1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/cpufreq/cpufreq.c
4 *
5 * Copyright (C) 2001 Russell King
6 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
7 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
8 *
9 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
10 * Added handling for CPU hotplug
11 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
12 * Fix handling for CPU hotplug -- affected CPUs
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/cpu.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpu_cooling.h>
20 #include <linux/delay.h>
21 #include <linux/device.h>
22 #include <linux/init.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/module.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_qos.h>
27 #include <linux/slab.h>
28 #include <linux/suspend.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 static LIST_HEAD(cpufreq_policy_list);
34
35 /* Macros to iterate over CPU policies */
36 #define for_each_suitable_policy(__policy, __active) \
37 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
38 if ((__active) == !policy_is_inactive(__policy))
39
40 #define for_each_active_policy(__policy) \
41 for_each_suitable_policy(__policy, true)
42 #define for_each_inactive_policy(__policy) \
43 for_each_suitable_policy(__policy, false)
44
45 /* Iterate over governors */
46 static LIST_HEAD(cpufreq_governor_list);
47 #define for_each_governor(__governor) \
48 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
49
50 static char default_governor[CPUFREQ_NAME_LEN];
51
52 /*
53 * The "cpufreq driver" - the arch- or hardware-dependent low
54 * level driver of CPUFreq support, and its spinlock. This lock
55 * also protects the cpufreq_cpu_data array.
56 */
57 static struct cpufreq_driver *cpufreq_driver;
58 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
59 static DEFINE_RWLOCK(cpufreq_driver_lock);
60
61 static DEFINE_STATIC_KEY_FALSE(cpufreq_freq_invariance);
cpufreq_supports_freq_invariance(void)62 bool cpufreq_supports_freq_invariance(void)
63 {
64 return static_branch_likely(&cpufreq_freq_invariance);
65 }
66
67 /* Flag to suspend/resume CPUFreq governors */
68 static bool cpufreq_suspended;
69
has_target(void)70 static inline bool has_target(void)
71 {
72 return cpufreq_driver->target_index || cpufreq_driver->target;
73 }
74
75 /* internal prototypes */
76 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
77 static int cpufreq_init_governor(struct cpufreq_policy *policy);
78 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
79 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
80 static int cpufreq_set_policy(struct cpufreq_policy *policy,
81 struct cpufreq_governor *new_gov,
82 unsigned int new_pol);
83
84 /*
85 * Two notifier lists: the "policy" list is involved in the
86 * validation process for a new CPU frequency policy; the
87 * "transition" list for kernel code that needs to handle
88 * changes to devices when the CPU clock speed changes.
89 * The mutex locks both lists.
90 */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 SRCU_NOTIFIER_HEAD_STATIC(cpufreq_transition_notifier_list);
93
94 static int off __read_mostly;
cpufreq_disabled(void)95 static int cpufreq_disabled(void)
96 {
97 return off;
98 }
disable_cpufreq(void)99 void disable_cpufreq(void)
100 {
101 off = 1;
102 }
103 static DEFINE_MUTEX(cpufreq_governor_mutex);
104
have_governor_per_policy(void)105 bool have_governor_per_policy(void)
106 {
107 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
108 }
109 EXPORT_SYMBOL_GPL(have_governor_per_policy);
110
111 static struct kobject *cpufreq_global_kobject;
112
get_governor_parent_kobj(struct cpufreq_policy * policy)113 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
114 {
115 if (have_governor_per_policy())
116 return &policy->kobj;
117 else
118 return cpufreq_global_kobject;
119 }
120 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
121
get_cpu_idle_time_jiffy(unsigned int cpu,u64 * wall)122 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
123 {
124 struct kernel_cpustat kcpustat;
125 u64 cur_wall_time;
126 u64 idle_time;
127 u64 busy_time;
128
129 cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
130
131 kcpustat_cpu_fetch(&kcpustat, cpu);
132
133 busy_time = kcpustat.cpustat[CPUTIME_USER];
134 busy_time += kcpustat.cpustat[CPUTIME_SYSTEM];
135 busy_time += kcpustat.cpustat[CPUTIME_IRQ];
136 busy_time += kcpustat.cpustat[CPUTIME_SOFTIRQ];
137 busy_time += kcpustat.cpustat[CPUTIME_STEAL];
138 busy_time += kcpustat.cpustat[CPUTIME_NICE];
139
140 idle_time = cur_wall_time - busy_time;
141 if (wall)
142 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
143
144 return div_u64(idle_time, NSEC_PER_USEC);
145 }
146
get_cpu_idle_time(unsigned int cpu,u64 * wall,int io_busy)147 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
148 {
149 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
150
151 if (idle_time == -1ULL)
152 return get_cpu_idle_time_jiffy(cpu, wall);
153 else if (!io_busy)
154 idle_time += get_cpu_iowait_time_us(cpu, wall);
155
156 return idle_time;
157 }
158 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
159
160 /*
161 * This is a generic cpufreq init() routine which can be used by cpufreq
162 * drivers of SMP systems. It will do following:
163 * - validate & show freq table passed
164 * - set policies transition latency
165 * - policy->cpus with all possible CPUs
166 */
cpufreq_generic_init(struct cpufreq_policy * policy,struct cpufreq_frequency_table * table,unsigned int transition_latency)167 void cpufreq_generic_init(struct cpufreq_policy *policy,
168 struct cpufreq_frequency_table *table,
169 unsigned int transition_latency)
170 {
171 policy->freq_table = table;
172 policy->cpuinfo.transition_latency = transition_latency;
173
174 /*
175 * The driver only supports the SMP configuration where all processors
176 * share the clock and voltage and clock.
177 */
178 cpumask_setall(policy->cpus);
179 }
180 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
181
cpufreq_cpu_get_raw(unsigned int cpu)182 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
183 {
184 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
185
186 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
187 }
188 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
189
cpufreq_generic_get(unsigned int cpu)190 unsigned int cpufreq_generic_get(unsigned int cpu)
191 {
192 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
193
194 if (!policy || IS_ERR(policy->clk)) {
195 pr_err("%s: No %s associated to cpu: %d\n",
196 __func__, policy ? "clk" : "policy", cpu);
197 return 0;
198 }
199
200 return clk_get_rate(policy->clk) / 1000;
201 }
202 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
203
204 /**
205 * cpufreq_cpu_get - Return policy for a CPU and mark it as busy.
206 * @cpu: CPU to find the policy for.
207 *
208 * Call cpufreq_cpu_get_raw() to obtain a cpufreq policy for @cpu and increment
209 * the kobject reference counter of that policy. Return a valid policy on
210 * success or NULL on failure.
211 *
212 * The policy returned by this function has to be released with the help of
213 * cpufreq_cpu_put() to balance its kobject reference counter properly.
214 */
cpufreq_cpu_get(unsigned int cpu)215 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
216 {
217 struct cpufreq_policy *policy = NULL;
218 unsigned long flags;
219
220 if (WARN_ON(cpu >= nr_cpu_ids))
221 return NULL;
222
223 /* get the cpufreq driver */
224 read_lock_irqsave(&cpufreq_driver_lock, flags);
225
226 if (cpufreq_driver) {
227 /* get the CPU */
228 policy = cpufreq_cpu_get_raw(cpu);
229 if (policy)
230 kobject_get(&policy->kobj);
231 }
232
233 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
234
235 return policy;
236 }
237 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
238
239 /**
240 * cpufreq_cpu_put - Decrement kobject usage counter for cpufreq policy.
241 * @policy: cpufreq policy returned by cpufreq_cpu_get().
242 */
cpufreq_cpu_put(struct cpufreq_policy * policy)243 void cpufreq_cpu_put(struct cpufreq_policy *policy)
244 {
245 kobject_put(&policy->kobj);
246 }
247 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
248
249 /**
250 * cpufreq_cpu_release - Unlock a policy and decrement its usage counter.
251 * @policy: cpufreq policy returned by cpufreq_cpu_acquire().
252 */
cpufreq_cpu_release(struct cpufreq_policy * policy)253 void cpufreq_cpu_release(struct cpufreq_policy *policy)
254 {
255 if (WARN_ON(!policy))
256 return;
257
258 lockdep_assert_held(&policy->rwsem);
259
260 up_write(&policy->rwsem);
261
262 cpufreq_cpu_put(policy);
263 }
264
265 /**
266 * cpufreq_cpu_acquire - Find policy for a CPU, mark it as busy and lock it.
267 * @cpu: CPU to find the policy for.
268 *
269 * Call cpufreq_cpu_get() to get a reference on the cpufreq policy for @cpu and
270 * if the policy returned by it is not NULL, acquire its rwsem for writing.
271 * Return the policy if it is active or release it and return NULL otherwise.
272 *
273 * The policy returned by this function has to be released with the help of
274 * cpufreq_cpu_release() in order to release its rwsem and balance its usage
275 * counter properly.
276 */
cpufreq_cpu_acquire(unsigned int cpu)277 struct cpufreq_policy *cpufreq_cpu_acquire(unsigned int cpu)
278 {
279 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
280
281 if (!policy)
282 return NULL;
283
284 down_write(&policy->rwsem);
285
286 if (policy_is_inactive(policy)) {
287 cpufreq_cpu_release(policy);
288 return NULL;
289 }
290
291 return policy;
292 }
293
294 /*********************************************************************
295 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
296 *********************************************************************/
297
298 /**
299 * adjust_jiffies - Adjust the system "loops_per_jiffy".
300 * @val: CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
301 * @ci: Frequency change information.
302 *
303 * This function alters the system "loops_per_jiffy" for the clock
304 * speed change. Note that loops_per_jiffy cannot be updated on SMP
305 * systems as each CPU might be scaled differently. So, use the arch
306 * per-CPU loops_per_jiffy value wherever possible.
307 */
adjust_jiffies(unsigned long val,struct cpufreq_freqs * ci)308 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
309 {
310 #ifndef CONFIG_SMP
311 static unsigned long l_p_j_ref;
312 static unsigned int l_p_j_ref_freq;
313
314 if (ci->flags & CPUFREQ_CONST_LOOPS)
315 return;
316
317 if (!l_p_j_ref_freq) {
318 l_p_j_ref = loops_per_jiffy;
319 l_p_j_ref_freq = ci->old;
320 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
321 l_p_j_ref, l_p_j_ref_freq);
322 }
323 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
324 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
325 ci->new);
326 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
327 loops_per_jiffy, ci->new);
328 }
329 #endif
330 }
331
332 /**
333 * cpufreq_notify_transition - Notify frequency transition and adjust jiffies.
334 * @policy: cpufreq policy to enable fast frequency switching for.
335 * @freqs: contain details of the frequency update.
336 * @state: set to CPUFREQ_PRECHANGE or CPUFREQ_POSTCHANGE.
337 *
338 * This function calls the transition notifiers and adjust_jiffies().
339 *
340 * It is called twice on all CPU frequency changes that have external effects.
341 */
cpufreq_notify_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,unsigned int state)342 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs,
344 unsigned int state)
345 {
346 int cpu;
347
348 BUG_ON(irqs_disabled());
349
350 if (cpufreq_disabled())
351 return;
352
353 freqs->policy = policy;
354 freqs->flags = cpufreq_driver->flags;
355 pr_debug("notification %u of frequency transition to %u kHz\n",
356 state, freqs->new);
357
358 switch (state) {
359 case CPUFREQ_PRECHANGE:
360 /*
361 * Detect if the driver reported a value as "old frequency"
362 * which is not equal to what the cpufreq core thinks is
363 * "old frequency".
