1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include "direct.h"
17
18 /*
19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
20 * it for entirely different regions. In that case the arch code needs to
21 * override the variable below for dma-direct to work properly.
22 */
23 unsigned int zone_dma_bits __ro_after_init = 24;
24
phys_to_dma_direct(struct device * dev,phys_addr_t phys)25 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
26 phys_addr_t phys)
27 {
28 if (force_dma_unencrypted(dev))
29 return phys_to_dma_unencrypted(dev, phys);
30 return phys_to_dma(dev, phys);
31 }
32
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)33 static inline struct page *dma_direct_to_page(struct device *dev,
34 dma_addr_t dma_addr)
35 {
36 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
37 }
38
dma_direct_get_required_mask(struct device * dev)39 u64 dma_direct_get_required_mask(struct device *dev)
40 {
41 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
42 u64 max_dma = phys_to_dma_direct(dev, phys);
43
44 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
45 }
46
dma_direct_optimal_gfp_mask(struct device * dev,u64 dma_mask,u64 * phys_limit)47 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
48 u64 *phys_limit)
49 {
50 u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
51
52 /*
53 * Optimistically try the zone that the physical address mask falls
54 * into first. If that returns memory that isn't actually addressable
55 * we will fallback to the next lower zone and try again.
56 *
57 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
58 * zones.
59 */
60 *phys_limit = dma_to_phys(dev, dma_limit);
61 if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
62 return GFP_DMA;
63 if (*phys_limit <= DMA_BIT_MASK(32))
64 return GFP_DMA32;
65 return 0;
66 }
67
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)68 static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
69 {
70 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
71
72 if (dma_addr == DMA_MAPPING_ERROR)
73 return false;
74 return dma_addr + size - 1 <=
75 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
76 }
77
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)78 static void __dma_direct_free_pages(struct device *dev, struct page *page,
79 size_t size)
80 {
81 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
82 swiotlb_free(dev, page, size))
83 return;
84 dma_free_contiguous(dev, page, size);
85 }
86
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp)87 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
88 gfp_t gfp)
89 {
90 int node = dev_to_node(dev);
91 struct page *page = NULL;
92 u64 phys_limit;
93
94 WARN_ON_ONCE(!PAGE_ALIGNED(size));
95
96 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
97 &phys_limit);
98 if (IS_ENABLED(CONFIG_DMA_RESTRICTED_POOL) &&
99 is_swiotlb_for_alloc(dev)) {
100 page = swiotlb_alloc(dev, size);
101 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
102 __dma_direct_free_pages(dev, page, size);
103 return NULL;
104 }
105 return page;
106 }
107
108 page = dma_alloc_contiguous(dev, size, gfp);
109 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110 dma_free_contiguous(dev, page, size);
111 page = NULL;
112 }
113 again:
114 if (!page)
115 page = alloc_pages_node(node, gfp, get_order(size));
116 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
117 dma_free_contiguous(dev, page, size);
118 page = NULL;
119
120 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
121 phys_limit < DMA_BIT_MASK(64) &&
122 !(gfp & (GFP_DMA32 | GFP_DMA))) {
123 gfp |= GFP_DMA32;
124 goto again;
125 }
126
127 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
128 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
129 goto again;
130 }
131 }
132
133 return page;
134 }
135
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)136 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
137 dma_addr_t *dma_handle, gfp_t gfp)
138 {
139 struct page *page;
140 u64 phys_mask;
141 void *ret;
142
143 gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
144 &phys_mask);
145 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
146 if (!page)
147 return NULL;
148 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
149 return ret;
150 }
151
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)152 void *dma_direct_alloc(struct device *dev, size_t size,
153 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
154 {
155 struct page *page;
156 void *ret;
157 int err;
158
159 size = PAGE_ALIGN(size);
160 if (attrs & DMA_ATTR_NO_WARN)
161 gfp |= __GFP_NOWARN;
162
163 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
164 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
165 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
166 if (!page)
167 return NULL;
168 /* remove any dirty cache lines on the kernel alias */
169 if (!PageHighMem(page))
170 arch_dma_prep_coherent(page, size);
171 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
172 /* return the page pointer as the opaque cookie */
173 return page;
174 }
175
176 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
177 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
178 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
179 !dev_is_dma_coherent(dev) &&
180 !is_swiotlb_for_alloc(dev))
181 return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
182
183 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
184 !dev_is_dma_coherent(dev))
185 return dma_alloc_from_global_coherent(dev, size, dma_handle);
186
187 /*
188 * Remapping or decrypting memory may block. If either is required and
189 * we can't block, allocate the memory from the atomic pools.
