1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright 2020 Linaro Limited
4 *
5 * Author: Daniel Lezcano <daniel.lezcano@linaro.org>
6 *
7 * The powercap based Dynamic Thermal Power Management framework
8 * provides to the userspace a consistent API to set the power limit
9 * on some devices.
10 *
11 * DTPM defines the functions to create a tree of constraints. Each
12 * parent node is a virtual description of the aggregation of the
13 * children. It propagates the constraints set at its level to its
14 * children and collect the children power information. The leaves of
15 * the tree are the real devices which have the ability to get their
16 * current power consumption and set their power limit.
17 */
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/dtpm.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/powercap.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26
27 #define DTPM_POWER_LIMIT_FLAG 0
28
29 static const char *constraint_name[] = {
30 "Instantaneous",
31 };
32
33 static DEFINE_MUTEX(dtpm_lock);
34 static struct powercap_control_type *pct;
35 static struct dtpm *root;
36
get_time_window_us(struct powercap_zone * pcz,int cid,u64 * window)37 static int get_time_window_us(struct powercap_zone *pcz, int cid, u64 *window)
38 {
39 return -ENOSYS;
40 }
41
set_time_window_us(struct powercap_zone * pcz,int cid,u64 window)42 static int set_time_window_us(struct powercap_zone *pcz, int cid, u64 window)
43 {
44 return -ENOSYS;
45 }
46
get_max_power_range_uw(struct powercap_zone * pcz,u64 * max_power_uw)47 static int get_max_power_range_uw(struct powercap_zone *pcz, u64 *max_power_uw)
48 {
49 struct dtpm *dtpm = to_dtpm(pcz);
50
51 mutex_lock(&dtpm_lock);
52 *max_power_uw = dtpm->power_max - dtpm->power_min;
53 mutex_unlock(&dtpm_lock);
54
55 return 0;
56 }
57
__get_power_uw(struct dtpm * dtpm,u64 * power_uw)58 static int __get_power_uw(struct dtpm *dtpm, u64 *power_uw)
59 {
60 struct dtpm *child;
61 u64 power;
62 int ret = 0;
63
64 if (dtpm->ops) {
65 *power_uw = dtpm->ops->get_power_uw(dtpm);
66 return 0;
67 }
68
69 *power_uw = 0;
70
71 list_for_each_entry(child, &dtpm->children, sibling) {
72 ret = __get_power_uw(child, &power);
73 if (ret)
74 break;
75 *power_uw += power;
76 }
77
78 return ret;
79 }
80
get_power_uw(struct powercap_zone * pcz,u64 * power_uw)81 static int get_power_uw(struct powercap_zone *pcz, u64 *power_uw)
82 {
83 struct dtpm *dtpm = to_dtpm(pcz);
84 int ret;
85
86 mutex_lock(&dtpm_lock);
87 ret = __get_power_uw(dtpm, power_uw);
88 mutex_unlock(&dtpm_lock);
89
90 return ret;
91 }
92
__dtpm_rebalance_weight(struct dtpm * dtpm)93 static void __dtpm_rebalance_weight(struct dtpm *dtpm)
94 {
95 struct dtpm *child;
96
97 list_for_each_entry(child, &dtpm->children, sibling) {
98
99 pr_debug("Setting weight '%d' for '%s'\n",
100 child->weight, child->zone.name);
101
102 child->weight = DIV64_U64_ROUND_CLOSEST(
103 child->power_max * 1024, dtpm->power_max);
104
105 __dtpm_rebalance_weight(child);
106 }
107 }
108
__dtpm_sub_power(struct dtpm * dtpm)109 static void __dtpm_sub_power(struct dtpm *dtpm)
110 {
111 struct dtpm *parent = dtpm->parent;
112
113 while (parent) {
114 parent->power_min -= dtpm->power_min;
115 parent->power_max -= dtpm->power_max;
116 parent->power_limit -= dtpm->power_limit;
117 parent = parent->parent;
118 }
119 }
120
__dtpm_add_power(struct dtpm * dtpm)121 static void __dtpm_add_power(struct dtpm *dtpm)
122 {
123 struct dtpm *parent = dtpm->parent;
124
125 while (parent) {
126 parent->power_min += dtpm->power_min;
127 parent->power_max += dtpm->power_max;
128 parent->power_limit += dtpm->power_limit;
129 parent = parent->parent;
130 }
131 }
132
__dtpm_update_power(struct dtpm * dtpm)133 static int __dtpm_update_power(struct dtpm *dtpm)
134 {
135 int ret;
136
137 __dtpm_sub_power(dtpm);
138
139 ret = dtpm->ops->update_power_uw(dtpm);
140 if (ret)
141 pr_err("Failed to update power for '%s': %d\n",
142 dtpm->zone.name, ret);
143
144 if (!test_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags))
145 dtpm->power_limit = dtpm->power_max;
146
147 __dtpm_add_power(dtpm);
148
149 if (root)
150 __dtpm_rebalance_weight(root);
151
152 return ret;
153 }
154
155 /**
156 * dtpm_update_power - Update the power on the dtpm
157 * @dtpm: a pointer to a dtpm structure to update
158 *
159 * Function to update the power values of the dtpm node specified in
160 * parameter. These new values will be propagated to the tree.