364 */
365 if (policy->cur && policy->cur != freqs->old) {
366 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
367 freqs->old, policy->cur);
368 freqs->old = policy->cur;
369 }
370
371 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
372 CPUFREQ_PRECHANGE, freqs);
373
374 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
375 break;
376
377 case CPUFREQ_POSTCHANGE:
378 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
379 pr_debug("FREQ: %u - CPUs: %*pbl\n", freqs->new,
380 cpumask_pr_args(policy->cpus));
381
382 for_each_cpu(cpu, policy->cpus)
383 trace_cpu_frequency(freqs->new, cpu);
384
385 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
386 CPUFREQ_POSTCHANGE, freqs);
387
388 cpufreq_stats_record_transition(policy, freqs->new);
389 policy->cur = freqs->new;
390 }
391 }
392
393 /* Do post notifications when there are chances that transition has failed */
cpufreq_notify_post_transition(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)394 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
395 struct cpufreq_freqs *freqs, int transition_failed)
396 {
397 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
398 if (!transition_failed)
399 return;
400
401 swap(freqs->old, freqs->new);
402 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
403 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
404 }
405
cpufreq_freq_transition_begin(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs)406 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
407 struct cpufreq_freqs *freqs)
408 {
409
410 /*
411 * Catch double invocations of _begin() which lead to self-deadlock.
412 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
413 * doesn't invoke _begin() on their behalf, and hence the chances of
414 * double invocations are very low. Moreover, there are scenarios
415 * where these checks can emit false-positive warnings in these
416 * drivers; so we avoid that by skipping them altogether.
417 */
418 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
419 && current == policy->transition_task);
420
421 wait:
422 wait_event(policy->transition_wait, !policy->transition_ongoing);
423
424 spin_lock(&policy->transition_lock);
425
426 if (unlikely(policy->transition_ongoing)) {
427 spin_unlock(&policy->transition_lock);
428 goto wait;
429 }
430
431 policy->transition_ongoing = true;
432 policy->transition_task = current;
433
434 spin_unlock(&policy->transition_lock);
435
436 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
437 }
438 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
439
cpufreq_freq_transition_end(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int transition_failed)440 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
441 struct cpufreq_freqs *freqs, int transition_failed)
442 {
443 if (WARN_ON(!policy->transition_ongoing))
444 return;
445
446 cpufreq_notify_post_transition(policy, freqs, transition_failed);
447
448 arch_set_freq_scale(policy->related_cpus,
449 policy->cur,
450 policy->cpuinfo.max_freq);
451
452 policy->transition_ongoing = false;
453 policy->transition_task = NULL;
454
455 wake_up(&policy->transition_wait);
456 }
457 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
458
459 /*
460 * Fast frequency switching status count. Positive means "enabled", negative
461 * means "disabled" and 0 means "not decided yet".
462 */
463 static int cpufreq_fast_switch_count;
464 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
465
cpufreq_list_transition_notifiers(void)466 static void cpufreq_list_transition_notifiers(void)
467 {
468 struct notifier_block *nb;
469
470 pr_info("Registered transition notifiers:\n");
471
472 mutex_lock(&cpufreq_transition_notifier_list.mutex);
473
474 for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
475 pr_info("%pS\n", nb->notifier_call);
476
477 mutex_unlock(&cpufreq_transition_notifier_list.mutex);
478 }
479
480 /**
481 * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
482 * @policy: cpufreq policy to enable fast frequency switching for.
483 *
484 * Try to enable fast frequency switching for @policy.
485 *
486 * The attempt will fail if there is at least one transition notifier registered
487 * at this point, as fast frequency switching is quite fundamentally at odds
488 * with transition notifiers. Thus if successful, it will make registration of
489 * transition notifiers fail going forward.
490 */
cpufreq_enable_fast_switch(struct cpufreq_policy * policy)491 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
492 {
493 lockdep_assert_held(&policy->rwsem);
494
495 if (!policy->fast_switch_possible)
496 return;
497
498 mutex_lock(&cpufreq_fast_switch_lock);
499 if (cpufreq_fast_switch_count >= 0) {
500 cpufreq_fast_switch_count++;
501 policy->fast_switch_enabled = true;
502 } else {
503 pr_warn("CPU%u: Fast frequency switching not enabled\n",
504 policy->cpu);
505 cpufreq_list_transition_notifiers();
506 }
507 mutex_unlock(&cpufreq_fast_switch_lock);
508 }
509 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
510
511 /**
512 * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
513 * @policy: cpufreq policy to disable fast frequency switching for.
514 */
cpufreq_disable_fast_switch(struct cpufreq_policy * policy)515 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
516 {
517 mutex_lock(&cpufreq_fast_switch_lock);
518 if (policy->fast_switch_enabled) {
519 policy->fast_switch_enabled = false;
520 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
521 cpufreq_fast_switch_count--;
522 }
523 mutex_unlock(&cpufreq_fast_switch_lock);
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
526
__resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)527 static unsigned int __resolve_freq(struct cpufreq_policy *policy,
528 unsigned int target_freq, unsigned int relation)
529 {
530 unsigned int idx;
531
532 target_freq = clamp_val(target_freq, policy->min, policy->max);
533
534 if (!cpufreq_driver->target_index)
535 return target_freq;
536
537 idx = cpufreq_frequency_table_target(policy, target_freq, relation);
538 policy->cached_resolved_idx = idx;
539 policy->cached_target_freq = target_freq;
540 return policy->freq_table[idx].frequency;
541 }
542
543 /**
544 * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
545 * one.
546 * @policy: associated policy to interrogate
547 * @target_freq: target frequency to resolve.
548 *
549 * The target to driver frequency mapping is cached in the policy.
550 *
551 * Return: Lowest driver-supported frequency greater than or equal to the
552 * given target_freq, subject to policy (min/max) and driver limitations.
553 */
cpufreq_driver_resolve_freq(struct cpufreq_policy * policy,unsigned int target_freq)554 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
555 unsigned int target_freq)
556 {
557 return __resolve_freq(policy, target_freq, CPUFREQ_RELATION_LE);
558 }
559 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
560
cpufreq_policy_transition_delay_us(struct cpufreq_policy * policy)561 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
562 {
563 unsigned int latency;
564
565 if (policy->transition_delay_us)
566 return policy->transition_delay_us;
567
568 latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
569 if (latency) {
570 /*
571 * For platforms that can change the frequency very fast (< 10
572 * us), the above formula gives a decent transition delay. But
573 * for platforms where transition_latency is in milliseconds, it
574 * ends up giving unrealistic values.
575 *
576 * Cap the default transition delay to 10 ms, which seems to be
577 * a reasonable amount of time after which we should reevaluate
578 * the frequency.
579 */
580 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
581 }
582
583 return LATENCY_MULTIPLIER;
584 }
585 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
586
587 /*********************************************************************
588 * SYSFS INTERFACE *
589 *********************************************************************/
show_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)590 static ssize_t show_boost(struct kobject *kobj,
591 struct kobj_attribute *attr, char *buf)
592 {
593 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
594 }
595
store_boost(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)596 static ssize_t store_boost(struct kobject *kobj, struct kobj_attribute *attr,
597 const char *buf, size_t count)
598 {
599 int ret, enable;
600
601 ret = sscanf(buf, "%d", &enable);
602 if (ret != 1 || enable < 0 || enable > 1)
603 return -EINVAL;
604
605 if (cpufreq_boost_trigger_state(enable)) {
606 pr_err("%s: Cannot %s BOOST!\n",
607 __func__, enable ? "enable" : "disable");
608 return -EINVAL;
609 }
610
611 pr_debug("%s: cpufreq BOOST %s\n",
612 __func__, enable ? "enabled" : "disabled");
613
614 return count;
615 }
616 define_one_global_rw(boost);
617
find_governor(const char * str_governor)618 static struct cpufreq_governor *find_governor(const char *str_governor)
619 {
620 struct cpufreq_governor *t;
621
622 for_each_governor(t)
623 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
624 return t;
625
626 return NULL;
627 }
628
get_governor(const char * str_governor)629 static struct cpufreq_governor *get_governor(const char *str_governor)
630 {
631 struct cpufreq_governor *t;
632
633 mutex_lock(&cpufreq_governor_mutex);
634 t = find_governor(str_governor);
635 if (!t)
636 goto unlock;
637
638 if (!try_module_get(t->owner))
639 t = NULL;
640
641 unlock:
642 mutex_unlock(&cpufreq_governor_mutex);
643
644 return t;
645 }
646
cpufreq_parse_policy(char * str_governor)647 static unsigned int cpufreq_parse_policy(char *str_governor)
648 {
649 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN))
650 return CPUFREQ_POLICY_PERFORMANCE;
651
652 if (!strncasecmp(str_governor, "powersave", CPUFREQ_NAME_LEN))
653 return CPUFREQ_POLICY_POWERSAVE;
654
655 return CPUFREQ_POLICY_UNKNOWN;
656 }
657
658 /**
659 * cpufreq_parse_governor - parse a governor string only for has_target()
660 * @str_governor: Governor name.
661 */
cpufreq_parse_governor(char * str_governor)662 static struct cpufreq_governor *cpufreq_parse_governor(char *str_governor)
663 {
664 struct cpufreq_governor *t;
665
666 t = get_governor(str_governor);
667 if (t)
668 return t;
669
670 if (request_module("cpufreq_%s", str_governor))
671 return NULL;
672
673 return get_governor(str_governor);
674 }
675
676 /*
677 * cpufreq_per_cpu_attr_read() / show_##file_name() -
678 * print out cpufreq information
679 *
680 * Write out information from cpufreq_driver->policy[cpu]; object must be
681 * "unsigned int".
