1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Framework for buffer objects that can be shared across devices/subsystems.
4 *
5 * Copyright(C) 2011 Linaro Limited. All rights reserved.
6 * Author: Sumit Semwal <sumit.semwal@ti.com>
7 *
8 * Many thanks to linaro-mm-sig list, and specially
9 * Arnd Bergmann <arnd@arndb.de>, Rob Clark <rob@ti.com> and
10 * Daniel Vetter <daniel@ffwll.ch> for their support in creation and
11 * refining of this idea.
12 */
13
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/dma-buf.h>
17 #include <linux/dma-fence.h>
18 #include <linux/anon_inodes.h>
19 #include <linux/export.h>
20 #include <linux/debugfs.h>
21 #include <linux/module.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/dma-resv.h>
25 #include <linux/mm.h>
26 #include <linux/mount.h>
27 #include <linux/pseudo_fs.h>
28
29 #include <uapi/linux/dma-buf.h>
30 #include <uapi/linux/magic.h>
31
32 #include "dma-buf-sysfs-stats.h"
33
34 static inline int is_dma_buf_file(struct file *);
35
36 struct dma_buf_list {
37 struct list_head head;
38 struct mutex lock;
39 };
40
41 static struct dma_buf_list db_list;
42
dmabuffs_dname(struct dentry * dentry,char * buffer,int buflen)43 static char *dmabuffs_dname(struct dentry *dentry, char *buffer, int buflen)
44 {
45 struct dma_buf *dmabuf;
46 char name[DMA_BUF_NAME_LEN];
47 size_t ret = 0;
48
49 dmabuf = dentry->d_fsdata;
50 spin_lock(&dmabuf->name_lock);
51 if (dmabuf->name)
52 ret = strlcpy(name, dmabuf->name, DMA_BUF_NAME_LEN);
53 spin_unlock(&dmabuf->name_lock);
54
55 return dynamic_dname(dentry, buffer, buflen, "/%s:%s",
56 dentry->d_name.name, ret > 0 ? name : "");
57 }
58
dma_buf_release(struct dentry * dentry)59 static void dma_buf_release(struct dentry *dentry)
60 {
61 struct dma_buf *dmabuf;
62
63 dmabuf = dentry->d_fsdata;
64 if (unlikely(!dmabuf))
65 return;
66
67 BUG_ON(dmabuf->vmapping_counter);
68
69 /*
70 * If you hit this BUG() it could mean:
71 * * There's a file reference imbalance in dma_buf_poll / dma_buf_poll_cb or somewhere else
72 * * dmabuf->cb_in/out.active are non-0 despite no pending fence callback
73 */
74 BUG_ON(dmabuf->cb_in.active || dmabuf->cb_out.active);
75
76 dma_buf_stats_teardown(dmabuf);
77 dmabuf->ops->release(dmabuf);
78
79 if (dmabuf->resv == (struct dma_resv *)&dmabuf[1])
80 dma_resv_fini(dmabuf->resv);
81
82 WARN_ON(!list_empty(&dmabuf->attachments));
83 module_put(dmabuf->owner);
84 kfree(dmabuf->name);
85 kfree(dmabuf);
86 }
87
dma_buf_file_release(struct inode * inode,struct file * file)88 static int dma_buf_file_release(struct inode *inode, struct file *file)
89 {
90 struct dma_buf *dmabuf;
91
92 if (!is_dma_buf_file(file))
93 return -EINVAL;
94
95 dmabuf = file->private_data;
96
97 mutex_lock(&db_list.lock);
98 list_del(&dmabuf->list_node);
99 mutex_unlock(&db_list.lock);
100
101 return 0;
102 }
103
104 static const struct dentry_operations dma_buf_dentry_ops = {
105 .d_dname = dmabuffs_dname,
106 .d_release = dma_buf_release,
107 };
108
109 static struct vfsmount *dma_buf_mnt;
110
dma_buf_fs_init_context(struct fs_context * fc)111 static int dma_buf_fs_init_context(struct fs_context *fc)
112 {
113 struct pseudo_fs_context *ctx;
114
115 ctx = init_pseudo(fc, DMA_BUF_MAGIC);
116 if (!ctx)
117 return -ENOMEM;
118 ctx->dops = &dma_buf_dentry_ops;
119 return 0;
120 }
121
122 static struct file_system_type dma_buf_fs_type = {
123 .name = "dmabuf",
124 .init_fs_context = dma_buf_fs_init_context,
125 .kill_sb = kill_anon_super,
126 };
127
dma_buf_mmap_internal(struct file * file,struct vm_area_struct * vma)128 static int dma_buf_mmap_internal(struct file *file, struct vm_area_struct *vma)
129 {
130 struct dma_buf *dmabuf;
131
132 if (!is_dma_buf_file(file))
133 return -EINVAL;
134
135 dmabuf = file->private_data;
136
137 /* check if buffer supports mmap */
138 if (!dmabuf->ops->mmap)
139 return -EINVAL;
140
141 /* check for overflowing the buffer's size */
142 if (vma->vm_pgoff + vma_pages(vma) >
143 dmabuf->size >> PAGE_SHIFT)
144 return -EINVAL;
145
146 return dmabuf->ops->mmap(dmabuf, vma);
147 }
148
dma_buf_llseek(struct file * file,loff_t offset,int whence)149 static loff_t dma_buf_llseek(struct file *file, loff_t offset, int whence)
150 {
151 struct dma_buf *dmabuf;
152 loff_t base;
153
154 if (!is_dma_buf_file(file))
155 return -EBADF;
156
157 dmabuf = file->private_data;
158
159 /* only support discovering the end of the buffer,
160 but also allow SEEK_SET to maintain the idiomatic
161 SEEK_END(0), SEEK_CUR(0) pattern */
162 if (whence == SEEK_END)
163 base = dmabuf->size;
164 else if (whence == SEEK_SET)
165 base = 0;
166 else
167 return -EINVAL;
168
169 if (offset != 0)
170 return -EINVAL;
171
172 return base + offset;
173 }
174
175 /**
176 * DOC: implicit fence polling
177 *
178 * To support cross-device and cross-driver synchronization of buffer access
179 * implicit fences (represented internally in the kernel with &struct dma_fence)
180 * can be attached to a &dma_buf. The glue for that and a few related things are
181 * provided in the &dma_resv structure.
182 *
183 * Userspace can query the state of these implicitly tracked fences using poll()
184 * and related system calls:
185 *
186 * - Checking for EPOLLIN, i.e. read access, can be use to query the state of the
187 * most recent write or exclusive fence.
188 *
189 * - Checking for EPOLLOUT, i.e. write access, can be used to query the state of
190 * all attached fences, shared and exclusive ones.
191 *
192 * Note that this only signals the completion of the respective fences, i.e. the
193 * DMA transfers are complete. Cache flushing and any other necessary
194 * preparations before CPU access can begin still need to happen.