161 *
162 * Return: zero on success, -EINVAL if the values are inconsistent
163 */
dtpm_update_power(struct dtpm * dtpm)164 int dtpm_update_power(struct dtpm *dtpm)
165 {
166 int ret;
167
168 mutex_lock(&dtpm_lock);
169 ret = __dtpm_update_power(dtpm);
170 mutex_unlock(&dtpm_lock);
171
172 return ret;
173 }
174
175 /**
176 * dtpm_release_zone - Cleanup when the node is released
177 * @pcz: a pointer to a powercap_zone structure
178 *
179 * Do some housecleaning and update the weight on the tree. The
180 * release will be denied if the node has children. This function must
181 * be called by the specific release callback of the different
182 * backends.
183 *
184 * Return: 0 on success, -EBUSY if there are children
185 */
dtpm_release_zone(struct powercap_zone * pcz)186 int dtpm_release_zone(struct powercap_zone *pcz)
187 {
188 struct dtpm *dtpm = to_dtpm(pcz);
189 struct dtpm *parent = dtpm->parent;
190
191 mutex_lock(&dtpm_lock);
192
193 if (!list_empty(&dtpm->children)) {
194 mutex_unlock(&dtpm_lock);
195 return -EBUSY;
196 }
197
198 if (parent)
199 list_del(&dtpm->sibling);
200
201 __dtpm_sub_power(dtpm);
202
203 mutex_unlock(&dtpm_lock);
204
205 if (dtpm->ops)
206 dtpm->ops->release(dtpm);
207
208 if (root == dtpm)
209 root = NULL;
210
211 kfree(dtpm);
212
213 return 0;
214 }
215
__get_power_limit_uw(struct dtpm * dtpm,int cid,u64 * power_limit)216 static int __get_power_limit_uw(struct dtpm *dtpm, int cid, u64 *power_limit)
217 {
218 *power_limit = dtpm->power_limit;
219 return 0;
220 }
221
get_power_limit_uw(struct powercap_zone * pcz,int cid,u64 * power_limit)222 static int get_power_limit_uw(struct powercap_zone *pcz,
223 int cid, u64 *power_limit)
224 {
225 struct dtpm *dtpm = to_dtpm(pcz);
226 int ret;
227
228 mutex_lock(&dtpm_lock);
229 ret = __get_power_limit_uw(dtpm, cid, power_limit);
230 mutex_unlock(&dtpm_lock);
231
232 return ret;
233 }
234
235 /*
236 * Set the power limit on the nodes, the power limit is distributed
237 * given the weight of the children.
238 *
239 * The dtpm node lock must be held when calling this function.
240 */
__set_power_limit_uw(struct dtpm * dtpm,int cid,u64 power_limit)241 static int __set_power_limit_uw(struct dtpm *dtpm, int cid, u64 power_limit)
242 {
243 struct dtpm *child;
244 int ret = 0;
245 u64 power;
246
247 /*
248 * A max power limitation means we remove the power limit,
249 * otherwise we set a constraint and flag the dtpm node.