682 */
683
684 #define show_one(file_name, object) \
685 static ssize_t show_##file_name \
686 (struct cpufreq_policy *policy, char *buf) \
687 { \
688 return sprintf(buf, "%u\n", policy->object); \
689 }
690
691 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
692 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
693 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
694 show_one(scaling_min_freq, min);
695 show_one(scaling_max_freq, max);
696
arch_freq_get_on_cpu(int cpu)697 __weak unsigned int arch_freq_get_on_cpu(int cpu)
698 {
699 return 0;
700 }
701
show_scaling_cur_freq(struct cpufreq_policy * policy,char * buf)702 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
703 {
704 ssize_t ret;
705 unsigned int freq;
706
707 freq = arch_freq_get_on_cpu(policy->cpu);
708 if (freq)
709 ret = sprintf(buf, "%u\n", freq);
710 else if (cpufreq_driver->setpolicy && cpufreq_driver->get)
711 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
712 else
713 ret = sprintf(buf, "%u\n", policy->cur);
714 return ret;
715 }
716
717 /*
718 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
719 */
720 #define store_one(file_name, object) \
721 static ssize_t store_##file_name \
722 (struct cpufreq_policy *policy, const char *buf, size_t count) \
723 { \
724 unsigned long val; \
725 int ret; \
726 \
727 ret = sscanf(buf, "%lu", &val); \
728 if (ret != 1) \
729 return -EINVAL; \
730 \
731 ret = freq_qos_update_request(policy->object##_freq_req, val);\
732 return ret >= 0 ? count : ret; \
733 }
734
735 store_one(scaling_min_freq, min);
736 store_one(scaling_max_freq, max);
737
738 /*
739 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
740 */
show_cpuinfo_cur_freq(struct cpufreq_policy * policy,char * buf)741 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
742 char *buf)
743 {
744 unsigned int cur_freq = __cpufreq_get(policy);
745
746 if (cur_freq)
747 return sprintf(buf, "%u\n", cur_freq);
748
749 return sprintf(buf, "<unknown>\n");
750 }
751
752 /*
753 * show_scaling_governor - show the current policy for the specified CPU
754 */
show_scaling_governor(struct cpufreq_policy * policy,char * buf)755 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
756 {
757 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
758 return sprintf(buf, "powersave\n");
759 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
760 return sprintf(buf, "performance\n");
761 else if (policy->governor)
762 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
763 policy->governor->name);
764 return -EINVAL;
765 }
766
767 /*
768 * store_scaling_governor - store policy for the specified CPU
769 */
store_scaling_governor(struct cpufreq_policy * policy,const char * buf,size_t count)770 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
771 const char *buf, size_t count)
772 {
773 char str_governor[16];
774 int ret;
775
776 ret = sscanf(buf, "%15s", str_governor);
777 if (ret != 1)
778 return -EINVAL;
779
780 if (cpufreq_driver->setpolicy) {
781 unsigned int new_pol;
782
783 new_pol = cpufreq_parse_policy(str_governor);
784 if (!new_pol)
785 return -EINVAL;
786
787 ret = cpufreq_set_policy(policy, NULL, new_pol);
788 } else {
789 struct cpufreq_governor *new_gov;
790
791 new_gov = cpufreq_parse_governor(str_governor);
792 if (!new_gov)
793 return -EINVAL;
794
795 ret = cpufreq_set_policy(policy, new_gov,
796 CPUFREQ_POLICY_UNKNOWN);
797
798 module_put(new_gov->owner);
799 }
800
801 return ret ? ret : count;
802 }
803
804 /*
805 * show_scaling_driver - show the cpufreq driver currently loaded
806 */
show_scaling_driver(struct cpufreq_policy * policy,char * buf)807 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
808 {
809 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
810 }
811
812 /*
813 * show_scaling_available_governors - show the available CPUfreq governors
814 */
show_scaling_available_governors(struct cpufreq_policy * policy,char * buf)815 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
816 char *buf)
817 {
818 ssize_t i = 0;
819 struct cpufreq_governor *t;
820
821 if (!has_target()) {
822 i += sprintf(buf, "performance powersave");
823 goto out;
824 }
825
826 mutex_lock(&cpufreq_governor_mutex);
827 for_each_governor(t) {
828 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
829 - (CPUFREQ_NAME_LEN + 2)))
830 break;
831 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
832 }
833 mutex_unlock(&cpufreq_governor_mutex);
834 out:
835 i += sprintf(&buf[i], "\n");
836 return i;
837 }
838
cpufreq_show_cpus(const struct cpumask * mask,char * buf)839 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
840 {
841 ssize_t i = 0;
842 unsigned int cpu;
843
844 for_each_cpu(cpu, mask) {
845 if (i)
846 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
847 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
848 if (i >= (PAGE_SIZE - 5))
849 break;
850 }
851 i += sprintf(&buf[i], "\n");
852 return i;
853 }
854 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
855
856 /*
857 * show_related_cpus - show the CPUs affected by each transition even if
858 * hw coordination is in use
859 */
show_related_cpus(struct cpufreq_policy * policy,char * buf)860 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
861 {
862 return cpufreq_show_cpus(policy->related_cpus, buf);
863 }
864
865 /*
866 * show_affected_cpus - show the CPUs affected by each transition
867 */
show_affected_cpus(struct cpufreq_policy * policy,char * buf)868 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
869 {
870 return cpufreq_show_cpus(policy->cpus, buf);
871 }
872
store_scaling_setspeed(struct cpufreq_policy * policy,const char * buf,size_t count)873 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
874 const char *buf, size_t count)
875 {
876 unsigned int freq = 0;
877 unsigned int ret;
878
879 if (!policy->governor || !policy->governor->store_setspeed)
880 return -EINVAL;
881
882 ret = sscanf(buf, "%u", &freq);
883 if (ret != 1)
884 return -EINVAL;
885
886 policy->governor->store_setspeed(policy, freq);
887
888 return count;
889 }
890
show_scaling_setspeed(struct cpufreq_policy * policy,char * buf)891 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
892 {
893 if (!policy->governor || !policy->governor->show_setspeed)
894 return sprintf(buf, "<unsupported>\n");
895
896 return policy->governor->show_setspeed(policy, buf);
897 }
898
899 /*
900 * show_bios_limit - show the current cpufreq HW/BIOS limitation
901 */
show_bios_limit(struct cpufreq_policy * policy,char * buf)902 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
903 {
904 unsigned int limit;
905 int ret;
906 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
907 if (!ret)
908 return sprintf(buf, "%u\n", limit);
909 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
910 }
911
912 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
913 cpufreq_freq_attr_ro(cpuinfo_min_freq);
914 cpufreq_freq_attr_ro(cpuinfo_max_freq);
915 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
916 cpufreq_freq_attr_ro(scaling_available_governors);
917 cpufreq_freq_attr_ro(scaling_driver);
918 cpufreq_freq_attr_ro(scaling_cur_freq);
919 cpufreq_freq_attr_ro(bios_limit);
920 cpufreq_freq_attr_ro(related_cpus);
921 cpufreq_freq_attr_ro(affected_cpus);
922 cpufreq_freq_attr_rw(scaling_min_freq);
923 cpufreq_freq_attr_rw(scaling_max_freq);
924 cpufreq_freq_attr_rw(scaling_governor);
925 cpufreq_freq_attr_rw(scaling_setspeed);
926
927 static struct attribute *default_attrs[] = {
928 &cpuinfo_min_freq.attr,
929 &cpuinfo_max_freq.attr,
930 &cpuinfo_transition_latency.attr,
931 &scaling_min_freq.attr,
932 &scaling_max_freq.attr,
933 &affected_cpus.attr,
934 &related_cpus.attr,
935 &scaling_governor.attr,
936 &scaling_driver.attr,
937 &scaling_available_governors.attr,
938 &scaling_setspeed.attr,
939 NULL
940 };
941
942 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
943 #define to_attr(a) container_of(a, struct freq_attr, attr)
944
show(struct kobject * kobj,struct attribute * attr,char * buf)945 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
946 {
947 struct cpufreq_policy *policy = to_policy(kobj);
948 struct freq_attr *fattr = to_attr(attr);
949 ssize_t ret;
950
951 if (!fattr->show)
952 return -EIO;
953
954 down_read(&policy->rwsem);
955 ret = fattr->show(policy, buf);
956 up_read(&policy->rwsem);
957
958 return ret;
959 }
960
store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)961 static ssize_t store(struct kobject *kobj, struct attribute *attr,
962 const char *buf, size_t count)
963 {
964 struct cpufreq_policy *policy = to_policy(kobj);
965 struct freq_attr *fattr = to_attr(attr);
966 ssize_t ret = -EINVAL;
967
968 if (!fattr->store)
969 return -EIO;
970
971 /*
972 * cpus_read_trylock() is used here to work around a circular lock
973 * dependency problem with respect to the cpufreq_register_driver().
974 */
975 if (!cpus_read_trylock())
976 return -EBUSY;
977
978 if (cpu_online(policy->cpu)) {
979 down_write(&policy->rwsem);
980 ret = fattr->store(policy, buf, count);
981 up_write(&policy->rwsem);
982 }
983
984 cpus_read_unlock();
985
986 return ret;
987 }
988
cpufreq_sysfs_release(struct kobject * kobj)989 static void cpufreq_sysfs_release(struct kobject *kobj)
990 {
991 struct cpufreq_policy *policy = to_policy(kobj);
992 pr_debug("last reference is dropped\n");
993 complete(&policy->kobj_unregister);
994 }
995
996 static const struct sysfs_ops sysfs_ops = {
997 .show = show,
998 .store = store,
999 };
1000
1001 static struct kobj_type ktype_cpufreq = {
1002 .sysfs_ops = &sysfs_ops,
1003 .default_attrs = default_attrs,
1004 .release = cpufreq_sysfs_release,
1005 };
1006
add_cpu_dev_symlink(struct cpufreq_policy * policy,unsigned int cpu,struct device * dev)1007 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu,
1008 struct device *dev)
1009 {
1010 if (unlikely(!dev))
1011 return;
1012
1013 if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
1014 return;
1015
1016 dev_dbg(dev, "%s: Adding symlink\n", __func__);
1017 if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
1018 dev_err(dev, "cpufreq symlink creation failed\n");
1019 }
1020
remove_cpu_dev_symlink(struct cpufreq_policy * policy,struct device * dev)1021 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
1022 struct device *dev)
1023 {
1024 dev_dbg(dev, "%s: Removing symlink\n", __func__);
1025 sysfs_remove_link(&dev->kobj, "cpufreq");
1026 }
1027
cpufreq_add_dev_interface(struct cpufreq_policy * policy)1028 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
1029 {
1030 struct freq_attr **drv_attr;
1031 int ret = 0;
1032
1033 /* set up files for this cpu device */
1034 drv_attr = cpufreq_driver->attr;
1035 while (drv_attr && *drv_attr) {
1036 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
1037 if (ret)
1038 return ret;
1039 drv_attr++;
1040 }
1041 if (cpufreq_driver->get) {
1042 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
1043 if (ret)
1044 return ret;
1045 }
1046
1047 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
1048 if (ret)
1049 return ret;
1050
1051 if (cpufreq_driver->bios_limit) {
1052 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1053 if (ret)
1054 return ret;
1055 }
1056
1057 return 0;
1058 }
1059
cpufreq_init_policy(struct cpufreq_policy * policy)1060 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1061 {
1062 struct cpufreq_governor *gov = NULL;
1063 unsigned int pol = CPUFREQ_POLICY_UNKNOWN;
1064 int ret;
1065
1066 if (has_target()) {
1067 /* Update policy governor to the one used before hotplug. */
1068 gov = get_governor(policy->last_governor);
1069 if (gov) {
1070 pr_debug("Restoring governor %s for cpu %d\n",
1071 gov->name, policy->cpu);
1072 } else {
1073 gov = get_governor(default_governor);
1074 }
1075
1076 if (!gov) {
1077 gov = cpufreq_default_governor();
1078 __module_get(gov->owner);
1079 }
1080
1081 } else {
1082
1083 /* Use the default policy if there is no last_policy. */
1084 if (policy->last_policy) {
1085 pol = policy->last_policy;
1086 } else {
1087 pol = cpufreq_parse_policy(default_governor);
1088 /*
1089 * In case the default governor is neither "performance"
1090 * nor "powersave", fall back to the initial policy
1091 * value set by the driver.
1092 */
1093 if (pol == CPUFREQ_POLICY_UNKNOWN)
1094 pol = policy->policy;
1095 }
1096 if (pol != CPUFREQ_POLICY_PERFORMANCE &&
1097 pol != CPUFREQ_POLICY_POWERSAVE)
1098 return -ENODATA;
1099 }
1100
1101 ret = cpufreq_set_policy(policy, gov, pol);
1102 if (gov)
1103 module_put(gov->owner);
1104
1105 return ret;
1106 }
1107
cpufreq_add_policy_cpu(struct cpufreq_policy * policy,unsigned int cpu)1108 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1109 {
1110 int ret = 0;
1111
1112 /* Has this CPU been taken care of already? */
1113 if (cpumask_test_cpu(cpu, policy->cpus))
1114 return 0;
1115
1116 down_write(&policy->rwsem);
1117 if (has_target())
1118 cpufreq_stop_governor(policy);
1119
1120 cpumask_set_cpu(cpu, policy->cpus);
1121
1122 if (has_target()) {
1123 ret = cpufreq_start_governor(policy);
1124 if (ret)
1125 pr_err("%s: Failed to start governor\n", __func__);
1126 }
1127 up_write(&policy->rwsem);
1128 return ret;
1129 }
1130
refresh_frequency_limits(struct cpufreq_policy * policy)1131 void refresh_frequency_limits(struct cpufreq_policy *policy)
1132 {
1133 if (!policy_is_inactive(policy)) {
1134 pr_debug("updating policy for CPU %u\n", policy->cpu);
1135
1136 cpufreq_set_policy(policy, policy->governor, policy->policy);
1137 }
1138 }
1139 EXPORT_SYMBOL(refresh_frequency_limits);
1140
handle_update(struct work_struct * work)1141 static void handle_update(struct work_struct *work)
1142 {
1143 struct cpufreq_policy *policy =
1144 container_of(work, struct cpufreq_policy, update);
1145
1146 pr_debug("handle_update for cpu %u called\n", policy->cpu);
1147 down_write(&policy->rwsem);
1148 refresh_frequency_limits(policy);
1149 up_write(&policy->rwsem);
1150 }
1151
cpufreq_notifier_min(struct notifier_block * nb,unsigned long freq,void * data)1152 static int cpufreq_notifier_min(struct notifier_block *nb, unsigned long freq,
1153 void *data)
1154 {
1155 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_min);
1156
1157 schedule_work(&policy->update);
1158 return 0;
1159 }
1160
cpufreq_notifier_max(struct notifier_block * nb,unsigned long freq,void * data)1161 static int cpufreq_notifier_max(struct notifier_block *nb, unsigned long freq,
1162 void *data)
1163 {
1164 struct cpufreq_policy *policy = container_of(nb, struct cpufreq_policy, nb_max);
1165
1166 schedule_work(&policy->update);
1167 return 0;
1168 }
1169
cpufreq_policy_put_kobj(struct cpufreq_policy * policy)1170 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1171 {
1172 struct kobject *kobj;
1173 struct completion *cmp;
1174
1175 down_write(&policy->rwsem);
1176 cpufreq_stats_free_table(policy);
1177 kobj = &policy->kobj;
1178 cmp = &policy->kobj_unregister;
1179 up_write(&policy->rwsem);
1180 kobject_put(kobj);
1181
1182 /*
1183 * We need to make sure that the underlying kobj is
1184 * actually not referenced anymore by anybody before we
1185 * proceed with unloading.