195 */
196
dma_buf_poll_cb(struct dma_fence * fence,struct dma_fence_cb * cb)197 static void dma_buf_poll_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
198 {
199 struct dma_buf_poll_cb_t *dcb = (struct dma_buf_poll_cb_t *)cb;
200 struct dma_buf *dmabuf = container_of(dcb->poll, struct dma_buf, poll);
201 unsigned long flags;
202
203 spin_lock_irqsave(&dcb->poll->lock, flags);
204 wake_up_locked_poll(dcb->poll, dcb->active);
205 dcb->active = 0;
206 spin_unlock_irqrestore(&dcb->poll->lock, flags);
207 dma_fence_put(fence);
208 /* Paired with get_file in dma_buf_poll */
209 fput(dmabuf->file);
210 }
211
dma_buf_poll_add_cb(struct dma_resv * resv,bool write,struct dma_buf_poll_cb_t * dcb)212 static bool dma_buf_poll_add_cb(struct dma_resv *resv, bool write,
213 struct dma_buf_poll_cb_t *dcb)
214 {
215 struct dma_resv_iter cursor;
216 struct dma_fence *fence;
217 int r;
218
219 dma_resv_for_each_fence(&cursor, resv, write, fence) {
220 dma_fence_get(fence);
221 r = dma_fence_add_callback(fence, &dcb->cb, dma_buf_poll_cb);
222 if (!r)
223 return true;
224 dma_fence_put(fence);
225 }
226
227 return false;
228 }
229
dma_buf_poll(struct file * file,poll_table * poll)230 static __poll_t dma_buf_poll(struct file *file, poll_table *poll)
231 {
232 struct dma_buf *dmabuf;
233 struct dma_resv *resv;
234 __poll_t events;
235
236 dmabuf = file->private_data;
237 if (!dmabuf || !dmabuf->resv)
238 return EPOLLERR;
239
240 resv = dmabuf->resv;
241
242 poll_wait(file, &dmabuf->poll, poll);
243
244 events = poll_requested_events(poll) & (EPOLLIN | EPOLLOUT);
245 if (!events)
246 return 0;
247
248 dma_resv_lock(resv, NULL);
249
250 if (events & EPOLLOUT) {
251 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_out;
252
253 /* Check that callback isn't busy */
254 spin_lock_irq(&dmabuf->poll.lock);
255 if (dcb->active)
256 events &= ~EPOLLOUT;
257 else
258 dcb->active = EPOLLOUT;
259 spin_unlock_irq(&dmabuf->poll.lock);
260
261 if (events & EPOLLOUT) {
262 /* Paired with fput in dma_buf_poll_cb */
263 get_file(dmabuf->file);
264
265 if (!dma_buf_poll_add_cb(resv, true, dcb))
266 /* No callback queued, wake up any other waiters */
267 dma_buf_poll_cb(NULL, &dcb->cb);
268 else
269 events &= ~EPOLLOUT;
270 }
271 }
272
273 if (events & EPOLLIN) {
274 struct dma_buf_poll_cb_t *dcb = &dmabuf->cb_in;
275
276 /* Check that callback isn't busy */
277 spin_lock_irq(&dmabuf->poll.lock);
278 if (dcb->active)
279 events &= ~EPOLLIN;
280 else
281 dcb->active = EPOLLIN;
282 spin_unlock_irq(&dmabuf->poll.lock);
283
284 if (events & EPOLLIN) {
285 /* Paired with fput in dma_buf_poll_cb */
286 get_file(dmabuf->file);
287
288 if (!dma_buf_poll_add_cb(resv, false, dcb))
289 /* No callback queued, wake up any other waiters */
290 dma_buf_poll_cb(NULL, &dcb->cb);
291 else
292 events &= ~EPOLLIN;
293 }
294 }
295
296 dma_resv_unlock(resv);
297 return events;
298 }
299
300 /**
301 * dma_buf_set_name - Set a name to a specific dma_buf to track the usage.
302 * The name of the dma-buf buffer can only be set when the dma-buf is not
303 * attached to any devices. It could theoritically support changing the
304 * name of the dma-buf if the same piece of memory is used for multiple
305 * purpose between different devices.
306 *
307 * @dmabuf: [in] dmabuf buffer that will be renamed.
308 * @buf: [in] A piece of userspace memory that contains the name of
309 * the dma-buf.
310 *
311 * Returns 0 on success. If the dma-buf buffer is already attached to
312 * devices, return -EBUSY.
313 *
314 */
dma_buf_set_name(struct dma_buf * dmabuf,const char __user * buf)315 static long dma_buf_set_name(struct dma_buf *dmabuf, const char __user *buf)
316 {
317 char *name = strndup_user(buf, DMA_BUF_NAME_LEN);
318 long ret = 0;
319
320 if (IS_ERR(name))
321 return PTR_ERR(name);
322
323 dma_resv_lock(dmabuf->resv, NULL);
324 if (!list_empty(&dmabuf->attachments)) {
325 ret = -EBUSY;
326 kfree(name);
327 goto out_unlock;
328 }
329 spin_lock(&dmabuf->name_lock);
330 kfree(dmabuf->name);
331 dmabuf->name = name;
332 spin_unlock(&dmabuf->name_lock);
333
334 out_unlock:
335 dma_resv_unlock(dmabuf->resv);
336 return ret;
337 }
338
dma_buf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)339 static long dma_buf_ioctl(struct file *file,
340 unsigned int cmd, unsigned long arg)
341 {
342 struct dma_buf *dmabuf;
343 struct dma_buf_sync sync;
344 enum dma_data_direction direction;
345 int ret;
346
347 dmabuf = file->private_data;
348
349 switch (cmd) {
350 case DMA_BUF_IOCTL_SYNC:
351 if (copy_from_user(&sync, (void __user *) arg, sizeof(sync)))
352 return -EFAULT;
353
354 if (sync.flags & ~DMA_BUF_SYNC_VALID_FLAGS_MASK)
355 return -EINVAL;
356
357 switch (sync.flags & DMA_BUF_SYNC_RW) {
358 case DMA_BUF_SYNC_READ:
359 direction = DMA_FROM_DEVICE;
360 break;
361 case DMA_BUF_SYNC_WRITE:
362 direction = DMA_TO_DEVICE;
363 break;
364 case DMA_BUF_SYNC_RW:
365 direction = DMA_BIDIRECTIONAL;
366 break;
367 default:
368 return -EINVAL;
369 }
370
371 if (sync.flags & DMA_BUF_SYNC_END)
372 ret = dma_buf_end_cpu_access(dmabuf, direction);
373 else
374 ret = dma_buf_begin_cpu_access(dmabuf, direction);
375
376 return ret;
377
378 case DMA_BUF_SET_NAME_A:
379 case DMA_BUF_SET_NAME_B:
380 return dma_buf_set_name(dmabuf, (const char __user *)arg);
381
382 default:
383 return -ENOTTY;
384 }
385 }
386
dma_buf_show_fdinfo(struct seq_file * m,struct file * file)387 static void dma_buf_show_fdinfo(struct seq_file *m, struct file *file)
388 {
389 struct dma_buf *dmabuf = file->private_data;
390
391 seq_printf(m, "size:\t%zu\n", dmabuf->size);
392 /* Don't count the temporary reference taken inside procfs seq_show */
393 seq_printf(m, "count:\t%ld\n", file_count(dmabuf->file) - 1);
394 seq_printf(m, "exp_name:\t%s\n", dmabuf->exp_name);
395 spin_lock(&dmabuf->name_lock);
396 if (dmabuf->name)
397 seq_printf(m, "name:\t%s\n", dmabuf->name);
398 spin_unlock(&dmabuf->name_lock);
399 }
400
401 static const struct file_operations dma_buf_fops = {
402 .release = dma_buf_file_release,
403 .mmap = dma_buf_mmap_internal,
404 .llseek = dma_buf_llseek,
405 .poll = dma_buf_poll,
406 .unlocked_ioctl = dma_buf_ioctl,
407 .compat_ioctl = compat_ptr_ioctl,
408 .show_fdinfo = dma_buf_show_fdinfo,
409 };
410
411 /*
412 * is_dma_buf_file - Check if struct file* is associated with dma_buf
413 */
is_dma_buf_file(struct file * file)414 static inline int is_dma_buf_file(struct file *file)
415 {
416 return file->f_op == &dma_buf_fops;
417 }
418
dma_buf_getfile(struct dma_buf * dmabuf,int flags)419 static struct file *dma_buf_getfile(struct dma_buf *dmabuf, int flags)
420 {
421 struct file *file;
422 struct inode *inode = alloc_anon_inode(dma_buf_mnt->mnt_sb);
423
424 if (IS_ERR(inode))
425 return ERR_CAST(inode);
426
427 inode->i_size = dmabuf->size;
428 inode_set_bytes(inode, dmabuf->size);
429
430 file = alloc_file_pseudo(inode, dma_buf_mnt, "dmabuf",
431 flags, &dma_buf_fops);
432 if (IS_ERR(file))
433 goto err_alloc_file;
434 file->f_flags = flags & (O_ACCMODE | O_NONBLOCK);
435 file->private_data = dmabuf;
436 file->f_path.dentry->d_fsdata = dmabuf;
437
438 return file;
439
440 err_alloc_file:
441 iput(inode);
442 return file;
443 }
444
445 /**
446 * DOC: dma buf device access
447 *
448 * For device DMA access to a shared DMA buffer the usual sequence of operations
449 * is fairly simple:
450 *
451 * 1. The exporter defines his exporter instance using
452 * DEFINE_DMA_BUF_EXPORT_INFO() and calls dma_buf_export() to wrap a private
453 * buffer object into a &dma_buf. It then exports that &dma_buf to userspace
454 * as a file descriptor by calling dma_buf_fd().
