1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include "efx.h"
24 #include "nic.h"
25 #include "selftest.h"
26
27 #include "workarounds.h"
28
29 /**************************************************************************
30 *
31 * Type name strings
32 *
33 **************************************************************************
34 */
35
36 /* Loopback mode names (see LOOPBACK_MODE()) */
37 const unsigned int ef4_loopback_mode_max = LOOPBACK_MAX;
38 const char *const ef4_loopback_mode_names[] = {
39 [LOOPBACK_NONE] = "NONE",
40 [LOOPBACK_DATA] = "DATAPATH",
41 [LOOPBACK_GMAC] = "GMAC",
42 [LOOPBACK_XGMII] = "XGMII",
43 [LOOPBACK_XGXS] = "XGXS",
44 [LOOPBACK_XAUI] = "XAUI",
45 [LOOPBACK_GMII] = "GMII",
46 [LOOPBACK_SGMII] = "SGMII",
47 [LOOPBACK_XGBR] = "XGBR",
48 [LOOPBACK_XFI] = "XFI",
49 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
50 [LOOPBACK_GMII_FAR] = "GMII_FAR",
51 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
52 [LOOPBACK_XFI_FAR] = "XFI_FAR",
53 [LOOPBACK_GPHY] = "GPHY",
54 [LOOPBACK_PHYXS] = "PHYXS",
55 [LOOPBACK_PCS] = "PCS",
56 [LOOPBACK_PMAPMD] = "PMA/PMD",
57 [LOOPBACK_XPORT] = "XPORT",
58 [LOOPBACK_XGMII_WS] = "XGMII_WS",
59 [LOOPBACK_XAUI_WS] = "XAUI_WS",
60 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
61 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
62 [LOOPBACK_GMII_WS] = "GMII_WS",
63 [LOOPBACK_XFI_WS] = "XFI_WS",
64 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
65 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
66 };
67
68 const unsigned int ef4_reset_type_max = RESET_TYPE_MAX;
69 const char *const ef4_reset_type_names[] = {
70 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
71 [RESET_TYPE_ALL] = "ALL",
72 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
73 [RESET_TYPE_WORLD] = "WORLD",
74 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
75 [RESET_TYPE_DATAPATH] = "DATAPATH",
76 [RESET_TYPE_DISABLE] = "DISABLE",
77 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
78 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
79 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
80 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR",
81 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
82 };
83
84 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
85 * queued onto this work queue. This is not a per-nic work queue, because
86 * ef4_reset_work() acquires the rtnl lock, so resets are naturally serialised.
87 */
88 static struct workqueue_struct *reset_workqueue;
89
90 /* How often and how many times to poll for a reset while waiting for a
91 * BIST that another function started to complete.
92 */
93 #define BIST_WAIT_DELAY_MS 100
94 #define BIST_WAIT_DELAY_COUNT 100
95
96 /**************************************************************************
97 *
98 * Configurable values
99 *
100 *************************************************************************/
101
102 /*
103 * Use separate channels for TX and RX events
104 *
105 * Set this to 1 to use separate channels for TX and RX. It allows us
106 * to control interrupt affinity separately for TX and RX.
107 *
108 * This is only used in MSI-X interrupt mode
109 */
110 bool ef4_separate_tx_channels;
111 module_param(ef4_separate_tx_channels, bool, 0444);
112 MODULE_PARM_DESC(ef4_separate_tx_channels,
113 "Use separate channels for TX and RX");
114
115 /* This is the weight assigned to each of the (per-channel) virtual
116 * NAPI devices.
117 */
118 static int napi_weight = 64;
119
120 /* This is the time (in jiffies) between invocations of the hardware
121 * monitor.
122 * On Falcon-based NICs, this will:
123 * - Check the on-board hardware monitor;
124 * - Poll the link state and reconfigure the hardware as necessary.
125 * On Siena-based NICs for power systems with EEH support, this will give EEH a
126 * chance to start.
127 */
128 static unsigned int ef4_monitor_interval = 1 * HZ;
129
130 /* Initial interrupt moderation settings. They can be modified after
131 * module load with ethtool.
132 *
133 * The default for RX should strike a balance between increasing the
134 * round-trip latency and reducing overhead.
135 */
136 static unsigned int rx_irq_mod_usec = 60;
137
138 /* Initial interrupt moderation settings. They can be modified after
139 * module load with ethtool.
140 *
141 * This default is chosen to ensure that a 10G link does not go idle
142 * while a TX queue is stopped after it has become full. A queue is
143 * restarted when it drops below half full. The time this takes (assuming
144 * worst case 3 descriptors per packet and 1024 descriptors) is
145 * 512 / 3 * 1.2 = 205 usec.
146 */
147 static unsigned int tx_irq_mod_usec = 150;
148
149 /* This is the first interrupt mode to try out of:
150 * 0 => MSI-X
151 * 1 => MSI
152 * 2 => legacy
153 */
154 static unsigned int interrupt_mode;
155
156 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
157 * i.e. the number of CPUs among which we may distribute simultaneous
158 * interrupt handling.
159 *
160 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
161 * The default (0) means to assign an interrupt to each core.
162 */
163 static unsigned int rss_cpus;
164 module_param(rss_cpus, uint, 0444);
165 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
166
167 static bool phy_flash_cfg;
168 module_param(phy_flash_cfg, bool, 0644);
169 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
170
171 static unsigned irq_adapt_low_thresh = 8000;
172 module_param(irq_adapt_low_thresh, uint, 0644);
173 MODULE_PARM_DESC(irq_adapt_low_thresh,
174 "Threshold score for reducing IRQ moderation");
175
176 static unsigned irq_adapt_high_thresh = 16000;
177 module_param(irq_adapt_high_thresh, uint, 0644);
178 MODULE_PARM_DESC(irq_adapt_high_thresh,
179 "Threshold score for increasing IRQ moderation");
180
181 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
182 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
183 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
184 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
185 module_param(debug, uint, 0);
186 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
187
188 /**************************************************************************
189 *
190 * Utility functions and prototypes
191 *
192 *************************************************************************/
193
194 static int ef4_soft_enable_interrupts(struct ef4_nic *efx);
195 static void ef4_soft_disable_interrupts(struct ef4_nic *efx);
196 static void ef4_remove_channel(struct ef4_channel *channel);
197 static void ef4_remove_channels(struct ef4_nic *efx);
198 static const struct ef4_channel_type ef4_default_channel_type;
199 static void ef4_remove_port(struct ef4_nic *efx);
200 static void ef4_init_napi_channel(struct ef4_channel *channel);
201 static void ef4_fini_napi(struct ef4_nic *efx);
202 static void ef4_fini_napi_channel(struct ef4_channel *channel);
203 static void ef4_fini_struct(struct ef4_nic *efx);
204 static void ef4_start_all(struct ef4_nic *efx);
205 static void ef4_stop_all(struct ef4_nic *efx);
206
207 #define EF4_ASSERT_RESET_SERIALISED(efx) \
208 do { \
209 if ((efx->state == STATE_READY) || \
210 (efx->state == STATE_RECOVERY) || \
211 (efx->state == STATE_DISABLED)) \
212 ASSERT_RTNL(); \
213 } while (0)
214
ef4_check_disabled(struct ef4_nic * efx)215 static int ef4_check_disabled(struct ef4_nic *efx)
216 {
217 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
218 netif_err(efx, drv, efx->net_dev,
219 "device is disabled due to earlier errors\n");
220 return -EIO;
221 }
222 return 0;
223 }
224
225 /**************************************************************************
226 *
227 * Event queue processing
228 *
229 *************************************************************************/
230
231 /* Process channel's event queue
232 *
233 * This function is responsible for processing the event queue of a
234 * single channel. The caller must guarantee that this function will
235 * never be concurrently called more than once on the same channel,
236 * though different channels may be being processed concurrently.
237 */
ef4_process_channel(struct ef4_channel * channel,int budget)238 static int ef4_process_channel(struct ef4_channel *channel, int budget)
239 {
240 struct ef4_tx_queue *tx_queue;
241 int spent;
242
243 if (unlikely(!channel->enabled))
244 return 0;
245
246 ef4_for_each_channel_tx_queue(tx_queue, channel) {
247 tx_queue->pkts_compl = 0;
248 tx_queue->bytes_compl = 0;
249 }
250
251 spent = ef4_nic_process_eventq(channel, budget);
252 if (spent && ef4_channel_has_rx_queue(channel)) {
253 struct ef4_rx_queue *rx_queue =
254 ef4_channel_get_rx_queue(channel);
255
256 ef4_rx_flush_packet(channel);
257 ef4_fast_push_rx_descriptors(rx_queue, true);
258 }
259
260 /* Update BQL */
261 ef4_for_each_channel_tx_queue(tx_queue, channel) {
262 if (tx_queue->bytes_compl) {
263 netdev_tx_completed_queue(tx_queue->core_txq,
264 tx_queue->pkts_compl, tx_queue->bytes_compl);
265 }
266 }
267
268 return spent;
269 }
270
271 /* NAPI poll handler
272 *
273 * NAPI guarantees serialisation of polls of the same device, which
274 * provides the guarantee required by ef4_process_channel().
275 */
ef4_update_irq_mod(struct ef4_nic * efx,struct ef4_channel * channel)276 static void ef4_update_irq_mod(struct ef4_nic *efx, struct ef4_channel *channel)
277 {
278 int step = efx->irq_mod_step_us;
279
280 if (channel->irq_mod_score < irq_adapt_low_thresh) {
281 if (channel->irq_moderation_us > step) {
282 channel->irq_moderation_us -= step;
283 efx->type->push_irq_moderation(channel);
284 }
285 } else if (channel->irq_mod_score > irq_adapt_high_thresh) {
286 if (channel->irq_moderation_us <
287 efx->irq_rx_moderation_us) {
288 channel->irq_moderation_us += step;
289 efx->type->push_irq_moderation(channel);
290 }
291 }
292
293 channel->irq_count = 0;
294 channel->irq_mod_score = 0;
295 }
296
ef4_poll(struct napi_struct * napi,int budget)297 static int ef4_poll(struct napi_struct *napi, int budget)
298 {
299 struct ef4_channel *channel =
300 container_of(napi, struct ef4_channel, napi_str);
301 struct ef4_nic *efx = channel->efx;
302 int spent;
303
304 netif_vdbg(efx, intr, efx->net_dev,
305 "channel %d NAPI poll executing on CPU %d\n",
306 channel->channel, raw_smp_processor_id());
307
308 spent = ef4_process_channel(channel, budget);
309
310 if (spent < budget) {
311 if (ef4_channel_has_rx_queue(channel) &&
312 efx->irq_rx_adaptive &&
313 unlikely(++channel->irq_count == 1000)) {
314 ef4_update_irq_mod(efx, channel);
315 }
316
317 ef4_filter_rfs_expire(channel);
318
319 /* There is no race here; although napi_disable() will
320 * only wait for napi_complete(), this isn't a problem
321 * since ef4_nic_eventq_read_ack() will have no effect if
322 * interrupts have already been disabled.
323 */
324 napi_complete_done(napi, spent);
325 ef4_nic_eventq_read_ack(channel);
326 }
327
328 return spent;
329 }
330
331 /* Create event queue
332 * Event queue memory allocations are done only once. If the channel
333 * is reset, the memory buffer will be reused; this guards against
334 * errors during channel reset and also simplifies interrupt handling.