1186 */
1187 pr_debug("waiting for dropping of refcount\n");
1188 wait_for_completion(cmp);
1189 pr_debug("wait complete\n");
1190 }
1191
cpufreq_policy_alloc(unsigned int cpu)1192 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1193 {
1194 struct cpufreq_policy *policy;
1195 struct device *dev = get_cpu_device(cpu);
1196 int ret;
1197
1198 if (!dev)
1199 return NULL;
1200
1201 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1202 if (!policy)
1203 return NULL;
1204
1205 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1206 goto err_free_policy;
1207
1208 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1209 goto err_free_cpumask;
1210
1211 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1212 goto err_free_rcpumask;
1213
1214 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1215 cpufreq_global_kobject, "policy%u", cpu);
1216 if (ret) {
1217 dev_err(dev, "%s: failed to init policy->kobj: %d\n", __func__, ret);
1218 /*
1219 * The entire policy object will be freed below, but the extra
1220 * memory allocated for the kobject name needs to be freed by
1221 * releasing the kobject.
1222 */
1223 kobject_put(&policy->kobj);
1224 goto err_free_real_cpus;
1225 }
1226
1227 freq_constraints_init(&policy->constraints);
1228
1229 policy->nb_min.notifier_call = cpufreq_notifier_min;
1230 policy->nb_max.notifier_call = cpufreq_notifier_max;
1231
1232 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MIN,
1233 &policy->nb_min);
1234 if (ret) {
1235 dev_err(dev, "Failed to register MIN QoS notifier: %d (%*pbl)\n",
1236 ret, cpumask_pr_args(policy->cpus));
1237 goto err_kobj_remove;
1238 }
1239
1240 ret = freq_qos_add_notifier(&policy->constraints, FREQ_QOS_MAX,
1241 &policy->nb_max);
1242 if (ret) {
1243 dev_err(dev, "Failed to register MAX QoS notifier: %d (%*pbl)\n",
1244 ret, cpumask_pr_args(policy->cpus));
1245 goto err_min_qos_notifier;
1246 }
1247
1248 INIT_LIST_HEAD(&policy->policy_list);
1249 init_rwsem(&policy->rwsem);
1250 spin_lock_init(&policy->transition_lock);
1251 init_waitqueue_head(&policy->transition_wait);
1252 init_completion(&policy->kobj_unregister);
1253 INIT_WORK(&policy->update, handle_update);
1254
1255 policy->cpu = cpu;
1256 return policy;
1257
1258 err_min_qos_notifier:
1259 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1260 &policy->nb_min);
1261 err_kobj_remove:
1262 cpufreq_policy_put_kobj(policy);
1263 err_free_real_cpus:
1264 free_cpumask_var(policy->real_cpus);
1265 err_free_rcpumask:
1266 free_cpumask_var(policy->related_cpus);
1267 err_free_cpumask:
1268 free_cpumask_var(policy->cpus);
1269 err_free_policy:
1270 kfree(policy);
1271
1272 return NULL;
1273 }
1274
cpufreq_policy_free(struct cpufreq_policy * policy)1275 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1276 {
1277 unsigned long flags;
1278 int cpu;
1279
1280 /* Remove policy from list */
1281 write_lock_irqsave(&cpufreq_driver_lock, flags);
1282 list_del(&policy->policy_list);
1283
1284 for_each_cpu(cpu, policy->related_cpus)
1285 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1286 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1287
1288 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MAX,
1289 &policy->nb_max);
1290 freq_qos_remove_notifier(&policy->constraints, FREQ_QOS_MIN,
1291 &policy->nb_min);
1292
1293 /* Cancel any pending policy->update work before freeing the policy. */
1294 cancel_work_sync(&policy->update);
1295
1296 if (policy->max_freq_req) {
1297 /*
1298 * Remove max_freq_req after sending CPUFREQ_REMOVE_POLICY
1299 * notification, since CPUFREQ_CREATE_POLICY notification was
1300 * sent after adding max_freq_req earlier.
1301 */
1302 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1303 CPUFREQ_REMOVE_POLICY, policy);
1304 freq_qos_remove_request(policy->max_freq_req);
1305 }
1306
1307 freq_qos_remove_request(policy->min_freq_req);
1308 kfree(policy->min_freq_req);
1309
1310 cpufreq_policy_put_kobj(policy);
1311 free_cpumask_var(policy->real_cpus);
1312 free_cpumask_var(policy->related_cpus);
1313 free_cpumask_var(policy->cpus);
1314 kfree(policy);
1315 }
1316
cpufreq_online(unsigned int cpu)1317 static int cpufreq_online(unsigned int cpu)
1318 {
1319 struct cpufreq_policy *policy;
1320 bool new_policy;
1321 unsigned long flags;
1322 unsigned int j;
1323 int ret;
1324
1325 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1326
1327 /* Check if this CPU already has a policy to manage it */
1328 policy = per_cpu(cpufreq_cpu_data, cpu);
1329 if (policy) {
1330 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1331 if (!policy_is_inactive(policy))
1332 return cpufreq_add_policy_cpu(policy, cpu);
1333
1334 /* This is the only online CPU for the policy. Start over. */
1335 new_policy = false;
1336 down_write(&policy->rwsem);
1337 policy->cpu = cpu;
1338 policy->governor = NULL;
1339 up_write(&policy->rwsem);
1340 } else {
1341 new_policy = true;
1342 policy = cpufreq_policy_alloc(cpu);
1343 if (!policy)
1344 return -ENOMEM;
1345 }
1346
1347 if (!new_policy && cpufreq_driver->online) {
1348 ret = cpufreq_driver->online(policy);
1349 if (ret) {
1350 pr_debug("%s: %d: initialization failed\n", __func__,
1351 __LINE__);
1352 goto out_exit_policy;
1353 }
1354
1355 /* Recover policy->cpus using related_cpus */
1356 cpumask_copy(policy->cpus, policy->related_cpus);
1357 } else {
1358 cpumask_copy(policy->cpus, cpumask_of(cpu));
1359
1360 /*
1361 * Call driver. From then on the cpufreq must be able
1362 * to accept all calls to ->verify and ->setpolicy for this CPU.
1363 */
1364 ret = cpufreq_driver->init(policy);
1365 if (ret) {
1366 pr_debug("%s: %d: initialization failed\n", __func__,
1367 __LINE__);
1368 goto out_free_policy;
1369 }
1370
1371 /*
1372 * The initialization has succeeded and the policy is online.
1373 * If there is a problem with its frequency table, take it
1374 * offline and drop it.
1375 */
1376 ret = cpufreq_table_validate_and_sort(policy);
1377 if (ret)
1378 goto out_offline_policy;
1379
1380 /* related_cpus should at least include policy->cpus. */
1381 cpumask_copy(policy->related_cpus, policy->cpus);
1382 }
1383
1384 down_write(&policy->rwsem);
1385 /*
1386 * affected cpus must always be the one, which are online. We aren't
1387 * managing offline cpus here.
1388 */
1389 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1390
1391 if (new_policy) {
1392 for_each_cpu(j, policy->related_cpus) {
1393 per_cpu(cpufreq_cpu_data, j) = policy;
1394 add_cpu_dev_symlink(policy, j, get_cpu_device(j));
1395 }
1396
1397 policy->min_freq_req = kzalloc(2 * sizeof(*policy->min_freq_req),
1398 GFP_KERNEL);
1399 if (!policy->min_freq_req) {
1400 ret = -ENOMEM;
1401 goto out_destroy_policy;
1402 }
1403
1404 ret = freq_qos_add_request(&policy->constraints,
1405 policy->min_freq_req, FREQ_QOS_MIN,
1406 policy->min);
1407 if (ret < 0) {
1408 /*
1409 * So we don't call freq_qos_remove_request() for an
1410 * uninitialized request.
1411 */
1412 kfree(policy->min_freq_req);
1413 policy->min_freq_req = NULL;
1414 goto out_destroy_policy;
1415 }
1416
1417 /*
1418 * This must be initialized right here to avoid calling
1419 * freq_qos_remove_request() on uninitialized request in case
1420 * of errors.
1421 */
1422 policy->max_freq_req = policy->min_freq_req + 1;
1423
1424 ret = freq_qos_add_request(&policy->constraints,
1425 policy->max_freq_req, FREQ_QOS_MAX,
1426 policy->max);
1427 if (ret < 0) {
1428 policy->max_freq_req = NULL;
1429 goto out_destroy_policy;
1430 }
1431
1432 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1433 CPUFREQ_CREATE_POLICY, policy);
1434 }
1435
1436 if (cpufreq_driver->get && has_target()) {
1437 policy->cur = cpufreq_driver->get(policy->cpu);
1438 if (!policy->cur) {
1439 ret = -EIO;
1440 pr_err("%s: ->get() failed\n", __func__);
1441 goto out_destroy_policy;
1442 }
1443 }
1444
1445 /*
1446 * Sometimes boot loaders set CPU frequency to a value outside of
1447 * frequency table present with cpufreq core. In such cases CPU might be
1448 * unstable if it has to run on that frequency for long duration of time
1449 * and so its better to set it to a frequency which is specified in
1450 * freq-table. This also makes cpufreq stats inconsistent as
1451 * cpufreq-stats would fail to register because current frequency of CPU
1452 * isn't found in freq-table.
1453 *
1454 * Because we don't want this change to effect boot process badly, we go
1455 * for the next freq which is >= policy->cur ('cur' must be set by now,
1456 * otherwise we will end up setting freq to lowest of the table as 'cur'
1457 * is initialized to zero).
1458 *
1459 * We are passing target-freq as "policy->cur - 1" otherwise
1460 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1461 * equal to target-freq.
1462 */
1463 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1464 && has_target()) {
1465 unsigned int old_freq = policy->cur;
1466
1467 /* Are we running at unknown frequency ? */
1468 ret = cpufreq_frequency_table_get_index(policy, old_freq);
1469 if (ret == -EINVAL) {
1470 ret = __cpufreq_driver_target(policy, old_freq - 1,
1471 CPUFREQ_RELATION_L);
1472
1473 /*
1474 * Reaching here after boot in a few seconds may not
1475 * mean that system will remain stable at "unknown"
1476 * frequency for longer duration. Hence, a BUG_ON().
