1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
4 * Copyright (C) 2013 Red Hat
5 * Author: Rob Clark <robdclark@gmail.com>
6 */
7
8 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
9 #include <linux/debugfs.h>
10 #include <linux/kthread.h>
11 #include <linux/seq_file.h>
12
13 #include <drm/drm_crtc.h>
14 #include <drm/drm_file.h>
15 #include <drm/drm_probe_helper.h>
16
17 #include "msm_drv.h"
18 #include "dpu_kms.h"
19 #include "dpu_hwio.h"
20 #include "dpu_hw_catalog.h"
21 #include "dpu_hw_intf.h"
22 #include "dpu_hw_ctl.h"
23 #include "dpu_hw_dspp.h"
24 #include "dpu_formats.h"
25 #include "dpu_encoder_phys.h"
26 #include "dpu_crtc.h"
27 #include "dpu_trace.h"
28 #include "dpu_core_irq.h"
29 #include "disp/msm_disp_snapshot.h"
30
31 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
32 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
33
34 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
35 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
36
37 #define DPU_DEBUG_PHYS(p, fmt, ...) DRM_DEBUG_ATOMIC("enc%d intf%d pp%d " fmt,\
38 (p) ? (p)->parent->base.id : -1, \
39 (p) ? (p)->intf_idx - INTF_0 : -1, \
40 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
41 ##__VA_ARGS__)
42
43 #define DPU_ERROR_PHYS(p, fmt, ...) DPU_ERROR("enc%d intf%d pp%d " fmt,\
44 (p) ? (p)->parent->base.id : -1, \
45 (p) ? (p)->intf_idx - INTF_0 : -1, \
46 (p) ? ((p)->hw_pp ? (p)->hw_pp->idx - PINGPONG_0 : -1) : -1, \
47 ##__VA_ARGS__)
48
49 /*
50 * Two to anticipate panels that can do cmd/vid dynamic switching
51 * plan is to create all possible physical encoder types, and switch between
52 * them at runtime
53 */
54 #define NUM_PHYS_ENCODER_TYPES 2
55
56 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
57 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
58
59 #define MAX_CHANNELS_PER_ENC 2
60
61 #define IDLE_SHORT_TIMEOUT 1
62
63 #define MAX_HDISPLAY_SPLIT 1080
64
65 /* timeout in frames waiting for frame done */
66 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
67
68 /**
69 * enum dpu_enc_rc_events - events for resource control state machine
70 * @DPU_ENC_RC_EVENT_KICKOFF:
71 * This event happens at NORMAL priority.
72 * Event that signals the start of the transfer. When this event is
73 * received, enable MDP/DSI core clocks. Regardless of the previous
74 * state, the resource should be in ON state at the end of this event.
75 * @DPU_ENC_RC_EVENT_FRAME_DONE:
76 * This event happens at INTERRUPT level.
77 * Event signals the end of the data transfer after the PP FRAME_DONE
78 * event. At the end of this event, a delayed work is scheduled to go to
79 * IDLE_PC state after IDLE_TIMEOUT time.
80 * @DPU_ENC_RC_EVENT_PRE_STOP:
81 * This event happens at NORMAL priority.
82 * This event, when received during the ON state, leave the RC STATE
83 * in the PRE_OFF state. It should be followed by the STOP event as
84 * part of encoder disable.
85 * If received during IDLE or OFF states, it will do nothing.
86 * @DPU_ENC_RC_EVENT_STOP:
87 * This event happens at NORMAL priority.
88 * When this event is received, disable all the MDP/DSI core clocks, and
89 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
90 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
91 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
92 * Resource state should be in OFF at the end of the event.
93 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
94 * This event happens at NORMAL priority from a work item.
95 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
96 * This would disable MDP/DSI core clocks and change the resource state
97 * to IDLE.
98 */
99 enum dpu_enc_rc_events {
100 DPU_ENC_RC_EVENT_KICKOFF = 1,
101 DPU_ENC_RC_EVENT_FRAME_DONE,
102 DPU_ENC_RC_EVENT_PRE_STOP,
103 DPU_ENC_RC_EVENT_STOP,
104 DPU_ENC_RC_EVENT_ENTER_IDLE
105 };
106
107 /*
108 * enum dpu_enc_rc_states - states that the resource control maintains
109 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
110 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
111 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
112 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
113 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
114 */
115 enum dpu_enc_rc_states {
116 DPU_ENC_RC_STATE_OFF,
117 DPU_ENC_RC_STATE_PRE_OFF,
118 DPU_ENC_RC_STATE_ON,
119 DPU_ENC_RC_STATE_IDLE
120 };
121
122 /**
123 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
124 * encoders. Virtual encoder manages one "logical" display. Physical
125 * encoders manage one intf block, tied to a specific panel/sub-panel.
126 * Virtual encoder defers as much as possible to the physical encoders.
127 * Virtual encoder registers itself with the DRM Framework as the encoder.
128 * @base: drm_encoder base class for registration with DRM
129 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
130 * @bus_scaling_client: Client handle to the bus scaling interface
131 * @enabled: True if the encoder is active, protected by enc_lock
132 * @num_phys_encs: Actual number of physical encoders contained.
133 * @phys_encs: Container of physical encoders managed.
134 * @cur_master: Pointer to the current master in this mode. Optimization
135 * Only valid after enable. Cleared as disable.
136 * @cur_slave: As above but for the slave encoder.
137 * @hw_pp: Handle to the pingpong blocks used for the display. No.
138 * pingpong blocks can be different than num_phys_encs.
139 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
140 * for partial update right-only cases, such as pingpong
141 * split where virtual pingpong does not generate IRQs
142 * @crtc: Pointer to the currently assigned crtc. Normally you
143 * would use crtc->state->encoder_mask to determine the
144 * link between encoder/crtc. However in this case we need
145 * to track crtc in the disable() hook which is called
146 * _after_ encoder_mask is cleared.
147 * @crtc_kickoff_cb: Callback into CRTC that will flush & start
148 * all CTL paths
149 * @crtc_kickoff_cb_data: Opaque user data given to crtc_kickoff_cb
150 * @debugfs_root: Debug file system root file node
151 * @enc_lock: Lock around physical encoder
152 * create/destroy/enable/disable
153 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
154 * busy processing current command.
155 * Bit0 = phys_encs[0] etc.
156 * @crtc_frame_event_cb: callback handler for frame event
157 * @crtc_frame_event_cb_data: callback handler private data
158 * @frame_done_timeout_ms: frame done timeout in ms
159 * @frame_done_timer: watchdog timer for frame done event
160 * @vsync_event_timer: vsync timer
161 * @disp_info: local copy of msm_display_info struct
162 * @idle_pc_supported: indicate if idle power collaps is supported
163 * @rc_lock: resource control mutex lock to protect
164 * virt encoder over various state changes
165 * @rc_state: resource controller state
166 * @delayed_off_work: delayed worker to schedule disabling of
167 * clks and resources after IDLE_TIMEOUT time.