455 *
456 * 2. Userspace passes this file-descriptors to all drivers it wants this buffer
457 * to share with: First the filedescriptor is converted to a &dma_buf using
458 * dma_buf_get(). Then the buffer is attached to the device using
459 * dma_buf_attach().
460 *
461 * Up to this stage the exporter is still free to migrate or reallocate the
462 * backing storage.
463 *
464 * 3. Once the buffer is attached to all devices userspace can initiate DMA
465 * access to the shared buffer. In the kernel this is done by calling
466 * dma_buf_map_attachment() and dma_buf_unmap_attachment().
467 *
468 * 4. Once a driver is done with a shared buffer it needs to call
469 * dma_buf_detach() (after cleaning up any mappings) and then release the
470 * reference acquired with dma_buf_get() by calling dma_buf_put().
471 *
472 * For the detailed semantics exporters are expected to implement see
473 * &dma_buf_ops.
474 */
475
476 /**
477 * dma_buf_export - Creates a new dma_buf, and associates an anon file
478 * with this buffer, so it can be exported.
479 * Also connect the allocator specific data and ops to the buffer.
480 * Additionally, provide a name string for exporter; useful in debugging.
481 *
482 * @exp_info: [in] holds all the export related information provided
483 * by the exporter. see &struct dma_buf_export_info
484 * for further details.
485 *
486 * Returns, on success, a newly created struct dma_buf object, which wraps the
487 * supplied private data and operations for struct dma_buf_ops. On either
488 * missing ops, or error in allocating struct dma_buf, will return negative
489 * error.
490 *
491 * For most cases the easiest way to create @exp_info is through the
492 * %DEFINE_DMA_BUF_EXPORT_INFO macro.
493 */
dma_buf_export(const struct dma_buf_export_info * exp_info)494 struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
495 {
496 struct dma_buf *dmabuf;
497 struct dma_resv *resv = exp_info->resv;
498 struct file *file;
499 size_t alloc_size = sizeof(struct dma_buf);
500 int ret;
501
502 if (!exp_info->resv)
503 alloc_size += sizeof(struct dma_resv);
504 else
505 /* prevent &dma_buf[1] == dma_buf->resv */
506 alloc_size += 1;
507
508 if (WARN_ON(!exp_info->priv
509 || !exp_info->ops
510 || !exp_info->ops->map_dma_buf
511 || !exp_info->ops->unmap_dma_buf
512 || !exp_info->ops->release)) {
513 return ERR_PTR(-EINVAL);
514 }
515
516 if (WARN_ON(exp_info->ops->cache_sgt_mapping &&
517 (exp_info->ops->pin || exp_info->ops->unpin)))
518 return ERR_PTR(-EINVAL);
519
520 if (WARN_ON(!exp_info->ops->pin != !exp_info->ops->unpin))
521 return ERR_PTR(-EINVAL);
522
523 if (!try_module_get(exp_info->owner))
524 return ERR_PTR(-ENOENT);
525
526 dmabuf = kzalloc(alloc_size, GFP_KERNEL);
527 if (!dmabuf) {
528 ret = -ENOMEM;
529 goto err_module;
530 }
531
532 dmabuf->priv = exp_info->priv;
533 dmabuf->ops = exp_info->ops;
534 dmabuf->size = exp_info->size;
535 dmabuf->exp_name = exp_info->exp_name;
536 dmabuf->owner = exp_info->owner;
537 spin_lock_init(&dmabuf->name_lock);
538 init_waitqueue_head(&dmabuf->poll);
539 dmabuf->cb_in.poll = dmabuf->cb_out.poll = &dmabuf->poll;
540 dmabuf->cb_in.active = dmabuf->cb_out.active = 0;
541
542 if (!resv) {
543 resv = (struct dma_resv *)&dmabuf[1];
544 dma_resv_init(resv);
545 }
546 dmabuf->resv = resv;
547
548 file = dma_buf_getfile(dmabuf, exp_info->flags);
549 if (IS_ERR(file)) {
550 ret = PTR_ERR(file);
551 goto err_dmabuf;
552 }
553
554 file->f_mode |= FMODE_LSEEK;
555 dmabuf->file = file;
556
557 ret = dma_buf_stats_setup(dmabuf);
558 if (ret)
559 goto err_sysfs;
560
561 mutex_init(&dmabuf->lock);
562 INIT_LIST_HEAD(&dmabuf->attachments);
563
564 mutex_lock(&db_list.lock);
565 list_add(&dmabuf->list_node, &db_list.head);
566 mutex_unlock(&db_list.lock);
567
568 return dmabuf;
569
570 err_sysfs:
571 /*
572 * Set file->f_path.dentry->d_fsdata to NULL so that when
573 * dma_buf_release() gets invoked by dentry_ops, it exits
574 * early before calling the release() dma_buf op.
575 */
576 file->f_path.dentry->d_fsdata = NULL;
577 fput(file);
578 err_dmabuf:
579 kfree(dmabuf);
580 err_module:
581 module_put(exp_info->owner);
582 return ERR_PTR(ret);
583 }
584 EXPORT_SYMBOL_NS_GPL(dma_buf_export, DMA_BUF);
585
586 /**
587 * dma_buf_fd - returns a file descriptor for the given struct dma_buf
588 * @dmabuf: [in] pointer to dma_buf for which fd is required.