1477 */
1478 BUG_ON(ret);
1479 pr_info("%s: CPU%d: Running at unlisted initial frequency: %u KHz, changing to: %u KHz\n",
1480 __func__, policy->cpu, old_freq, policy->cur);
1481 }
1482 }
1483
1484 if (new_policy) {
1485 ret = cpufreq_add_dev_interface(policy);
1486 if (ret)
1487 goto out_destroy_policy;
1488
1489 cpufreq_stats_create_table(policy);
1490
1491 write_lock_irqsave(&cpufreq_driver_lock, flags);
1492 list_add(&policy->policy_list, &cpufreq_policy_list);
1493 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1494
1495 /*
1496 * Register with the energy model before
1497 * sched_cpufreq_governor_change() is called, which will result
1498 * in rebuilding of the sched domains, which should only be done
1499 * once the energy model is properly initialized for the policy
1500 * first.
1501 *
1502 * Also, this should be called before the policy is registered
1503 * with cooling framework.
1504 */
1505 if (cpufreq_driver->register_em)
1506 cpufreq_driver->register_em(policy);
1507 }
1508
1509 ret = cpufreq_init_policy(policy);
1510 if (ret) {
1511 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1512 __func__, cpu, ret);
1513 goto out_destroy_policy;
1514 }
1515
1516 up_write(&policy->rwsem);
1517
1518 kobject_uevent(&policy->kobj, KOBJ_ADD);
1519
1520 if (cpufreq_thermal_control_enabled(cpufreq_driver))
1521 policy->cdev = of_cpufreq_cooling_register(policy);
1522
1523 pr_debug("initialization complete\n");
1524
1525 return 0;
1526
1527 out_destroy_policy:
1528 for_each_cpu(j, policy->real_cpus)
1529 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1530
1531 up_write(&policy->rwsem);
1532
1533 out_offline_policy:
1534 if (cpufreq_driver->offline)
1535 cpufreq_driver->offline(policy);
1536
1537 out_exit_policy:
1538 if (cpufreq_driver->exit)
1539 cpufreq_driver->exit(policy);
1540
1541 out_free_policy:
1542 cpufreq_policy_free(policy);
1543 return ret;
1544 }
1545
1546 /**
1547 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1548 * @dev: CPU device.
1549 * @sif: Subsystem interface structure pointer (not used)
1550 */
cpufreq_add_dev(struct device * dev,struct subsys_interface * sif)1551 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1552 {
1553 struct cpufreq_policy *policy;
1554 unsigned cpu = dev->id;
1555 int ret;
1556
1557 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1558
1559 if (cpu_online(cpu)) {
1560 ret = cpufreq_online(cpu);
1561 if (ret)
1562 return ret;
1563 }
1564
1565 /* Create sysfs link on CPU registration */
1566 policy = per_cpu(cpufreq_cpu_data, cpu);
1567 if (policy)
1568 add_cpu_dev_symlink(policy, cpu, dev);
1569
1570 return 0;
1571 }
1572
cpufreq_offline(unsigned int cpu)1573 static int cpufreq_offline(unsigned int cpu)
1574 {
1575 struct cpufreq_policy *policy;
1576 int ret;
1577
1578 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1579
1580 policy = cpufreq_cpu_get_raw(cpu);
1581 if (!policy) {
1582 pr_debug("%s: No cpu_data found\n", __func__);
1583 return 0;
1584 }
1585
1586 down_write(&policy->rwsem);
1587 if (has_target())
1588 cpufreq_stop_governor(policy);
1589
1590 cpumask_clear_cpu(cpu, policy->cpus);
1591
1592 if (policy_is_inactive(policy)) {
1593 if (has_target())
1594 strncpy(policy->last_governor, policy->governor->name,
1595 CPUFREQ_NAME_LEN);
1596 else
1597 policy->last_policy = policy->policy;
1598 } else if (cpu == policy->cpu) {
1599 /* Nominate new CPU */
1600 policy->cpu = cpumask_any(policy->cpus);
1601 }
1602
1603 /* Start governor again for active policy */
1604 if (!policy_is_inactive(policy)) {
1605 if (has_target()) {
1606 ret = cpufreq_start_governor(policy);
1607 if (ret)
1608 pr_err("%s: Failed to start governor\n", __func__);
1609 }
1610
1611 goto unlock;
1612 }
1613
1614 if (cpufreq_thermal_control_enabled(cpufreq_driver)) {
1615 cpufreq_cooling_unregister(policy->cdev);
1616 policy->cdev = NULL;
1617 }
1618
1619 if (has_target())
1620 cpufreq_exit_governor(policy);
1621
1622 /*
1623 * Perform the ->offline() during light-weight tear-down, as
1624 * that allows fast recovery when the CPU comes back.
1625 */
1626 if (cpufreq_driver->offline) {
1627 cpufreq_driver->offline(policy);
1628 } else if (cpufreq_driver->exit) {
1629 cpufreq_driver->exit(policy);
1630 policy->freq_table = NULL;
1631 }
1632
1633 unlock:
1634 up_write(&policy->rwsem);
1635 return 0;
1636 }
1637
1638 /*
1639 * cpufreq_remove_dev - remove a CPU device
1640 *
1641 * Removes the cpufreq interface for a CPU device.
1642 */
cpufreq_remove_dev(struct device * dev,struct subsys_interface * sif)1643 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1644 {
1645 unsigned int cpu = dev->id;
1646 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1647
1648 if (!policy)
1649 return;
1650
1651 if (cpu_online(cpu))
1652 cpufreq_offline(cpu);
1653
1654 cpumask_clear_cpu(cpu, policy->real_cpus);
1655 remove_cpu_dev_symlink(policy, dev);
1656
1657 if (cpumask_empty(policy->real_cpus)) {
1658 /* We did light-weight exit earlier, do full tear down now */
1659 if (cpufreq_driver->offline)
1660 cpufreq_driver->exit(policy);
1661
1662 cpufreq_policy_free(policy);
1663 }
1664 }
1665
1666 /**
1667 * cpufreq_out_of_sync - Fix up actual and saved CPU frequency difference.
1668 * @policy: Policy managing CPUs.
1669 * @new_freq: New CPU frequency.
1670 *
1671 * Adjust to the current frequency first and clean up later by either calling
1672 * cpufreq_update_policy(), or scheduling handle_update().
1673 */
cpufreq_out_of_sync(struct cpufreq_policy * policy,unsigned int new_freq)1674 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1675 unsigned int new_freq)
1676 {
1677 struct cpufreq_freqs freqs;
1678
1679 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1680 policy->cur, new_freq);
1681
1682 freqs.old = policy->cur;
1683 freqs.new = new_freq;
1684
1685 cpufreq_freq_transition_begin(policy, &freqs);
1686 cpufreq_freq_transition_end(policy, &freqs, 0);
1687 }
1688
cpufreq_verify_current_freq(struct cpufreq_policy * policy,bool update)1689 static unsigned int cpufreq_verify_current_freq(struct cpufreq_policy *policy, bool update)
1690 {
1691 unsigned int new_freq;
1692
1693 new_freq = cpufreq_driver->get(policy->cpu);
1694 if (!new_freq)
1695 return 0;
1696
1697 /*
1698 * If fast frequency switching is used with the given policy, the check
1699 * against policy->cur is pointless, so skip it in that case.
1700 */
1701 if (policy->fast_switch_enabled || !has_target())
1702 return new_freq;
1703
1704 if (policy->cur != new_freq) {
1705 cpufreq_out_of_sync(policy, new_freq);
1706 if (update)
1707 schedule_work(&policy->update);
1708 }
1709
1710 return new_freq;
1711 }
1712
1713 /**
1714 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1715 * @cpu: CPU number
1716 *
1717 * This is the last known freq, without actually getting it from the driver.
1718 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1719 */
cpufreq_quick_get(unsigned int cpu)1720 unsigned int cpufreq_quick_get(unsigned int cpu)
1721 {
1722 struct cpufreq_policy *policy;
1723 unsigned int ret_freq = 0;
1724 unsigned long flags;
1725
1726 read_lock_irqsave(&cpufreq_driver_lock, flags);
1727
1728 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1729 ret_freq = cpufreq_driver->get(cpu);
1730 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1731 return ret_freq;
1732 }
1733
1734 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1735
1736 policy = cpufreq_cpu_get(cpu);
1737 if (policy) {
1738 ret_freq = policy->cur;
1739 cpufreq_cpu_put(policy);
1740 }
1741
1742 return ret_freq;
1743 }
1744 EXPORT_SYMBOL(cpufreq_quick_get);
1745
1746 /**
1747 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1748 * @cpu: CPU number
1749 *
1750 * Just return the max possible frequency for a given CPU.
1751 */
cpufreq_quick_get_max(unsigned int cpu)1752 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1753 {
1754 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1755 unsigned int ret_freq = 0;
1756
1757 if (policy) {
1758 ret_freq = policy->max;
1759 cpufreq_cpu_put(policy);
1760 }
1761
1762 return ret_freq;
1763 }
1764 EXPORT_SYMBOL(cpufreq_quick_get_max);
1765
1766 /**
1767 * cpufreq_get_hw_max_freq - get the max hardware frequency of the CPU
1768 * @cpu: CPU number
1769 *
1770 * The default return value is the max_freq field of cpuinfo.
1771 */
cpufreq_get_hw_max_freq(unsigned int cpu)1772 __weak unsigned int cpufreq_get_hw_max_freq(unsigned int cpu)
1773 {
1774 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1775 unsigned int ret_freq = 0;
1776
1777 if (policy) {
1778 ret_freq = policy->cpuinfo.max_freq;
1779 cpufreq_cpu_put(policy);
1780 }
1781
1782 return ret_freq;
1783 }
1784 EXPORT_SYMBOL(cpufreq_get_hw_max_freq);
1785
__cpufreq_get(struct cpufreq_policy * policy)1786 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1787 {
1788 if (unlikely(policy_is_inactive(policy)))
1789 return 0;
1790
1791 return cpufreq_verify_current_freq(policy, true);
1792 }
1793
1794 /**
1795 * cpufreq_get - get the current CPU frequency (in kHz)
1796 * @cpu: CPU number
1797 *
1798 * Get the CPU current (static) CPU frequency
1799 */
cpufreq_get(unsigned int cpu)1800 unsigned int cpufreq_get(unsigned int cpu)
1801 {
1802 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1803 unsigned int ret_freq = 0;
1804
1805 if (policy) {
1806 down_read(&policy->rwsem);
1807 if (cpufreq_driver->get)
1808 ret_freq = __cpufreq_get(policy);
1809 up_read(&policy->rwsem);
1810
1811 cpufreq_cpu_put(policy);
1812 }
1813
1814 return ret_freq;
1815 }
1816 EXPORT_SYMBOL(cpufreq_get);
1817
1818 static struct subsys_interface cpufreq_interface = {
1819 .name = "cpufreq",
1820 .subsys = &cpu_subsys,
1821 .add_dev = cpufreq_add_dev,
1822 .remove_dev = cpufreq_remove_dev,
1823 };
1824
1825 /*
1826 * In case platform wants some specific frequency to be configured
1827 * during suspend..
1828 */
cpufreq_generic_suspend(struct cpufreq_policy * policy)1829 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1830 {
1831 int ret;
1832
1833 if (!policy->suspend_freq) {
1834 pr_debug("%s: suspend_freq not defined\n", __func__);
1835 return 0;
1836 }
1837
1838 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1839 policy->suspend_freq);
1840
1841 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1842 CPUFREQ_RELATION_H);
1843 if (ret)
1844 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1845 __func__, policy->suspend_freq, ret);
1846
1847 return ret;
1848 }
1849 EXPORT_SYMBOL(cpufreq_generic_suspend);
1850
1851 /**
1852 * cpufreq_suspend() - Suspend CPUFreq governors.
1853 *
1854 * Called during system wide Suspend/Hibernate cycles for suspending governors
1855 * as some platforms can't change frequency after this point in suspend cycle.