168 * @vsync_event_work: worker to handle vsync event for autorefresh
169 * @topology: topology of the display
170 * @idle_timeout: idle timeout duration in milliseconds
171 * @dp: msm_dp pointer, for DP encoders
172 */
173 struct dpu_encoder_virt {
174 struct drm_encoder base;
175 spinlock_t enc_spinlock;
176 uint32_t bus_scaling_client;
177
178 bool enabled;
179
180 unsigned int num_phys_encs;
181 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
182 struct dpu_encoder_phys *cur_master;
183 struct dpu_encoder_phys *cur_slave;
184 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
185
186 bool intfs_swapped;
187
188 struct drm_crtc *crtc;
189
190 struct dentry *debugfs_root;
191 struct mutex enc_lock;
192 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193 void (*crtc_frame_event_cb)(void *, u32 event);
194 void *crtc_frame_event_cb_data;
195
196 atomic_t frame_done_timeout_ms;
197 struct timer_list frame_done_timer;
198 struct timer_list vsync_event_timer;
199
200 struct msm_display_info disp_info;
201
202 bool idle_pc_supported;
203 struct mutex rc_lock;
204 enum dpu_enc_rc_states rc_state;
205 struct delayed_work delayed_off_work;
206 struct kthread_work vsync_event_work;
207 struct msm_display_topology topology;
208
209 u32 idle_timeout;
210
211 struct msm_dp *dp;
212 };
213
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)220 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
221 {
222 struct dpu_hw_dither_cfg dither_cfg = { 0 };
223
224 if (!hw_pp->ops.setup_dither)
225 return;
226
227 switch (bpc) {
228 case 6:
229 dither_cfg.c0_bitdepth = 6;
230 dither_cfg.c1_bitdepth = 6;
231 dither_cfg.c2_bitdepth = 6;
232 dither_cfg.c3_bitdepth = 6;
233 dither_cfg.temporal_en = 0;
234 break;
235 default:
236 hw_pp->ops.setup_dither(hw_pp, NULL);
237 return;
238 }
239
240 memcpy(&dither_cfg.matrix, dither_matrix,
241 sizeof(u32) * DITHER_MATRIX_SZ);
242
243 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
244 }
245
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)246 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
247 enum dpu_intr_idx intr_idx)
248 {
249 DRM_ERROR("irq timeout id=%u, intf=%d, pp=%d, intr=%d\n",
250 DRMID(phys_enc->parent), phys_enc->intf_idx - INTF_0,
251 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
252
253 if (phys_enc->parent_ops->handle_frame_done)
254 phys_enc->parent_ops->handle_frame_done(
255 phys_enc->parent, phys_enc,
256 DPU_ENCODER_FRAME_EVENT_ERROR);
257 }
258
259 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
260 u32 irq_idx, struct dpu_encoder_wait_info *info);
261
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx,struct dpu_encoder_wait_info * wait_info)262 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
263 enum dpu_intr_idx intr_idx,
264 struct dpu_encoder_wait_info *wait_info)
265 {
266 struct dpu_encoder_irq *irq;
267 u32 irq_status;
268 int ret;
269
270 if (!wait_info || intr_idx >= INTR_IDX_MAX) {
271 DPU_ERROR("invalid params\n");
272 return -EINVAL;
273 }
274 irq = &phys_enc->irq[intr_idx];
275
276 /* note: do master / slave checking outside */
277
278 /* return EWOULDBLOCK since we know the wait isn't necessary */
279 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
280 DRM_ERROR("encoder is disabled id=%u, intr=%d, irq=%d\n",
281 DRMID(phys_enc->parent), intr_idx,
282 irq->irq_idx);
283 return -EWOULDBLOCK;
284 }
285
286 if (irq->irq_idx < 0) {
287 DRM_DEBUG_KMS("skip irq wait id=%u, intr=%d, irq=%s\n",
288 DRMID(phys_enc->parent), intr_idx,
289 irq->name);
290 return 0;
291 }
292
293 DRM_DEBUG_KMS("id=%u, intr=%d, irq=%d, pp=%d, pending_cnt=%d\n",
294 DRMID(phys_enc->parent), intr_idx,
295 irq->irq_idx, phys_enc->hw_pp->idx - PINGPONG_0,
296 atomic_read(wait_info->atomic_cnt));
297
298 ret = dpu_encoder_helper_wait_event_timeout(
299 DRMID(phys_enc->parent),
300 irq->irq_idx,
301 wait_info);
302
303 if (ret <= 0) {
304 irq_status = dpu_core_irq_read(phys_enc->dpu_kms,
305 irq->irq_idx, true);
306 if (irq_status) {
307 unsigned long flags;
308
309 DRM_DEBUG_KMS("irq not triggered id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
310 DRMID(phys_enc->parent), intr_idx,
311 irq->irq_idx,
312 phys_enc->hw_pp->idx - PINGPONG_0,
313 atomic_read(wait_info->atomic_cnt));
314 local_irq_save(flags);
315 irq->cb.func(phys_enc, irq->irq_idx);
316 local_irq_restore(flags);
317 ret = 0;
318 } else {
319 ret = -ETIMEDOUT;
320 DRM_DEBUG_KMS("irq timeout id=%u, intr=%d, irq=%d, pp=%d, atomic_cnt=%d\n",
321 DRMID(phys_enc->parent), intr_idx,
322 irq->irq_idx,
323 phys_enc->hw_pp->idx - PINGPONG_0,
324 atomic_read(wait_info->atomic_cnt));
325 }
326 } else {
327 ret = 0;
328 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
329 intr_idx, irq->irq_idx,
330 phys_enc->hw_pp->idx - PINGPONG_0,
331 atomic_read(wait_info->atomic_cnt));
332 }
333
334 return ret;
335 }
336
dpu_encoder_helper_register_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)337 int dpu_encoder_helper_register_irq(struct dpu_encoder_phys *phys_enc,
338 enum dpu_intr_idx intr_idx)
339 {
340 struct dpu_encoder_irq *irq;
341 int ret = 0;
342
343 if (intr_idx >= INTR_IDX_MAX) {
344 DPU_ERROR("invalid params\n");
345 return -EINVAL;
346 }
347 irq = &phys_enc->irq[intr_idx];
348
349 if (irq->irq_idx < 0) {
350 DPU_ERROR_PHYS(phys_enc,
351 "invalid IRQ index:%d\n", irq->irq_idx);
352 return -EINVAL;
353 }
354
355 ret = dpu_core_irq_register_callback(phys_enc->dpu_kms, irq->irq_idx,
356 &irq->cb);
357 if (ret) {
358 DPU_ERROR_PHYS(phys_enc,
359 "failed to register IRQ callback for %s\n",
360 irq->name);
361 irq->irq_idx = -EINVAL;
362 return ret;
363 }
364
365 trace_dpu_enc_irq_register_success(DRMID(phys_enc->parent), intr_idx,
366 irq->irq_idx);
367
368 return ret;
369 }
370
dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)371 int dpu_encoder_helper_unregister_irq(struct dpu_encoder_phys *phys_enc,
372 enum dpu_intr_idx intr_idx)
373 {
374 struct dpu_encoder_irq *irq;
375 int ret;
376
377 irq = &phys_enc->irq[intr_idx];
378
379 /* silently skip irqs that weren't registered */
380 if (irq->irq_idx < 0) {
381 DRM_ERROR("duplicate unregister id=%u, intr=%d, irq=%d",
382 DRMID(phys_enc->parent), intr_idx,
383 irq->irq_idx);
384 return 0;
385 }
386
387 ret = dpu_core_irq_unregister_callback(phys_enc->dpu_kms, irq->irq_idx,
388 &irq->cb);
389 if (ret) {
390 DRM_ERROR("unreg cb fail id=%u, intr=%d, irq=%d ret=%d",
391 DRMID(phys_enc->parent), intr_idx,
392 irq->irq_idx, ret);
393 }
394
395 trace_dpu_enc_irq_unregister_success(DRMID(phys_enc->parent), intr_idx,
396 irq->irq_idx);
397
398 return 0;
399 }
400
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)401 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
402 {
403 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
404 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
405 return phys ? atomic_read(&phys->vsync_cnt) : 0;
406 }
407
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)408 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
409 {
410 struct dpu_encoder_virt *dpu_enc;
411 struct dpu_encoder_phys *phys;
412 int linecount = 0;
413
414 dpu_enc = to_dpu_encoder_virt(drm_enc);
415 phys = dpu_enc ? dpu_enc->cur_master : NULL;
416
417 if (phys && phys->ops.get_line_count)
418 linecount = phys->ops.get_line_count(phys);
419
420 return linecount;
421 }
422
dpu_encoder_get_hw_resources(struct drm_encoder * drm_enc,struct dpu_encoder_hw_resources * hw_res)423 void dpu_encoder_get_hw_resources(struct drm_encoder *drm_enc,
424 struct dpu_encoder_hw_resources *hw_res)
425 {
426 struct dpu_encoder_virt *dpu_enc = NULL;
427 int i = 0;
428
429 dpu_enc = to_dpu_encoder_virt(drm_enc);
430 DPU_DEBUG_ENC(dpu_enc, "\n");
431
432 /* Query resources used by phys encs, expected to be without overlap */
433 memset(hw_res, 0, sizeof(*hw_res));
434
435 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
436 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
437
438 if (phys->ops.get_hw_resources)
439 phys->ops.get_hw_resources(phys, hw_res);
440 }
441 }
442
dpu_encoder_destroy(struct drm_encoder * drm_enc)443 static void dpu_encoder_destroy(struct drm_encoder *drm_enc)
444 {
445 struct dpu_encoder_virt *dpu_enc = NULL;
446 int i = 0;
447
448 if (!drm_enc) {
449 DPU_ERROR("invalid encoder\n");
450 return;
451 }
452
453 dpu_enc = to_dpu_encoder_virt(drm_enc);
454 DPU_DEBUG_ENC(dpu_enc, "\n");
455
456 mutex_lock(&dpu_enc->enc_lock);
457
458 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
459 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
460
461 if (phys->ops.destroy) {
462 phys->ops.destroy(phys);
463 --dpu_enc->num_phys_encs;
464 dpu_enc->phys_encs[i] = NULL;
465 }
466 }
467
468 if (dpu_enc->num_phys_encs)
469 DPU_ERROR_ENC(dpu_enc, "expected 0 num_phys_encs not %d\n",
470 dpu_enc->num_phys_encs);
471 dpu_enc->num_phys_encs = 0;
472 mutex_unlock(&dpu_enc->enc_lock);
473
474 drm_encoder_cleanup(drm_enc);
475 mutex_destroy(&dpu_enc->enc_lock);
476 }
477
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)478 void dpu_encoder_helper_split_config(
479 struct dpu_encoder_phys *phys_enc,
480 enum dpu_intf interface)
481 {
482 struct dpu_encoder_virt *dpu_enc;
483 struct split_pipe_cfg cfg = { 0 };
484 struct dpu_hw_mdp *hw_mdptop;
485 struct msm_display_info *disp_info;
486
487 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
488 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
489 return;
490 }
491
492 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
493 hw_mdptop = phys_enc->hw_mdptop;
494 disp_info = &dpu_enc->disp_info;
495
496 if (disp_info->intf_type != DRM_MODE_ENCODER_DSI)
497 return;
498
499 /**
500 * disable split modes since encoder will be operating in as the only
501 * encoder, either for the entire use case in the case of, for example,
502 * single DSI, or for this frame in the case of left/right only partial
503 * update.