335 */
ef4_probe_eventq(struct ef4_channel * channel)336 static int ef4_probe_eventq(struct ef4_channel *channel)
337 {
338 struct ef4_nic *efx = channel->efx;
339 unsigned long entries;
340
341 netif_dbg(efx, probe, efx->net_dev,
342 "chan %d create event queue\n", channel->channel);
343
344 /* Build an event queue with room for one event per tx and rx buffer,
345 * plus some extra for link state events and MCDI completions. */
346 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
347 EF4_BUG_ON_PARANOID(entries > EF4_MAX_EVQ_SIZE);
348 channel->eventq_mask = max(entries, EF4_MIN_EVQ_SIZE) - 1;
349
350 return ef4_nic_probe_eventq(channel);
351 }
352
353 /* Prepare channel's event queue */
ef4_init_eventq(struct ef4_channel * channel)354 static int ef4_init_eventq(struct ef4_channel *channel)
355 {
356 struct ef4_nic *efx = channel->efx;
357 int rc;
358
359 EF4_WARN_ON_PARANOID(channel->eventq_init);
360
361 netif_dbg(efx, drv, efx->net_dev,
362 "chan %d init event queue\n", channel->channel);
363
364 rc = ef4_nic_init_eventq(channel);
365 if (rc == 0) {
366 efx->type->push_irq_moderation(channel);
367 channel->eventq_read_ptr = 0;
368 channel->eventq_init = true;
369 }
370 return rc;
371 }
372
373 /* Enable event queue processing and NAPI */
ef4_start_eventq(struct ef4_channel * channel)374 void ef4_start_eventq(struct ef4_channel *channel)
375 {
376 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
377 "chan %d start event queue\n", channel->channel);
378
379 /* Make sure the NAPI handler sees the enabled flag set */
380 channel->enabled = true;
381 smp_wmb();
382
383 napi_enable(&channel->napi_str);
384 ef4_nic_eventq_read_ack(channel);
385 }
386
387 /* Disable event queue processing and NAPI */
ef4_stop_eventq(struct ef4_channel * channel)388 void ef4_stop_eventq(struct ef4_channel *channel)
389 {
390 if (!channel->enabled)
391 return;
392
393 napi_disable(&channel->napi_str);
394 channel->enabled = false;
395 }
396
ef4_fini_eventq(struct ef4_channel * channel)397 static void ef4_fini_eventq(struct ef4_channel *channel)
398 {
399 if (!channel->eventq_init)
400 return;
401
402 netif_dbg(channel->efx, drv, channel->efx->net_dev,
403 "chan %d fini event queue\n", channel->channel);
404
405 ef4_nic_fini_eventq(channel);
406 channel->eventq_init = false;
407 }
408
ef4_remove_eventq(struct ef4_channel * channel)409 static void ef4_remove_eventq(struct ef4_channel *channel)
410 {
411 netif_dbg(channel->efx, drv, channel->efx->net_dev,
412 "chan %d remove event queue\n", channel->channel);
413
414 ef4_nic_remove_eventq(channel);
415 }
416
417 /**************************************************************************
418 *
419 * Channel handling
420 *
421 *************************************************************************/
422
423 /* Allocate and initialise a channel structure. */
424 static struct ef4_channel *
ef4_alloc_channel(struct ef4_nic * efx,int i,struct ef4_channel * old_channel)425 ef4_alloc_channel(struct ef4_nic *efx, int i, struct ef4_channel *old_channel)
426 {
427 struct ef4_channel *channel;
428 struct ef4_rx_queue *rx_queue;
429 struct ef4_tx_queue *tx_queue;
430 int j;
431
432 channel = kzalloc(sizeof(*channel), GFP_KERNEL);
433 if (!channel)
434 return NULL;
435
436 channel->efx = efx;
437 channel->channel = i;
438 channel->type = &ef4_default_channel_type;
439
440 for (j = 0; j < EF4_TXQ_TYPES; j++) {
441 tx_queue = &channel->tx_queue[j];
442 tx_queue->efx = efx;
443 tx_queue->queue = i * EF4_TXQ_TYPES + j;
444 tx_queue->channel = channel;
445 }
446
447 rx_queue = &channel->rx_queue;
448 rx_queue->efx = efx;
449 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
450
451 return channel;
452 }
453
454 /* Allocate and initialise a channel structure, copying parameters
455 * (but not resources) from an old channel structure.
456 */
457 static struct ef4_channel *
ef4_copy_channel(const struct ef4_channel * old_channel)458 ef4_copy_channel(const struct ef4_channel *old_channel)
459 {
460 struct ef4_channel *channel;
461 struct ef4_rx_queue *rx_queue;
462 struct ef4_tx_queue *tx_queue;
463 int j;
464
465 channel = kmalloc(sizeof(*channel), GFP_KERNEL);
466 if (!channel)
467 return NULL;
468
469 *channel = *old_channel;
470
471 channel->napi_dev = NULL;
472 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node);
473 channel->napi_str.napi_id = 0;
474 channel->napi_str.state = 0;
475 memset(&channel->eventq, 0, sizeof(channel->eventq));
476
477 for (j = 0; j < EF4_TXQ_TYPES; j++) {
478 tx_queue = &channel->tx_queue[j];
479 if (tx_queue->channel)
480 tx_queue->channel = channel;
481 tx_queue->buffer = NULL;
482 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
483 }
484
485 rx_queue = &channel->rx_queue;
486 rx_queue->buffer = NULL;
487 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
488 timer_setup(&rx_queue->slow_fill, ef4_rx_slow_fill, 0);
489
490 return channel;
491 }
492
ef4_probe_channel(struct ef4_channel * channel)493 static int ef4_probe_channel(struct ef4_channel *channel)
494 {
495 struct ef4_tx_queue *tx_queue;
496 struct ef4_rx_queue *rx_queue;
497 int rc;
498
499 netif_dbg(channel->efx, probe, channel->efx->net_dev,
500 "creating channel %d\n", channel->channel);
501
502 rc = channel->type->pre_probe(channel);
503 if (rc)
504 goto fail;
505
506 rc = ef4_probe_eventq(channel);
507 if (rc)
508 goto fail;
509
510 ef4_for_each_channel_tx_queue(tx_queue, channel) {
511 rc = ef4_probe_tx_queue(tx_queue);
512 if (rc)
513 goto fail;
514 }
515
516 ef4_for_each_channel_rx_queue(rx_queue, channel) {
517 rc = ef4_probe_rx_queue(rx_queue);
518 if (rc)
519 goto fail;
520 }
521
522 return 0;
523
524 fail:
525 ef4_remove_channel(channel);
526 return rc;
527 }
528
529 static void
ef4_get_channel_name(struct ef4_channel * channel,char * buf,size_t len)530 ef4_get_channel_name(struct ef4_channel *channel, char *buf, size_t len)
531 {
532 struct ef4_nic *efx = channel->efx;
533 const char *type;
534 int number;
535
536 number = channel->channel;
537 if (efx->tx_channel_offset == 0) {
538 type = "";
539 } else if (channel->channel < efx->tx_channel_offset) {
540 type = "-rx";
541 } else {
542 type = "-tx";
543 number -= efx->tx_channel_offset;
544 }
545 snprintf(buf, len, "%s%s-%d", efx->name, type, number);
546 }
547
ef4_set_channel_names(struct ef4_nic * efx)548 static void ef4_set_channel_names(struct ef4_nic *efx)
549 {
550 struct ef4_channel *channel;
551
552 ef4_for_each_channel(channel, efx)
553 channel->type->get_name(channel,
554 efx->msi_context[channel->channel].name,
555 sizeof(efx->msi_context[0].name));
556 }
557
ef4_probe_channels(struct ef4_nic * efx)558 static int ef4_probe_channels(struct ef4_nic *efx)
559 {
560 struct ef4_channel *channel;
561 int rc;
562
563 /* Restart special buffer allocation */
564 efx->next_buffer_table = 0;
565
566 /* Probe channels in reverse, so that any 'extra' channels
567 * use the start of the buffer table. This allows the traffic
568 * channels to be resized without moving them or wasting the
569 * entries before them.
570 */
571 ef4_for_each_channel_rev(channel, efx) {
572 rc = ef4_probe_channel(channel);
573 if (rc) {
574 netif_err(efx, probe, efx->net_dev,
575 "failed to create channel %d\n",
576 channel->channel);
577 goto fail;
578 }
579 }
580 ef4_set_channel_names(efx);
581
582 return 0;
583
584 fail:
585 ef4_remove_channels(efx);
586 return rc;
587 }
588
589 /* Channels are shutdown and reinitialised whilst the NIC is running
590 * to propagate configuration changes (mtu, checksum offload), or
591 * to clear hardware error conditions
592 */
ef4_start_datapath(struct ef4_nic * efx)593 static void ef4_start_datapath(struct ef4_nic *efx)
594 {
595 netdev_features_t old_features = efx->net_dev->features;
596 bool old_rx_scatter = efx->rx_scatter;
597 struct ef4_tx_queue *tx_queue;
598 struct ef4_rx_queue *rx_queue;
599 struct ef4_channel *channel;
600 size_t rx_buf_len;
601
602 /* Calculate the rx buffer allocation parameters required to
603 * support the current MTU, including padding for header
604 * alignment and overruns.
605 */
606 efx->rx_dma_len = (efx->rx_prefix_size +
607 EF4_MAX_FRAME_LEN(efx->net_dev->mtu) +
608 efx->type->rx_buffer_padding);
609 rx_buf_len = (sizeof(struct ef4_rx_page_state) +
610 efx->rx_ip_align + efx->rx_dma_len);
611 if (rx_buf_len <= PAGE_SIZE) {
612 efx->rx_scatter = efx->type->always_rx_scatter;
613 efx->rx_buffer_order = 0;
614 } else if (efx->type->can_rx_scatter) {
615 BUILD_BUG_ON(EF4_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
616 BUILD_BUG_ON(sizeof(struct ef4_rx_page_state) +
617 2 * ALIGN(NET_IP_ALIGN + EF4_RX_USR_BUF_SIZE,
618 EF4_RX_BUF_ALIGNMENT) >
619 PAGE_SIZE);
620 efx->rx_scatter = true;
621 efx->rx_dma_len = EF4_RX_USR_BUF_SIZE;
622 efx->rx_buffer_order = 0;
623 } else {
624 efx->rx_scatter = false;
625 efx->rx_buffer_order = get_order(rx_buf_len);
626 }
627
628 ef4_rx_config_page_split(efx);
629 if (efx->rx_buffer_order)
630 netif_dbg(efx, drv, efx->net_dev,
631 "RX buf len=%u; page order=%u batch=%u\n",
632 efx->rx_dma_len, efx->rx_buffer_order,
633 efx->rx_pages_per_batch);
634 else
635 netif_dbg(efx, drv, efx->net_dev,
636 "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
637 efx->rx_dma_len, efx->rx_page_buf_step,
638 efx->rx_bufs_per_page, efx->rx_pages_per_batch);
639
640 /* Restore previously fixed features in hw_features and remove
641 * features which are fixed now
642 */
643 efx->net_dev->hw_features |= efx->net_dev->features;
644 efx->net_dev->hw_features &= ~efx->fixed_features;
645 efx->net_dev->features |= efx->fixed_features;
646 if (efx->net_dev->features != old_features)
647 netdev_features_change(efx->net_dev);
648
649 /* RX filters may also have scatter-enabled flags */
650 if (efx->rx_scatter != old_rx_scatter)
651 efx->type->filter_update_rx_scatter(efx);
652
653 /* We must keep at least one descriptor in a TX ring empty.
654 * We could avoid this when the queue size does not exactly
655 * match the hardware ring size, but it's not that important.
656 * Therefore we stop the queue when one more skb might fill
657 * the ring completely. We wake it when half way back to
658 * empty.
659 */
660 efx->txq_stop_thresh = efx->txq_entries - ef4_tx_max_skb_descs(efx);
661 efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
662
663 /* Initialise the channels */
664 ef4_for_each_channel(channel, efx) {
665 ef4_for_each_channel_tx_queue(tx_queue, channel) {
666 ef4_init_tx_queue(tx_queue);
667 atomic_inc(&efx->active_queues);
668 }
669
670 ef4_for_each_channel_rx_queue(rx_queue, channel) {
671 ef4_init_rx_queue(rx_queue);
672 atomic_inc(&efx->active_queues);
673 ef4_stop_eventq(channel);
674 ef4_fast_push_rx_descriptors(rx_queue, false);
675 ef4_start_eventq(channel);
676 }
677
678 WARN_ON(channel->rx_pkt_n_frags);
679 }
680
681 if (netif_device_present(efx->net_dev))
682 netif_tx_wake_all_queues(efx->net_dev);
683 }
684
ef4_stop_datapath(struct ef4_nic * efx)685 static void ef4_stop_datapath(struct ef4_nic *efx)
686 {
687 struct ef4_channel *channel;
688 struct ef4_tx_queue *tx_queue;
689 struct ef4_rx_queue *rx_queue;
690 int rc;
691
692 EF4_ASSERT_RESET_SERIALISED(efx);
693 BUG_ON(efx->port_enabled);
694
695 /* Stop RX refill */
696 ef4_for_each_channel(channel, efx) {
697 ef4_for_each_channel_rx_queue(rx_queue, channel)
698 rx_queue->refill_enabled = false;
699 }
700
701 ef4_for_each_channel(channel, efx) {
702 /* RX packet processing is pipelined, so wait for the
703 * NAPI handler to complete. At least event queue 0
704 * might be kept active by non-data events, so don't
705 * use napi_synchronize() but actually disable NAPI
706 * temporarily.
707 */
708 if (ef4_channel_has_rx_queue(channel)) {
709 ef4_stop_eventq(channel);
710 ef4_start_eventq(channel);
711 }
712 }
713
714 rc = efx->type->fini_dmaq(efx);
715 if (rc && EF4_WORKAROUND_7803(efx)) {
716 /* Schedule a reset to recover from the flush failure. The
717 * descriptor caches reference memory we're about to free,
718 * but falcon_reconfigure_mac_wrapper() won't reconnect
719 * the MACs because of the pending reset.