1856 * Because some of the devices (like: i2c, regulators, etc) they use for
1857 * changing frequency are suspended quickly after this point.
1858 */
cpufreq_suspend(void)1859 void cpufreq_suspend(void)
1860 {
1861 struct cpufreq_policy *policy;
1862
1863 if (!cpufreq_driver)
1864 return;
1865
1866 if (!has_target() && !cpufreq_driver->suspend)
1867 goto suspend;
1868
1869 pr_debug("%s: Suspending Governors\n", __func__);
1870
1871 for_each_active_policy(policy) {
1872 if (has_target()) {
1873 down_write(&policy->rwsem);
1874 cpufreq_stop_governor(policy);
1875 up_write(&policy->rwsem);
1876 }
1877
1878 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1879 pr_err("%s: Failed to suspend driver: %s\n", __func__,
1880 cpufreq_driver->name);
1881 }
1882
1883 suspend:
1884 cpufreq_suspended = true;
1885 }
1886
1887 /**
1888 * cpufreq_resume() - Resume CPUFreq governors.
1889 *
1890 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1891 * are suspended with cpufreq_suspend().
1892 */
cpufreq_resume(void)1893 void cpufreq_resume(void)
1894 {
1895 struct cpufreq_policy *policy;
1896 int ret;
1897
1898 if (!cpufreq_driver)
1899 return;
1900
1901 if (unlikely(!cpufreq_suspended))
1902 return;
1903
1904 cpufreq_suspended = false;
1905
1906 if (!has_target() && !cpufreq_driver->resume)
1907 return;
1908
1909 pr_debug("%s: Resuming Governors\n", __func__);
1910
1911 for_each_active_policy(policy) {
1912 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1913 pr_err("%s: Failed to resume driver: %p\n", __func__,
1914 policy);
1915 } else if (has_target()) {
1916 down_write(&policy->rwsem);
1917 ret = cpufreq_start_governor(policy);
1918 up_write(&policy->rwsem);
1919
1920 if (ret)
1921 pr_err("%s: Failed to start governor for policy: %p\n",
1922 __func__, policy);
1923 }
1924 }
1925 }
1926
1927 /**
1928 * cpufreq_driver_test_flags - Test cpufreq driver's flags against given ones.
1929 * @flags: Flags to test against the current cpufreq driver's flags.
1930 *
1931 * Assumes that the driver is there, so callers must ensure that this is the
1932 * case.
1933 */
cpufreq_driver_test_flags(u16 flags)1934 bool cpufreq_driver_test_flags(u16 flags)
1935 {
1936 return !!(cpufreq_driver->flags & flags);
1937 }
1938
1939 /**
1940 * cpufreq_get_current_driver - Return the current driver's name.
1941 *
1942 * Return the name string of the currently registered cpufreq driver or NULL if
1943 * none.
1944 */
cpufreq_get_current_driver(void)1945 const char *cpufreq_get_current_driver(void)
1946 {
1947 if (cpufreq_driver)
1948 return cpufreq_driver->name;
1949
1950 return NULL;
1951 }
1952 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1953
1954 /**
1955 * cpufreq_get_driver_data - Return current driver data.
1956 *
1957 * Return the private data of the currently registered cpufreq driver, or NULL
1958 * if no cpufreq driver has been registered.
1959 */
cpufreq_get_driver_data(void)1960 void *cpufreq_get_driver_data(void)
1961 {
1962 if (cpufreq_driver)
1963 return cpufreq_driver->driver_data;
1964
1965 return NULL;
1966 }
1967 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1968
1969 /*********************************************************************
1970 * NOTIFIER LISTS INTERFACE *
1971 *********************************************************************/
1972
1973 /**
1974 * cpufreq_register_notifier - Register a notifier with cpufreq.
1975 * @nb: notifier function to register.
1976 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
1977 *
1978 * Add a notifier to one of two lists: either a list of notifiers that run on
1979 * clock rate changes (once before and once after every transition), or a list
1980 * of notifiers that ron on cpufreq policy changes.
1981 *
1982 * This function may sleep and it has the same return values as
1983 * blocking_notifier_chain_register().
1984 */
cpufreq_register_notifier(struct notifier_block * nb,unsigned int list)1985 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1986 {
1987 int ret;
1988
1989 if (cpufreq_disabled())
1990 return -EINVAL;
1991
1992 switch (list) {
1993 case CPUFREQ_TRANSITION_NOTIFIER:
1994 mutex_lock(&cpufreq_fast_switch_lock);
1995
1996 if (cpufreq_fast_switch_count > 0) {
1997 mutex_unlock(&cpufreq_fast_switch_lock);
1998 return -EBUSY;
1999 }
2000 ret = srcu_notifier_chain_register(
2001 &cpufreq_transition_notifier_list, nb);
2002 if (!ret)
2003 cpufreq_fast_switch_count--;
2004
2005 mutex_unlock(&cpufreq_fast_switch_lock);
2006 break;
2007 case CPUFREQ_POLICY_NOTIFIER:
2008 ret = blocking_notifier_chain_register(
2009 &cpufreq_policy_notifier_list, nb);
2010 break;
2011 default:
2012 ret = -EINVAL;
2013 }
2014
2015 return ret;
2016 }
2017 EXPORT_SYMBOL(cpufreq_register_notifier);
2018
2019 /**
2020 * cpufreq_unregister_notifier - Unregister a notifier from cpufreq.
2021 * @nb: notifier block to be unregistered.
2022 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER.
2023 *
2024 * Remove a notifier from one of the cpufreq notifier lists.
2025 *
2026 * This function may sleep and it has the same return values as
2027 * blocking_notifier_chain_unregister().
2028 */
cpufreq_unregister_notifier(struct notifier_block * nb,unsigned int list)2029 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
2030 {
2031 int ret;
2032
2033 if (cpufreq_disabled())
2034 return -EINVAL;
2035
2036 switch (list) {
2037 case CPUFREQ_TRANSITION_NOTIFIER:
2038 mutex_lock(&cpufreq_fast_switch_lock);
2039
2040 ret = srcu_notifier_chain_unregister(
2041 &cpufreq_transition_notifier_list, nb);
2042 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
2043 cpufreq_fast_switch_count++;
2044
2045 mutex_unlock(&cpufreq_fast_switch_lock);
2046 break;
2047 case CPUFREQ_POLICY_NOTIFIER:
2048 ret = blocking_notifier_chain_unregister(
2049 &cpufreq_policy_notifier_list, nb);
2050 break;
2051 default:
2052 ret = -EINVAL;
2053 }
2054
2055 return ret;
2056 }
2057 EXPORT_SYMBOL(cpufreq_unregister_notifier);
2058
2059
2060 /*********************************************************************
2061 * GOVERNORS *
2062 *********************************************************************/
2063
2064 /**
2065 * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
2066 * @policy: cpufreq policy to switch the frequency for.
2067 * @target_freq: New frequency to set (may be approximate).
2068 *
2069 * Carry out a fast frequency switch without sleeping.
2070 *
2071 * The driver's ->fast_switch() callback invoked by this function must be
2072 * suitable for being called from within RCU-sched read-side critical sections
2073 * and it is expected to select the minimum available frequency greater than or
2074 * equal to @target_freq (CPUFREQ_RELATION_L).
2075 *
2076 * This function must not be called if policy->fast_switch_enabled is unset.
2077 *
2078 * Governors calling this function must guarantee that it will never be invoked
2079 * twice in parallel for the same policy and that it will never be called in
2080 * parallel with either ->target() or ->target_index() for the same policy.
2081 *
2082 * Returns the actual frequency set for the CPU.
2083 *
2084 * If 0 is returned by the driver's ->fast_switch() callback to indicate an
2085 * error condition, the hardware configuration must be preserved.
2086 */
cpufreq_driver_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)2087 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
2088 unsigned int target_freq)
2089 {
2090 unsigned int freq;
2091 int cpu;
2092
2093 target_freq = clamp_val(target_freq, policy->min, policy->max);
2094 freq = cpufreq_driver->fast_switch(policy, target_freq);
2095
2096 if (!freq)
2097 return 0;
2098
2099 policy->cur = freq;
2100 arch_set_freq_scale(policy->related_cpus, freq,
2101 policy->cpuinfo.max_freq);
2102 cpufreq_stats_record_transition(policy, freq);
2103
2104 if (trace_cpu_frequency_enabled()) {
2105 for_each_cpu(cpu, policy->cpus)
2106 trace_cpu_frequency(freq, cpu);
2107 }
2108
2109 return freq;
2110 }
2111 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
2112
2113 /**
2114 * cpufreq_driver_adjust_perf - Adjust CPU performance level in one go.
2115 * @cpu: Target CPU.
2116 * @min_perf: Minimum (required) performance level (units of @capacity).
2117 * @target_perf: Target (desired) performance level (units of @capacity).
2118 * @capacity: Capacity of the target CPU.
2119 *
2120 * Carry out a fast performance level switch of @cpu without sleeping.
2121 *
2122 * The driver's ->adjust_perf() callback invoked by this function must be
2123 * suitable for being called from within RCU-sched read-side critical sections
2124 * and it is expected to select a suitable performance level equal to or above
2125 * @min_perf and preferably equal to or below @target_perf.
2126 *
2127 * This function must not be called if policy->fast_switch_enabled is unset.
2128 *
2129 * Governors calling this function must guarantee that it will never be invoked
2130 * twice in parallel for the same CPU and that it will never be called in
2131 * parallel with either ->target() or ->target_index() or ->fast_switch() for
2132 * the same CPU.
2133 */
cpufreq_driver_adjust_perf(unsigned int cpu,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)2134 void cpufreq_driver_adjust_perf(unsigned int cpu,
2135 unsigned long min_perf,
2136 unsigned long target_perf,
2137 unsigned long capacity)
2138 {
2139 cpufreq_driver->adjust_perf(cpu, min_perf, target_perf, capacity);
2140 }
2141
2142 /**
2143 * cpufreq_driver_has_adjust_perf - Check "direct fast switch" callback.
2144 *
2145 * Return 'true' if the ->adjust_perf callback is present for the
2146 * current driver or 'false' otherwise.
2147 */
cpufreq_driver_has_adjust_perf(void)2148 bool cpufreq_driver_has_adjust_perf(void)
2149 {
2150 return !!cpufreq_driver->adjust_perf;
2151 }
2152
2153 /* Must set freqs->new to intermediate frequency */
__target_intermediate(struct cpufreq_policy * policy,struct cpufreq_freqs * freqs,int index)2154 static int __target_intermediate(struct cpufreq_policy *policy,
2155 struct cpufreq_freqs *freqs, int index)
2156 {
2157 int ret;
2158
2159 freqs->new = cpufreq_driver->get_intermediate(policy, index);
2160
2161 /* We don't need to switch to intermediate freq */
2162 if (!freqs->new)
2163 return 0;
2164
2165 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
2166 __func__, policy->cpu, freqs->old, freqs->new);
2167
2168 cpufreq_freq_transition_begin(policy, freqs);
2169 ret = cpufreq_driver->target_intermediate(policy, index);
2170 cpufreq_freq_transition_end(policy, freqs, ret);
2171
2172 if (ret)
2173 pr_err("%s: Failed to change to intermediate frequency: %d\n",
2174 __func__, ret);
2175
2176 return ret;
2177 }
2178
__target_index(struct cpufreq_policy * policy,int index)2179 static int __target_index(struct cpufreq_policy *policy, int index)
2180 {
2181 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
2182 unsigned int restore_freq, intermediate_freq = 0;
2183 unsigned int newfreq = policy->freq_table[index].frequency;
2184 int retval = -EINVAL;
2185 bool notify;
2186
2187 if (newfreq == policy->cur)
2188 return 0;
2189
2190 /* Save last value to restore later on errors */
2191 restore_freq = policy->cur;
2192
2193 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
2194 if (notify) {
2195 /* Handle switching to intermediate frequency */
2196 if (cpufreq_driver->get_intermediate) {
2197 retval = __target_intermediate(policy, &freqs, index);
2198 if (retval)
2199 return retval;
2200
2201 intermediate_freq = freqs.new;
2202 /* Set old freq to intermediate */
2203 if (intermediate_freq)
2204 freqs.old = freqs.new;
2205 }
2206
2207 freqs.new = newfreq;
2208 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
2209 __func__, policy->cpu, freqs.old, freqs.new);
2210
2211 cpufreq_freq_transition_begin(policy, &freqs);
2212 }
2213
2214 retval = cpufreq_driver->target_index(policy, index);
2215 if (retval)
2216 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
2217 retval);
2218
2219 if (notify) {
2220 cpufreq_freq_transition_end(policy, &freqs, retval);
2221
2222 /*
2223 * Failed after setting to intermediate freq? Driver should have
2224 * reverted back to initial frequency and so should we. Check
2225 * here for intermediate_freq instead of get_intermediate, in
2226 * case we haven't switched to intermediate freq at all.