504 */
505 if (phys_enc->split_role == ENC_ROLE_SOLO) {
506 if (hw_mdptop->ops.setup_split_pipe)
507 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
508 return;
509 }
510
511 cfg.en = true;
512 cfg.mode = phys_enc->intf_mode;
513 cfg.intf = interface;
514
515 if (cfg.en && phys_enc->ops.needs_single_flush &&
516 phys_enc->ops.needs_single_flush(phys_enc))
517 cfg.split_flush_en = true;
518
519 if (phys_enc->split_role == ENC_ROLE_MASTER) {
520 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
521
522 if (hw_mdptop->ops.setup_split_pipe)
523 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
524 }
525 }
526
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode)527 static struct msm_display_topology dpu_encoder_get_topology(
528 struct dpu_encoder_virt *dpu_enc,
529 struct dpu_kms *dpu_kms,
530 struct drm_display_mode *mode)
531 {
532 struct msm_display_topology topology = {0};
533 int i, intf_count = 0;
534
535 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
536 if (dpu_enc->phys_encs[i])
537 intf_count++;
538
539 /* Datapath topology selection
540 *
541 * Dual display
542 * 2 LM, 2 INTF ( Split display using 2 interfaces)
543 *
544 * Single display
545 * 1 LM, 1 INTF
546 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
547 *
548 * Adding color blocks only to primary interface if available in
549 * sufficient number
550 */
551 if (intf_count == 2)
552 topology.num_lm = 2;
553 else if (!dpu_kms->catalog->caps->has_3d_merge)
554 topology.num_lm = 1;
555 else
556 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
557
558 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI) {
559 if (dpu_kms->catalog->dspp &&
560 (dpu_kms->catalog->dspp_count >= topology.num_lm))
561 topology.num_dspp = topology.num_lm;
562 }
563
564 topology.num_enc = 0;
565 topology.num_intf = intf_count;
566
567 return topology;
568 }
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)569 static int dpu_encoder_virt_atomic_check(
570 struct drm_encoder *drm_enc,
571 struct drm_crtc_state *crtc_state,
572 struct drm_connector_state *conn_state)
573 {
574 struct dpu_encoder_virt *dpu_enc;
575 struct msm_drm_private *priv;
576 struct dpu_kms *dpu_kms;
577 const struct drm_display_mode *mode;
578 struct drm_display_mode *adj_mode;
579 struct msm_display_topology topology;
580 struct dpu_global_state *global_state;
581 int i = 0;
582 int ret = 0;
583
584 if (!drm_enc || !crtc_state || !conn_state) {
585 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
586 drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
587 return -EINVAL;
588 }
589
590 dpu_enc = to_dpu_encoder_virt(drm_enc);
591 DPU_DEBUG_ENC(dpu_enc, "\n");
592
593 priv = drm_enc->dev->dev_private;
594 dpu_kms = to_dpu_kms(priv->kms);
595 mode = &crtc_state->mode;
596 adj_mode = &crtc_state->adjusted_mode;
597 global_state = dpu_kms_get_global_state(crtc_state->state);
598 if (IS_ERR(global_state))
599 return PTR_ERR(global_state);
600
601 trace_dpu_enc_atomic_check(DRMID(drm_enc));
602
603 /* perform atomic check on the first physical encoder (master) */
604 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
605 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
606
607 if (phys->ops.atomic_check)
608 ret = phys->ops.atomic_check(phys, crtc_state,
609 conn_state);
610 else if (phys->ops.mode_fixup)
611 if (!phys->ops.mode_fixup(phys, mode, adj_mode))
612 ret = -EINVAL;
613
614 if (ret) {
615 DPU_ERROR_ENC(dpu_enc,
616 "mode unsupported, phys idx %d\n", i);
617 break;
618 }
619 }
620
621 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode);
622
623 /* Reserve dynamic resources now. */
624 if (!ret) {
625 /*
626 * Release and Allocate resources on every modeset
627 * Dont allocate when active is false.
628 */
629 if (drm_atomic_crtc_needs_modeset(crtc_state)) {
630 dpu_rm_release(global_state, drm_enc);
631
632 if (!crtc_state->active_changed || crtc_state->active)
633 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
634 drm_enc, crtc_state, topology);
635 }
636 }
637
638 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
639
640 return ret;
641 }
642
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)643 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
644 struct msm_display_info *disp_info)
645 {
646 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
647 struct msm_drm_private *priv;
648 struct dpu_kms *dpu_kms;
649 struct dpu_hw_mdp *hw_mdptop;
650 struct drm_encoder *drm_enc;
651 int i;
652
653 if (!dpu_enc || !disp_info) {
654 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
655 dpu_enc != NULL, disp_info != NULL);
656 return;
657 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
658 DPU_ERROR("invalid num phys enc %d/%d\n",
659 dpu_enc->num_phys_encs,
660 (int) ARRAY_SIZE(dpu_enc->hw_pp));
661 return;
662 }
663
664 drm_enc = &dpu_enc->base;
665 /* this pointers are checked in virt_enable_helper */
666 priv = drm_enc->dev->dev_private;
667
668 dpu_kms = to_dpu_kms(priv->kms);
669 hw_mdptop = dpu_kms->hw_mdp;
670 if (!hw_mdptop) {
671 DPU_ERROR("invalid mdptop\n");
672 return;
673 }
674
675 if (hw_mdptop->ops.setup_vsync_source &&
676 disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) {
677 for (i = 0; i < dpu_enc->num_phys_encs; i++)
678 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
679
680 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
681 if (disp_info->is_te_using_watchdog_timer)
682 vsync_cfg.vsync_source = DPU_VSYNC_SOURCE_WD_TIMER_0;
683 else
684 vsync_cfg.vsync_source = DPU_VSYNC0_SOURCE_GPIO;
685
686 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
687 }
688 }
689
_dpu_encoder_irq_control(struct drm_encoder * drm_enc,bool enable)690 static void _dpu_encoder_irq_control(struct drm_encoder *drm_enc, bool enable)
691 {
692 struct dpu_encoder_virt *dpu_enc;
693 int i;
694
695 if (!drm_enc) {
696 DPU_ERROR("invalid encoder\n");
697 return;
698 }
699
700 dpu_enc = to_dpu_encoder_virt(drm_enc);
701
702 DPU_DEBUG_ENC(dpu_enc, "enable:%d\n", enable);
703 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
704 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
705
706 if (phys->ops.irq_control)
707 phys->ops.irq_control(phys, enable);
708 }
709
710 }
711
_dpu_encoder_resource_control_helper(struct drm_encoder * drm_enc,bool enable)712 static void _dpu_encoder_resource_control_helper(struct drm_encoder *drm_enc,
713 bool enable)
714 {
715 struct msm_drm_private *priv;
716 struct dpu_kms *dpu_kms;
717 struct dpu_encoder_virt *dpu_enc;
718
719 dpu_enc = to_dpu_encoder_virt(drm_enc);
720 priv = drm_enc->dev->dev_private;
721 dpu_kms = to_dpu_kms(priv->kms);
722
723 trace_dpu_enc_rc_helper(DRMID(drm_enc), enable);
724
725 if (!dpu_enc->cur_master) {
726 DPU_ERROR("encoder master not set\n");
727 return;
728 }
729
730 if (enable) {
731 /* enable DPU core clks */
732 pm_runtime_get_sync(&dpu_kms->pdev->dev);
733
734 /* enable all the irq */
735 _dpu_encoder_irq_control(drm_enc, true);
736
737 } else {
738 /* disable all the irq */
739 _dpu_encoder_irq_control(drm_enc, false);
740
741 /* disable DPU core clks */
742 pm_runtime_put_sync(&dpu_kms->pdev->dev);
743 }
744
745 }
746
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)747 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
748 u32 sw_event)
749 {
750 struct dpu_encoder_virt *dpu_enc;
751 struct msm_drm_private *priv;
752 bool is_vid_mode = false;
753
754 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
755 DPU_ERROR("invalid parameters\n");
756 return -EINVAL;
757 }
758 dpu_enc = to_dpu_encoder_virt(drm_enc);
759 priv = drm_enc->dev->dev_private;
760 is_vid_mode = dpu_enc->disp_info.capabilities &
761 MSM_DISPLAY_CAP_VID_MODE;
762
763 /*
764 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
765 * events and return early for other events (ie wb display).