190 * If restricted DMA (i.e., is_swiotlb_for_alloc) is required, one must
191 * set up another device coherent pool by shared-dma-pool and use
192 * dma_alloc_from_dev_coherent instead.
193 */
194 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
195 !gfpflags_allow_blocking(gfp) &&
196 (force_dma_unencrypted(dev) ||
197 (IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
198 !dev_is_dma_coherent(dev))) &&
199 !is_swiotlb_for_alloc(dev))
200 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
201
202 /* we always manually zero the memory once we are done */
203 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO);
204 if (!page)
205 return NULL;
206
207 if ((IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
208 !dev_is_dma_coherent(dev)) ||
209 (IS_ENABLED(CONFIG_DMA_REMAP) && PageHighMem(page))) {
210 /* remove any dirty cache lines on the kernel alias */
211 arch_dma_prep_coherent(page, size);
212
213 /* create a coherent mapping */
214 ret = dma_common_contiguous_remap(page, size,
215 dma_pgprot(dev, PAGE_KERNEL, attrs),
216 __builtin_return_address(0));
217 if (!ret)
218 goto out_free_pages;
219 if (force_dma_unencrypted(dev)) {
220 err = set_memory_decrypted((unsigned long)ret,
221 1 << get_order(size));
222 if (err)
223 goto out_free_pages;
224 }
225 memset(ret, 0, size);
226 goto done;
227 }
228
229 if (PageHighMem(page)) {
230 /*
231 * Depending on the cma= arguments and per-arch setup
232 * dma_alloc_contiguous could return highmem pages.
233 * Without remapping there is no way to return them here,
234 * so log an error and fail.
235 */
236 dev_info(dev, "Rejecting highmem page from CMA.\n");
237 goto out_free_pages;
238 }
239
240 ret = page_address(page);
241 if (force_dma_unencrypted(dev)) {
242 err = set_memory_decrypted((unsigned long)ret,
243 1 << get_order(size));
244 if (err)
245 goto out_free_pages;
246 }
247
248 memset(ret, 0, size);
249
250 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
251 !dev_is_dma_coherent(dev)) {
252 arch_dma_prep_coherent(page, size);
253 ret = arch_dma_set_uncached(ret, size);
254 if (IS_ERR(ret))
255 goto out_encrypt_pages;
256 }
257 done:
258 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
259 return ret;
260
261 out_encrypt_pages:
262 if (force_dma_unencrypted(dev)) {
263 err = set_memory_encrypted((unsigned long)page_address(page),
264 1 << get_order(size));
265 /* If memory cannot be re-encrypted, it must be leaked */
266 if (err)
267 return NULL;
268 }
269 out_free_pages:
270 __dma_direct_free_pages(dev, page, size);
271 return NULL;
272 }
273
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)274 void dma_direct_free(struct device *dev, size_t size,
275 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
276 {
277 unsigned int page_order = get_order(size);
278
279 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
280 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
281 /* cpu_addr is a struct page cookie, not a kernel address */
282 dma_free_contiguous(dev, cpu_addr, size);
283 return;
284 }
285
286 if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
287 !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
288 !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
289 !dev_is_dma_coherent(dev) &&
290 !is_swiotlb_for_alloc(dev)) {
291 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
292 return;
293 }
294
295 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
296 !dev_is_dma_coherent(dev)) {
297 if (!dma_release_from_global_coherent(page_order, cpu_addr))
298 WARN_ON_ONCE(1);
299 return;
300 }
301
302 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
303 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
304 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
305 return;
306
307 if (force_dma_unencrypted(dev))
308 set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
309
310 if (IS_ENABLED(CONFIG_DMA_REMAP) && is_vmalloc_addr(cpu_addr))
311 vunmap(cpu_addr);
312 else if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
313 arch_dma_clear_uncached(cpu_addr, size);
314
315 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
316 }
317
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)318 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
319 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
320 {
321 struct page *page;
322 void *ret;
323
324 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
325 force_dma_unencrypted(dev) && !gfpflags_allow_blocking(gfp) &&
326 !is_swiotlb_for_alloc(dev))
327 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
328
329 page = __dma_direct_alloc_pages(dev, size, gfp);
330 if (!page)
331 return NULL;
332 if (PageHighMem(page)) {
333 /*
334 * Depending on the cma= arguments and per-arch setup
335 * dma_alloc_contiguous could return highmem pages.