2227 */
2228 if (unlikely(retval && intermediate_freq)) {
2229 freqs.old = intermediate_freq;
2230 freqs.new = restore_freq;
2231 cpufreq_freq_transition_begin(policy, &freqs);
2232 cpufreq_freq_transition_end(policy, &freqs, 0);
2233 }
2234 }
2235
2236 return retval;
2237 }
2238
__cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2239 int __cpufreq_driver_target(struct cpufreq_policy *policy,
2240 unsigned int target_freq,
2241 unsigned int relation)
2242 {
2243 unsigned int old_target_freq = target_freq;
2244
2245 if (cpufreq_disabled())
2246 return -ENODEV;
2247
2248 target_freq = __resolve_freq(policy, target_freq, relation);
2249
2250 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
2251 policy->cpu, target_freq, relation, old_target_freq);
2252
2253 /*
2254 * This might look like a redundant call as we are checking it again
2255 * after finding index. But it is left intentionally for cases where
2256 * exactly same freq is called again and so we can save on few function
2257 * calls.
2258 */
2259 if (target_freq == policy->cur &&
2260 !(cpufreq_driver->flags & CPUFREQ_NEED_UPDATE_LIMITS))
2261 return 0;
2262
2263 if (cpufreq_driver->target) {
2264 /*
2265 * If the driver hasn't setup a single inefficient frequency,
2266 * it's unlikely it knows how to decode CPUFREQ_RELATION_E.
2267 */
2268 if (!policy->efficiencies_available)
2269 relation &= ~CPUFREQ_RELATION_E;
2270
2271 return cpufreq_driver->target(policy, target_freq, relation);
2272 }
2273
2274 if (!cpufreq_driver->target_index)
2275 return -EINVAL;
2276
2277 return __target_index(policy, policy->cached_resolved_idx);
2278 }
2279 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
2280
cpufreq_driver_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)2281 int cpufreq_driver_target(struct cpufreq_policy *policy,
2282 unsigned int target_freq,
2283 unsigned int relation)
2284 {
2285 int ret;
2286
2287 down_write(&policy->rwsem);
2288
2289 ret = __cpufreq_driver_target(policy, target_freq, relation);
2290
2291 up_write(&policy->rwsem);
2292
2293 return ret;
2294 }
2295 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
2296
cpufreq_fallback_governor(void)2297 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2298 {
2299 return NULL;
2300 }
2301
cpufreq_init_governor(struct cpufreq_policy * policy)2302 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2303 {
2304 int ret;
2305
2306 /* Don't start any governor operations if we are entering suspend */
2307 if (cpufreq_suspended)
2308 return 0;
2309 /*
2310 * Governor might not be initiated here if ACPI _PPC changed
2311 * notification happened, so check it.
2312 */
2313 if (!policy->governor)
2314 return -EINVAL;
2315
2316 /* Platform doesn't want dynamic frequency switching ? */
2317 if (policy->governor->flags & CPUFREQ_GOV_DYNAMIC_SWITCHING &&
2318 cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2319 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2320
2321 if (gov) {
2322 pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2323 policy->governor->name, gov->name);
2324 policy->governor = gov;
2325 } else {
2326 return -EINVAL;
2327 }
2328 }
2329
2330 if (!try_module_get(policy->governor->owner))
2331 return -EINVAL;
2332
2333 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2334
2335 if (policy->governor->init) {
2336 ret = policy->governor->init(policy);
2337 if (ret) {
2338 module_put(policy->governor->owner);
2339 return ret;
2340 }
2341 }
2342
2343 policy->strict_target = !!(policy->governor->flags & CPUFREQ_GOV_STRICT_TARGET);
2344
2345 return 0;
2346 }
2347
cpufreq_exit_governor(struct cpufreq_policy * policy)2348 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2349 {
2350 if (cpufreq_suspended || !policy->governor)
2351 return;
2352
2353 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2354
2355 if (policy->governor->exit)
2356 policy->governor->exit(policy);
2357
2358 module_put(policy->governor->owner);
2359 }
2360
cpufreq_start_governor(struct cpufreq_policy * policy)2361 int cpufreq_start_governor(struct cpufreq_policy *policy)
2362 {
2363 int ret;
2364
2365 if (cpufreq_suspended)
2366 return 0;
2367
2368 if (!policy->governor)
2369 return -EINVAL;
2370
2371 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2372
2373 if (cpufreq_driver->get)
2374 cpufreq_verify_current_freq(policy, false);
2375
2376 if (policy->governor->start) {
2377 ret = policy->governor->start(policy);
2378 if (ret)
2379 return ret;
2380 }
2381
2382 if (policy->governor->limits)
2383 policy->governor->limits(policy);
2384
2385 return 0;
2386 }
2387
cpufreq_stop_governor(struct cpufreq_policy * policy)2388 void cpufreq_stop_governor(struct cpufreq_policy *policy)
2389 {
2390 if (cpufreq_suspended || !policy->governor)
2391 return;
2392
2393 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2394
2395 if (policy->governor->stop)
2396 policy->governor->stop(policy);
2397 }
2398
cpufreq_governor_limits(struct cpufreq_policy * policy)2399 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2400 {
2401 if (cpufreq_suspended || !policy->governor)
2402 return;
2403
2404 pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2405
2406 if (policy->governor->limits)
2407 policy->governor->limits(policy);
2408 }
2409
cpufreq_register_governor(struct cpufreq_governor * governor)2410 int cpufreq_register_governor(struct cpufreq_governor *governor)
2411 {
2412 int err;
2413
2414 if (!governor)
2415 return -EINVAL;
2416
2417 if (cpufreq_disabled())
2418 return -ENODEV;
2419
2420 mutex_lock(&cpufreq_governor_mutex);
2421
2422 err = -EBUSY;
2423 if (!find_governor(governor->name)) {
2424 err = 0;
2425 list_add(&governor->governor_list, &cpufreq_governor_list);
2426 }
2427
2428 mutex_unlock(&cpufreq_governor_mutex);
2429 return err;
2430 }
2431 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2432
cpufreq_unregister_governor(struct cpufreq_governor * governor)2433 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2434 {
2435 struct cpufreq_policy *policy;
2436 unsigned long flags;
2437
2438 if (!governor)
2439 return;
2440
2441 if (cpufreq_disabled())
2442 return;
2443
2444 /* clear last_governor for all inactive policies */
2445 read_lock_irqsave(&cpufreq_driver_lock, flags);
2446 for_each_inactive_policy(policy) {
2447 if (!strcmp(policy->last_governor, governor->name)) {
2448 policy->governor = NULL;
2449 strcpy(policy->last_governor, "\0");
2450 }
2451 }
2452 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2453
2454 mutex_lock(&cpufreq_governor_mutex);
2455 list_del(&governor->governor_list);
2456 mutex_unlock(&cpufreq_governor_mutex);
2457 }
2458 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2459
2460
2461 /*********************************************************************
2462 * POLICY INTERFACE *
2463 *********************************************************************/
2464
2465 /**
2466 * cpufreq_get_policy - get the current cpufreq_policy
2467 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2468 * is written
2469 * @cpu: CPU to find the policy for
2470 *
2471 * Reads the current cpufreq policy.
2472 */
cpufreq_get_policy(struct cpufreq_policy * policy,unsigned int cpu)2473 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2474 {
2475 struct cpufreq_policy *cpu_policy;
2476 if (!policy)
2477 return -EINVAL;
2478
2479 cpu_policy = cpufreq_cpu_get(cpu);
2480 if (!cpu_policy)
2481 return -EINVAL;
2482
2483 memcpy(policy, cpu_policy, sizeof(*policy));
2484
2485 cpufreq_cpu_put(cpu_policy);
2486 return 0;
2487 }
2488 EXPORT_SYMBOL(cpufreq_get_policy);
2489
2490 /**
2491 * cpufreq_set_policy - Modify cpufreq policy parameters.
2492 * @policy: Policy object to modify.
2493 * @new_gov: Policy governor pointer.
2494 * @new_pol: Policy value (for drivers with built-in governors).
2495 *
2496 * Invoke the cpufreq driver's ->verify() callback to sanity-check the frequency
2497 * limits to be set for the policy, update @policy with the verified limits
2498 * values and either invoke the driver's ->setpolicy() callback (if present) or
2499 * carry out a governor update for @policy. That is, run the current governor's
2500 * ->limits() callback (if @new_gov points to the same object as the one in
2501 * @policy) or replace the governor for @policy with @new_gov.
2502 *
2503 * The cpuinfo part of @policy is not updated by this function.
2504 */
cpufreq_set_policy(struct cpufreq_policy * policy,struct cpufreq_governor * new_gov,unsigned int new_pol)2505 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2506 struct cpufreq_governor *new_gov,
2507 unsigned int new_pol)
2508 {
2509 struct cpufreq_policy_data new_data;
2510 struct cpufreq_governor *old_gov;
2511 int ret;
2512
2513 memcpy(&new_data.cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2514 new_data.freq_table = policy->freq_table;
2515 new_data.cpu = policy->cpu;
2516 /*
2517 * PM QoS framework collects all the requests from users and provide us
2518 * the final aggregated value here.
2519 */
2520 new_data.min = freq_qos_read_value(&policy->constraints, FREQ_QOS_MIN);
2521 new_data.max = freq_qos_read_value(&policy->constraints, FREQ_QOS_MAX);
2522
2523 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2524 new_data.cpu, new_data.min, new_data.max);
2525
2526 /*
2527 * Verify that the CPU speed can be set within these limits and make sure
2528 * that min <= max.
2529 */
2530 ret = cpufreq_driver->verify(&new_data);
2531 if (ret)
2532 return ret;
2533
2534 /*
2535 * Resolve policy min/max to available frequencies. It ensures
2536 * no frequency resolution will neither overshoot the requested maximum
2537 * nor undershoot the requested minimum.