589 * @flags: [in] flags to give to fd
590 *
591 * On success, returns an associated 'fd'. Else, returns error.
592 */
dma_buf_fd(struct dma_buf * dmabuf,int flags)593 int dma_buf_fd(struct dma_buf *dmabuf, int flags)
594 {
595 int fd;
596
597 if (!dmabuf || !dmabuf->file)
598 return -EINVAL;
599
600 fd = get_unused_fd_flags(flags);
601 if (fd < 0)
602 return fd;
603
604 fd_install(fd, dmabuf->file);
605
606 return fd;
607 }
608 EXPORT_SYMBOL_NS_GPL(dma_buf_fd, DMA_BUF);
609
610 /**
611 * dma_buf_get - returns the struct dma_buf related to an fd
612 * @fd: [in] fd associated with the struct dma_buf to be returned
613 *
614 * On success, returns the struct dma_buf associated with an fd; uses
615 * file's refcounting done by fget to increase refcount. returns ERR_PTR
616 * otherwise.
617 */
dma_buf_get(int fd)618 struct dma_buf *dma_buf_get(int fd)
619 {
620 struct file *file;
621
622 file = fget(fd);
623
624 if (!file)
625 return ERR_PTR(-EBADF);
626
627 if (!is_dma_buf_file(file)) {
628 fput(file);
629 return ERR_PTR(-EINVAL);
630 }
631
632 return file->private_data;
633 }
634 EXPORT_SYMBOL_NS_GPL(dma_buf_get, DMA_BUF);
635
636 /**
637 * dma_buf_put - decreases refcount of the buffer
638 * @dmabuf: [in] buffer to reduce refcount of
639 *
640 * Uses file's refcounting done implicitly by fput().
641 *
642 * If, as a result of this call, the refcount becomes 0, the 'release' file
643 * operation related to this fd is called. It calls &dma_buf_ops.release vfunc
644 * in turn, and frees the memory allocated for dmabuf when exported.
645 */
dma_buf_put(struct dma_buf * dmabuf)646 void dma_buf_put(struct dma_buf *dmabuf)
647 {
648 if (WARN_ON(!dmabuf || !dmabuf->file))
649 return;
650
651 fput(dmabuf->file);
652 }
653 EXPORT_SYMBOL_NS_GPL(dma_buf_put, DMA_BUF);
654
mangle_sg_table(struct sg_table * sg_table)655 static void mangle_sg_table(struct sg_table *sg_table)
656 {
657 #ifdef CONFIG_DMABUF_DEBUG
658 int i;
659 struct scatterlist *sg;
660
661 /* To catch abuse of the underlying struct page by importers mix
662 * up the bits, but take care to preserve the low SG_ bits to
663 * not corrupt the sgt. The mixing is undone in __unmap_dma_buf
664 * before passing the sgt back to the exporter. */
665 for_each_sgtable_sg(sg_table, sg, i)
666 sg->page_link ^= ~0xffUL;
667 #endif
668
669 }
__map_dma_buf(struct dma_buf_attachment * attach,enum dma_data_direction direction)670 static struct sg_table * __map_dma_buf(struct dma_buf_attachment *attach,
671 enum dma_data_direction direction)
672 {
673 struct sg_table *sg_table;
674
675 sg_table = attach->dmabuf->ops->map_dma_buf(attach, direction);
676
677 if (!IS_ERR_OR_NULL(sg_table))
678 mangle_sg_table(sg_table);
679
680 return sg_table;
681 }
682
683 /**
684 * dma_buf_dynamic_attach - Add the device to dma_buf's attachments list
685 * @dmabuf: [in] buffer to attach device to.
686 * @dev: [in] device to be attached.
687 * @importer_ops: [in] importer operations for the attachment
688 * @importer_priv: [in] importer private pointer for the attachment
689 *
690 * Returns struct dma_buf_attachment pointer for this attachment. Attachments
691 * must be cleaned up by calling dma_buf_detach().
692 *
693 * Optionally this calls &dma_buf_ops.attach to allow device-specific attach
694 * functionality.
695 *
696 * Returns:
697 *
698 * A pointer to newly created &dma_buf_attachment on success, or a negative
699 * error code wrapped into a pointer on failure.
700 *
701 * Note that this can fail if the backing storage of @dmabuf is in a place not
702 * accessible to @dev, and cannot be moved to a more suitable place. This is
703 * indicated with the error code -EBUSY.
704 */
705 struct dma_buf_attachment *
dma_buf_dynamic_attach(struct dma_buf * dmabuf,struct device * dev,const struct dma_buf_attach_ops * importer_ops,void * importer_priv)706 dma_buf_dynamic_attach(struct dma_buf *dmabuf, struct device *dev,
707 const struct dma_buf_attach_ops *importer_ops,
708 void *importer_priv)
709 {
710 struct dma_buf_attachment *attach;
711 int ret;
712
713 if (WARN_ON(!dmabuf || !dev))
714 return ERR_PTR(-EINVAL);
715
716 if (WARN_ON(importer_ops && !importer_ops->move_notify))
717 return ERR_PTR(-EINVAL);
718
719 attach = kzalloc(sizeof(*attach), GFP_KERNEL);
720 if (!attach)
721 return ERR_PTR(-ENOMEM);
722
723 attach->dev = dev;
724 attach->dmabuf = dmabuf;
725 if (importer_ops)
726 attach->peer2peer = importer_ops->allow_peer2peer;
727 attach->importer_ops = importer_ops;
728 attach->importer_priv = importer_priv;
729
730 if (dmabuf->ops->attach) {
731 ret = dmabuf->ops->attach(dmabuf, attach);
732 if (ret)
733 goto err_attach;
734 }
735 dma_resv_lock(dmabuf->resv, NULL);
736 list_add(&attach->node, &dmabuf->attachments);
737 dma_resv_unlock(dmabuf->resv);
738
739 /* When either the importer or the exporter can't handle dynamic
740 * mappings we cache the mapping here to avoid issues with the
741 * reservation object lock.
742 */
743 if (dma_buf_attachment_is_dynamic(attach) !=
744 dma_buf_is_dynamic(dmabuf)) {
745 struct sg_table *sgt;
746
747 if (dma_buf_is_dynamic(attach->dmabuf)) {
748 dma_resv_lock(attach->dmabuf->resv, NULL);
749 ret = dmabuf->ops->pin(attach);
750 if (ret)
751 goto err_unlock;
752 }
753
754 sgt = __map_dma_buf(attach, DMA_BIDIRECTIONAL);
755 if (!sgt)
756 sgt = ERR_PTR(-ENOMEM);
757 if (IS_ERR(sgt)) {
758 ret = PTR_ERR(sgt);
759 goto err_unpin;
760 }
761 if (dma_buf_is_dynamic(attach->dmabuf))
762 dma_resv_unlock(attach->dmabuf->resv);
763 attach->sgt = sgt;
764 attach->dir = DMA_BIDIRECTIONAL;
765 }
766
767 return attach;
768
769 err_attach:
770 kfree(attach);
771 return ERR_PTR(ret);
772
773 err_unpin:
774 if (dma_buf_is_dynamic(attach->dmabuf))
775 dmabuf->ops->unpin(attach);
776
777 err_unlock:
778 if (dma_buf_is_dynamic(attach->dmabuf))
779 dma_resv_unlock(attach->dmabuf->resv);
780
781 dma_buf_detach(dmabuf, attach);
782 return ERR_PTR(ret);
783 }
784 EXPORT_SYMBOL_NS_GPL(dma_buf_dynamic_attach, DMA_BUF);
785
786 /**
787 * dma_buf_attach - Wrapper for dma_buf_dynamic_attach
788 * @dmabuf: [in] buffer to attach device to.