720 */
721 netif_err(efx, drv, efx->net_dev,
722 "Resetting to recover from flush failure\n");
723 ef4_schedule_reset(efx, RESET_TYPE_ALL);
724 } else if (rc) {
725 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
726 } else {
727 netif_dbg(efx, drv, efx->net_dev,
728 "successfully flushed all queues\n");
729 }
730
731 ef4_for_each_channel(channel, efx) {
732 ef4_for_each_channel_rx_queue(rx_queue, channel)
733 ef4_fini_rx_queue(rx_queue);
734 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
735 ef4_fini_tx_queue(tx_queue);
736 }
737 }
738
ef4_remove_channel(struct ef4_channel * channel)739 static void ef4_remove_channel(struct ef4_channel *channel)
740 {
741 struct ef4_tx_queue *tx_queue;
742 struct ef4_rx_queue *rx_queue;
743
744 netif_dbg(channel->efx, drv, channel->efx->net_dev,
745 "destroy chan %d\n", channel->channel);
746
747 ef4_for_each_channel_rx_queue(rx_queue, channel)
748 ef4_remove_rx_queue(rx_queue);
749 ef4_for_each_possible_channel_tx_queue(tx_queue, channel)
750 ef4_remove_tx_queue(tx_queue);
751 ef4_remove_eventq(channel);
752 channel->type->post_remove(channel);
753 }
754
ef4_remove_channels(struct ef4_nic * efx)755 static void ef4_remove_channels(struct ef4_nic *efx)
756 {
757 struct ef4_channel *channel;
758
759 ef4_for_each_channel(channel, efx)
760 ef4_remove_channel(channel);
761 }
762
763 int
ef4_realloc_channels(struct ef4_nic * efx,u32 rxq_entries,u32 txq_entries)764 ef4_realloc_channels(struct ef4_nic *efx, u32 rxq_entries, u32 txq_entries)
765 {
766 struct ef4_channel *other_channel[EF4_MAX_CHANNELS], *channel;
767 u32 old_rxq_entries, old_txq_entries;
768 unsigned i, next_buffer_table = 0;
769 int rc, rc2;
770
771 rc = ef4_check_disabled(efx);
772 if (rc)
773 return rc;
774
775 /* Not all channels should be reallocated. We must avoid
776 * reallocating their buffer table entries.
777 */
778 ef4_for_each_channel(channel, efx) {
779 struct ef4_rx_queue *rx_queue;
780 struct ef4_tx_queue *tx_queue;
781
782 if (channel->type->copy)
783 continue;
784 next_buffer_table = max(next_buffer_table,
785 channel->eventq.index +
786 channel->eventq.entries);
787 ef4_for_each_channel_rx_queue(rx_queue, channel)
788 next_buffer_table = max(next_buffer_table,
789 rx_queue->rxd.index +
790 rx_queue->rxd.entries);
791 ef4_for_each_channel_tx_queue(tx_queue, channel)
792 next_buffer_table = max(next_buffer_table,
793 tx_queue->txd.index +
794 tx_queue->txd.entries);
795 }
796
797 ef4_device_detach_sync(efx);
798 ef4_stop_all(efx);
799 ef4_soft_disable_interrupts(efx);
800
801 /* Clone channels (where possible) */
802 memset(other_channel, 0, sizeof(other_channel));
803 for (i = 0; i < efx->n_channels; i++) {
804 channel = efx->channel[i];
805 if (channel->type->copy)
806 channel = channel->type->copy(channel);
807 if (!channel) {
808 rc = -ENOMEM;
809 goto out;
810 }
811 other_channel[i] = channel;
812 }
813
814 /* Swap entry counts and channel pointers */
815 old_rxq_entries = efx->rxq_entries;
816 old_txq_entries = efx->txq_entries;
817 efx->rxq_entries = rxq_entries;
818 efx->txq_entries = txq_entries;
819 for (i = 0; i < efx->n_channels; i++) {
820 swap(efx->channel[i], other_channel[i]);
821 }
822
823 /* Restart buffer table allocation */
824 efx->next_buffer_table = next_buffer_table;
825
826 for (i = 0; i < efx->n_channels; i++) {
827 channel = efx->channel[i];
828 if (!channel->type->copy)
829 continue;
830 rc = ef4_probe_channel(channel);
831 if (rc)
832 goto rollback;
833 ef4_init_napi_channel(efx->channel[i]);
834 }
835
836 out:
837 /* Destroy unused channel structures */
838 for (i = 0; i < efx->n_channels; i++) {
839 channel = other_channel[i];
840 if (channel && channel->type->copy) {
841 ef4_fini_napi_channel(channel);
842 ef4_remove_channel(channel);
843 kfree(channel);
844 }
845 }
846
847 rc2 = ef4_soft_enable_interrupts(efx);
848 if (rc2) {
849 rc = rc ? rc : rc2;
850 netif_err(efx, drv, efx->net_dev,
851 "unable to restart interrupts on channel reallocation\n");
852 ef4_schedule_reset(efx, RESET_TYPE_DISABLE);
853 } else {
854 ef4_start_all(efx);
855 netif_device_attach(efx->net_dev);
856 }
857 return rc;
858
859 rollback:
860 /* Swap back */
861 efx->rxq_entries = old_rxq_entries;
862 efx->txq_entries = old_txq_entries;
863 for (i = 0; i < efx->n_channels; i++) {
864 swap(efx->channel[i], other_channel[i]);
865 }
866 goto out;
867 }
868
ef4_schedule_slow_fill(struct ef4_rx_queue * rx_queue)869 void ef4_schedule_slow_fill(struct ef4_rx_queue *rx_queue)
870 {
871 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
872 }
873
874 static const struct ef4_channel_type ef4_default_channel_type = {
875 .pre_probe = ef4_channel_dummy_op_int,
876 .post_remove = ef4_channel_dummy_op_void,
877 .get_name = ef4_get_channel_name,
878 .copy = ef4_copy_channel,
879 .keep_eventq = false,
880 };
881
ef4_channel_dummy_op_int(struct ef4_channel * channel)882 int ef4_channel_dummy_op_int(struct ef4_channel *channel)
883 {
884 return 0;
885 }
886
ef4_channel_dummy_op_void(struct ef4_channel * channel)887 void ef4_channel_dummy_op_void(struct ef4_channel *channel)
888 {
889 }
890
891 /**************************************************************************
892 *
893 * Port handling
894 *
895 **************************************************************************/
896
897 /* This ensures that the kernel is kept informed (via
898 * netif_carrier_on/off) of the link status, and also maintains the
899 * link status's stop on the port's TX queue.
900 */
ef4_link_status_changed(struct ef4_nic * efx)901 void ef4_link_status_changed(struct ef4_nic *efx)
902 {
903 struct ef4_link_state *link_state = &efx->link_state;
904
905 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
906 * that no events are triggered between unregister_netdev() and the
907 * driver unloading. A more general condition is that NETDEV_CHANGE
908 * can only be generated between NETDEV_UP and NETDEV_DOWN */
909 if (!netif_running(efx->net_dev))
910 return;
911
912 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
913 efx->n_link_state_changes++;
914
915 if (link_state->up)
916 netif_carrier_on(efx->net_dev);
917 else
918 netif_carrier_off(efx->net_dev);
919 }
920
921 /* Status message for kernel log */
922 if (link_state->up)
923 netif_info(efx, link, efx->net_dev,
924 "link up at %uMbps %s-duplex (MTU %d)\n",
925 link_state->speed, link_state->fd ? "full" : "half",
926 efx->net_dev->mtu);
927 else
928 netif_info(efx, link, efx->net_dev, "link down\n");
929 }
930
ef4_link_set_advertising(struct ef4_nic * efx,u32 advertising)931 void ef4_link_set_advertising(struct ef4_nic *efx, u32 advertising)
932 {
933 efx->link_advertising = advertising;
934 if (advertising) {
935 if (advertising & ADVERTISED_Pause)
936 efx->wanted_fc |= (EF4_FC_TX | EF4_FC_RX);
937 else
938 efx->wanted_fc &= ~(EF4_FC_TX | EF4_FC_RX);
939 if (advertising & ADVERTISED_Asym_Pause)
940 efx->wanted_fc ^= EF4_FC_TX;
941 }
942 }
943
ef4_link_set_wanted_fc(struct ef4_nic * efx,u8 wanted_fc)944 void ef4_link_set_wanted_fc(struct ef4_nic *efx, u8 wanted_fc)
945 {
946 efx->wanted_fc = wanted_fc;
947 if (efx->link_advertising) {
948 if (wanted_fc & EF4_FC_RX)
949 efx->link_advertising |= (ADVERTISED_Pause |
950 ADVERTISED_Asym_Pause);
951 else
952 efx->link_advertising &= ~(ADVERTISED_Pause |
953 ADVERTISED_Asym_Pause);
954 if (wanted_fc & EF4_FC_TX)
955 efx->link_advertising ^= ADVERTISED_Asym_Pause;
956 }
957 }
958
959 static void ef4_fini_port(struct ef4_nic *efx);
960
961 /* We assume that efx->type->reconfigure_mac will always try to sync RX
962 * filters and therefore needs to read-lock the filter table against freeing
963 */
ef4_mac_reconfigure(struct ef4_nic * efx)964 void ef4_mac_reconfigure(struct ef4_nic *efx)
965 {
966 down_read(&efx->filter_sem);
967 efx->type->reconfigure_mac(efx);
968 up_read(&efx->filter_sem);
969 }
970
971 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
972 * the MAC appropriately. All other PHY configuration changes are pushed
973 * through phy_op->set_link_ksettings(), and pushed asynchronously to the MAC
974 * through ef4_monitor().
975 *
976 * Callers must hold the mac_lock
977 */
__ef4_reconfigure_port(struct ef4_nic * efx)978 int __ef4_reconfigure_port(struct ef4_nic *efx)
979 {
980 enum ef4_phy_mode phy_mode;
981 int rc;
982
983 WARN_ON(!mutex_is_locked(&efx->mac_lock));
984
985 /* Disable PHY transmit in mac level loopbacks */
986 phy_mode = efx->phy_mode;
987 if (LOOPBACK_INTERNAL(efx))
988 efx->phy_mode |= PHY_MODE_TX_DISABLED;
989 else
990 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
991
992 rc = efx->type->reconfigure_port(efx);
993
994 if (rc)
995 efx->phy_mode = phy_mode;
996
997 return rc;
998 }
999
1000 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
1001 * disabled. */
ef4_reconfigure_port(struct ef4_nic * efx)1002 int ef4_reconfigure_port(struct ef4_nic *efx)
1003 {
1004 int rc;
1005
1006 EF4_ASSERT_RESET_SERIALISED(efx);
1007
1008 mutex_lock(&efx->mac_lock);
1009 rc = __ef4_reconfigure_port(efx);
1010 mutex_unlock(&efx->mac_lock);
1011
1012 return rc;
1013 }
1014
1015 /* Asynchronous work item for changing MAC promiscuity and multicast
1016 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
1017 * MAC directly. */
ef4_mac_work(struct work_struct * data)1018 static void ef4_mac_work(struct work_struct *data)
1019 {
1020 struct ef4_nic *efx = container_of(data, struct ef4_nic, mac_work);
1021
1022 mutex_lock(&efx->mac_lock);
1023 if (efx->port_enabled)
1024 ef4_mac_reconfigure(efx);
1025 mutex_unlock(&efx->mac_lock);
1026 }
1027
ef4_probe_port(struct ef4_nic * efx)1028 static int ef4_probe_port(struct ef4_nic *efx)
1029 {
1030 int rc;
1031
1032 netif_dbg(efx, probe, efx->net_dev, "create port\n");
1033
1034 if (phy_flash_cfg)
1035 efx->phy_mode = PHY_MODE_SPECIAL;
1036
1037 /* Connect up MAC/PHY operations table */
1038 rc = efx->type->probe_port(efx);
1039 if (rc)
1040 return rc;
1041
1042 /* Initialise MAC address to permanent address */
1043 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
1044
1045 return 0;
1046 }
1047
ef4_init_port(struct ef4_nic * efx)1048 static int ef4_init_port(struct ef4_nic *efx)
1049 {
1050 int rc;
1051
1052 netif_dbg(efx, drv, efx->net_dev, "init port\n");
1053
1054 mutex_lock(&efx->mac_lock);
1055
1056 rc = efx->phy_op->init(efx);
1057 if (rc)
1058 goto fail1;
1059
1060 efx->port_initialized = true;
1061
1062 /* Reconfigure the MAC before creating dma queues (required for
1063 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1064 ef4_mac_reconfigure(efx);
1065
1066 /* Ensure the PHY advertises the correct flow control settings */
1067 rc = efx->phy_op->reconfigure(efx);
1068 if (rc && rc != -EPERM)
1069 goto fail2;
1070
1071 mutex_unlock(&efx->mac_lock);
1072 return 0;
1073
1074 fail2:
1075 efx->phy_op->fini(efx);
1076 fail1:
1077 mutex_unlock(&efx->mac_lock);
1078 return rc;
1079 }
1080
ef4_start_port(struct ef4_nic * efx)1081 static void ef4_start_port(struct ef4_nic *efx)
1082 {
1083 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1084 BUG_ON(efx->port_enabled);
1085
1086 mutex_lock(&efx->mac_lock);
1087 efx->port_enabled = true;
1088
1089 /* Ensure MAC ingress/egress is enabled */
1090 ef4_mac_reconfigure(efx);
1091
1092 mutex_unlock(&efx->mac_lock);
1093 }
1094
1095 /* Cancel work for MAC reconfiguration, periodic hardware monitoring
1096 * and the async self-test, wait for them to finish and prevent them
1097 * being scheduled again. This doesn't cover online resets, which
1098 * should only be cancelled when removing the device.