766 */
767 if (!dpu_enc->idle_pc_supported &&
768 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
769 sw_event != DPU_ENC_RC_EVENT_STOP &&
770 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
771 return 0;
772
773 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
774 dpu_enc->rc_state, "begin");
775
776 switch (sw_event) {
777 case DPU_ENC_RC_EVENT_KICKOFF:
778 /* cancel delayed off work, if any */
779 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
780 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
781 sw_event);
782
783 mutex_lock(&dpu_enc->rc_lock);
784
785 /* return if the resource control is already in ON state */
786 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
787 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
788 DRMID(drm_enc), sw_event);
789 mutex_unlock(&dpu_enc->rc_lock);
790 return 0;
791 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
792 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
793 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
794 DRMID(drm_enc), sw_event,
795 dpu_enc->rc_state);
796 mutex_unlock(&dpu_enc->rc_lock);
797 return -EINVAL;
798 }
799
800 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
801 _dpu_encoder_irq_control(drm_enc, true);
802 else
803 _dpu_encoder_resource_control_helper(drm_enc, true);
804
805 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
806
807 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
808 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
809 "kickoff");
810
811 mutex_unlock(&dpu_enc->rc_lock);
812 break;
813
814 case DPU_ENC_RC_EVENT_FRAME_DONE:
815 /*
816 * mutex lock is not used as this event happens at interrupt
817 * context. And locking is not required as, the other events
818 * like KICKOFF and STOP does a wait-for-idle before executing
819 * the resource_control
820 */
821 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
822 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
823 DRMID(drm_enc), sw_event,
824 dpu_enc->rc_state);
825 return -EINVAL;
826 }
827
828 /*
829 * schedule off work item only when there are no
830 * frames pending
831 */
832 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
833 DRM_DEBUG_KMS("id:%d skip schedule work\n",
834 DRMID(drm_enc));
835 return 0;
836 }
837
838 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
839 msecs_to_jiffies(dpu_enc->idle_timeout));
840
841 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
842 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
843 "frame done");
844 break;
845
846 case DPU_ENC_RC_EVENT_PRE_STOP:
847 /* cancel delayed off work, if any */
848 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
849 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
850 sw_event);
851
852 mutex_lock(&dpu_enc->rc_lock);
853
854 if (is_vid_mode &&
855 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
856 _dpu_encoder_irq_control(drm_enc, true);
857 }
858 /* skip if is already OFF or IDLE, resources are off already */
859 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
860 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
861 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
862 DRMID(drm_enc), sw_event,
863 dpu_enc->rc_state);
864 mutex_unlock(&dpu_enc->rc_lock);
865 return 0;
866 }
867
868 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
869
870 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
871 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
872 "pre stop");
873
874 mutex_unlock(&dpu_enc->rc_lock);
875 break;
876
877 case DPU_ENC_RC_EVENT_STOP:
878 mutex_lock(&dpu_enc->rc_lock);
879
880 /* return if the resource control is already in OFF state */
881 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
882 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
883 DRMID(drm_enc), sw_event);
884 mutex_unlock(&dpu_enc->rc_lock);
885 return 0;
886 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
887 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
888 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
889 mutex_unlock(&dpu_enc->rc_lock);
890 return -EINVAL;
891 }
892
893 /**
894 * expect to arrive here only if in either idle state or pre-off
895 * and in IDLE state the resources are already disabled
896 */
897 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
898 _dpu_encoder_resource_control_helper(drm_enc, false);
899
900 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
901
902 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
903 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
904 "stop");
905
906 mutex_unlock(&dpu_enc->rc_lock);
907 break;
908
909 case DPU_ENC_RC_EVENT_ENTER_IDLE:
910 mutex_lock(&dpu_enc->rc_lock);
911
912 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
913 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
914 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
915 mutex_unlock(&dpu_enc->rc_lock);
916 return 0;
917 }
918
919 /*
920 * if we are in ON but a frame was just kicked off,
921 * ignore the IDLE event, it's probably a stale timer event
922 */
923 if (dpu_enc->frame_busy_mask[0]) {
924 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
925 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
926 mutex_unlock(&dpu_enc->rc_lock);
927 return 0;
928 }
929
930 if (is_vid_mode)
931 _dpu_encoder_irq_control(drm_enc, false);
932 else
933 _dpu_encoder_resource_control_helper(drm_enc, false);
934
935 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
936
937 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
938 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
939 "idle");
940
941 mutex_unlock(&dpu_enc->rc_lock);
942 break;
943
944 default:
945 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
946 sw_event);
947 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
948 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
949 "error");
950 break;
951 }
952
953 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
954 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
955 "end");
956 return 0;
957 }
958
dpu_encoder_virt_mode_set(struct drm_encoder * drm_enc,struct drm_display_mode * mode,struct drm_display_mode * adj_mode)959 static void dpu_encoder_virt_mode_set(struct drm_encoder *drm_enc,
960 struct drm_display_mode *mode,
961 struct drm_display_mode *adj_mode)
962 {
963 struct dpu_encoder_virt *dpu_enc;
964 struct msm_drm_private *priv;
965 struct dpu_kms *dpu_kms;
966 struct list_head *connector_list;
967 struct drm_connector *conn = NULL, *conn_iter;
968 struct drm_crtc *drm_crtc;
969 struct dpu_crtc_state *cstate;
970 struct dpu_global_state *global_state;
971 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
972 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
973 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
974 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC] = { NULL };
975 int num_lm, num_ctl, num_pp;
976 int i, j;
977
978 if (!drm_enc) {
979 DPU_ERROR("invalid encoder\n");
980 return;
981 }
982
983 dpu_enc = to_dpu_encoder_virt(drm_enc);
984 DPU_DEBUG_ENC(dpu_enc, "\n");
985
986 priv = drm_enc->dev->dev_private;
987 dpu_kms = to_dpu_kms(priv->kms);
988 connector_list = &dpu_kms->dev->mode_config.connector_list;
989
990 global_state = dpu_kms_get_existing_global_state(dpu_kms);
991 if (IS_ERR_OR_NULL(global_state)) {
992 DPU_ERROR("Failed to get global state");
993 return;
994 }
995
996 trace_dpu_enc_mode_set(DRMID(drm_enc));
997
998 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS)
999 msm_dp_display_mode_set(dpu_enc->dp, drm_enc, mode, adj_mode);
1000
1001 list_for_each_entry(conn_iter, connector_list, head)
1002 if (conn_iter->encoder == drm_enc)
1003 conn = conn_iter;
1004
1005 if (!conn) {
1006 DPU_ERROR_ENC(dpu_enc, "failed to find attached connector\n");
1007 return;
1008 } else if (!conn->state) {
1009 DPU_ERROR_ENC(dpu_enc, "invalid connector state\n");
1010 return;
1011 }
1012
1013 drm_for_each_crtc(drm_crtc, drm_enc->dev)
1014 if (drm_crtc->state->encoder_mask & drm_encoder_mask(drm_enc))
1015 break;
1016
1017 /* Query resource that have been reserved in atomic check step. */
1018 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1019 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1020 ARRAY_SIZE(hw_pp));
1021 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1022 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1023 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1024 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
1025 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1026 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
1027 ARRAY_SIZE(hw_dspp));
1028
1029 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1030 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1031 : NULL;
1032
1033 cstate = to_dpu_crtc_state(drm_crtc->state);
1034
1035 for (i = 0; i < num_lm; i++) {
1036 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
1037
1038 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
1039 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
1040 cstate->mixers[i].hw_dspp = to_dpu_hw_dspp(hw_dspp[i]);
1041 }
1042
1043 cstate->num_mixers = num_lm;
1044
1045 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1046 int num_blk;
1047 struct dpu_hw_blk *hw_blk[MAX_CHANNELS_PER_ENC];
1048 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1049
1050 if (!dpu_enc->hw_pp[i]) {
1051 DPU_ERROR_ENC(dpu_enc,
1052 "no pp block assigned at idx: %d\n", i);
1053 return;
1054 }
1055
1056 if (!hw_ctl[i]) {
1057 DPU_ERROR_ENC(dpu_enc,
1058 "no ctl block assigned at idx: %d\n", i);
1059 return;
1060 }
1061