789 * @dev: [in] device to be attached.
790 *
791 * Wrapper to call dma_buf_dynamic_attach() for drivers which still use a static
792 * mapping.
793 */
dma_buf_attach(struct dma_buf * dmabuf,struct device * dev)794 struct dma_buf_attachment *dma_buf_attach(struct dma_buf *dmabuf,
795 struct device *dev)
796 {
797 return dma_buf_dynamic_attach(dmabuf, dev, NULL, NULL);
798 }
799 EXPORT_SYMBOL_NS_GPL(dma_buf_attach, DMA_BUF);
800
__unmap_dma_buf(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)801 static void __unmap_dma_buf(struct dma_buf_attachment *attach,
802 struct sg_table *sg_table,
803 enum dma_data_direction direction)
804 {
805 /* uses XOR, hence this unmangles */
806 mangle_sg_table(sg_table);
807
808 attach->dmabuf->ops->unmap_dma_buf(attach, sg_table, direction);
809 }
810
811 /**
812 * dma_buf_detach - Remove the given attachment from dmabuf's attachments list
813 * @dmabuf: [in] buffer to detach from.
814 * @attach: [in] attachment to be detached; is free'd after this call.
815 *
816 * Clean up a device attachment obtained by calling dma_buf_attach().
817 *
818 * Optionally this calls &dma_buf_ops.detach for device-specific detach.
819 */
dma_buf_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attach)820 void dma_buf_detach(struct dma_buf *dmabuf, struct dma_buf_attachment *attach)
821 {
822 if (WARN_ON(!dmabuf || !attach))
823 return;
824
825 if (attach->sgt) {
826 if (dma_buf_is_dynamic(attach->dmabuf))
827 dma_resv_lock(attach->dmabuf->resv, NULL);
828
829 __unmap_dma_buf(attach, attach->sgt, attach->dir);
830
831 if (dma_buf_is_dynamic(attach->dmabuf)) {
832 dmabuf->ops->unpin(attach);
833 dma_resv_unlock(attach->dmabuf->resv);
834 }
835 }
836
837 dma_resv_lock(dmabuf->resv, NULL);
838 list_del(&attach->node);
839 dma_resv_unlock(dmabuf->resv);
840 if (dmabuf->ops->detach)
841 dmabuf->ops->detach(dmabuf, attach);
842
843 kfree(attach);
844 }
845 EXPORT_SYMBOL_NS_GPL(dma_buf_detach, DMA_BUF);
846
847 /**
848 * dma_buf_pin - Lock down the DMA-buf
849 * @attach: [in] attachment which should be pinned
850 *
851 * Only dynamic importers (who set up @attach with dma_buf_dynamic_attach()) may
852 * call this, and only for limited use cases like scanout and not for temporary
853 * pin operations. It is not permitted to allow userspace to pin arbitrary
854 * amounts of buffers through this interface.
855 *
856 * Buffers must be unpinned by calling dma_buf_unpin().
857 *
858 * Returns:
859 * 0 on success, negative error code on failure.
860 */
dma_buf_pin(struct dma_buf_attachment * attach)861 int dma_buf_pin(struct dma_buf_attachment *attach)
862 {
863 struct dma_buf *dmabuf = attach->dmabuf;
864 int ret = 0;
865
866 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
867
868 dma_resv_assert_held(dmabuf->resv);
869
870 if (dmabuf->ops->pin)
871 ret = dmabuf->ops->pin(attach);
872
873 return ret;
874 }
875 EXPORT_SYMBOL_NS_GPL(dma_buf_pin, DMA_BUF);
876
877 /**
878 * dma_buf_unpin - Unpin a DMA-buf
879 * @attach: [in] attachment which should be unpinned
880 *
881 * This unpins a buffer pinned by dma_buf_pin() and allows the exporter to move
882 * any mapping of @attach again and inform the importer through
883 * &dma_buf_attach_ops.move_notify.
884 */
dma_buf_unpin(struct dma_buf_attachment * attach)885 void dma_buf_unpin(struct dma_buf_attachment *attach)
886 {
887 struct dma_buf *dmabuf = attach->dmabuf;
888
889 WARN_ON(!dma_buf_attachment_is_dynamic(attach));
890
891 dma_resv_assert_held(dmabuf->resv);
892
893 if (dmabuf->ops->unpin)
894 dmabuf->ops->unpin(attach);
895 }
896 EXPORT_SYMBOL_NS_GPL(dma_buf_unpin, DMA_BUF);
897
898 /**
899 * dma_buf_map_attachment - Returns the scatterlist table of the attachment;
900 * mapped into _device_ address space. Is a wrapper for map_dma_buf() of the
901 * dma_buf_ops.
902 * @attach: [in] attachment whose scatterlist is to be returned
903 * @direction: [in] direction of DMA transfer
904 *
905 * Returns sg_table containing the scatterlist to be returned; returns ERR_PTR
906 * on error. May return -EINTR if it is interrupted by a signal.
907 *
908 * On success, the DMA addresses and lengths in the returned scatterlist are
909 * PAGE_SIZE aligned.
910 *
911 * A mapping must be unmapped by using dma_buf_unmap_attachment(). Note that
912 * the underlying backing storage is pinned for as long as a mapping exists,
913 * therefore users/importers should not hold onto a mapping for undue amounts of
914 * time.
915 *
916 * Important: Dynamic importers must wait for the exclusive fence of the struct
917 * dma_resv attached to the DMA-BUF first.
918 */
dma_buf_map_attachment(struct dma_buf_attachment * attach,enum dma_data_direction direction)919 struct sg_table *dma_buf_map_attachment(struct dma_buf_attachment *attach,
920 enum dma_data_direction direction)
921 {
922 struct sg_table *sg_table;
923 int r;
924
925 might_sleep();
926
927 if (WARN_ON(!attach || !attach->dmabuf))
928 return ERR_PTR(-EINVAL);
929
930 if (dma_buf_attachment_is_dynamic(attach))
931 dma_resv_assert_held(attach->dmabuf->resv);
932
933 if (attach->sgt) {
934 /*
935 * Two mappings with different directions for the same
936 * attachment are not allowed.