336 * Without remapping there is no way to return them here,
337 * so log an error and fail.
338 */
339 dev_info(dev, "Rejecting highmem page from CMA.\n");
340 goto out_free_pages;
341 }
342
343 ret = page_address(page);
344 if (force_dma_unencrypted(dev)) {
345 if (set_memory_decrypted((unsigned long)ret,
346 1 << get_order(size)))
347 goto out_free_pages;
348 }
349 memset(ret, 0, size);
350 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
351 return page;
352 out_free_pages:
353 __dma_direct_free_pages(dev, page, size);
354 return NULL;
355 }
356
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)357 void dma_direct_free_pages(struct device *dev, size_t size,
358 struct page *page, dma_addr_t dma_addr,
359 enum dma_data_direction dir)
360 {
361 unsigned int page_order = get_order(size);
362 void *vaddr = page_address(page);
363
364 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
365 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
366 dma_free_from_pool(dev, vaddr, size))
367 return;
368
369 if (force_dma_unencrypted(dev))
370 set_memory_encrypted((unsigned long)vaddr, 1 << page_order);
371
372 __dma_direct_free_pages(dev, page, size);
373 }
374
375 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
376 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)377 void dma_direct_sync_sg_for_device(struct device *dev,
378 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
379 {
380 struct scatterlist *sg;
381 int i;
382
383 for_each_sg(sgl, sg, nents, i) {
384 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
385
386 if (unlikely(is_swiotlb_buffer(dev, paddr)))
387 swiotlb_sync_single_for_device(dev, paddr, sg->length,
388 dir);
389
390 if (!dev_is_dma_coherent(dev))
391 arch_sync_dma_for_device(paddr, sg->length,
392 dir);
393 }
394 }
395 #endif
396
397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
398 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
399 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)400 void dma_direct_sync_sg_for_cpu(struct device *dev,
401 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
402 {
403 struct scatterlist *sg;
404 int i;
405
406 for_each_sg(sgl, sg, nents, i) {
407 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
408
409 if (!dev_is_dma_coherent(dev))
410 arch_sync_dma_for_cpu(paddr, sg->length, dir);
411
412 if (unlikely(is_swiotlb_buffer(dev, paddr)))
413 swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
414 dir);
415
416 if (dir == DMA_FROM_DEVICE)
417 arch_dma_mark_clean(paddr, sg->length);
418 }
419
420 if (!dev_is_dma_coherent(dev))
421 arch_sync_dma_for_cpu_all();
422 }
423
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)424 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
425 int nents, enum dma_data_direction dir, unsigned long attrs)
426 {
427 struct scatterlist *sg;
428 int i;
429
430 for_each_sg(sgl, sg, nents, i)
431 dma_direct_unmap_page(dev, sg->dma_address, sg_dma_len(sg), dir,
432 attrs);
433 }
434 #endif
435
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)436 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
437 enum dma_data_direction dir, unsigned long attrs)
438 {
439 int i;
440 struct scatterlist *sg;
441
442 for_each_sg(sgl, sg, nents, i) {
443 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
444 sg->offset, sg->length, dir, attrs);
445 if (sg->dma_address == DMA_MAPPING_ERROR)
446 goto out_unmap;
447 sg_dma_len(sg) = sg->length;
448 }
449
450 return nents;
451
452 out_unmap:
453 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
454 return -EIO;
455 }
456
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)457 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
458 size_t size, enum dma_data_direction dir, unsigned long attrs)
459 {
460 dma_addr_t dma_addr = paddr;
461
462 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
463 dev_err_once(dev,
464 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
465 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
466 WARN_ON_ONCE(1);
467 return DMA_MAPPING_ERROR;
468 }
469
470 return dma_addr;
471 }
472
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)473 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
