~CHV_PCS_USEDCLKCHANNEL;
850 else
851 val |= CHV_PCS_USEDCLKCHANNEL;
852 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);
853
854 if (crtc_state->lane_count > 2) {
855 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
856 val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
857 if (pipe != PIPE_B)
858 val &= ~CHV_PCS_USEDCLKCHANNEL;
859 else
860 val |= CHV_PCS_USEDCLKCHANNEL;
861 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);
862 }
863
864 /*
865 * This a a bit weird since generally CL
866 * matches the pipe, but here we need to
867 * pick the CL based on the port.
868 */
869 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
870 if (pipe != PIPE_B)
871 val &= ~CHV_CMN_USEDCLKCHANNEL;
872 else
873 val |= CHV_CMN_USEDCLKCHANNEL;
874 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);
875
876 vlv_dpio_put(dev_priv);
877 }
878
chv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)879 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder,
880 const struct intel_crtc_state *crtc_state)
881 {
882 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
883 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
884 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
885 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
886 enum dpio_channel ch = vlv_dig_port_to_channel(dig_port);
887 enum pipe pipe = crtc->pipe;
888 int data, i, stagger;
889 u32 val;
890
891 vlv_dpio_get(dev_priv);
892
893 /* allow hardware to manage TX FIFO reset source */
894 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
895 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
896 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
897
898 if (crtc_state->lane_count > 2) {
899 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
900 val &= ~DPIO_LANEDESKEW_STRAP_OVRD;
901 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
902 }
903
904 /* Program Tx lane latency optimal setting*/
905 for (i = 0; i < crtc_state->lane_count; i++) {
906 /* Set the upar bit */
907 if (crtc_state->lane_count == 1)
908 data = 0x0;
909 else
910 data = (i == 1) ? 0x0 : 0x1;
911 vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
912 data << DPIO_UPAR_SHIFT);
913 }
914
915 /* Data lane stagger programming */
916 if (crtc_state->port_clock > 270000)
917 stagger = 0x18;
918 else if (crtc_state->port_clock > 135000)
919 stagger = 0xd;
920 else if (crtc_state->port_clock > 67500)
921 stagger = 0x7;
922 else if (crtc_state->port_clock > 33750)
923 stagger = 0x4;
924 else
925 stagger = 0x2;
926
927 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW11(ch));
928 val |= DPIO_TX2_STAGGER_MASK(0x1f);
929 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW11(ch), val);
930
931 if (crtc_state->lane_count > 2) {
932 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW11(ch));
933 val |= DPIO_TX2_STAGGER_MASK(0x1f);
934 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW11(ch), val);
935 }
936
937 vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW12(ch),
938 DPIO_LANESTAGGER_STRAP(stagger) |
939 DPIO_LANESTAGGER_STRAP_OVRD |
940 DPIO_TX1_STAGGER_MASK(0x1f) |
941 DPIO_TX1_STAGGER_MULT(6) |
942 DPIO_TX2_STAGGER_MULT(0));
943
944 if (crtc_state->lane_count > 2) {
945 vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW12(ch),
946 DPIO_LANESTAGGER_STRAP(stagger) |
947 DPIO_LANESTAGGER_STRAP_OVRD |
948 DPIO_TX1_STAGGER_MASK(0x1f) |
949 DPIO_TX1_STAGGER_MULT(7) |
950 DPIO_TX2_STAGGER_MULT(5));
951 }
952
953 /* Deassert data lane reset */
954 chv_data_lane_soft_reset(encoder, crtc_state, false);
955
956 vlv_dpio_put(dev_priv);
957 }
958
chv_phy_release_cl2_override(struct intel_encoder * encoder)959 void chv_phy_release_cl2_override(struct intel_encoder *encoder)
960 {
961 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
962 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
963
964 if (dig_port->release_cl2_override) {
965 chv_phy_powergate_ch(dev_priv, DPIO_PHY0, DPIO_CH1, false);
966 dig_port->release_cl2_override = false;
967 }
968 }
969
chv_phy_post_pll_disable(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)970 void chv_phy_post_pll_disable(struct intel_encoder *encoder,
971 const struct intel_crtc_state *old_crtc_state)
972 {
973 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
974 enum pipe pipe = to_intel_crtc(old_crtc_state->uapi.crtc)->pipe;
975 u32 val;
976
977 vlv_dpio_get(dev_priv);
978
979 /* disable left/right clock distribution */
980 if (pipe != PIPE_B) {
981 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
982 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
983 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
984 } else {
985 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
986 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
987 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
988 }
989
990 vlv_dpio_put(dev_priv);
991
992 /*
993 * Leave the power down bit cleared for at least one
994 * lane so that chv_powergate_phy_ch() will power
995 * on something when the channel is otherwise unused.