1099 */
ef4_stop_port(struct ef4_nic * efx)1100 static void ef4_stop_port(struct ef4_nic *efx)
1101 {
1102 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1103
1104 EF4_ASSERT_RESET_SERIALISED(efx);
1105
1106 mutex_lock(&efx->mac_lock);
1107 efx->port_enabled = false;
1108 mutex_unlock(&efx->mac_lock);
1109
1110 /* Serialise against ef4_set_multicast_list() */
1111 netif_addr_lock_bh(efx->net_dev);
1112 netif_addr_unlock_bh(efx->net_dev);
1113
1114 cancel_delayed_work_sync(&efx->monitor_work);
1115 ef4_selftest_async_cancel(efx);
1116 cancel_work_sync(&efx->mac_work);
1117 }
1118
ef4_fini_port(struct ef4_nic * efx)1119 static void ef4_fini_port(struct ef4_nic *efx)
1120 {
1121 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1122
1123 if (!efx->port_initialized)
1124 return;
1125
1126 efx->phy_op->fini(efx);
1127 efx->port_initialized = false;
1128
1129 efx->link_state.up = false;
1130 ef4_link_status_changed(efx);
1131 }
1132
ef4_remove_port(struct ef4_nic * efx)1133 static void ef4_remove_port(struct ef4_nic *efx)
1134 {
1135 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1136
1137 efx->type->remove_port(efx);
1138 }
1139
1140 /**************************************************************************
1141 *
1142 * NIC handling
1143 *
1144 **************************************************************************/
1145
1146 static LIST_HEAD(ef4_primary_list);
1147 static LIST_HEAD(ef4_unassociated_list);
1148
ef4_same_controller(struct ef4_nic * left,struct ef4_nic * right)1149 static bool ef4_same_controller(struct ef4_nic *left, struct ef4_nic *right)
1150 {
1151 return left->type == right->type &&
1152 left->vpd_sn && right->vpd_sn &&
1153 !strcmp(left->vpd_sn, right->vpd_sn);
1154 }
1155
ef4_associate(struct ef4_nic * efx)1156 static void ef4_associate(struct ef4_nic *efx)
1157 {
1158 struct ef4_nic *other, *next;
1159
1160 if (efx->primary == efx) {
1161 /* Adding primary function; look for secondaries */
1162
1163 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
1164 list_add_tail(&efx->node, &ef4_primary_list);
1165
1166 list_for_each_entry_safe(other, next, &ef4_unassociated_list,
1167 node) {
1168 if (ef4_same_controller(efx, other)) {
1169 list_del(&other->node);
1170 netif_dbg(other, probe, other->net_dev,
1171 "moving to secondary list of %s %s\n",
1172 pci_name(efx->pci_dev),
1173 efx->net_dev->name);
1174 list_add_tail(&other->node,
1175 &efx->secondary_list);
1176 other->primary = efx;
1177 }
1178 }
1179 } else {
1180 /* Adding secondary function; look for primary */
1181
1182 list_for_each_entry(other, &ef4_primary_list, node) {
1183 if (ef4_same_controller(efx, other)) {
1184 netif_dbg(efx, probe, efx->net_dev,
1185 "adding to secondary list of %s %s\n",
1186 pci_name(other->pci_dev),
1187 other->net_dev->name);
1188 list_add_tail(&efx->node,
1189 &other->secondary_list);
1190 efx->primary = other;
1191 return;
1192 }
1193 }
1194
1195 netif_dbg(efx, probe, efx->net_dev,
1196 "adding to unassociated list\n");
1197 list_add_tail(&efx->node, &ef4_unassociated_list);
1198 }
1199 }
1200
ef4_dissociate(struct ef4_nic * efx)1201 static void ef4_dissociate(struct ef4_nic *efx)
1202 {
1203 struct ef4_nic *other, *next;
1204
1205 list_del(&efx->node);
1206 efx->primary = NULL;
1207
1208 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
1209 list_del(&other->node);
1210 netif_dbg(other, probe, other->net_dev,
1211 "moving to unassociated list\n");
1212 list_add_tail(&other->node, &ef4_unassociated_list);
1213 other->primary = NULL;
1214 }
1215 }
1216
1217 /* This configures the PCI device to enable I/O and DMA. */
ef4_init_io(struct ef4_nic * efx)1218 static int ef4_init_io(struct ef4_nic *efx)
1219 {
1220 struct pci_dev *pci_dev = efx->pci_dev;
1221 dma_addr_t dma_mask = efx->type->max_dma_mask;
1222 unsigned int mem_map_size = efx->type->mem_map_size(efx);
1223 int rc, bar;
1224
1225 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1226
1227 bar = efx->type->mem_bar;
1228
1229 rc = pci_enable_device(pci_dev);
1230 if (rc) {
1231 netif_err(efx, probe, efx->net_dev,
1232 "failed to enable PCI device\n");
1233 goto fail1;
1234 }
1235
1236 pci_set_master(pci_dev);
1237
1238 /* Set the PCI DMA mask. Try all possibilities from our genuine mask
1239 * down to 32 bits, because some architectures will allow 40 bit
1240 * masks event though they reject 46 bit masks.
1241 */
1242 while (dma_mask > 0x7fffffffUL) {
1243 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask);
1244 if (rc == 0)
1245 break;
1246 dma_mask >>= 1;
1247 }
1248 if (rc) {
1249 netif_err(efx, probe, efx->net_dev,
1250 "could not find a suitable DMA mask\n");
1251 goto fail2;
1252 }
1253 netif_dbg(efx, probe, efx->net_dev,
1254 "using DMA mask %llx\n", (unsigned long long) dma_mask);
1255
1256 efx->membase_phys = pci_resource_start(efx->pci_dev, bar);
1257 rc = pci_request_region(pci_dev, bar, "sfc");
1258 if (rc) {
1259 netif_err(efx, probe, efx->net_dev,
1260 "request for memory BAR failed\n");
1261 rc = -EIO;
1262 goto fail3;
1263 }
1264 efx->membase = ioremap(efx->membase_phys, mem_map_size);
1265 if (!efx->membase) {
1266 netif_err(efx, probe, efx->net_dev,
1267 "could not map memory BAR at %llx+%x\n",
1268 (unsigned long long)efx->membase_phys, mem_map_size);
1269 rc = -ENOMEM;
1270 goto fail4;
1271 }
1272 netif_dbg(efx, probe, efx->net_dev,
1273 "memory BAR at %llx+%x (virtual %p)\n",
1274 (unsigned long long)efx->membase_phys, mem_map_size,
1275 efx->membase);
1276
1277 return 0;
1278
1279 fail4:
1280 pci_release_region(efx->pci_dev, bar);
1281 fail3:
1282 efx->membase_phys = 0;
1283 fail2:
1284 pci_disable_device(efx->pci_dev);
1285 fail1:
1286 return rc;
1287 }
1288
ef4_fini_io(struct ef4_nic * efx)1289 static void ef4_fini_io(struct ef4_nic *efx)
1290 {
1291 int bar;
1292
1293 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1294
1295 if (efx->membase) {
1296 iounmap(efx->membase);
1297 efx->membase = NULL;
1298 }
1299
1300 if (efx->membase_phys) {
1301 bar = efx->type->mem_bar;
1302 pci_release_region(efx->pci_dev, bar);
1303 efx->membase_phys = 0;
1304 }
1305
1306 /* Don't disable bus-mastering if VFs are assigned */
1307 if (!pci_vfs_assigned(efx->pci_dev))
1308 pci_disable_device(efx->pci_dev);
1309 }
1310
ef4_set_default_rx_indir_table(struct ef4_nic * efx)1311 void ef4_set_default_rx_indir_table(struct ef4_nic *efx)
1312 {
1313 size_t i;
1314
1315 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1316 efx->rx_indir_table[i] =
1317 ethtool_rxfh_indir_default(i, efx->rss_spread);
1318 }
1319
ef4_wanted_parallelism(struct ef4_nic * efx)1320 static unsigned int ef4_wanted_parallelism(struct ef4_nic *efx)
1321 {
1322 cpumask_var_t thread_mask;
1323 unsigned int count;
1324 int cpu;
1325
1326 if (rss_cpus) {
1327 count = rss_cpus;
1328 } else {
1329 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1330 netif_warn(efx, probe, efx->net_dev,
1331 "RSS disabled due to allocation failure\n");
1332 return 1;
1333 }
1334
1335 count = 0;
1336 for_each_online_cpu(cpu) {
1337 if (!cpumask_test_cpu(cpu, thread_mask)) {
1338 ++count;
1339 cpumask_or(thread_mask, thread_mask,
1340 topology_sibling_cpumask(cpu));
1341 }
1342 }
1343
1344 free_cpumask_var(thread_mask);
1345 }
1346
1347 if (count > EF4_MAX_RX_QUEUES) {
1348 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn,
1349 "Reducing number of rx queues from %u to %u.\n",
1350 count, EF4_MAX_RX_QUEUES);
1351 count = EF4_MAX_RX_QUEUES;
1352 }
1353
1354 return count;
1355 }
1356
1357 /* Probe the number and type of interrupts we are able to obtain, and
1358 * the resulting numbers of channels and RX queues.
1359 */
ef4_probe_interrupts(struct ef4_nic * efx)1360 static int ef4_probe_interrupts(struct ef4_nic *efx)
1361 {
1362 unsigned int extra_channels = 0;
1363 unsigned int i, j;
1364 int rc;
1365
1366 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++)
1367 if (efx->extra_channel_type[i])
1368 ++extra_channels;
1369
1370 if (efx->interrupt_mode == EF4_INT_MODE_MSIX) {
1371 struct msix_entry xentries[EF4_MAX_CHANNELS];
1372 unsigned int n_channels;
1373
1374 n_channels = ef4_wanted_parallelism(efx);
1375 if (ef4_separate_tx_channels)
1376 n_channels *= 2;
1377 n_channels += extra_channels;
1378 n_channels = min(n_channels, efx->max_channels);
1379
1380 for (i = 0; i < n_channels; i++)
1381 xentries[i].entry = i;
1382 rc = pci_enable_msix_range(efx->pci_dev,
1383 xentries, 1, n_channels);
1384 if (rc < 0) {
1385 /* Fall back to single channel MSI */
1386 efx->interrupt_mode = EF4_INT_MODE_MSI;
1387 netif_err(efx, drv, efx->net_dev,
1388 "could not enable MSI-X\n");
1389 } else if (rc < n_channels) {
1390 netif_err(efx, drv, efx->net_dev,
1391 "WARNING: Insufficient MSI-X vectors"
1392 " available (%d < %u).\n", rc, n_channels);
1393 netif_err(efx, drv, efx->net_dev,
1394 "WARNING: Performance may be reduced.\n");
1395 n_channels = rc;
1396 }
1397
1398 if (rc > 0) {
1399 efx->n_channels = n_channels;
1400 if (n_channels > extra_channels)
1401 n_channels -= extra_channels;
1402 if (ef4_separate_tx_channels) {
1403 efx->n_tx_channels = min(max(n_channels / 2,
1404 1U),
1405 efx->max_tx_channels);
1406 efx->n_rx_channels = max(n_channels -
1407 efx->n_tx_channels,
1408 1U);
1409 } else {
1410 efx->n_tx_channels = min(n_channels,
1411 efx->max_tx_channels);
1412 efx->n_rx_channels = n_channels;
1413 }
1414 for (i = 0; i < efx->n_channels; i++)
1415 ef4_get_channel(efx, i)->irq =
1416 xentries[i].vector;
1417 }
1418 }
1419
1420 /* Try single interrupt MSI */
1421 if (efx->interrupt_mode == EF4_INT_MODE_MSI) {
1422 efx->n_channels = 1;
1423 efx->n_rx_channels = 1;
1424 efx->n_tx_channels = 1;
1425 rc = pci_enable_msi(efx->pci_dev);
1426 if (rc == 0) {
1427 ef4_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1428 } else {
1429 netif_err(efx, drv, efx->net_dev,
1430 "could not enable MSI\n");
1431 efx->interrupt_mode = EF4_INT_MODE_LEGACY;
1432 }
1433 }
1434
1435 /* Assume legacy interrupts */
1436 if (efx->interrupt_mode == EF4_INT_MODE_LEGACY) {
1437 efx->n_channels = 1 + (ef4_separate_tx_channels ? 1 : 0);
1438 efx->n_rx_channels = 1;
1439 efx->n_tx_channels = 1;
1440 efx->legacy_irq = efx->pci_dev->irq;
1441 }
1442
1443 /* Assign extra channels if possible */
1444 j = efx->n_channels;
1445 for (i = 0; i < EF4_MAX_EXTRA_CHANNELS; i++) {
1446 if (!efx->extra_channel_type[i])
1447 continue;
1448 if (efx->interrupt_mode != EF4_INT_MODE_MSIX ||
1449 efx->n_channels <= extra_channels) {
1450 efx->extra_channel_type[i]->handle_no_channel(efx);
1451 } else {
1452 --j;
1453 ef4_get_channel(efx, j)->type =
1454 efx->extra_channel_type[i];
1455 }
1456 }
1457
1458 efx->rss_spread = efx->n_rx_channels;
1459
1460 return 0;
1461 }
1462
ef4_soft_enable_interrupts(struct ef4_nic * efx)1463 static int ef4_soft_enable_interrupts(struct ef4_nic *efx)
1464 {
1465 struct ef4_channel *channel, *end_channel;
1466 int rc;
1467