250 */
251 if (power_limit == dtpm->power_max) {
252 clear_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
253 } else {
254 set_bit(DTPM_POWER_LIMIT_FLAG, &dtpm->flags);
255 }
256
257 pr_debug("Setting power limit for '%s': %llu uW\n",
258 dtpm->zone.name, power_limit);
259
260 /*
261 * Only leaves of the dtpm tree has ops to get/set the power
262 */
263 if (dtpm->ops) {
264 dtpm->power_limit = dtpm->ops->set_power_uw(dtpm, power_limit);
265 } else {
266 dtpm->power_limit = 0;
267
268 list_for_each_entry(child, &dtpm->children, sibling) {
269
270 /*
271 * Integer division rounding will inevitably
272 * lead to a different min or max value when
273 * set several times. In order to restore the
274 * initial value, we force the child's min or
275 * max power every time if the constraint is
276 * at the boundaries.
277 */
278 if (power_limit == dtpm->power_max) {
279 power = child->power_max;
280 } else if (power_limit == dtpm->power_min) {
281 power = child->power_min;
282 } else {
283 power = DIV_ROUND_CLOSEST_ULL(
284 power_limit * child->weight, 1024);
285 }
286
287 pr_debug("Setting power limit for '%s': %llu uW\n",
288 child->zone.name, power);
289
290 ret = __set_power_limit_uw(child, cid, power);
291 if (!ret)
292 ret = __get_power_limit_uw(child, cid, &power);
293
294 if (ret)
295 break;
296
297 dtpm->power_limit += power;
298 }
299 }
300
301 return ret;
302 }
303
set_power_limit_uw(struct powercap_zone * pcz,int cid,u64 power_limit)304 static int set_power_limit_uw(struct powercap_zone *pcz,
305 int cid, u64 power_limit)
306 {
307 struct dtpm *dtpm = to_dtpm(pcz);
308 int ret;
309
310 mutex_lock(&dtpm_lock);
311
312 /*
313 * Don't allow values outside of the power range previously
314 * set when initializing the power numbers.
315 */
316 power_limit = clamp_val(power_limit, dtpm->power_min, dtpm->power_max);
317
318 ret = __set_power_limit_uw(dtpm, cid, power_limit);
319
320 pr_debug("%s: power limit: %llu uW, power max: %llu uW\n",
321 dtpm->zone.name, dtpm->power_limit, dtpm->power_max);
322
323 mutex_unlock(&dtpm_lock);
324
325 return ret;
326 }
327
get_constraint_name(struct powercap_zone * pcz,int cid)328 static const char *get_constraint_name(struct powercap_zone *pcz, int cid)
329 {
330 return constraint_name[cid];
331 }
332
get_max_power_uw(struct powercap_zone * pcz,int id,u64 * max_power)333 static int get_max_power_uw(struct powercap_zone *pcz, int id, u64 *max_power)
334 {
335 struct dtpm *dtpm = to_dtpm(pcz);
336
337 mutex_lock(&dtpm_lock);
338 *max_power = dtpm->power_max;
339 mutex_unlock(&dtpm_lock);
340
341 return 0;
342 }
343
344 static struct powercap_zone_constraint_ops constraint_ops = {
345 .set_power_limit_uw = set_power_limit_uw,
346 .get_power_limit_uw = get_power_limit_uw,
347 .set_time_window_us = set_time_window_us,
348 .get_time_window_us = get_time_window_us,
349 .get_max_power_uw = get_max_power_uw,
350 .get_name = get_constraint_name,
351 };
352
353 static struct powercap_zone_ops zone_ops = {
354 .get_max_power_range_uw = get_max_power_range_uw,
355 .get_power_uw = get_power_uw,
356 .release = dtpm_release_zone,
357 };
358
359 /**
360 * dtpm_init - Allocate and initialize a dtpm struct
361 * @dtpm: The dtpm struct pointer to be initialized
362 * @ops: The dtpm device specific ops, NULL for a virtual node
363 */
dtpm_init(struct dtpm * dtpm,struct dtpm_ops * ops)364 void dtpm_init(struct dtpm *dtpm, struct dtpm_ops *ops)
365 {
366 if (dtpm) {
367 INIT_LIST_HEAD(&dtpm->children);
368 INIT_LIST_HEAD(&dtpm->sibling);
369 dtpm->weight = 1024;
370 dtpm->ops = ops;
371 }
372 }
373
374 /**
375 * dtpm_unregister - Unregister a dtpm node from the hierarchy tree
376 * @dtpm: a pointer to a dtpm structure corresponding to the node to be removed
377 *
378 * Call the underlying powercap unregister function. That will call
379 * the release callback of the powercap zone.