1062 phys->hw_pp = dpu_enc->hw_pp[i];
1063 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[i]);
1064
1065 num_blk = dpu_rm_get_assigned_resources(&dpu_kms->rm,
1066 global_state, drm_enc->base.id, DPU_HW_BLK_INTF,
1067 hw_blk, ARRAY_SIZE(hw_blk));
1068 for (j = 0; j < num_blk; j++) {
1069 struct dpu_hw_intf *hw_intf;
1070
1071 hw_intf = to_dpu_hw_intf(hw_blk[i]);
1072 if (hw_intf->idx == phys->intf_idx)
1073 phys->hw_intf = hw_intf;
1074 }
1075
1076 if (!phys->hw_intf) {
1077 DPU_ERROR_ENC(dpu_enc,
1078 "no intf block assigned at idx: %d\n", i);
1079 return;
1080 }
1081
1082 phys->connector = conn->state->connector;
1083 if (phys->ops.mode_set)
1084 phys->ops.mode_set(phys, mode, adj_mode);
1085 }
1086 }
1087
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1088 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1089 {
1090 struct dpu_encoder_virt *dpu_enc = NULL;
1091 int i;
1092
1093 if (!drm_enc || !drm_enc->dev) {
1094 DPU_ERROR("invalid parameters\n");
1095 return;
1096 }
1097
1098 dpu_enc = to_dpu_encoder_virt(drm_enc);
1099 if (!dpu_enc || !dpu_enc->cur_master) {
1100 DPU_ERROR("invalid dpu encoder/master\n");
1101 return;
1102 }
1103
1104
1105 if (dpu_enc->disp_info.intf_type == DRM_MODE_CONNECTOR_DisplayPort &&
1106 dpu_enc->cur_master->hw_mdptop &&
1107 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1108 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1109 dpu_enc->cur_master->hw_mdptop);
1110
1111 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1112
1113 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1114 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1115 unsigned bpc = dpu_enc->phys_encs[0]->connector->display_info.bpc;
1116 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1117 if (!dpu_enc->hw_pp[i])
1118 continue;
1119 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1120 }
1121 }
1122 }
1123
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1124 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1125 {
1126 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1127
1128 mutex_lock(&dpu_enc->enc_lock);
1129
1130 if (!dpu_enc->enabled)
1131 goto out;
1132
1133 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1134 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1135 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1136 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1137
1138 _dpu_encoder_virt_enable_helper(drm_enc);
1139
1140 out:
1141 mutex_unlock(&dpu_enc->enc_lock);
1142 }
1143
dpu_encoder_virt_enable(struct drm_encoder * drm_enc)1144 static void dpu_encoder_virt_enable(struct drm_encoder *drm_enc)
1145 {
1146 struct dpu_encoder_virt *dpu_enc = NULL;
1147 int ret = 0;
1148 struct msm_drm_private *priv;
1149 struct drm_display_mode *cur_mode = NULL;
1150
1151 if (!drm_enc) {
1152 DPU_ERROR("invalid encoder\n");
1153 return;
1154 }
1155 dpu_enc = to_dpu_encoder_virt(drm_enc);
1156
1157 mutex_lock(&dpu_enc->enc_lock);
1158 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1159 priv = drm_enc->dev->dev_private;
1160
1161 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1162 cur_mode->vdisplay);
1163
1164 /* always enable slave encoder before master */
1165 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1166 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1167
1168 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1169 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1170
1171 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1172 if (ret) {
1173 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1174 ret);
1175 goto out;
1176 }
1177
1178 _dpu_encoder_virt_enable_helper(drm_enc);
1179
1180 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS) {
1181 ret = msm_dp_display_enable(dpu_enc->dp, drm_enc);
1182 if (ret) {
1183 DPU_ERROR_ENC(dpu_enc, "dp display enable failed: %d\n",
1184 ret);
1185 goto out;
1186 }
1187 }
1188 dpu_enc->enabled = true;
1189
1190 out:
1191 mutex_unlock(&dpu_enc->enc_lock);
1192 }
1193
dpu_encoder_virt_disable(struct drm_encoder * drm_enc)1194 static void dpu_encoder_virt_disable(struct drm_encoder *drm_enc)
1195 {
1196 struct dpu_encoder_virt *dpu_enc = NULL;
1197 struct msm_drm_private *priv;
1198 int i = 0;
1199
1200 if (!drm_enc) {
1201 DPU_ERROR("invalid encoder\n");
1202 return;
1203 } else if (!drm_enc->dev) {
1204 DPU_ERROR("invalid dev\n");
1205 return;
1206 }
1207
1208 dpu_enc = to_dpu_encoder_virt(drm_enc);
1209 DPU_DEBUG_ENC(dpu_enc, "\n");
1210
1211 mutex_lock(&dpu_enc->enc_lock);
1212 dpu_enc->enabled = false;
1213
1214 priv = drm_enc->dev->dev_private;
1215
1216 trace_dpu_enc_disable(DRMID(drm_enc));
1217
1218 /* wait for idle */
1219 dpu_encoder_wait_for_event(drm_enc, MSM_ENC_TX_COMPLETE);
1220
1221 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS) {
1222 if (msm_dp_display_pre_disable(dpu_enc->dp, drm_enc))
1223 DPU_ERROR_ENC(dpu_enc, "dp display push idle failed\n");
1224 }
1225
1226 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1227
1228 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1229 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1230
1231 if (phys->ops.disable)
1232 phys->ops.disable(phys);
1233 }
1234
1235
1236 /* after phys waits for frame-done, should be no more frames pending */
1237 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1238 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1239 del_timer_sync(&dpu_enc->frame_done_timer);
1240 }
1241
1242 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1243
1244 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1245 dpu_enc->phys_encs[i]->connector = NULL;
1246 }
1247
1248 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1249
1250 if (drm_enc->encoder_type == DRM_MODE_ENCODER_TMDS) {
1251 if (msm_dp_display_disable(dpu_enc->dp, drm_enc))
1252 DPU_ERROR_ENC(dpu_enc, "dp display disable failed\n");
1253 }
1254
1255 mutex_unlock(&dpu_enc->enc_lock);
1256 }
1257
dpu_encoder_get_intf(struct dpu_mdss_cfg * catalog,enum dpu_intf_type type,u32 controller_id)1258 static enum dpu_intf dpu_encoder_get_intf(struct dpu_mdss_cfg *catalog,
1259 enum dpu_intf_type type, u32 controller_id)
1260 {
1261 int i = 0;
1262
1263 for (i = 0; i < catalog->intf_count; i++) {
1264 if (catalog->intf[i].type == type
1265 && catalog->intf[i].controller_id == controller_id) {
1266 return catalog->intf[i].id;
1267 }
1268 }
1269
1270 return INTF_MAX;
1271 }
1272
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1273 static void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1274 struct dpu_encoder_phys *phy_enc)
1275 {
1276 struct dpu_encoder_virt *dpu_enc = NULL;
1277 unsigned long lock_flags;
1278
1279 if (!drm_enc || !phy_enc)
1280 return;
1281
1282 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1283 dpu_enc = to_dpu_encoder_virt(drm_enc);
1284
1285 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1286 if (dpu_enc->crtc)
1287 dpu_crtc_vblank_callback(dpu_enc->crtc);
1288 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1289
1290 atomic_inc(&phy_enc->vsync_cnt);
1291 DPU_ATRACE_END("encoder_vblank_callback");
1292 }
1293
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1294 static void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1295 struct dpu_encoder_phys *phy_enc)
1296 {
1297 if (!phy_enc)
1298 return;
1299
1300 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1301 atomic_inc(&phy_enc->underrun_cnt);
1302
1303 /* trigger dump only on the first underrun */
1304 if (atomic_read(&phy_enc->underrun_cnt) == 1)
1305 msm_disp_snapshot_state(drm_enc->dev);
1306
1307 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1308 atomic_read(&phy_enc->underrun_cnt));
1309 DPU_ATRACE_END("encoder_underrun_callback");
1310 }
1311
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1312 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1313 {
1314 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1315 unsigned long lock_flags;
1316
1317 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1318 /* crtc should always be cleared before re-assigning */
1319 WARN_ON(crtc && dpu_enc->crtc);
1320 dpu_enc->crtc = crtc;
1321 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1322 }
1323
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1324 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1325 struct drm_crtc *crtc, bool enable)
1326 {
1327 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1328 unsigned long lock_flags;
1329 int i;
1330
1331 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1332
1333 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1334 if (dpu_enc->crtc != crtc) {
1335 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1336 return;
1337 }
1338 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1339
1340 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1341 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1342
1343 if (phys->ops.control_vblank_irq)
1344 phys->ops.control_vblank_irq(phys, enable);
1345 }
1346 }
1347
dpu_encoder_register_frame_event_callback(struct drm_encoder * drm_enc,void (* frame_event_cb)(void *,u32 event),void * frame_event_cb_data)1348 void dpu_encoder_register_frame_event_callback(struct drm_encoder *drm_enc,
1349 void (*frame_event_cb)(void *, u32 event),
1350 void *frame_event_cb_data)
1351 {
1352 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1353 unsigned long lock_flags;
1354 bool enable;
1355
1356 enable = frame_event_cb ? true : false;
1357
1358 if (!drm_enc) {
1359 DPU_ERROR("invalid encoder\n");
1360 return;
1361 }
1362 trace_dpu_enc_frame_event_cb(DRMID(drm_enc), enable);
1363