1468 BUG_ON(efx->state == STATE_DISABLED);
1469
1470 efx->irq_soft_enabled = true;
1471 smp_wmb();
1472
1473 ef4_for_each_channel(channel, efx) {
1474 if (!channel->type->keep_eventq) {
1475 rc = ef4_init_eventq(channel);
1476 if (rc)
1477 goto fail;
1478 }
1479 ef4_start_eventq(channel);
1480 }
1481
1482 return 0;
1483 fail:
1484 end_channel = channel;
1485 ef4_for_each_channel(channel, efx) {
1486 if (channel == end_channel)
1487 break;
1488 ef4_stop_eventq(channel);
1489 if (!channel->type->keep_eventq)
1490 ef4_fini_eventq(channel);
1491 }
1492
1493 return rc;
1494 }
1495
ef4_soft_disable_interrupts(struct ef4_nic * efx)1496 static void ef4_soft_disable_interrupts(struct ef4_nic *efx)
1497 {
1498 struct ef4_channel *channel;
1499
1500 if (efx->state == STATE_DISABLED)
1501 return;
1502
1503 efx->irq_soft_enabled = false;
1504 smp_wmb();
1505
1506 if (efx->legacy_irq)
1507 synchronize_irq(efx->legacy_irq);
1508
1509 ef4_for_each_channel(channel, efx) {
1510 if (channel->irq)
1511 synchronize_irq(channel->irq);
1512
1513 ef4_stop_eventq(channel);
1514 if (!channel->type->keep_eventq)
1515 ef4_fini_eventq(channel);
1516 }
1517 }
1518
ef4_enable_interrupts(struct ef4_nic * efx)1519 static int ef4_enable_interrupts(struct ef4_nic *efx)
1520 {
1521 struct ef4_channel *channel, *end_channel;
1522 int rc;
1523
1524 BUG_ON(efx->state == STATE_DISABLED);
1525
1526 if (efx->eeh_disabled_legacy_irq) {
1527 enable_irq(efx->legacy_irq);
1528 efx->eeh_disabled_legacy_irq = false;
1529 }
1530
1531 efx->type->irq_enable_master(efx);
1532
1533 ef4_for_each_channel(channel, efx) {
1534 if (channel->type->keep_eventq) {
1535 rc = ef4_init_eventq(channel);
1536 if (rc)
1537 goto fail;
1538 }
1539 }
1540
1541 rc = ef4_soft_enable_interrupts(efx);
1542 if (rc)
1543 goto fail;
1544
1545 return 0;
1546
1547 fail:
1548 end_channel = channel;
1549 ef4_for_each_channel(channel, efx) {
1550 if (channel == end_channel)
1551 break;
1552 if (channel->type->keep_eventq)
1553 ef4_fini_eventq(channel);
1554 }
1555
1556 efx->type->irq_disable_non_ev(efx);
1557
1558 return rc;
1559 }
1560
ef4_disable_interrupts(struct ef4_nic * efx)1561 static void ef4_disable_interrupts(struct ef4_nic *efx)
1562 {
1563 struct ef4_channel *channel;
1564
1565 ef4_soft_disable_interrupts(efx);
1566
1567 ef4_for_each_channel(channel, efx) {
1568 if (channel->type->keep_eventq)
1569 ef4_fini_eventq(channel);
1570 }
1571
1572 efx->type->irq_disable_non_ev(efx);
1573 }
1574
ef4_remove_interrupts(struct ef4_nic * efx)1575 static void ef4_remove_interrupts(struct ef4_nic *efx)
1576 {
1577 struct ef4_channel *channel;
1578
1579 /* Remove MSI/MSI-X interrupts */
1580 ef4_for_each_channel(channel, efx)
1581 channel->irq = 0;
1582 pci_disable_msi(efx->pci_dev);
1583 pci_disable_msix(efx->pci_dev);
1584
1585 /* Remove legacy interrupt */
1586 efx->legacy_irq = 0;
1587 }
1588
ef4_set_channels(struct ef4_nic * efx)1589 static void ef4_set_channels(struct ef4_nic *efx)
1590 {
1591 struct ef4_channel *channel;
1592 struct ef4_tx_queue *tx_queue;
1593
1594 efx->tx_channel_offset =
1595 ef4_separate_tx_channels ?
1596 efx->n_channels - efx->n_tx_channels : 0;
1597
1598 /* We need to mark which channels really have RX and TX
1599 * queues, and adjust the TX queue numbers if we have separate
1600 * RX-only and TX-only channels.
1601 */
1602 ef4_for_each_channel(channel, efx) {
1603 if (channel->channel < efx->n_rx_channels)
1604 channel->rx_queue.core_index = channel->channel;
1605 else
1606 channel->rx_queue.core_index = -1;
1607
1608 ef4_for_each_channel_tx_queue(tx_queue, channel)
1609 tx_queue->queue -= (efx->tx_channel_offset *
1610 EF4_TXQ_TYPES);
1611 }
1612 }
1613
ef4_probe_nic(struct ef4_nic * efx)1614 static int ef4_probe_nic(struct ef4_nic *efx)
1615 {
1616 int rc;
1617
1618 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1619
1620 /* Carry out hardware-type specific initialisation */
1621 rc = efx->type->probe(efx);
1622 if (rc)
1623 return rc;
1624
1625 do {
1626 if (!efx->max_channels || !efx->max_tx_channels) {
1627 netif_err(efx, drv, efx->net_dev,
1628 "Insufficient resources to allocate"
1629 " any channels\n");
1630 rc = -ENOSPC;
1631 goto fail1;
1632 }
1633
1634 /* Determine the number of channels and queues by trying
1635 * to hook in MSI-X interrupts.
1636 */
1637 rc = ef4_probe_interrupts(efx);
1638 if (rc)
1639 goto fail1;
1640
1641 ef4_set_channels(efx);
1642
1643 /* dimension_resources can fail with EAGAIN */
1644 rc = efx->type->dimension_resources(efx);
1645 if (rc != 0 && rc != -EAGAIN)
1646 goto fail2;
1647
1648 if (rc == -EAGAIN)
1649 /* try again with new max_channels */
1650 ef4_remove_interrupts(efx);
1651
1652 } while (rc == -EAGAIN);
1653
1654 if (efx->n_channels > 1)
1655 netdev_rss_key_fill(&efx->rx_hash_key,
1656 sizeof(efx->rx_hash_key));
1657 ef4_set_default_rx_indir_table(efx);
1658
1659 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1660 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1661
1662 /* Initialise the interrupt moderation settings */
1663 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
1664 ef4_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1665 true);
1666
1667 return 0;
1668
1669 fail2:
1670 ef4_remove_interrupts(efx);
1671 fail1:
1672 efx->type->remove(efx);
1673 return rc;
1674 }
1675
ef4_remove_nic(struct ef4_nic * efx)1676 static void ef4_remove_nic(struct ef4_nic *efx)
1677 {
1678 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1679
1680 ef4_remove_interrupts(efx);
1681 efx->type->remove(efx);
1682 }
1683
ef4_probe_filters(struct ef4_nic * efx)1684 static int ef4_probe_filters(struct ef4_nic *efx)
1685 {
1686 int rc;
1687
1688 spin_lock_init(&efx->filter_lock);
1689 init_rwsem(&efx->filter_sem);
1690 mutex_lock(&efx->mac_lock);
1691 down_write(&efx->filter_sem);
1692 rc = efx->type->filter_table_probe(efx);
1693 if (rc)
1694 goto out_unlock;
1695
1696 #ifdef CONFIG_RFS_ACCEL
1697 if (efx->type->offload_features & NETIF_F_NTUPLE) {
1698 struct ef4_channel *channel;
1699 int i, success = 1;
1700
1701 ef4_for_each_channel(channel, efx) {
1702 channel->rps_flow_id =
1703 kcalloc(efx->type->max_rx_ip_filters,
1704 sizeof(*channel->rps_flow_id),
1705 GFP_KERNEL);
1706 if (!channel->rps_flow_id)
1707 success = 0;
1708 else
1709 for (i = 0;
1710 i < efx->type->max_rx_ip_filters;
1711 ++i)
1712 channel->rps_flow_id[i] =
1713 RPS_FLOW_ID_INVALID;
1714 }
1715
1716 if (!success) {
1717 ef4_for_each_channel(channel, efx)
1718 kfree(channel->rps_flow_id);
1719 efx->type->filter_table_remove(efx);
1720 rc = -ENOMEM;
1721 goto out_unlock;
1722 }
1723
1724 efx->rps_expire_index = efx->rps_expire_channel = 0;
1725 }
1726 #endif
1727 out_unlock:
1728 up_write(&efx->filter_sem);
1729 mutex_unlock(&efx->mac_lock);
1730 return rc;
1731 }
1732
ef4_remove_filters(struct ef4_nic * efx)1733 static void ef4_remove_filters(struct ef4_nic *efx)
1734 {
1735 #ifdef CONFIG_RFS_ACCEL
1736 struct ef4_channel *channel;
1737
1738 ef4_for_each_channel(channel, efx)
1739 kfree(channel->rps_flow_id);
1740 #endif
1741 down_write(&efx->filter_sem);
1742 efx->type->filter_table_remove(efx);
1743 up_write(&efx->filter_sem);
1744 }
1745
ef4_restore_filters(struct ef4_nic * efx)1746 static void ef4_restore_filters(struct ef4_nic *efx)
1747 {
1748 down_read(&efx->filter_sem);
1749 efx->type->filter_table_restore(efx);
1750 up_read(&efx->filter_sem);
1751 }
1752
1753 /**************************************************************************
1754 *
1755 * NIC startup/shutdown
1756 *
1757 *************************************************************************/
1758
ef4_probe_all(struct ef4_nic * efx)1759 static int ef4_probe_all(struct ef4_nic *efx)
1760 {
1761 int rc;
1762
1763 rc = ef4_probe_nic(efx);
1764 if (rc) {
1765 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1766 goto fail1;
1767 }
1768
1769 rc = ef4_probe_port(efx);
1770 if (rc) {
1771 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1772 goto fail2;
1773 }
1774
1775 BUILD_BUG_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_RXQ_MIN_ENT);
1776 if (WARN_ON(EF4_DEFAULT_DMAQ_SIZE < EF4_TXQ_MIN_ENT(efx))) {
1777 rc = -EINVAL;
1778 goto fail3;
1779 }
1780 efx->rxq_entries = efx->txq_entries = EF4_DEFAULT_DMAQ_SIZE;
1781
1782 rc = ef4_probe_filters(efx);
1783 if (rc) {
1784 netif_err(efx, probe, efx->net_dev,
1785 "failed to create filter tables\n");
1786 goto fail4;
1787 }
1788
1789 rc = ef4_probe_channels(efx);
1790 if (rc)
1791 goto fail5;
1792
1793 return 0;
1794
1795 fail5:
1796 ef4_remove_filters(efx);
1797 fail4:
1798 fail3:
1799 ef4_remove_port(efx);
1800 fail2:
1801 ef4_remove_nic(efx);
1802 fail1:
1803 return rc;
1804 }
1805
1806 /* If the interface is supposed to be running but is not, start
1807 * the hardware and software data path, regular activity for the port
1808 * (MAC statistics, link polling, etc.) and schedule the port to be
1809 * reconfigured. Interrupts must already be enabled. This function
1810 * is safe to call multiple times, so long as the NIC is not disabled.
1811 * Requires the RTNL lock.
1812 */
ef4_start_all(struct ef4_nic * efx)1813 static void ef4_start_all(struct ef4_nic *efx)
1814 {
1815 EF4_ASSERT_RESET_SERIALISED(efx);
1816 BUG_ON(efx->state == STATE_DISABLED);
1817
1818 /* Check that it is appropriate to restart the interface. All
1819 * of these flags are safe to read under just the rtnl lock */
1820 if (efx->port_enabled || !netif_running(efx->net_dev) ||
1821 efx->reset_pending)
1822 return;
1823
1824 ef4_start_port(efx);
1825 ef4_start_datapath(efx);
1826
1827 /* Start the hardware monitor if there is one */
1828 if (efx->type->monitor != NULL)
1829 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1830 ef4_monitor_interval);
1831
1832 efx->type->start_stats(efx);
1833 efx->type->pull_stats(efx);
1834 spin_lock_bh(&efx->stats_lock);
1835 efx->type->update_stats(efx, NULL, NULL);
1836 spin_unlock_bh(&efx->stats_lock);
1837 }
1838
1839 /* Quiesce the hardware and software data path, and regular activity
1840 * for the port without bringing the link down. Safe to call multiple
1841 * times with the NIC in almost any state, but interrupts should be
1842 * enabled. Requires the RTNL lock.
1843 */
ef4_stop_all(struct ef4_nic * efx)1844 static void ef4_stop_all(struct ef4_nic *efx)
1845 {
1846 EF4_ASSERT_RESET_SERIALISED(efx);
1847
1848 /* port_enabled can be read safely under the rtnl lock */
1849 if (!efx->port_enabled)
1850 return;
1851
1852 /* update stats before we go down so we can accurately count
1853 * rx_nodesc_drops
1854 */
1855 efx->type->pull_stats(efx);
1856 spin_lock_bh(&efx->stats_lock);
1857 efx->type->update_stats(efx, NULL, NULL);
1858 spin_unlock_bh(&efx->stats_lock);
1859 efx->type->stop_stats(efx);
1860 ef4_stop_port(efx);
1861
1862 /* Stop the kernel transmit interface. This is only valid if
1863 * the device is stopped or detached; otherwise the watchdog
1864 * may fire immediately.