380 */
dtpm_unregister(struct dtpm * dtpm)381 void dtpm_unregister(struct dtpm *dtpm)
382 {
383 powercap_unregister_zone(pct, &dtpm->zone);
384
385 pr_info("Unregistered dtpm node '%s'\n", dtpm->zone.name);
386 }
387
388 /**
389 * dtpm_register - Register a dtpm node in the hierarchy tree
390 * @name: a string specifying the name of the node
391 * @dtpm: a pointer to a dtpm structure corresponding to the new node
392 * @parent: a pointer to a dtpm structure corresponding to the parent node
393 *
394 * Create a dtpm node in the tree. If no parent is specified, the node
395 * is the root node of the hierarchy. If the root node already exists,
396 * then the registration will fail. The powercap controller must be
397 * initialized before calling this function.
398 *
399 * The dtpm structure must be initialized with the power numbers
400 * before calling this function.
401 *
402 * Return: zero on success, a negative value in case of error:
403 * -EAGAIN: the function is called before the framework is initialized.
404 * -EBUSY: the root node is already inserted
405 * -EINVAL: * there is no root node yet and @parent is specified
406 * * no all ops are defined
407 * * parent have ops which are reserved for leaves
408 * Other negative values are reported back from the powercap framework
409 */
dtpm_register(const char * name,struct dtpm * dtpm,struct dtpm * parent)410 int dtpm_register(const char *name, struct dtpm *dtpm, struct dtpm *parent)
411 {
412 struct powercap_zone *pcz;
413
414 if (!pct)
415 return -EAGAIN;
416
417 if (root && !parent)
418 return -EBUSY;
419
420 if (!root && parent)
421 return -EINVAL;
422
423 if (parent && parent->ops)
424 return -EINVAL;
425
426 if (!dtpm)
427 return -EINVAL;
428
429 if (dtpm->ops && !(dtpm->ops->set_power_uw &&
430 dtpm->ops->get_power_uw &&
431 dtpm->ops->update_power_uw &&
432 dtpm->ops->release))
433 return -EINVAL;
434
435 pcz = powercap_register_zone(&dtpm->zone, pct, name,
436 parent ? &parent->zone : NULL,
437 &zone_ops, MAX_DTPM_CONSTRAINTS,
438 &constraint_ops);
439 if (IS_ERR(pcz))
440 return PTR_ERR(pcz);
441
442 mutex_lock(&dtpm_lock);
443
444 if (parent) {
445 list_add_tail(&dtpm->sibling, &parent->children);
446 dtpm->parent = parent;
447 } else {
448 root = dtpm;
449 }
450
451 if (dtpm->ops && !dtpm->ops->update_power_uw(dtpm)) {
452 __dtpm_add_power(dtpm);
453 dtpm->power_limit = dtpm->power_max;
454 }
455
456 pr_info("Registered dtpm node '%s' / %llu-%llu uW, \n",
457 dtpm->zone.name, dtpm->power_min, dtpm->power_max);
458
459 mutex_unlock(&dtpm_lock);
460
461 return 0;
462 }
463
init_dtpm(void)464 static int __init init_dtpm(void)
465 {
466 pct = powercap_register_control_type(NULL, "dtpm", NULL);
467 if (IS_ERR(pct)) {
468 pr_err("Failed to register control type\n");
469 return PTR_ERR(pct);
470 }
471
472 return 0;
473 }
474 late_initcall(init_dtpm);
475