996 * When the port is off and the override is removed
997 * the lanes power down anyway, so otherwise it doesn't
998 * really matter what the state of power down bits is
999 * after this.
1000 */
1001 chv_phy_powergate_lanes(encoder, false, 0x0);
1002 }
1003
vlv_set_phy_signal_level(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state,u32 demph_reg_value,u32 preemph_reg_value,u32 uniqtranscale_reg_value,u32 tx3_demph)1004 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
1005 const struct intel_crtc_state *crtc_state,
1006 u32 demph_reg_value, u32 preemph_reg_value,
1007 u32 uniqtranscale_reg_value, u32 tx3_demph)
1008 {
1009 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1010 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1011 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1012 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1013 enum pipe pipe = crtc->pipe;
1014
1015 vlv_dpio_get(dev_priv);
1016
1017 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
1018 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
1019 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
1020 uniqtranscale_reg_value);
1021 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
1022
1023 if (tx3_demph)
1024 vlv_dpio_write(dev_priv, pipe, VLV_TX3_DW4(port), tx3_demph);
1025
1026 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
1027 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
1028 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), DPIO_TX_OCALINIT_EN);
1029
1030 vlv_dpio_put(dev_priv);
1031 }
1032
vlv_phy_pre_pll_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1033 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder,
1034 const struct intel_crtc_state *crtc_state)
1035 {
1036 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1037 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1038 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1039 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1040 enum pipe pipe = crtc->pipe;
1041
1042 /* Program Tx lane resets to default */
1043 vlv_dpio_get(dev_priv);
1044
1045 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
1046 DPIO_PCS_TX_LANE2_RESET |
1047 DPIO_PCS_TX_LANE1_RESET);
1048 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
1049 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
1050 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
1051 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
1052 DPIO_PCS_CLK_SOFT_RESET);
1053
1054 /* Fix up inter-pair skew failure */
1055 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
1056 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
1057 vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
1058
1059 vlv_dpio_put(dev_priv);
1060 }
1061
vlv_phy_pre_encoder_enable(struct intel_encoder * encoder,const struct intel_crtc_state * crtc_state)1062 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder,
1063 const struct intel_crtc_state *crtc_state)
1064 {
1065 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1066 struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1067 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1068 struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1069 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1070 enum pipe pipe = crtc->pipe;
1071 u32 val;
1072
1073 vlv_dpio_get(dev_priv);
1074
1075 /* Enable clock channels for this port */
1076 val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
1077 val = 0;
1078 if (pipe)
1079 val |= (1<<21);
1080 else
1081 val &= ~(1<<21);
1082 val |= 0x001000c4;
1083 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
1084
1085 /* Program lane clock */
1086 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
1087 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
1088
1089 vlv_dpio_put(dev_priv);
1090 }
1091
vlv_phy_reset_lanes(struct intel_encoder * encoder,const struct intel_crtc_state * old_crtc_state)1092 void vlv_phy_reset_lanes(struct intel_encoder *encoder,
1093 const struct intel_crtc_state *old_crtc_state)
1094 {
1095 struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1096 struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1097 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
1098 enum dpio_channel port = vlv_dig_port_to_channel(dig_port);
1099 enum pipe pipe = crtc->pipe;
1100
1101 vlv_dpio_get(dev_priv);
1102 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port), 0x00000000);
1103 vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port), 0x00e00060);
1104 vlv_dpio_put(dev_priv);
1105 }
1106