1364 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1365 dpu_enc->crtc_frame_event_cb = frame_event_cb;
1366 dpu_enc->crtc_frame_event_cb_data = frame_event_cb_data;
1367 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1368 }
1369
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1370 static void dpu_encoder_frame_done_callback(
1371 struct drm_encoder *drm_enc,
1372 struct dpu_encoder_phys *ready_phys, u32 event)
1373 {
1374 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1375 unsigned int i;
1376
1377 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1378 | DPU_ENCODER_FRAME_EVENT_ERROR
1379 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1380
1381 if (!dpu_enc->frame_busy_mask[0]) {
1382 /**
1383 * suppress frame_done without waiter,
1384 * likely autorefresh
1385 */
1386 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc),
1387 event, ready_phys->intf_idx);
1388 return;
1389 }
1390
1391 /* One of the physical encoders has become idle */
1392 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1393 if (dpu_enc->phys_encs[i] == ready_phys) {
1394 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1395 dpu_enc->frame_busy_mask[0]);
1396 clear_bit(i, dpu_enc->frame_busy_mask);
1397 }
1398 }
1399
1400 if (!dpu_enc->frame_busy_mask[0]) {
1401 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1402 del_timer(&dpu_enc->frame_done_timer);
1403
1404 dpu_encoder_resource_control(drm_enc,
1405 DPU_ENC_RC_EVENT_FRAME_DONE);
1406
1407 if (dpu_enc->crtc_frame_event_cb)
1408 dpu_enc->crtc_frame_event_cb(
1409 dpu_enc->crtc_frame_event_cb_data,
1410 event);
1411 }
1412 } else {
1413 if (dpu_enc->crtc_frame_event_cb)
1414 dpu_enc->crtc_frame_event_cb(
1415 dpu_enc->crtc_frame_event_cb_data, event);
1416 }
1417 }
1418
dpu_encoder_off_work(struct work_struct * work)1419 static void dpu_encoder_off_work(struct work_struct *work)
1420 {
1421 struct dpu_encoder_virt *dpu_enc = container_of(work,
1422 struct dpu_encoder_virt, delayed_off_work.work);
1423
1424 dpu_encoder_resource_control(&dpu_enc->base,
1425 DPU_ENC_RC_EVENT_ENTER_IDLE);
1426
1427 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1428 DPU_ENCODER_FRAME_EVENT_IDLE);
1429 }
1430
1431 /**
1432 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1433 * @drm_enc: Pointer to drm encoder structure
1434 * @phys: Pointer to physical encoder structure
1435 * @extra_flush_bits: Additional bit mask to include in flush trigger
1436 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1437 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1438 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1439 {
1440 struct dpu_hw_ctl *ctl;
1441 int pending_kickoff_cnt;
1442 u32 ret = UINT_MAX;
1443
1444 if (!phys->hw_pp) {
1445 DPU_ERROR("invalid pingpong hw\n");
1446 return;
1447 }
1448
1449 ctl = phys->hw_ctl;
1450 if (!ctl->ops.trigger_flush) {
1451 DPU_ERROR("missing trigger cb\n");
1452 return;
1453 }
1454
1455 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1456
1457 if (extra_flush_bits && ctl->ops.update_pending_flush)
1458 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1459
1460 ctl->ops.trigger_flush(ctl);
1461
1462 if (ctl->ops.get_pending_flush)
1463 ret = ctl->ops.get_pending_flush(ctl);
1464
1465 trace_dpu_enc_trigger_flush(DRMID(drm_enc), phys->intf_idx,
1466 pending_kickoff_cnt, ctl->idx,
1467 extra_flush_bits, ret);
1468 }
1469
1470 /**
1471 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1472 * @phys: Pointer to physical encoder structure
1473 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1474 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1475 {
1476 if (!phys) {
1477 DPU_ERROR("invalid argument(s)\n");
1478 return;
1479 }
1480
1481 if (!phys->hw_pp) {
1482 DPU_ERROR("invalid pingpong hw\n");
1483 return;
1484 }
1485
1486 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1487 phys->ops.trigger_start(phys);
1488 }
1489
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1490 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1491 {
1492 struct dpu_hw_ctl *ctl;
1493
1494 ctl = phys_enc->hw_ctl;
1495 if (ctl->ops.trigger_start) {
1496 ctl->ops.trigger_start(ctl);
1497 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1498 }
1499 }
1500
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,u32 irq_idx,struct dpu_encoder_wait_info * info)1501 static int dpu_encoder_helper_wait_event_timeout(
1502 int32_t drm_id,
1503 u32 irq_idx,
1504 struct dpu_encoder_wait_info *info)
1505 {
1506 int rc = 0;
1507 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1508 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1509 s64 time;
1510
1511 do {
1512 rc = wait_event_timeout(*(info->wq),
1513 atomic_read(info->atomic_cnt) == 0, jiffies);
1514 time = ktime_to_ms(ktime_get());
1515
1516 trace_dpu_enc_wait_event_timeout(drm_id, irq_idx, rc, time,
1517 expected_time,
1518 atomic_read(info->atomic_cnt));
1519 /* If we timed out, counter is valid and time is less, wait again */
1520 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1521 (time < expected_time));
1522
1523 return rc;
1524 }
1525
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1526 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1527 {
1528 struct dpu_encoder_virt *dpu_enc;
1529 struct dpu_hw_ctl *ctl;
1530 int rc;
1531 struct drm_encoder *drm_enc;
1532
1533 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1534 ctl = phys_enc->hw_ctl;
1535 drm_enc = phys_enc->parent;
1536
1537 if (!ctl->ops.reset)
1538 return;
1539
1540 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1541 ctl->idx);
1542
1543 rc = ctl->ops.reset(ctl);
1544 if (rc) {
1545 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1546 msm_disp_snapshot_state(drm_enc->dev);
1547 }
1548
1549 phys_enc->enable_state = DPU_ENC_ENABLED;
1550 }
1551
1552 /**
1553 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1554 * Iterate through the physical encoders and perform consolidated flush
1555 * and/or control start triggering as needed. This is done in the virtual
1556 * encoder rather than the individual physical ones in order to handle
1557 * use cases that require visibility into multiple physical encoders at
1558 * a time.
1559 * @dpu_enc: Pointer to virtual encoder structure
1560 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1561 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1562 {
1563 struct dpu_hw_ctl *ctl;
1564 uint32_t i, pending_flush;
1565 unsigned long lock_flags;
1566
1567 pending_flush = 0x0;
1568
1569 /* update pending counts and trigger kickoff ctl flush atomically */
1570 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1571
1572 /* don't perform flush/start operations for slave encoders */
1573 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1574 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1575
1576 if (phys->enable_state == DPU_ENC_DISABLED)
1577 continue;
1578
1579 ctl = phys->hw_ctl;
1580
1581 /*
1582 * This is cleared in frame_done worker, which isn't invoked
1583 * for async commits. So don't set this for async, since it'll
1584 * roll over to the next commit.
1585 */
1586 if (phys->split_role != ENC_ROLE_SLAVE)
1587 set_bit(i, dpu_enc->frame_busy_mask);
1588
1589 if (!phys->ops.needs_single_flush ||
1590 !phys->ops.needs_single_flush(phys))
1591 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1592 else if (ctl->ops.get_pending_flush)
1593 pending_flush |= ctl->ops.get_pending_flush(ctl);
1594 }
1595
1596 /* for split flush, combine pending flush masks and send to master */
1597 if (pending_flush && dpu_enc->cur_master) {
1598 _dpu_encoder_trigger_flush(
1599 &dpu_enc->base,
1600 dpu_enc->cur_master,
1601 pending_flush);
1602 }
1603
1604 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1605
1606 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1607 }
1608
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1609 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1610 {
1611 struct dpu_encoder_virt *dpu_enc;
1612 struct dpu_encoder_phys *phys;
1613 unsigned int i;
1614 struct dpu_hw_ctl *ctl;
1615 struct msm_display_info *disp_info;
1616
1617 if (!drm_enc) {
1618 DPU_ERROR("invalid encoder\n");
1619 return;
1620 }
1621 dpu_enc = to_dpu_encoder_virt(drm_enc);
1622 disp_info = &dpu_enc->disp_info;
1623
1624 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1625 phys = dpu_enc->phys_encs[i];
1626
1627 ctl = phys->hw_ctl;
1628 if (ctl->ops.clear_pending_flush)
1629 ctl->ops.clear_pending_flush(ctl);
1630
1631 /* update only for command mode primary ctl */
1632 if ((phys == dpu_enc->cur_master) &&
1633 (disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE)
1634 && ctl->ops.trigger_pending)
1635 ctl->ops.trigger_pending(ctl);
1636 }
1637 }
1638
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1639 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1640 struct drm_display_mode *mode)
1641 {
1642 u64 pclk_rate;
1643 u32 pclk_period;
1644 u32 line_time;
1645
1646 /*
1647 * For linetime calculation, only operate on master encoder.
1648 */
1649 if (!dpu_enc->cur_master)
1650 return 0;
1651
1652 if (!dpu_enc->cur_master->ops.get_line_count) {
1653 DPU_ERROR("get_line_count function not defined\n");
1654 return 0;
1655 }
1656
1657 pclk_rate = mode->clock; /* pixel clock in kHz */
1658 if (pclk_rate == 0) {
1659 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1660 return 0;
1661 }
1662
1663 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1664 if (pclk_period == 0) {
1665 DPU_ERROR("pclk period is 0\n");
1666 return 0;
1667 }
1668
1669 /*
1670 * Line time calculation based on Pixel clock and HTOTAL.
1671 * Final unit is in ns.