1865 */
1866 WARN_ON(netif_running(efx->net_dev) &&
1867 netif_device_present(efx->net_dev));
1868 netif_tx_disable(efx->net_dev);
1869
1870 ef4_stop_datapath(efx);
1871 }
1872
ef4_remove_all(struct ef4_nic * efx)1873 static void ef4_remove_all(struct ef4_nic *efx)
1874 {
1875 ef4_remove_channels(efx);
1876 ef4_remove_filters(efx);
1877 ef4_remove_port(efx);
1878 ef4_remove_nic(efx);
1879 }
1880
1881 /**************************************************************************
1882 *
1883 * Interrupt moderation
1884 *
1885 **************************************************************************/
ef4_usecs_to_ticks(struct ef4_nic * efx,unsigned int usecs)1886 unsigned int ef4_usecs_to_ticks(struct ef4_nic *efx, unsigned int usecs)
1887 {
1888 if (usecs == 0)
1889 return 0;
1890 if (usecs * 1000 < efx->timer_quantum_ns)
1891 return 1; /* never round down to 0 */
1892 return usecs * 1000 / efx->timer_quantum_ns;
1893 }
1894
ef4_ticks_to_usecs(struct ef4_nic * efx,unsigned int ticks)1895 unsigned int ef4_ticks_to_usecs(struct ef4_nic *efx, unsigned int ticks)
1896 {
1897 /* We must round up when converting ticks to microseconds
1898 * because we round down when converting the other way.
1899 */
1900 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
1901 }
1902
1903 /* Set interrupt moderation parameters */
ef4_init_irq_moderation(struct ef4_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)1904 int ef4_init_irq_moderation(struct ef4_nic *efx, unsigned int tx_usecs,
1905 unsigned int rx_usecs, bool rx_adaptive,
1906 bool rx_may_override_tx)
1907 {
1908 struct ef4_channel *channel;
1909 unsigned int timer_max_us;
1910
1911 EF4_ASSERT_RESET_SERIALISED(efx);
1912
1913 timer_max_us = efx->timer_max_ns / 1000;
1914
1915 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
1916 return -EINVAL;
1917
1918 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
1919 !rx_may_override_tx) {
1920 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1921 "RX and TX IRQ moderation must be equal\n");
1922 return -EINVAL;
1923 }
1924
1925 efx->irq_rx_adaptive = rx_adaptive;
1926 efx->irq_rx_moderation_us = rx_usecs;
1927 ef4_for_each_channel(channel, efx) {
1928 if (ef4_channel_has_rx_queue(channel))
1929 channel->irq_moderation_us = rx_usecs;
1930 else if (ef4_channel_has_tx_queues(channel))
1931 channel->irq_moderation_us = tx_usecs;
1932 }
1933
1934 return 0;
1935 }
1936
ef4_get_irq_moderation(struct ef4_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)1937 void ef4_get_irq_moderation(struct ef4_nic *efx, unsigned int *tx_usecs,
1938 unsigned int *rx_usecs, bool *rx_adaptive)
1939 {
1940 *rx_adaptive = efx->irq_rx_adaptive;
1941 *rx_usecs = efx->irq_rx_moderation_us;
1942
1943 /* If channels are shared between RX and TX, so is IRQ
1944 * moderation. Otherwise, IRQ moderation is the same for all
1945 * TX channels and is not adaptive.
1946 */
1947 if (efx->tx_channel_offset == 0) {
1948 *tx_usecs = *rx_usecs;
1949 } else {
1950 struct ef4_channel *tx_channel;
1951
1952 tx_channel = efx->channel[efx->tx_channel_offset];
1953 *tx_usecs = tx_channel->irq_moderation_us;
1954 }
1955 }
1956
1957 /**************************************************************************
1958 *
1959 * Hardware monitor
1960 *
1961 **************************************************************************/
1962
1963 /* Run periodically off the general workqueue */
ef4_monitor(struct work_struct * data)1964 static void ef4_monitor(struct work_struct *data)
1965 {
1966 struct ef4_nic *efx = container_of(data, struct ef4_nic,
1967 monitor_work.work);
1968
1969 netif_vdbg(efx, timer, efx->net_dev,
1970 "hardware monitor executing on CPU %d\n",
1971 raw_smp_processor_id());
1972 BUG_ON(efx->type->monitor == NULL);
1973
1974 /* If the mac_lock is already held then it is likely a port
1975 * reconfiguration is already in place, which will likely do
1976 * most of the work of monitor() anyway. */
1977 if (mutex_trylock(&efx->mac_lock)) {
1978 if (efx->port_enabled)
1979 efx->type->monitor(efx);
1980 mutex_unlock(&efx->mac_lock);
1981 }
1982
1983 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1984 ef4_monitor_interval);
1985 }
1986
1987 /**************************************************************************
1988 *
1989 * ioctls
1990 *
1991 *************************************************************************/
1992
1993 /* Net device ioctl
1994 * Context: process, rtnl_lock() held.
1995 */
ef4_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)1996 static int ef4_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1997 {
1998 struct ef4_nic *efx = netdev_priv(net_dev);
1999 struct mii_ioctl_data *data = if_mii(ifr);
2000
2001 /* Convert phy_id from older PRTAD/DEVAD format */
2002 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
2003 (data->phy_id & 0xfc00) == 0x0400)
2004 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
2005
2006 return mdio_mii_ioctl(&efx->mdio, data, cmd);
2007 }
2008
2009 /**************************************************************************
2010 *
2011 * NAPI interface
2012 *
2013 **************************************************************************/
2014
ef4_init_napi_channel(struct ef4_channel * channel)2015 static void ef4_init_napi_channel(struct ef4_channel *channel)
2016 {
2017 struct ef4_nic *efx = channel->efx;
2018
2019 channel->napi_dev = efx->net_dev;
2020 netif_napi_add(channel->napi_dev, &channel->napi_str,
2021 ef4_poll, napi_weight);
2022 }
2023
ef4_init_napi(struct ef4_nic * efx)2024 static void ef4_init_napi(struct ef4_nic *efx)
2025 {
2026 struct ef4_channel *channel;
2027
2028 ef4_for_each_channel(channel, efx)
2029 ef4_init_napi_channel(channel);
2030 }
2031
ef4_fini_napi_channel(struct ef4_channel * channel)2032 static void ef4_fini_napi_channel(struct ef4_channel *channel)
2033 {
2034 if (channel->napi_dev)
2035 netif_napi_del(&channel->napi_str);
2036
2037 channel->napi_dev = NULL;
2038 }
2039
ef4_fini_napi(struct ef4_nic * efx)2040 static void ef4_fini_napi(struct ef4_nic *efx)
2041 {
2042 struct ef4_channel *channel;
2043
2044 ef4_for_each_channel(channel, efx)
2045 ef4_fini_napi_channel(channel);
2046 }
2047
2048 /**************************************************************************
2049 *
2050 * Kernel net device interface
2051 *
2052 *************************************************************************/
2053
2054 /* Context: process, rtnl_lock() held. */
ef4_net_open(struct net_device * net_dev)2055 int ef4_net_open(struct net_device *net_dev)
2056 {
2057 struct ef4_nic *efx = netdev_priv(net_dev);
2058 int rc;
2059
2060 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
2061 raw_smp_processor_id());
2062
2063 rc = ef4_check_disabled(efx);
2064 if (rc)
2065 return rc;
2066 if (efx->phy_mode & PHY_MODE_SPECIAL)
2067 return -EBUSY;
2068
2069 /* Notify the kernel of the link state polled during driver load,
2070 * before the monitor starts running */
2071 ef4_link_status_changed(efx);
2072
2073 ef4_start_all(efx);
2074 ef4_selftest_async_start(efx);
2075 return 0;
2076 }
2077
2078 /* Context: process, rtnl_lock() held.
2079 * Note that the kernel will ignore our return code; this method
2080 * should really be a void.
2081 */
ef4_net_stop(struct net_device * net_dev)2082 int ef4_net_stop(struct net_device *net_dev)
2083 {
2084 struct ef4_nic *efx = netdev_priv(net_dev);
2085
2086 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
2087 raw_smp_processor_id());
2088
2089 /* Stop the device and flush all the channels */
2090 ef4_stop_all(efx);
2091
2092 return 0;
2093 }
2094
2095 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
ef4_net_stats(struct net_device * net_dev,struct rtnl_link_stats64 * stats)2096 static void ef4_net_stats(struct net_device *net_dev,
2097 struct rtnl_link_stats64 *stats)
2098 {
2099 struct ef4_nic *efx = netdev_priv(net_dev);
2100
2101 spin_lock_bh(&efx->stats_lock);
2102 efx->type->update_stats(efx, NULL, stats);
2103 spin_unlock_bh(&efx->stats_lock);
2104 }
2105
2106 /* Context: netif_tx_lock held, BHs disabled. */
ef4_watchdog(struct net_device * net_dev,unsigned int txqueue)2107 static void ef4_watchdog(struct net_device *net_dev, unsigned int txqueue)
2108 {
2109 struct ef4_nic *efx = netdev_priv(net_dev);
2110
2111 netif_err(efx, tx_err, efx->net_dev,
2112 "TX stuck with port_enabled=%d: resetting channels\n",
2113 efx->port_enabled);
2114
2115 ef4_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
2116 }
2117
2118
2119 /* Context: process, rtnl_lock() held. */
ef4_change_mtu(struct net_device * net_dev,int new_mtu)2120 static int ef4_change_mtu(struct net_device *net_dev, int new_mtu)
2121 {
2122 struct ef4_nic *efx = netdev_priv(net_dev);
2123 int rc;
2124
2125 rc = ef4_check_disabled(efx);
2126 if (rc)
2127 return rc;
2128
2129 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
2130
2131 ef4_device_detach_sync(efx);
2132 ef4_stop_all(efx);
2133
2134 mutex_lock(&efx->mac_lock);
2135 net_dev->mtu = new_mtu;
2136 ef4_mac_reconfigure(efx);
2137 mutex_unlock(&efx->mac_lock);
2138
2139 ef4_start_all(efx);
2140 netif_device_attach(efx->net_dev);
2141 return 0;
2142 }
2143
ef4_set_mac_address(struct net_device * net_dev,void * data)2144 static int ef4_set_mac_address(struct net_device *net_dev, void *data)
2145 {
2146 struct ef4_nic *efx = netdev_priv(net_dev);
2147 struct sockaddr *addr = data;
2148 u8 *new_addr = addr->sa_data;
2149 u8 old_addr[6];
2150 int rc;
2151
2152 if (!is_valid_ether_addr(new_addr)) {
2153 netif_err(efx, drv, efx->net_dev,
2154 "invalid ethernet MAC address requested: %pM\n",
2155 new_addr);
2156 return -EADDRNOTAVAIL;
2157 }
2158
2159 /* save old address */
2160 ether_addr_copy(old_addr, net_dev->dev_addr);
2161 eth_hw_addr_set(net_dev, new_addr);
2162 if (efx->type->set_mac_address) {
2163 rc = efx->type->set_mac_address(efx);
2164 if (rc) {
2165 eth_hw_addr_set(net_dev, old_addr);
2166 return rc;
2167 }
2168 }
2169
2170 /* Reconfigure the MAC */
2171 mutex_lock(&efx->mac_lock);
2172 ef4_mac_reconfigure(efx);
2173 mutex_unlock(&efx->mac_lock);
2174
2175 return 0;
2176 }
2177
2178 /* Context: netif_addr_lock held, BHs disabled. */
ef4_set_rx_mode(struct net_device * net_dev)2179 static void ef4_set_rx_mode(struct net_device *net_dev)
2180 {
2181 struct ef4_nic *efx = netdev_priv(net_dev);
2182
2183 if (efx->port_enabled)
2184 queue_work(efx->workqueue, &efx->mac_work);
2185 /* Otherwise ef4_start_port() will do this */
2186 }
2187
ef4_set_features(struct net_device * net_dev,netdev_features_t data)2188 static int ef4_set_features(struct net_device *net_dev, netdev_features_t data)
2189 {
2190 struct ef4_nic *efx = netdev_priv(net_dev);
2191 int rc;
2192
2193 /* If disabling RX n-tuple filtering, clear existing filters */
2194 if (net_dev->features & ~data & NETIF_F_NTUPLE) {
2195 rc = efx->type->filter_clear_rx(efx, EF4_FILTER_PRI_MANUAL);
2196 if (rc)
2197 return rc;
2198 }
2199
2200 /* If Rx VLAN filter is changed, update filters via mac_reconfigure */
2201 if ((net_dev->features ^ data) & NETIF_F_HW_VLAN_CTAG_FILTER) {
2202 /* ef4_set_rx_mode() will schedule MAC work to update filters
2203 * when a new features are finally set in net_dev.