2538 */
2539 policy->min = new_data.min;
2540 policy->max = new_data.max;
2541 policy->min = __resolve_freq(policy, policy->min, CPUFREQ_RELATION_L);
2542 policy->max = __resolve_freq(policy, policy->max, CPUFREQ_RELATION_H);
2543 trace_cpu_frequency_limits(policy);
2544
2545 policy->cached_target_freq = UINT_MAX;
2546
2547 pr_debug("new min and max freqs are %u - %u kHz\n",
2548 policy->min, policy->max);
2549
2550 if (cpufreq_driver->setpolicy) {
2551 policy->policy = new_pol;
2552 pr_debug("setting range\n");
2553 return cpufreq_driver->setpolicy(policy);
2554 }
2555
2556 if (new_gov == policy->governor) {
2557 pr_debug("governor limits update\n");
2558 cpufreq_governor_limits(policy);
2559 return 0;
2560 }
2561
2562 pr_debug("governor switch\n");
2563
2564 /* save old, working values */
2565 old_gov = policy->governor;
2566 /* end old governor */
2567 if (old_gov) {
2568 cpufreq_stop_governor(policy);
2569 cpufreq_exit_governor(policy);
2570 }
2571
2572 /* start new governor */
2573 policy->governor = new_gov;
2574 ret = cpufreq_init_governor(policy);
2575 if (!ret) {
2576 ret = cpufreq_start_governor(policy);
2577 if (!ret) {
2578 pr_debug("governor change\n");
2579 sched_cpufreq_governor_change(policy, old_gov);
2580 return 0;
2581 }
2582 cpufreq_exit_governor(policy);
2583 }
2584
2585 /* new governor failed, so re-start old one */
2586 pr_debug("starting governor %s failed\n", policy->governor->name);
2587 if (old_gov) {
2588 policy->governor = old_gov;
2589 if (cpufreq_init_governor(policy))
2590 policy->governor = NULL;
2591 else
2592 cpufreq_start_governor(policy);
2593 }
2594
2595 return ret;
2596 }
2597
2598 /**
2599 * cpufreq_update_policy - Re-evaluate an existing cpufreq policy.
2600 * @cpu: CPU to re-evaluate the policy for.
2601 *
2602 * Update the current frequency for the cpufreq policy of @cpu and use
2603 * cpufreq_set_policy() to re-apply the min and max limits, which triggers the
2604 * evaluation of policy notifiers and the cpufreq driver's ->verify() callback
2605 * for the policy in question, among other things.
2606 */
cpufreq_update_policy(unsigned int cpu)2607 void cpufreq_update_policy(unsigned int cpu)
2608 {
2609 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
2610
2611 if (!policy)
2612 return;
2613
2614 /*
2615 * BIOS might change freq behind our back
2616 * -> ask driver for current freq and notify governors about a change
2617 */
2618 if (cpufreq_driver->get && has_target() &&
2619 (cpufreq_suspended || WARN_ON(!cpufreq_verify_current_freq(policy, false))))
2620 goto unlock;
2621
2622 refresh_frequency_limits(policy);
2623
2624 unlock:
2625 cpufreq_cpu_release(policy);
2626 }
2627 EXPORT_SYMBOL(cpufreq_update_policy);
2628
2629 /**
2630 * cpufreq_update_limits - Update policy limits for a given CPU.
2631 * @cpu: CPU to update the policy limits for.
2632 *
2633 * Invoke the driver's ->update_limits callback if present or call
2634 * cpufreq_update_policy() for @cpu.
2635 */
cpufreq_update_limits(unsigned int cpu)2636 void cpufreq_update_limits(unsigned int cpu)
2637 {
2638 if (cpufreq_driver->update_limits)
2639 cpufreq_driver->update_limits(cpu);
2640 else
2641 cpufreq_update_policy(cpu);
2642 }
2643 EXPORT_SYMBOL_GPL(cpufreq_update_limits);
2644
2645 /*********************************************************************
2646 * BOOST *
2647 *********************************************************************/
cpufreq_boost_set_sw(struct cpufreq_policy * policy,int state)2648 static int cpufreq_boost_set_sw(struct cpufreq_policy *policy, int state)
2649 {
2650 int ret;
2651
2652 if (!policy->freq_table)
2653 return -ENXIO;
2654
2655 ret = cpufreq_frequency_table_cpuinfo(policy, policy->freq_table);
2656 if (ret) {
2657 pr_err("%s: Policy frequency update failed\n", __func__);
2658 return ret;
2659 }
2660
2661 ret = freq_qos_update_request(policy->max_freq_req, policy->max);
2662 if (ret < 0)
2663 return ret;
2664
2665 return 0;
2666 }
2667
cpufreq_boost_trigger_state(int state)2668 int cpufreq_boost_trigger_state(int state)
2669 {
2670 struct cpufreq_policy *policy;
2671 unsigned long flags;
2672 int ret = 0;
2673
2674 if (cpufreq_driver->boost_enabled == state)
2675 return 0;
2676
2677 write_lock_irqsave(&cpufreq_driver_lock, flags);
2678 cpufreq_driver->boost_enabled = state;
2679 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2680
2681 cpus_read_lock();
2682 for_each_active_policy(policy) {
2683 ret = cpufreq_driver->set_boost(policy, state);
2684 if (ret)
2685 goto err_reset_state;
2686 }
2687 cpus_read_unlock();
2688
2689 return 0;
2690
2691 err_reset_state:
2692 cpus_read_unlock();
2693
2694 write_lock_irqsave(&cpufreq_driver_lock, flags);
2695 cpufreq_driver->boost_enabled = !state;
2696 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2697
2698 pr_err("%s: Cannot %s BOOST\n",
2699 __func__, state ? "enable" : "disable");
2700
2701 return ret;
2702 }
2703
cpufreq_boost_supported(void)2704 static bool cpufreq_boost_supported(void)
2705 {
2706 return cpufreq_driver->set_boost;
2707 }
2708
create_boost_sysfs_file(void)2709 static int create_boost_sysfs_file(void)
2710 {
2711 int ret;
2712
2713 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2714 if (ret)
2715 pr_err("%s: cannot register global BOOST sysfs file\n",
2716 __func__);
2717
2718 return ret;
2719 }
2720
remove_boost_sysfs_file(void)2721 static void remove_boost_sysfs_file(void)
2722 {
2723 if (cpufreq_boost_supported())
2724 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2725 }
2726
cpufreq_enable_boost_support(void)2727 int cpufreq_enable_boost_support(void)
2728 {
2729 if (!cpufreq_driver)
2730 return -EINVAL;
2731
2732 if (cpufreq_boost_supported())
2733 return 0;
2734
2735 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2736
2737 /* This will get removed on driver unregister */
2738 return create_boost_sysfs_file();
2739 }
2740 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2741
cpufreq_boost_enabled(void)2742 int cpufreq_boost_enabled(void)
2743 {
2744 return cpufreq_driver->boost_enabled;
2745 }
2746 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2747
2748 /*********************************************************************
2749 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2750 *********************************************************************/
2751 static enum cpuhp_state hp_online;
2752
cpuhp_cpufreq_online(unsigned int cpu)2753 static int cpuhp_cpufreq_online(unsigned int cpu)
2754 {
2755 cpufreq_online(cpu);
2756
2757 return 0;
2758 }
2759
cpuhp_cpufreq_offline(unsigned int cpu)2760 static int cpuhp_cpufreq_offline(unsigned int cpu)
2761 {
2762 cpufreq_offline(cpu);
2763
2764 return 0;
2765 }
2766
2767 /**
2768 * cpufreq_register_driver - register a CPU Frequency driver
2769 * @driver_data: A struct cpufreq_driver containing the values#
2770 * submitted by the CPU Frequency driver.
2771 *
2772 * Registers a CPU Frequency driver to this core code. This code
2773 * returns zero on success, -EEXIST when another driver got here first
2774 * (and isn't unregistered in the meantime).
2775 *
2776 */
cpufreq_register_driver(struct cpufreq_driver * driver_data)2777 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2778 {
2779 unsigned long flags;
2780 int ret;
2781
2782 if (cpufreq_disabled())
2783 return -ENODEV;
2784
2785 /*
2786 * The cpufreq core depends heavily on the availability of device
2787 * structure, make sure they are available before proceeding further.
2788 */
2789 if (!get_cpu_device(0))
2790 return -EPROBE_DEFER;
2791
2792 if (!driver_data || !driver_data->verify || !driver_data->init ||
2793 !(driver_data->setpolicy || driver_data->target_index ||
2794 driver_data->target) ||
2795 (driver_data->setpolicy && (driver_data->target_index ||
2796 driver_data->target)) ||
2797 (!driver_data->get_intermediate != !driver_data->target_intermediate) ||
2798 (!driver_data->online != !driver_data->offline))
2799 return -EINVAL;
2800
2801 pr_debug("trying to register driver %s\n", driver_data->name);
2802
2803 /* Protect against concurrent CPU online/offline. */
2804 cpus_read_lock();
2805
2806 write_lock_irqsave(&cpufreq_driver_lock, flags);
2807 if (cpufreq_driver) {
2808 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2809 ret = -EEXIST;
2810 goto out;
2811 }
2812 cpufreq_driver = driver_data;
2813 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2814
2815 /*
2816 * Mark support for the scheduler's frequency invariance engine for
2817 * drivers that implement target(), target_index() or fast_switch().
2818 */
2819 if (!cpufreq_driver->setpolicy) {
2820 static_branch_enable_cpuslocked(&cpufreq_freq_invariance);
2821 pr_debug("supports frequency invariance");
2822 }
2823
2824 if (driver_data->setpolicy)
2825 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2826
2827 if (cpufreq_boost_supported()) {
2828 ret = create_boost_sysfs_file();
2829 if (ret)
2830 goto err_null_driver;
2831 }
2832
2833 ret = subsys_interface_register(&cpufreq_interface);
2834 if (ret)
2835 goto err_boost_unreg;
2836
2837 if (unlikely(list_empty(&cpufreq_policy_list))) {
2838 /* if all ->init() calls failed, unregister */
2839 ret = -ENODEV;
2840 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2841 driver_data->name);
2842 goto err_if_unreg;
2843 }
2844
2845 ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2846 "cpufreq:online",
2847 cpuhp_cpufreq_online,
2848 cpuhp_cpufreq_offline);
2849 if (ret < 0)
2850 goto err_if_unreg;
2851 hp_online = ret;
2852 ret = 0;
2853
2854 pr_debug("driver %s up and running\n", driver_data->name);
2855 goto out;
2856
2857 err_if_unreg:
2858 subsys_interface_unregister(&cpufreq_interface);
2859 err_boost_unreg:
2860 remove_boost_sysfs_file();
2861 err_null_driver:
2862 write_lock_irqsave(&cpufreq_driver_lock, flags);
2863 cpufreq_driver = NULL;
2864 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2865 out:
2866 cpus_read_unlock();
2867 return ret;
2868 }
2869 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2870
2871 /*
2872 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2873 *
2874 * Unregister the current CPUFreq driver. Only call this if you have
2875 * the right to do so, i.e. if you have succeeded in initialising before!
2876 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2877 * currently not initialised.
2878 */
cpufreq_unregister_driver(struct cpufreq_driver * driver)2879 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2880 {
2881 unsigned long flags;
2882
2883 if (!cpufreq_driver || (driver != cpufreq_driver))
2884 return -EINVAL;
2885
2886 pr_debug("unregistering driver %s\n", driver->name);
2887
2888 /* Protect against concurrent cpu hotplug */
2889 cpus_read_lock();
2890 subsys_interface_unregister(&cpufreq_interface);
2891 remove_boost_sysfs_file();
2892 static_branch_disable_cpuslocked(&cpufreq_freq_invariance);
2893 cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2894
2895 write_lock_irqsave(&cpufreq_driver_lock, flags);
2896
2897 cpufreq_driver = NULL;
2898
2899 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2900 cpus_read_unlock();
2901
2902 return 0;
2903 }
2904 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2905
cpufreq_core_init(void)2906 static int __init cpufreq_core_init(void)
2907 {
2908 struct cpufreq_governor *gov = cpufreq_default_governor();
2909
2910 if (cpufreq_disabled())
2911 return -ENODEV;
2912
2913 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2914 BUG_ON(!cpufreq_global_kobject);
2915
2916 if (!strlen(default_governor))
2917 strncpy(default_governor, gov->name, CPUFREQ_NAME_LEN);
2918
2919 return 0;
2920 }
2921 module_param(off, int, 0444);
2922 module_param_string(default_governor, default_governor, CPUFREQ_NAME_LEN, 0444);
2923 core_initcall(cpufreq_core_init);
2924