1672 */
1673 line_time = (pclk_period * mode->htotal) / 1000;
1674 if (line_time == 0) {
1675 DPU_ERROR("line time calculation is 0\n");
1676 return 0;
1677 }
1678
1679 DPU_DEBUG_ENC(dpu_enc,
1680 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1681 pclk_rate, pclk_period, line_time);
1682
1683 return line_time;
1684 }
1685
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1686 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1687 {
1688 struct drm_display_mode *mode;
1689 struct dpu_encoder_virt *dpu_enc;
1690 u32 cur_line;
1691 u32 line_time;
1692 u32 vtotal, time_to_vsync;
1693 ktime_t cur_time;
1694
1695 dpu_enc = to_dpu_encoder_virt(drm_enc);
1696
1697 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1698 DPU_ERROR("crtc/crtc state object is NULL\n");
1699 return -EINVAL;
1700 }
1701 mode = &drm_enc->crtc->state->adjusted_mode;
1702
1703 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1704 if (!line_time)
1705 return -EINVAL;
1706
1707 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1708
1709 vtotal = mode->vtotal;
1710 if (cur_line >= vtotal)
1711 time_to_vsync = line_time * vtotal;
1712 else
1713 time_to_vsync = line_time * (vtotal - cur_line);
1714
1715 if (time_to_vsync == 0) {
1716 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1717 vtotal);
1718 return -EINVAL;
1719 }
1720
1721 cur_time = ktime_get();
1722 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1723
1724 DPU_DEBUG_ENC(dpu_enc,
1725 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1726 cur_line, vtotal, time_to_vsync,
1727 ktime_to_ms(cur_time),
1728 ktime_to_ms(*wakeup_time));
1729 return 0;
1730 }
1731
dpu_encoder_vsync_event_handler(struct timer_list * t)1732 static void dpu_encoder_vsync_event_handler(struct timer_list *t)
1733 {
1734 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
1735 vsync_event_timer);
1736 struct drm_encoder *drm_enc = &dpu_enc->base;
1737 struct msm_drm_private *priv;
1738 struct msm_drm_thread *event_thread;
1739
1740 if (!drm_enc->dev || !drm_enc->crtc) {
1741 DPU_ERROR("invalid parameters\n");
1742 return;
1743 }
1744
1745 priv = drm_enc->dev->dev_private;
1746
1747 if (drm_enc->crtc->index >= ARRAY_SIZE(priv->event_thread)) {
1748 DPU_ERROR("invalid crtc index\n");
1749 return;
1750 }
1751 event_thread = &priv->event_thread[drm_enc->crtc->index];
1752 if (!event_thread) {
1753 DPU_ERROR("event_thread not found for crtc:%d\n",
1754 drm_enc->crtc->index);
1755 return;
1756 }
1757
1758 del_timer(&dpu_enc->vsync_event_timer);
1759 }
1760
dpu_encoder_vsync_event_work_handler(struct kthread_work * work)1761 static void dpu_encoder_vsync_event_work_handler(struct kthread_work *work)
1762 {
1763 struct dpu_encoder_virt *dpu_enc = container_of(work,
1764 struct dpu_encoder_virt, vsync_event_work);
1765 ktime_t wakeup_time;
1766
1767 if (dpu_encoder_vsync_time(&dpu_enc->base, &wakeup_time))
1768 return;
1769
1770 trace_dpu_enc_vsync_event_work(DRMID(&dpu_enc->base), wakeup_time);
1771 mod_timer(&dpu_enc->vsync_event_timer,
1772 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1773 }
1774
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1775 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1776 {
1777 struct dpu_encoder_virt *dpu_enc;
1778 struct dpu_encoder_phys *phys;
1779 bool needs_hw_reset = false;
1780 unsigned int i;
1781
1782 dpu_enc = to_dpu_encoder_virt(drm_enc);
1783
1784 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1785
1786 /* prepare for next kickoff, may include waiting on previous kickoff */
1787 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1788 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1789 phys = dpu_enc->phys_encs[i];
1790 if (phys->ops.prepare_for_kickoff)
1791 phys->ops.prepare_for_kickoff(phys);
1792 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1793 needs_hw_reset = true;
1794 }
1795 DPU_ATRACE_END("enc_prepare_for_kickoff");
1796
1797 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1798
1799 /* if any phys needs reset, reset all phys, in-order */
1800 if (needs_hw_reset) {
1801 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1802 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1803 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1804 }
1805 }
1806 }
1807
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1808 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1809 {
1810 struct dpu_encoder_virt *dpu_enc;
1811 struct dpu_encoder_phys *phys;
1812 ktime_t wakeup_time;
1813 unsigned long timeout_ms;
1814 unsigned int i;
1815
1816 DPU_ATRACE_BEGIN("encoder_kickoff");
1817 dpu_enc = to_dpu_encoder_virt(drm_enc);
1818
1819 trace_dpu_enc_kickoff(DRMID(drm_enc));
1820
1821 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
1822 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
1823
1824 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
1825 mod_timer(&dpu_enc->frame_done_timer,
1826 jiffies + msecs_to_jiffies(timeout_ms));
1827
1828 /* All phys encs are ready to go, trigger the kickoff */
1829 _dpu_encoder_kickoff_phys(dpu_enc);
1830
1831 /* allow phys encs to handle any post-kickoff business */
1832 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1833 phys = dpu_enc->phys_encs[i];
1834 if (phys->ops.handle_post_kickoff)
1835 phys->ops.handle_post_kickoff(phys);
1836 }
1837
1838 if (dpu_enc->disp_info.intf_type == DRM_MODE_ENCODER_DSI &&
1839 !dpu_encoder_vsync_time(drm_enc, &wakeup_time)) {
1840 trace_dpu_enc_early_kickoff(DRMID(drm_enc),
1841 ktime_to_ms(wakeup_time));
1842 mod_timer(&dpu_enc->vsync_event_timer,
1843 nsecs_to_jiffies(ktime_to_ns(wakeup_time)));
1844 }
1845
1846 DPU_ATRACE_END("encoder_kickoff");
1847 }
1848
dpu_encoder_prepare_commit(struct drm_encoder * drm_enc)1849 void dpu_encoder_prepare_commit(struct drm_encoder *drm_enc)
1850 {
1851 struct dpu_encoder_virt *dpu_enc;
1852 struct dpu_encoder_phys *phys;
1853 int i;
1854
1855 if (!drm_enc) {
1856 DPU_ERROR("invalid encoder\n");
1857 return;
1858 }
1859 dpu_enc = to_dpu_encoder_virt(drm_enc);
1860
1861 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1862 phys = dpu_enc->phys_encs[i];
1863 if (phys->ops.prepare_commit)
1864 phys->ops.prepare_commit(phys);
1865 }
1866 }
1867
1868 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)1869 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
1870 {
1871 struct dpu_encoder_virt *dpu_enc = s->private;
1872 int i;
1873
1874 mutex_lock(&dpu_enc->enc_lock);
1875 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1876 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1877
1878 seq_printf(s, "intf:%d vsync:%8d underrun:%8d ",
1879 phys->intf_idx - INTF_0,
1880 atomic_read(&phys->vsync_cnt),
1881 atomic_read(&phys->underrun_cnt));
1882
1883 switch (phys->intf_mode) {
1884 case INTF_MODE_VIDEO:
1885 seq_puts(s, "mode: video\n");
1886 break;
1887 case INTF_MODE_CMD:
1888 seq_puts(s, "mode: command\n");
1889 break;
1890 default:
1891 seq_puts(s, "mode: ???\n");
1892 break;
1893 }
1894 }
1895 mutex_unlock(&dpu_enc->enc_lock);
1896
1897 return 0;
1898 }
1899
1900 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
1901
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1902 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1903 {
1904 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1905 int i;
1906
1907 char name[DPU_NAME_SIZE];
1908
1909 if (!drm_enc->dev) {
1910 DPU_ERROR("invalid encoder or kms\n");
1911 return -EINVAL;
1912 }
1913
1914 snprintf(name, DPU_NAME_SIZE, "encoder%u", drm_enc->base.id);
1915
1916 /* create overall sub-directory for the encoder */
1917 dpu_enc->debugfs_root = debugfs_create_dir(name,
1918 drm_enc->dev->primary->debugfs_root);
1919
1920 /* don't error check these */
1921 debugfs_create_file("status", 0600,
1922 dpu_enc->debugfs_root, dpu_enc, &_dpu_encoder_status_fops);
1923
1924 for (i = 0; i < dpu_enc->num_phys_encs; i++)
1925 if (dpu_enc->phys_encs[i]->ops.late_register)
1926 dpu_enc->phys_encs[i]->ops.late_register(
1927 dpu_enc->phys_encs[i],
1928 dpu_enc->debugfs_root);
1929
1930 return 0;
1931 }
1932 #else
_dpu_encoder_init_debugfs(struct drm_encoder * drm_enc)1933 static int _dpu_encoder_init_debugfs(struct drm_encoder *drm_enc)
1934 {
1935 return 0;
1936 }
1937 #endif
1938
dpu_encoder_late_register(struct drm_encoder * encoder)1939 static int dpu_encoder_late_register(struct drm_encoder *encoder)
1940 {
1941 return _dpu_encoder_init_debugfs(encoder);
1942 }
1943
dpu_encoder_early_unregister(struct drm_encoder * encoder)1944 static void dpu_encoder_early_unregister(struct drm_encoder *encoder)
1945 {
1946 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
1947
1948 debugfs_remove_recursive(dpu_enc->debugfs_root);
1949 }
1950
dpu_encoder_virt_add_phys_encs(u32 display_caps,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)1951 static int dpu_encoder_virt_add_phys_encs(
1952 u32 display_caps,
1953 struct dpu_encoder_virt *dpu_enc,
1954 struct dpu_enc_phys_init_params *params)
1955 {
1956 struct dpu_encoder_phys *enc = NULL;
1957
1958 DPU_DEBUG_ENC(dpu_enc, "\n");
1959
1960 /*
1961 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
1962 * in this function, check up-front.