2204 */
2205 ef4_set_rx_mode(net_dev);
2206 }
2207
2208 return 0;
2209 }
2210
2211 static const struct net_device_ops ef4_netdev_ops = {
2212 .ndo_open = ef4_net_open,
2213 .ndo_stop = ef4_net_stop,
2214 .ndo_get_stats64 = ef4_net_stats,
2215 .ndo_tx_timeout = ef4_watchdog,
2216 .ndo_start_xmit = ef4_hard_start_xmit,
2217 .ndo_validate_addr = eth_validate_addr,
2218 .ndo_eth_ioctl = ef4_ioctl,
2219 .ndo_change_mtu = ef4_change_mtu,
2220 .ndo_set_mac_address = ef4_set_mac_address,
2221 .ndo_set_rx_mode = ef4_set_rx_mode,
2222 .ndo_set_features = ef4_set_features,
2223 .ndo_setup_tc = ef4_setup_tc,
2224 #ifdef CONFIG_RFS_ACCEL
2225 .ndo_rx_flow_steer = ef4_filter_rfs,
2226 #endif
2227 };
2228
ef4_update_name(struct ef4_nic * efx)2229 static void ef4_update_name(struct ef4_nic *efx)
2230 {
2231 strcpy(efx->name, efx->net_dev->name);
2232 ef4_mtd_rename(efx);
2233 ef4_set_channel_names(efx);
2234 }
2235
ef4_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)2236 static int ef4_netdev_event(struct notifier_block *this,
2237 unsigned long event, void *ptr)
2238 {
2239 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
2240
2241 if ((net_dev->netdev_ops == &ef4_netdev_ops) &&
2242 event == NETDEV_CHANGENAME)
2243 ef4_update_name(netdev_priv(net_dev));
2244
2245 return NOTIFY_DONE;
2246 }
2247
2248 static struct notifier_block ef4_netdev_notifier = {
2249 .notifier_call = ef4_netdev_event,
2250 };
2251
2252 static ssize_t
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)2253 phy_type_show(struct device *dev, struct device_attribute *attr, char *buf)
2254 {
2255 struct ef4_nic *efx = dev_get_drvdata(dev);
2256 return sprintf(buf, "%d\n", efx->phy_type);
2257 }
2258 static DEVICE_ATTR_RO(phy_type);
2259
ef4_register_netdev(struct ef4_nic * efx)2260 static int ef4_register_netdev(struct ef4_nic *efx)
2261 {
2262 struct net_device *net_dev = efx->net_dev;
2263 struct ef4_channel *channel;
2264 int rc;
2265
2266 net_dev->watchdog_timeo = 5 * HZ;
2267 net_dev->irq = efx->pci_dev->irq;
2268 net_dev->netdev_ops = &ef4_netdev_ops;
2269 net_dev->ethtool_ops = &ef4_ethtool_ops;
2270 net_dev->gso_max_segs = EF4_TSO_MAX_SEGS;
2271 net_dev->min_mtu = EF4_MIN_MTU;
2272 net_dev->max_mtu = EF4_MAX_MTU;
2273
2274 rtnl_lock();
2275
2276 /* Enable resets to be scheduled and check whether any were
2277 * already requested. If so, the NIC is probably hosed so we
2278 * abort.
2279 */
2280 efx->state = STATE_READY;
2281 smp_mb(); /* ensure we change state before checking reset_pending */
2282 if (efx->reset_pending) {
2283 netif_err(efx, probe, efx->net_dev,
2284 "aborting probe due to scheduled reset\n");
2285 rc = -EIO;
2286 goto fail_locked;
2287 }
2288
2289 rc = dev_alloc_name(net_dev, net_dev->name);
2290 if (rc < 0)
2291 goto fail_locked;
2292 ef4_update_name(efx);
2293
2294 /* Always start with carrier off; PHY events will detect the link */
2295 netif_carrier_off(net_dev);
2296
2297 rc = register_netdevice(net_dev);
2298 if (rc)
2299 goto fail_locked;
2300
2301 ef4_for_each_channel(channel, efx) {
2302 struct ef4_tx_queue *tx_queue;
2303 ef4_for_each_channel_tx_queue(tx_queue, channel)
2304 ef4_init_tx_queue_core_txq(tx_queue);
2305 }
2306
2307 ef4_associate(efx);
2308
2309 rtnl_unlock();
2310
2311 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2312 if (rc) {
2313 netif_err(efx, drv, efx->net_dev,
2314 "failed to init net dev attributes\n");
2315 goto fail_registered;
2316 }
2317 return 0;
2318
2319 fail_registered:
2320 rtnl_lock();
2321 ef4_dissociate(efx);
2322 unregister_netdevice(net_dev);
2323 fail_locked:
2324 efx->state = STATE_UNINIT;
2325 rtnl_unlock();
2326 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2327 return rc;
2328 }
2329
ef4_unregister_netdev(struct ef4_nic * efx)2330 static void ef4_unregister_netdev(struct ef4_nic *efx)
2331 {
2332 if (!efx->net_dev)
2333 return;
2334
2335 BUG_ON(netdev_priv(efx->net_dev) != efx);
2336
2337 if (ef4_dev_registered(efx)) {
2338 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2339 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2340 unregister_netdev(efx->net_dev);
2341 }
2342 }
2343
2344 /**************************************************************************
2345 *
2346 * Device reset and suspend
2347 *
2348 **************************************************************************/
2349
2350 /* Tears down the entire software state and most of the hardware state
2351 * before reset. */
ef4_reset_down(struct ef4_nic * efx,enum reset_type method)2352 void ef4_reset_down(struct ef4_nic *efx, enum reset_type method)
2353 {
2354 EF4_ASSERT_RESET_SERIALISED(efx);
2355
2356 ef4_stop_all(efx);
2357 ef4_disable_interrupts(efx);
2358
2359 mutex_lock(&efx->mac_lock);
2360 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2361 method != RESET_TYPE_DATAPATH)
2362 efx->phy_op->fini(efx);
2363 efx->type->fini(efx);
2364 }
2365
2366 /* This function will always ensure that the locks acquired in
2367 * ef4_reset_down() are released. A failure return code indicates
2368 * that we were unable to reinitialise the hardware, and the
2369 * driver should be disabled. If ok is false, then the rx and tx
2370 * engines are not restarted, pending a RESET_DISABLE. */
ef4_reset_up(struct ef4_nic * efx,enum reset_type method,bool ok)2371 int ef4_reset_up(struct ef4_nic *efx, enum reset_type method, bool ok)
2372 {
2373 int rc;
2374
2375 EF4_ASSERT_RESET_SERIALISED(efx);
2376
2377 /* Ensure that SRAM is initialised even if we're disabling the device */
2378 rc = efx->type->init(efx);
2379 if (rc) {
2380 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2381 goto fail;
2382 }
2383
2384 if (!ok)
2385 goto fail;
2386
2387 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE &&
2388 method != RESET_TYPE_DATAPATH) {
2389 rc = efx->phy_op->init(efx);
2390 if (rc)
2391 goto fail;
2392 rc = efx->phy_op->reconfigure(efx);
2393 if (rc && rc != -EPERM)
2394 netif_err(efx, drv, efx->net_dev,
2395 "could not restore PHY settings\n");
2396 }
2397
2398 rc = ef4_enable_interrupts(efx);
2399 if (rc)
2400 goto fail;
2401
2402 down_read(&efx->filter_sem);
2403 ef4_restore_filters(efx);
2404 up_read(&efx->filter_sem);
2405
2406 mutex_unlock(&efx->mac_lock);
2407
2408 ef4_start_all(efx);
2409
2410 return 0;
2411
2412 fail:
2413 efx->port_initialized = false;
2414
2415 mutex_unlock(&efx->mac_lock);
2416
2417 return rc;
2418 }
2419
2420 /* Reset the NIC using the specified method. Note that the reset may
2421 * fail, in which case the card will be left in an unusable state.
2422 *
2423 * Caller must hold the rtnl_lock.
2424 */
ef4_reset(struct ef4_nic * efx,enum reset_type method)2425 int ef4_reset(struct ef4_nic *efx, enum reset_type method)
2426 {
2427 int rc, rc2;
2428 bool disabled;
2429
2430 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2431 RESET_TYPE(method));
2432
2433 ef4_device_detach_sync(efx);
2434 ef4_reset_down(efx, method);
2435
2436 rc = efx->type->reset(efx, method);
2437 if (rc) {
2438 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2439 goto out;
2440 }
2441
2442 /* Clear flags for the scopes we covered. We assume the NIC and
2443 * driver are now quiescent so that there is no race here.
2444 */
2445 if (method < RESET_TYPE_MAX_METHOD)
2446 efx->reset_pending &= -(1 << (method + 1));
2447 else /* it doesn't fit into the well-ordered scope hierarchy */
2448 __clear_bit(method, &efx->reset_pending);
2449
2450 /* Reinitialise bus-mastering, which may have been turned off before
2451 * the reset was scheduled. This is still appropriate, even in the
2452 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2453 * can respond to requests. */
2454 pci_set_master(efx->pci_dev);
2455
2456 out:
2457 /* Leave device stopped if necessary */
2458 disabled = rc ||
2459 method == RESET_TYPE_DISABLE ||
2460 method == RESET_TYPE_RECOVER_OR_DISABLE;
2461 rc2 = ef4_reset_up(efx, method, !disabled);
2462 if (rc2) {
2463 disabled = true;
2464 if (!rc)
2465 rc = rc2;
2466 }
2467
2468 if (disabled) {
2469 dev_close(efx->net_dev);
2470 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2471 efx->state = STATE_DISABLED;
2472 } else {
2473 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2474 netif_device_attach(efx->net_dev);
2475 }
2476 return rc;
2477 }
2478
2479 /* Try recovery mechanisms.
2480 * For now only EEH is supported.
2481 * Returns 0 if the recovery mechanisms are unsuccessful.
2482 * Returns a non-zero value otherwise.
2483 */
ef4_try_recovery(struct ef4_nic * efx)2484 int ef4_try_recovery(struct ef4_nic *efx)
2485 {
2486 #ifdef CONFIG_EEH
2487 /* A PCI error can occur and not be seen by EEH because nothing
2488 * happens on the PCI bus. In this case the driver may fail and
2489 * schedule a 'recover or reset', leading to this recovery handler.
2490 * Manually call the eeh failure check function.
2491 */
2492 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev);
2493 if (eeh_dev_check_failure(eehdev)) {
2494 /* The EEH mechanisms will handle the error and reset the
2495 * device if necessary.
2496 */
2497 return 1;
2498 }
2499 #endif
2500 return 0;
2501 }
2502
2503 /* The worker thread exists so that code that cannot sleep can
2504 * schedule a reset for later.
2505 */
ef4_reset_work(struct work_struct * data)2506 static void ef4_reset_work(struct work_struct *data)
2507 {
2508 struct ef4_nic *efx = container_of(data, struct ef4_nic, reset_work);
2509 unsigned long pending;
2510 enum reset_type method;
2511
2512 pending = READ_ONCE(efx->reset_pending);
2513 method = fls(pending) - 1;
2514
2515 if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
2516 method == RESET_TYPE_RECOVER_OR_ALL) &&
2517 ef4_try_recovery(efx))
2518 return;
2519
2520 if (!pending)
2521 return;
2522
2523 rtnl_lock();
2524
2525 /* We checked the state in ef4_schedule_reset() but it may
2526 * have changed by now. Now that we have the RTNL lock,
2527 * it cannot change again.
2528 */
2529 if (efx->state == STATE_READY)
2530 (void)ef4_reset(efx, method);
2531
2532 rtnl_unlock();
2533 }
2534
ef4_schedule_reset(struct ef4_nic * efx,enum reset_type type)2535 void ef4_schedule_reset(struct ef4_nic *efx, enum reset_type type)
2536 {
2537 enum reset_type method;
2538
2539 if (efx->state == STATE_RECOVERY) {
2540 netif_dbg(efx, drv, efx->net_dev,
2541 "recovering: skip scheduling %s reset\n",
2542 RESET_TYPE(type));
2543 return;
2544 }
2545
2546 switch (type) {
2547 case RESET_TYPE_INVISIBLE:
2548 case RESET_TYPE_ALL:
2549 case RESET_TYPE_RECOVER_OR_ALL:
2550 case RESET_TYPE_WORLD:
2551 case RESET_TYPE_DISABLE:
2552 case RESET_TYPE_RECOVER_OR_DISABLE:
2553 case RESET_TYPE_DATAPATH:
2554 method = type;
2555 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2556 RESET_TYPE(method));
2557 break;
2558 default:
2559 method = efx->type->map_reset_reason(type);
2560 netif_dbg(efx, drv, efx->net_dev,
2561 "scheduling %s reset for %s\n",
2562 RESET_TYPE(method), RESET_TYPE(type));
2563 break;
2564 }
2565
2566 set_bit(method, &efx->reset_pending);
2567 smp_mb(); /* ensure we change reset_pending before checking state */
2568
2569 /* If we're not READY then just leave the flags set as the cue
2570 * to abort probing or reschedule the reset later.