474 void *cpu_addr, dma_addr_t dma_addr, size_t size,
475 unsigned long attrs)
476 {
477 struct page *page = dma_direct_to_page(dev, dma_addr);
478 int ret;
479
480 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
481 if (!ret)
482 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
483 return ret;
484 }
485
dma_direct_can_mmap(struct device * dev)486 bool dma_direct_can_mmap(struct device *dev)
487 {
488 return dev_is_dma_coherent(dev) ||
489 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
490 }
491
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)492 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
493 void *cpu_addr, dma_addr_t dma_addr, size_t size,
494 unsigned long attrs)
495 {
496 unsigned long user_count = vma_pages(vma);
497 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
498 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
499 int ret = -ENXIO;
500
501 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
502
503 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
504 return ret;
505 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
506 return ret;
507
508 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
509 return -ENXIO;
510 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
511 user_count << PAGE_SHIFT, vma->vm_page_prot);
512 }
513
dma_direct_supported(struct device * dev,u64 mask)514 int dma_direct_supported(struct device *dev, u64 mask)
515 {
516 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
517
518 /*
519 * Because 32-bit DMA masks are so common we expect every architecture
520 * to be able to satisfy them - either by not supporting more physical
521 * memory, or by providing a ZONE_DMA32. If neither is the case, the
522 * architecture needs to use an IOMMU instead of the direct mapping.
523 */
524 if (mask >= DMA_BIT_MASK(32))
525 return 1;
526
527 /*
528 * This check needs to be against the actual bit mask value, so use
529 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
530 * part of the check.
531 */
532 if (IS_ENABLED(CONFIG_ZONE_DMA))
533 min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
534 return mask >= phys_to_dma_unencrypted(dev, min_mask);
535 }
536
dma_direct_max_mapping_size(struct device * dev)537 size_t dma_direct_max_mapping_size(struct device *dev)
538 {
539 /* If SWIOTLB is active, use its maximum mapping size */
540 if (is_swiotlb_active(dev) &&
541 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
542 return swiotlb_max_mapping_size(dev);
543 return SIZE_MAX;
544 }
545
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)546 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
547 {
548 return !dev_is_dma_coherent(dev) ||
549 is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
550 }
551
552 /**
553 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
554 * @dev: device pointer; needed to "own" the alloced memory.
555 * @cpu_start: beginning of memory region covered by this offset.
556 * @dma_start: beginning of DMA/PCI region covered by this offset.
557 * @size: size of the region.
558 *
559 * This is for the simple case of a uniform offset which cannot
560 * be discovered by "dma-ranges".
561 *
562 * It returns -ENOMEM if out of memory, -EINVAL if a map
563 * already exists, 0 otherwise.
564 *
565 * Note: any call to this from a driver is a bug. The mapping needs
566 * to be described by the device tree or other firmware interfaces.
567 */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)568 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
569 dma_addr_t dma_start, u64 size)
570 {
571 struct bus_dma_region *map;
572 u64 offset = (u64)cpu_start - (u64)dma_start;
573
574 if (dev->dma_range_map) {
575 dev_err(dev, "attempt to add DMA range to existing map\n");
576 return -EINVAL;
577 }
578
579 if (!offset)
580 return 0;
581
582 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
583 if (!map)
584 return -ENOMEM;
585 map[0].cpu_start = cpu_start;
586 map[0].dma_start = dma_start;
587 map[0].offset = offset;
588 map[0].size = size;
589 dev->dma_range_map = map;
590 return 0;
591 }
592