1963 */
1964 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
1965 ARRAY_SIZE(dpu_enc->phys_encs)) {
1966 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
1967 dpu_enc->num_phys_encs);
1968 return -EINVAL;
1969 }
1970
1971 if (display_caps & MSM_DISPLAY_CAP_VID_MODE) {
1972 enc = dpu_encoder_phys_vid_init(params);
1973
1974 if (IS_ERR_OR_NULL(enc)) {
1975 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
1976 PTR_ERR(enc));
1977 return enc == NULL ? -EINVAL : PTR_ERR(enc);
1978 }
1979
1980 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1981 ++dpu_enc->num_phys_encs;
1982 }
1983
1984 if (display_caps & MSM_DISPLAY_CAP_CMD_MODE) {
1985 enc = dpu_encoder_phys_cmd_init(params);
1986
1987 if (IS_ERR_OR_NULL(enc)) {
1988 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
1989 PTR_ERR(enc));
1990 return enc == NULL ? -EINVAL : PTR_ERR(enc);
1991 }
1992
1993 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
1994 ++dpu_enc->num_phys_encs;
1995 }
1996
1997 if (params->split_role == ENC_ROLE_SLAVE)
1998 dpu_enc->cur_slave = enc;
1999 else
2000 dpu_enc->cur_master = enc;
2001
2002 return 0;
2003 }
2004
2005 static const struct dpu_encoder_virt_ops dpu_encoder_parent_ops = {
2006 .handle_vblank_virt = dpu_encoder_vblank_callback,
2007 .handle_underrun_virt = dpu_encoder_underrun_callback,
2008 .handle_frame_done = dpu_encoder_frame_done_callback,
2009 };
2010
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2011 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2012 struct dpu_kms *dpu_kms,
2013 struct msm_display_info *disp_info)
2014 {
2015 int ret = 0;
2016 int i = 0;
2017 enum dpu_intf_type intf_type = INTF_NONE;
2018 struct dpu_enc_phys_init_params phys_params;
2019
2020 if (!dpu_enc) {
2021 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2022 return -EINVAL;
2023 }
2024
2025 dpu_enc->cur_master = NULL;
2026
2027 memset(&phys_params, 0, sizeof(phys_params));
2028 phys_params.dpu_kms = dpu_kms;
2029 phys_params.parent = &dpu_enc->base;
2030 phys_params.parent_ops = &dpu_encoder_parent_ops;
2031 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2032
2033 switch (disp_info->intf_type) {
2034 case DRM_MODE_ENCODER_DSI:
2035 intf_type = INTF_DSI;
2036 break;
2037 case DRM_MODE_ENCODER_TMDS:
2038 intf_type = INTF_DP;
2039 break;
2040 }
2041
2042 WARN_ON(disp_info->num_of_h_tiles < 1);
2043
2044 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2045
2046 if ((disp_info->capabilities & MSM_DISPLAY_CAP_CMD_MODE) ||
2047 (disp_info->capabilities & MSM_DISPLAY_CAP_VID_MODE))
2048 dpu_enc->idle_pc_supported =
2049 dpu_kms->catalog->caps->has_idle_pc;
2050
2051 mutex_lock(&dpu_enc->enc_lock);
2052 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2053 /*
2054 * Left-most tile is at index 0, content is controller id
2055 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2056 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2057 */
2058 u32 controller_id = disp_info->h_tile_instance[i];
2059
2060 if (disp_info->num_of_h_tiles > 1) {
2061 if (i == 0)
2062 phys_params.split_role = ENC_ROLE_MASTER;
2063 else
2064 phys_params.split_role = ENC_ROLE_SLAVE;
2065 } else {
2066 phys_params.split_role = ENC_ROLE_SOLO;
2067 }
2068
2069 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2070 i, controller_id, phys_params.split_role);
2071
2072 phys_params.intf_idx = dpu_encoder_get_intf(dpu_kms->catalog,
2073 intf_type,
2074 controller_id);
2075 if (phys_params.intf_idx == INTF_MAX) {
2076 DPU_ERROR_ENC(dpu_enc, "could not get intf: type %d, id %d\n",
2077 intf_type, controller_id);
2078 ret = -EINVAL;
2079 }
2080
2081 if (!ret) {
2082 ret = dpu_encoder_virt_add_phys_encs(disp_info->capabilities,
2083 dpu_enc,
2084 &phys_params);
2085 if (ret)
2086 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2087 }
2088 }
2089
2090 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2091 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2092 atomic_set(&phys->vsync_cnt, 0);
2093 atomic_set(&phys->underrun_cnt, 0);
2094 }
2095 mutex_unlock(&dpu_enc->enc_lock);
2096
2097 return ret;
2098 }
2099
dpu_encoder_frame_done_timeout(struct timer_list * t)2100 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2101 {
2102 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2103 frame_done_timer);
2104 struct drm_encoder *drm_enc = &dpu_enc->base;
2105 u32 event;
2106
2107 if (!drm_enc->dev) {
2108 DPU_ERROR("invalid parameters\n");
2109 return;
2110 }
2111
2112 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc_frame_event_cb) {
2113 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2114 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2115 return;
2116 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2117 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2118 return;
2119 }
2120
2121 DPU_ERROR_ENC(dpu_enc, "frame done timeout\n");
2122
2123 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2124 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2125 dpu_enc->crtc_frame_event_cb(dpu_enc->crtc_frame_event_cb_data, event);
2126 }
2127
2128 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2129 .mode_set = dpu_encoder_virt_mode_set,
2130 .disable = dpu_encoder_virt_disable,
2131 .enable = dpu_kms_encoder_enable,
2132 .atomic_check = dpu_encoder_virt_atomic_check,
2133
2134 /* This is called by dpu_kms_encoder_enable */
2135 .commit = dpu_encoder_virt_enable,
2136 };
2137
2138 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2139 .destroy = dpu_encoder_destroy,
2140 .late_register = dpu_encoder_late_register,
2141 .early_unregister = dpu_encoder_early_unregister,
2142 };
2143
dpu_encoder_setup(struct drm_device * dev,struct drm_encoder * enc,struct msm_display_info * disp_info)2144 int dpu_encoder_setup(struct drm_device *dev, struct drm_encoder *enc,
2145 struct msm_display_info *disp_info)
2146 {
2147 struct msm_drm_private *priv = dev->dev_private;
2148 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2149 struct drm_encoder *drm_enc = NULL;
2150 struct dpu_encoder_virt *dpu_enc = NULL;
2151 int ret = 0;
2152
2153 dpu_enc = to_dpu_encoder_virt(enc);
2154
2155 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2156 if (ret)
2157 goto fail;
2158
2159 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2160 timer_setup(&dpu_enc->frame_done_timer,
2161 dpu_encoder_frame_done_timeout, 0);
2162
2163 if (disp_info->intf_type == DRM_MODE_ENCODER_DSI)
2164 timer_setup(&dpu_enc->vsync_event_timer,
2165 dpu_encoder_vsync_event_handler,
2166 0);
2167 else if (disp_info->intf_type == DRM_MODE_ENCODER_TMDS)
2168 dpu_enc->dp = priv->dp[disp_info->h_tile_instance[0]];
2169
2170 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2171 dpu_encoder_off_work);
2172 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2173
2174 kthread_init_work(&dpu_enc->vsync_event_work,
2175 dpu_encoder_vsync_event_work_handler);
2176
2177 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2178
2179 DPU_DEBUG_ENC(dpu_enc, "created\n");
2180
2181 return ret;
2182
2183 fail:
2184 DPU_ERROR("failed to create encoder\n");
2185 if (drm_enc)
2186 dpu_encoder_destroy(drm_enc);
2187
2188 return ret;
2189
2190
2191 }
2192
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode)2193 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2194 int drm_enc_mode)
2195 {
2196 struct dpu_encoder_virt *dpu_enc = NULL;
2197 int rc = 0;
2198
2199 dpu_enc = devm_kzalloc(dev->dev, sizeof(*dpu_enc), GFP_KERNEL);
2200 if (!dpu_enc)
2201 return ERR_PTR(-ENOMEM);
2202
2203 rc = drm_encoder_init(dev, &dpu_enc->base, &dpu_encoder_funcs,
2204 drm_enc_mode, NULL);
2205 if (rc) {
2206 devm_kfree(dev->dev, dpu_enc);
2207 return ERR_PTR(rc);
2208 }
2209
2210 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2211
2212 spin_lock_init(&dpu_enc->enc_spinlock);
2213 dpu_enc->enabled = false;
2214 mutex_init(&dpu_enc->enc_lock);
2215 mutex_init(&dpu_enc->rc_lock);
2216
2217 return &dpu_enc->base;
2218 }
2219
dpu_encoder_wait_for_event(struct drm_encoder * drm_enc,enum msm_event_wait event)2220 int dpu_encoder_wait_for_event(struct drm_encoder *drm_enc,
2221 enum msm_event_wait event)
2222 {
2223 int (*fn_wait)(struct dpu_encoder_phys *phys_enc) = NULL;
2224 struct dpu_encoder_virt *dpu_enc = NULL;
2225 int i, ret = 0;
2226
2227 if (!drm_enc) {
2228 DPU_ERROR("invalid encoder\n");
2229 return -EINVAL;
2230 }
2231 dpu_enc = to_dpu_encoder_virt(drm_enc);
2232 DPU_DEBUG_ENC(dpu_enc, "\n");
2233
2234 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2235 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2236
2237 switch (event) {
2238 case MSM_ENC_COMMIT_DONE:
2239 fn_wait = phys->ops.wait_for_commit_done;
2240 break;
2241 case MSM_ENC_TX_COMPLETE:
2242 fn_wait = phys->ops.wait_for_tx_complete;
2243 break;
2244 case MSM_ENC_VBLANK:
2245 fn_wait = phys->ops.wait_for_vblank;
2246 break;
2247 default:
2248 DPU_ERROR_ENC(dpu_enc, "unknown wait event %d\n",
2249 event);
2250 return -EINVAL;
2251 }
2252
2253 if (fn_wait) {
2254 DPU_ATRACE_BEGIN("wait_for_completion_event");
2255 ret = fn_wait(phys);
2256 DPU_ATRACE_END("wait_for_completion_event");
2257 if (ret)
2258 return ret;
2259 }
2260 }
2261
2262 return ret;
2263 }
2264
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2265 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2266 {
2267 struct dpu_encoder_virt *dpu_enc = NULL;
2268
2269 if (!encoder) {
2270 DPU_ERROR("invalid encoder\n");
2271 return INTF_MODE_NONE;
2272 }
2273 dpu_enc = to_dpu_encoder_virt(encoder);
2274
2275 if (dpu_enc->cur_master)
2276 return dpu_enc->cur_master->intf_mode;
2277
2278 if (dpu_enc->num_phys_encs)
2279 return dpu_enc->phys_encs[0]->intf_mode;
2280
2281 return INTF_MODE_NONE;
2282 }
2283