937 */
938 if (attach->dir != direction &&
939 attach->dir != DMA_BIDIRECTIONAL)
940 return ERR_PTR(-EBUSY);
941
942 return attach->sgt;
943 }
944
945 if (dma_buf_is_dynamic(attach->dmabuf)) {
946 dma_resv_assert_held(attach->dmabuf->resv);
947 if (!IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY)) {
948 r = attach->dmabuf->ops->pin(attach);
949 if (r)
950 return ERR_PTR(r);
951 }
952 }
953
954 sg_table = __map_dma_buf(attach, direction);
955 if (!sg_table)
956 sg_table = ERR_PTR(-ENOMEM);
957
958 if (IS_ERR(sg_table) && dma_buf_is_dynamic(attach->dmabuf) &&
959 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
960 attach->dmabuf->ops->unpin(attach);
961
962 if (!IS_ERR(sg_table) && attach->dmabuf->ops->cache_sgt_mapping) {
963 attach->sgt = sg_table;
964 attach->dir = direction;
965 }
966
967 #ifdef CONFIG_DMA_API_DEBUG
968 if (!IS_ERR(sg_table)) {
969 struct scatterlist *sg;
970 u64 addr;
971 int len;
972 int i;
973
974 for_each_sgtable_dma_sg(sg_table, sg, i) {
975 addr = sg_dma_address(sg);
976 len = sg_dma_len(sg);
977 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(len)) {
978 pr_debug("%s: addr %llx or len %x is not page aligned!\n",
979 __func__, addr, len);
980 }
981 }
982 }
983 #endif /* CONFIG_DMA_API_DEBUG */
984 return sg_table;
985 }
986 EXPORT_SYMBOL_NS_GPL(dma_buf_map_attachment, DMA_BUF);
987
988 /**
989 * dma_buf_unmap_attachment - unmaps and decreases usecount of the buffer;might
990 * deallocate the scatterlist associated. Is a wrapper for unmap_dma_buf() of
991 * dma_buf_ops.
992 * @attach: [in] attachment to unmap buffer from
993 * @sg_table: [in] scatterlist info of the buffer to unmap
994 * @direction: [in] direction of DMA transfer
995 *
996 * This unmaps a DMA mapping for @attached obtained by dma_buf_map_attachment().
997 */
dma_buf_unmap_attachment(struct dma_buf_attachment * attach,struct sg_table * sg_table,enum dma_data_direction direction)998 void dma_buf_unmap_attachment(struct dma_buf_attachment *attach,
999 struct sg_table *sg_table,
1000 enum dma_data_direction direction)
1001 {
1002 might_sleep();
1003
1004 if (WARN_ON(!attach || !attach->dmabuf || !sg_table))
1005 return;
1006
1007 if (dma_buf_attachment_is_dynamic(attach))
1008 dma_resv_assert_held(attach->dmabuf->resv);
1009
1010 if (attach->sgt == sg_table)
1011 return;
1012
1013 if (dma_buf_is_dynamic(attach->dmabuf))
1014 dma_resv_assert_held(attach->dmabuf->resv);
1015
1016 __unmap_dma_buf(attach, sg_table, direction);
1017
1018 if (dma_buf_is_dynamic(attach->dmabuf) &&
1019 !IS_ENABLED(CONFIG_DMABUF_MOVE_NOTIFY))
1020 dma_buf_unpin(attach);
1021 }
1022 EXPORT_SYMBOL_NS_GPL(dma_buf_unmap_attachment, DMA_BUF);
1023
1024 /**
1025 * dma_buf_move_notify - notify attachments that DMA-buf is moving
1026 *
1027 * @dmabuf: [in] buffer which is moving
1028 *
1029 * Informs all attachmenst that they need to destroy and recreated all their
1030 * mappings.
1031 */
dma_buf_move_notify(struct dma_buf * dmabuf)1032 void dma_buf_move_notify(struct dma_buf *dmabuf)
1033 {
1034 struct dma_buf_attachment *attach;
1035
1036 dma_resv_assert_held(dmabuf->resv);
1037
1038 list_for_each_entry(attach, &dmabuf->attachments, node)
1039 if (attach->importer_ops)
1040 attach->importer_ops->move_notify(attach);
1041 }
1042 EXPORT_SYMBOL_NS_GPL(dma_buf_move_notify, DMA_BUF);
1043
1044 /**
1045 * DOC: cpu access
1046 *
1047 * There are mutliple reasons for supporting CPU access to a dma buffer object:
1048 *
1049 * - Fallback operations in the kernel, for example when a device is connected
1050 * over USB and the kernel needs to shuffle the data around first before
1051 * sending it away. Cache coherency is handled by braketing any transactions
1052 * with calls to dma_buf_begin_cpu_access() and dma_buf_end_cpu_access()
1053 * access.
1054 *
1055 * Since for most kernel internal dma-buf accesses need the entire buffer, a
1056 * vmap interface is introduced. Note that on very old 32-bit architectures
1057 * vmalloc space might be limited and result in vmap calls failing.
1058 *
1059 * Interfaces::
1060 *
1061 * void \*dma_buf_vmap(struct dma_buf \*dmabuf)
1062 * void dma_buf_vunmap(struct dma_buf \*dmabuf, void \*vaddr)
1063 *
1064 * The vmap call can fail if there is no vmap support in the exporter, or if
1065 * it runs out of vmalloc space. Note that the dma-buf layer keeps a reference
1066 * count for all vmap access and calls down into the exporter's vmap function
1067 * only when no vmapping exists, and only unmaps it once. Protection against
1068 * concurrent vmap/vunmap calls is provided by taking the &dma_buf.lock mutex.
1069 *
1070 * - For full compatibility on the importer side with existing userspace
1071 * interfaces, which might already support mmap'ing buffers. This is needed in
1072 * many processing pipelines (e.g. feeding a software rendered image into a
1073 * hardware pipeline, thumbnail creation, snapshots, ...). Also, Android's ION
1074 * framework already supported this and for DMA buffer file descriptors to
1075 * replace ION buffers mmap support was needed.
1076 *
1077 * There is no special interfaces, userspace simply calls mmap on the dma-buf
1078 * fd. But like for CPU access there's a need to braket the actual access,
1079 * which is handled by the ioctl (DMA_BUF_IOCTL_SYNC). Note that
1080 * DMA_BUF_IOCTL_SYNC can fail with -EAGAIN or -EINTR, in which case it must
1081 * be restarted.
1082 *
1083 * Some systems might need some sort of cache coherency management e.g. when
1084 * CPU and GPU domains are being accessed through dma-buf at the same time.
1085 * To circumvent this problem there are begin/end coherency markers, that
1086 * forward directly to existing dma-buf device drivers vfunc hooks. Userspace
1087 * can make use of those markers through the DMA_BUF_IOCTL_SYNC ioctl. The
1088 * sequence would be used like following:
1089 *
1090 * - mmap dma-buf fd
1091 * - for each drawing/upload cycle in CPU 1. SYNC_START ioctl, 2. read/write
1092 * to mmap area 3. SYNC_END ioctl. This can be repeated as often as you
1093 * want (with the new data being consumed by say the GPU or the scanout
1094 * device)
1095 * - munmap once you don't need the buffer any more
1096 *
1097 * For correctness and optimal performance, it is always required to use
1098 * SYNC_START and SYNC_END before and after, respectively, when accessing the
1099 * mapped address. Userspace cannot rely on coherent access, even when there
1100 * are systems where it just works without calling these ioctls.
1101 *
1102 * - And as a CPU fallback in userspace processing pipelines.
1103 *
1104 * Similar to the motivation for kernel cpu access it is again important that
1105 * the userspace code of a given importing subsystem can use the same
1106 * interfaces with a imported dma-buf buffer object as with a native buffer
1107 * object. This is especially important for drm where the userspace part of
1108 * contemporary OpenGL, X, and other drivers is huge, and reworking them to
1109 * use a different way to mmap a buffer rather invasive.
1110 *
1111 * The assumption in the current dma-buf interfaces is that redirecting the
1112 * initial mmap is all that's needed. A survey of some of the existing
1113 * subsystems shows that no driver seems to do any nefarious thing like
1114 * syncing up with outstanding asynchronous processing on the device or
1115 * allocating special resources at fault time. So hopefully this is good
1116 * enough, since adding interfaces to intercept pagefaults and allow pte
1117 * shootdowns would increase the complexity quite a bit.
1118 *
1119 * Interface::
1120 *
1121 * int dma_buf_mmap(struct dma_buf \*, struct vm_area_struct \*,
1122 * unsigned long);
1123 *
1124 * If the importing subsystem simply provides a special-purpose mmap call to
1125 * set up a mapping in userspace, calling do_mmap with &dma_buf.file will
1126 * equally achieve that for a dma-buf object.
1127 */
1128
__dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1129 static int __dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1130 enum dma_data_direction direction)
1131 {
1132 bool write = (direction == DMA_BIDIRECTIONAL ||
1133 direction == DMA_TO_DEVICE);
1134 struct dma_resv *resv = dmabuf->resv;
1135 long ret;
1136
1137 /* Wait on any implicit rendering fences */
1138 ret = dma_resv_wait_timeout(resv, write, true, MAX_SCHEDULE_TIMEOUT);
1139 if (ret < 0)
1140 return ret;
1141
1142 return 0;
1143 }
1144
1145 /**
1146 * dma_buf_begin_cpu_access - Must be called before accessing a dma_buf from the
1147 * cpu in the kernel context. Calls begin_cpu_access to allow exporter-specific
1148 * preparations. Coherency is only guaranteed in the specified range for the
1149 * specified access direction.
1150 * @dmabuf: [in] buffer to prepare cpu access for.
1151 * @direction: [in] length of range for cpu access.
1152 *
1153 * After the cpu access is complete the caller should call
1154 * dma_buf_end_cpu_access(). Only when cpu access is braketed by both calls is
1155 * it guaranteed to be coherent with other DMA access.
1156 *
1157 * This function will also wait for any DMA transactions tracked through
1158 * implicit synchronization in &dma_buf.resv. For DMA transactions with explicit
1159 * synchronization this function will only ensure cache coherency, callers must
1160 * ensure synchronization with such DMA transactions on their own.
1161 *
1162 * Can return negative error values, returns 0 on success.
1163 */
dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1164 int dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
1165 enum dma_data_direction direction)
1166 {
1167 int ret = 0;
1168
1169 if (WARN_ON(!dmabuf))
1170 return -EINVAL;
1171
1172 might_lock(&dmabuf->resv->lock.base);
1173
1174 if (dmabuf->ops->begin_cpu_access)
1175 ret = dmabuf->ops->begin_cpu_access(dmabuf, direction);
1176
1177 /* Ensure that all fences are waited upon - but we first allow
1178 * the native handler the chance to do so more efficiently if it
1179 * chooses. A double invocation here will be reasonably cheap no-op.
1180 */
1181 if (ret == 0)
1182 ret = __dma_buf_begin_cpu_access(dmabuf, direction);
1183
1184 return ret;
1185 }
1186 EXPORT_SYMBOL_NS_GPL(dma_buf_begin_cpu_access, DMA_BUF);
1187
1188 /**
1189 * dma_buf_end_cpu_access - Must be called after accessing a dma_buf from the
1190 * cpu in the kernel context. Calls end_cpu_access to allow exporter-specific
1191 * actions. Coherency is only guaranteed in the specified range for the
1192 * specified access direction.
1193 * @dmabuf: [in] buffer to complete cpu access for.
1194 * @direction: [in] length of range for cpu access.
1195 *
1196 * This terminates CPU access started with dma_buf_begin_cpu_access().
1197 *
1198 * Can return negative error values, returns 0 on success.
1199 */
dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)1200 int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
1201 enum dma_data_direction direction)
1202 {
1203 int ret = 0;
1204
1205 WARN_ON(!dmabuf);
1206
1207 might_lock(&dmabuf->resv->lock.base);
1208
1209 if (dmabuf->ops->end_cpu_access)
1210 ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
1211
1212 return ret;
1213 }
1214 EXPORT_SYMBOL_NS_GPL(dma_buf_end_cpu_access, DMA_BUF);
1215
1216
1217 /**
1218 * dma_buf_mmap - Setup up a userspace mmap with the given vma
1219 * @dmabuf: [in] buffer that should back the vma
1220 * @vma: [in] vma for the mmap
1221 * @pgoff: [in] offset in pages where this mmap should start within the
1222 * dma-buf buffer.
1223 *
1224 * This function adjusts the passed in vma so that it points at the file of the
1225 * dma_buf operation. It also adjusts the starting pgoff and does bounds
1226 * checking on the size of the vma. Then it calls the exporters mmap function to
1227 * set up the mapping.
1228 *
1229 * Can return negative error values, returns 0 on success.
1230 */
dma_buf_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma,unsigned long pgoff)1231 int dma_buf_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma,
1232 unsigned long pgoff)
1233 {
1234 if (WARN_ON(!dmabuf || !vma))
1235 return -EINVAL;
1236
1237 /* check if buffer supports mmap */
1238 if (!dmabuf->ops->mmap)
1239 return -EINVAL;
1240
1241 /* check for offset overflow */
1242 if (pgoff + vma_pages(vma) < pgoff)
1243 return -EOVERFLOW;
1244
1245 /* check for overflowing the buffer's size */
1246 if (pgoff + vma_pages(vma) >
1247 dmabuf->size >> PAGE_SHIFT)
1248 return -EINVAL;
1249
1250 /* readjust the vma */
1251 vma_set_file(vma, dmabuf->file);
1252 vma->vm_pgoff = pgoff;
1253
1254 return dmabuf->ops->mmap(dmabuf, vma);
1255 }
1256 EXPORT_SYMBOL_NS_GPL(dma_buf_mmap, DMA_BUF);
1257
1258 /**
1259 * dma_buf_vmap - Create virtual mapping for the buffer object into kernel
1260 * address space. Same restrictions as for vmap and friends apply.
1261 * @dmabuf: [in] buffer to vmap
1262 * @map: [out] returns the vmap pointer
1263 *
1264 * This call may fail due to lack of virtual mapping address space.
1265 * These calls are optional in drivers. The intended use for them
1266 * is for mapping objects linear in kernel space for high use objects.
1267 *
1268 * To ensure coherency users must call dma_buf_begin_cpu_access() and
1269 * dma_buf_end_cpu_access() around any cpu access performed through this
1270 * mapping.
1271 *
1272 * Returns 0 on success, or a negative errno code otherwise.
1273 */
dma_buf_vmap(struct dma_buf * dmabuf,struct dma_buf_map * map)1274 int dma_buf_vmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1275 {
1276 struct dma_buf_map ptr;
1277 int ret = 0;
1278
1279 dma_buf_map_clear(map);
1280
1281 if (WARN_ON(!dmabuf))
1282 return -EINVAL;
1283
1284 if (!dmabuf->ops->vmap)
1285 return -EINVAL;
1286
1287 mutex_lock(&dmabuf->lock);
1288 if (dmabuf->vmapping_counter) {
1289 dmabuf->vmapping_counter++;
1290 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1291 *map = dmabuf->vmap_ptr;
1292 goto out_unlock;
1293 }
1294
1295 BUG_ON(dma_buf_map_is_set(&dmabuf->vmap_ptr));
1296
1297 ret = dmabuf->ops->vmap(dmabuf, &ptr);
1298 if (WARN_ON_ONCE(ret))
1299 goto out_unlock;
1300
1301 dmabuf->vmap_ptr = ptr;
1302 dmabuf->vmapping_counter = 1;
1303
1304 *map = dmabuf->vmap_ptr;
1305
1306 out_unlock:
1307 mutex_unlock(&dmabuf->lock);
1308 return ret;
1309 }
1310 EXPORT_SYMBOL_NS_GPL(dma_buf_vmap, DMA_BUF);
1311
1312 /**
1313 * dma_buf_vunmap - Unmap a vmap obtained by dma_buf_vmap.
1314 * @dmabuf: [in] buffer to vunmap
1315 * @map: [in] vmap pointer to vunmap
1316 */
dma_buf_vunmap(struct dma_buf * dmabuf,struct dma_buf_map * map)1317 void dma_buf_vunmap(struct dma_buf *dmabuf, struct dma_buf_map *map)
1318 {
1319 if (WARN_ON(!dmabuf))
1320 return;
1321
1322 BUG_ON(dma_buf_map_is_null(&dmabuf->vmap_ptr));
1323 BUG_ON(dmabuf->vmapping_counter == 0);
1324 BUG_ON(!dma_buf_map_is_equal(&dmabuf->vmap_ptr, map));
1325
1326 mutex_lock(&dmabuf->lock);
1327 if (--dmabuf->vmapping_counter == 0) {
1328 if (dmabuf->ops->vunmap)
1329 dmabuf->ops->vunmap(dmabuf, map);
1330 dma_buf_map_clear(&dmabuf->vmap_ptr);
1331 }
1332 mutex_unlock(&dmabuf->lock);
1333 }
1334 EXPORT_SYMBOL_NS_GPL(dma_buf_vunmap, DMA_BUF);
1335
1336 #ifdef CONFIG_DEBUG_FS
dma_buf_debug_show(struct seq_file * s,void * unused)1337 static int dma_buf_debug_show(struct seq_file *s, void *unused)
1338 {
1339 struct dma_buf *buf_obj;
1340 struct dma_buf_attachment *attach_obj;
1341 struct dma_resv_iter cursor;
1342 struct dma_fence *fence;
1343 int count = 0, attach_count;
1344 size_t size = 0;
1345 int ret;
1346
1347 ret = mutex_lock_interruptible(&db_list.lock);
1348
1349 if (ret)
1350 return ret;
1351
1352 seq_puts(s, "\nDma-buf Objects:\n");
1353 seq_printf(s, "%-8s\t%-8s\t%-8s\t%-8s\texp_name\t%-8s\n",
1354 "size", "flags", "mode", "count", "ino");
1355
1356 list_for_each_entry(buf_obj, &db_list.head, list_node) {
1357
1358 ret = dma_resv_lock_interruptible(buf_obj->resv, NULL);
1359 if (ret)
1360 goto error_unlock;
1361
1362
1363 spin_lock(&buf_obj->name_lock);
1364 seq_printf(s, "%08zu\t%08x\t%08x\t%08ld\t%s\t%08lu\t%s\n",
1365 buf_obj->size,
1366 buf_obj->file->f_flags, buf_obj->file->f_mode,
1367 file_count(buf_obj->file),
1368 buf_obj->exp_name,
1369 file_inode(buf_obj->file)->i_ino,
1370 buf_obj->name ?: "");
1371 spin_unlock(&buf_obj->name_lock);
1372
1373 dma_resv_for_each_fence(&cursor, buf_obj->resv, true, fence) {
1374 seq_printf(s, "\t%s fence: %s %s %ssignalled\n",
1375 dma_resv_iter_is_exclusive(&cursor) ?
1376 "Exclusive" : "Shared",
1377 fence->ops->get_driver_name(fence),
1378 fence->ops->get_timeline_name(fence),
1379 dma_fence_is_signaled(fence) ? "" : "un");
1380 }
1381
1382 seq_puts(s, "\tAttached Devices:\n");
1383 attach_count = 0;
1384
1385 list_for_each_entry(attach_obj, &buf_obj->attachments, node) {
1386 seq_printf(s, "\t%s\n", dev_name(attach_obj->dev));
1387 attach_count++;
1388 }
1389 dma_resv_unlock(buf_obj->resv);
1390
1391 seq_printf(s, "Total %d devices attached\n\n",
1392 attach_count);
1393
1394 count++;
1395 size += buf_obj->size;
1396 }
1397
1398 seq_printf(s, "\nTotal %d objects, %zu bytes\n", count, size);
1399
1400 mutex_unlock(&db_list.lock);
1401 return 0;
1402
1403 error_unlock:
1404 mutex_unlock(&db_list.lock);
1405 return ret;
1406 }
1407
1408 DEFINE_SHOW_ATTRIBUTE(dma_buf_debug);
1409
1410 static struct dentry *dma_buf_debugfs_dir;
1411
dma_buf_init_debugfs(void)1412 static int dma_buf_init_debugfs(void)
1413 {
1414 struct dentry *d;
1415 int err = 0;
1416
1417 d = debugfs_create_dir("dma_buf", NULL);
1418 if (IS_ERR(d))
1419 return PTR_ERR(d);
1420
1421 dma_buf_debugfs_dir = d;
1422
1423 d = debugfs_create_file("bufinfo", S_IRUGO, dma_buf_debugfs_dir,
1424 NULL, &dma_buf_debug_fops);
1425 if (IS_ERR(d)) {
1426 pr_debug("dma_buf: debugfs: failed to create node bufinfo\n");
1427 debugfs_remove_recursive(dma_buf_debugfs_dir);
1428 dma_buf_debugfs_dir = NULL;
1429 err = PTR_ERR(d);
1430 }
1431
1432 return err;
1433 }
1434
dma_buf_uninit_debugfs(void)1435 static void dma_buf_uninit_debugfs(void)
1436 {
1437 debugfs_remove_recursive(dma_buf_debugfs_dir);
1438 }
1439 #else
dma_buf_init_debugfs(void)1440 static inline int dma_buf_init_debugfs(void)
1441 {
1442 return 0;
1443 }
dma_buf_uninit_debugfs(void)1444 static inline void dma_buf_uninit_debugfs(void)
1445 {
1446 }
1447 #endif
1448
dma_buf_init(void)1449 static int __init dma_buf_init(void)
1450 {
1451 int ret;
1452
1453 ret = dma_buf_init_sysfs_statistics();
1454 if (ret)
1455 return ret;
1456
1457 dma_buf_mnt = kern_mount(&dma_buf_fs_type);
1458 if (IS_ERR(dma_buf_mnt))
1459 return PTR_ERR(dma_buf_mnt);
1460
1461 mutex_init(&db_list.lock);
1462 INIT_LIST_HEAD(&db_list.head);
1463 dma_buf_init_debugfs();
1464 return 0;
1465 }
1466 subsys_initcall(dma_buf_init);
1467
dma_buf_deinit(void)1468 static void __exit dma_buf_deinit(void)
1469 {
1470 dma_buf_uninit_debugfs();
1471 kern_unmount(dma_buf_mnt);
1472 dma_buf_uninit_sysfs_statistics();
1473 }
1474 __exitcall(dma_buf_deinit);
1475