2571 */
2572 if (READ_ONCE(efx->state) != STATE_READY)
2573 return;
2574
2575 queue_work(reset_workqueue, &efx->reset_work);
2576 }
2577
2578 /**************************************************************************
2579 *
2580 * List of NICs we support
2581 *
2582 **************************************************************************/
2583
2584 /* PCI device ID table */
2585 static const struct pci_device_id ef4_pci_table[] = {
2586 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2587 PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
2588 .driver_data = (unsigned long) &falcon_a1_nic_type},
2589 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
2590 PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
2591 .driver_data = (unsigned long) &falcon_b0_nic_type},
2592 {0} /* end of list */
2593 };
2594
2595 /**************************************************************************
2596 *
2597 * Dummy PHY/MAC operations
2598 *
2599 * Can be used for some unimplemented operations
2600 * Needed so all function pointers are valid and do not have to be tested
2601 * before use
2602 *
2603 **************************************************************************/
ef4_port_dummy_op_int(struct ef4_nic * efx)2604 int ef4_port_dummy_op_int(struct ef4_nic *efx)
2605 {
2606 return 0;
2607 }
ef4_port_dummy_op_void(struct ef4_nic * efx)2608 void ef4_port_dummy_op_void(struct ef4_nic *efx) {}
2609
ef4_port_dummy_op_poll(struct ef4_nic * efx)2610 static bool ef4_port_dummy_op_poll(struct ef4_nic *efx)
2611 {
2612 return false;
2613 }
2614
2615 static const struct ef4_phy_operations ef4_dummy_phy_operations = {
2616 .init = ef4_port_dummy_op_int,
2617 .reconfigure = ef4_port_dummy_op_int,
2618 .poll = ef4_port_dummy_op_poll,
2619 .fini = ef4_port_dummy_op_void,
2620 };
2621
2622 /**************************************************************************
2623 *
2624 * Data housekeeping
2625 *
2626 **************************************************************************/
2627
2628 /* This zeroes out and then fills in the invariants in a struct
2629 * ef4_nic (including all sub-structures).
2630 */
ef4_init_struct(struct ef4_nic * efx,struct pci_dev * pci_dev,struct net_device * net_dev)2631 static int ef4_init_struct(struct ef4_nic *efx,
2632 struct pci_dev *pci_dev, struct net_device *net_dev)
2633 {
2634 int i;
2635
2636 /* Initialise common structures */
2637 INIT_LIST_HEAD(&efx->node);
2638 INIT_LIST_HEAD(&efx->secondary_list);
2639 spin_lock_init(&efx->biu_lock);
2640 #ifdef CONFIG_SFC_FALCON_MTD
2641 INIT_LIST_HEAD(&efx->mtd_list);
2642 #endif
2643 INIT_WORK(&efx->reset_work, ef4_reset_work);
2644 INIT_DELAYED_WORK(&efx->monitor_work, ef4_monitor);
2645 INIT_DELAYED_WORK(&efx->selftest_work, ef4_selftest_async_work);
2646 efx->pci_dev = pci_dev;
2647 efx->msg_enable = debug;
2648 efx->state = STATE_UNINIT;
2649 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2650
2651 efx->net_dev = net_dev;
2652 efx->rx_prefix_size = efx->type->rx_prefix_size;
2653 efx->rx_ip_align =
2654 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0;
2655 efx->rx_packet_hash_offset =
2656 efx->type->rx_hash_offset - efx->type->rx_prefix_size;
2657 efx->rx_packet_ts_offset =
2658 efx->type->rx_ts_offset - efx->type->rx_prefix_size;
2659 spin_lock_init(&efx->stats_lock);
2660 mutex_init(&efx->mac_lock);
2661 efx->phy_op = &ef4_dummy_phy_operations;
2662 efx->mdio.dev = net_dev;
2663 INIT_WORK(&efx->mac_work, ef4_mac_work);
2664 init_waitqueue_head(&efx->flush_wq);
2665
2666 for (i = 0; i < EF4_MAX_CHANNELS; i++) {
2667 efx->channel[i] = ef4_alloc_channel(efx, i, NULL);
2668 if (!efx->channel[i])
2669 goto fail;
2670 efx->msi_context[i].efx = efx;
2671 efx->msi_context[i].index = i;
2672 }
2673
2674 /* Higher numbered interrupt modes are less capable! */
2675 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2676 interrupt_mode);
2677
2678 /* Would be good to use the net_dev name, but we're too early */
2679 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2680 pci_name(pci_dev));
2681 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2682 if (!efx->workqueue)
2683 goto fail;
2684
2685 return 0;
2686
2687 fail:
2688 ef4_fini_struct(efx);
2689 return -ENOMEM;
2690 }
2691
ef4_fini_struct(struct ef4_nic * efx)2692 static void ef4_fini_struct(struct ef4_nic *efx)
2693 {
2694 int i;
2695
2696 for (i = 0; i < EF4_MAX_CHANNELS; i++)
2697 kfree(efx->channel[i]);
2698
2699 kfree(efx->vpd_sn);
2700
2701 if (efx->workqueue) {
2702 destroy_workqueue(efx->workqueue);
2703 efx->workqueue = NULL;
2704 }
2705 }
2706
ef4_update_sw_stats(struct ef4_nic * efx,u64 * stats)2707 void ef4_update_sw_stats(struct ef4_nic *efx, u64 *stats)
2708 {
2709 u64 n_rx_nodesc_trunc = 0;
2710 struct ef4_channel *channel;
2711
2712 ef4_for_each_channel(channel, efx)
2713 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
2714 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
2715 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
2716 }
2717
2718 /**************************************************************************
2719 *
2720 * PCI interface
2721 *
2722 **************************************************************************/
2723
2724 /* Main body of final NIC shutdown code
2725 * This is called only at module unload (or hotplug removal).
2726 */
ef4_pci_remove_main(struct ef4_nic * efx)2727 static void ef4_pci_remove_main(struct ef4_nic *efx)
2728 {
2729 /* Flush reset_work. It can no longer be scheduled since we
2730 * are not READY.
2731 */
2732 BUG_ON(efx->state == STATE_READY);
2733 cancel_work_sync(&efx->reset_work);
2734
2735 ef4_disable_interrupts(efx);
2736 ef4_nic_fini_interrupt(efx);
2737 ef4_fini_port(efx);
2738 efx->type->fini(efx);
2739 ef4_fini_napi(efx);
2740 ef4_remove_all(efx);
2741 }
2742
2743 /* Final NIC shutdown
2744 * This is called only at module unload (or hotplug removal). A PF can call
2745 * this on its VFs to ensure they are unbound first.
2746 */
ef4_pci_remove(struct pci_dev * pci_dev)2747 static void ef4_pci_remove(struct pci_dev *pci_dev)
2748 {
2749 struct ef4_nic *efx;
2750
2751 efx = pci_get_drvdata(pci_dev);
2752 if (!efx)
2753 return;
2754
2755 /* Mark the NIC as fini, then stop the interface */
2756 rtnl_lock();
2757 ef4_dissociate(efx);
2758 dev_close(efx->net_dev);
2759 ef4_disable_interrupts(efx);
2760 efx->state = STATE_UNINIT;
2761 rtnl_unlock();
2762
2763 ef4_unregister_netdev(efx);
2764
2765 ef4_mtd_remove(efx);
2766
2767 ef4_pci_remove_main(efx);
2768
2769 ef4_fini_io(efx);
2770 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2771
2772 ef4_fini_struct(efx);
2773 free_netdev(efx->net_dev);
2774
2775 pci_disable_pcie_error_reporting(pci_dev);
2776 };
2777
2778 /* NIC VPD information
2779 * Called during probe to display the part number of the installed NIC.
2780 */
ef4_probe_vpd_strings(struct ef4_nic * efx)2781 static void ef4_probe_vpd_strings(struct ef4_nic *efx)
2782 {
2783 struct pci_dev *dev = efx->pci_dev;
2784 unsigned int vpd_size, kw_len;
2785 u8 *vpd_data;
2786 int start;
2787
2788 vpd_data = pci_vpd_alloc(dev, &vpd_size);
2789 if (IS_ERR(vpd_data)) {
2790 pci_warn(dev, "Unable to read VPD\n");
2791 return;
2792 }
2793
2794 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2795 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
2796 if (start < 0)
2797 pci_warn(dev, "Part number not found or incomplete\n");
2798 else
2799 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
2800
2801 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
2802 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
2803 if (start < 0)
2804 pci_warn(dev, "Serial number not found or incomplete\n");
2805 else
2806 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
2807
2808 kfree(vpd_data);
2809 }
2810
2811
2812 /* Main body of NIC initialisation
2813 * This is called at module load (or hotplug insertion, theoretically).
2814 */
ef4_pci_probe_main(struct ef4_nic * efx)2815 static int ef4_pci_probe_main(struct ef4_nic *efx)
2816 {
2817 int rc;
2818
2819 /* Do start-of-day initialisation */
2820 rc = ef4_probe_all(efx);
2821 if (rc)
2822 goto fail1;
2823
2824 ef4_init_napi(efx);
2825
2826 rc = efx->type->init(efx);
2827 if (rc) {
2828 netif_err(efx, probe, efx->net_dev,
2829 "failed to initialise NIC\n");
2830 goto fail3;
2831 }
2832
2833 rc = ef4_init_port(efx);
2834 if (rc) {
2835 netif_err(efx, probe, efx->net_dev,
2836 "failed to initialise port\n");
2837 goto fail4;
2838 }
2839
2840 rc = ef4_nic_init_interrupt(efx);
2841 if (rc)
2842 goto fail5;
2843 rc = ef4_enable_interrupts(efx);
2844 if (rc)
2845 goto fail6;
2846
2847 return 0;
2848
2849 fail6:
2850 ef4_nic_fini_interrupt(efx);
2851 fail5:
2852 ef4_fini_port(efx);
2853 fail4:
2854 efx->type->fini(efx);
2855 fail3:
2856 ef4_fini_napi(efx);
2857 ef4_remove_all(efx);
2858 fail1:
2859 return rc;
2860 }
2861
2862 /* NIC initialisation
2863 *
2864 * This is called at module load (or hotplug insertion,
2865 * theoretically). It sets up PCI mappings, resets the NIC,
2866 * sets up and registers the network devices with the kernel and hooks
2867 * the interrupt service routine. It does not prepare the device for
2868 * transmission; this is left to the first time one of the network
2869 * interfaces is brought up (i.e. ef4_net_open).
2870 */
ef4_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)2871 static int ef4_pci_probe(struct pci_dev *pci_dev,
2872 const struct pci_device_id *entry)
2873 {
2874 struct net_device *net_dev;
2875 struct ef4_nic *efx;
2876 int rc;
2877
2878 /* Allocate and initialise a struct net_device and struct ef4_nic */
2879 net_dev = alloc_etherdev_mqs(sizeof(*efx), EF4_MAX_CORE_TX_QUEUES,
2880 EF4_MAX_RX_QUEUES);
2881 if (!net_dev)
2882 return -ENOMEM;
2883 efx = netdev_priv(net_dev);
2884 efx->type = (const struct ef4_nic_type *) entry->driver_data;
2885 efx->fixed_features |= NETIF_F_HIGHDMA;
2886
2887 pci_set_drvdata(pci_dev, efx);
2888 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2889 rc = ef4_init_struct(efx, pci_dev, net_dev);
2890 if (rc)
2891 goto fail1;
2892
2893 netif_info(efx, probe, efx->net_dev,
2894 "Solarflare NIC detected\n");
2895
2896 ef4_probe_vpd_strings(efx);
2897
2898 /* Set up basic I/O (BAR mappings etc) */
2899 rc = ef4_init_io(efx);
2900 if (rc)
2901 goto fail2;
2902
2903 rc = ef4_pci_probe_main(efx);
2904 if (rc)
2905 goto fail3;
2906
2907 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2908 NETIF_F_RXCSUM);
2909 /* Mask for features that also apply to VLAN devices */
2910 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
2911 NETIF_F_HIGHDMA | NETIF_F_RXCSUM);
2912
2913 net_dev->hw_features = net_dev->features & ~efx->fixed_features;
2914
2915 /* Disable VLAN filtering by default. It may be enforced if
2916 * the feature is fixed (i.e. VLAN filters are required to
2917 * receive VLAN tagged packets due to vPort restrictions).
2918 */
2919 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
2920 net_dev->features |= efx->fixed_features;
2921
2922 rc = ef4_register_netdev(efx);
2923 if (rc)
2924 goto fail4;
2925
2926 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2927
2928 /* Try to create MTDs, but allow this to fail */
2929 rtnl_lock();
2930 rc = ef4_mtd_probe(efx);
2931 rtnl_unlock();
2932 if (rc && rc != -EPERM)
2933 netif_warn(efx, probe, efx->net_dev,
2934 "failed to create MTDs (%d)\n", rc);
2935
2936 rc = pci_enable_pcie_error_reporting(pci_dev);
2937 if (rc && rc != -EINVAL)
2938 netif_notice(efx, probe, efx->net_dev,
2939 "PCIE error reporting unavailable (%d).\n",
2940 rc);
2941
2942 return 0;
2943
2944 fail4:
2945 ef4_pci_remove_main(efx);
2946 fail3:
2947 ef4_fini_io(efx);
2948 fail2:
2949 ef4_fini_struct(efx);
2950 fail1:
2951 WARN_ON(rc > 0);
2952 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2953 free_netdev(net_dev);
2954 return rc;
2955 }
2956
ef4_pm_freeze(struct device * dev)2957 static int ef4_pm_freeze(struct device *dev)
2958 {
2959 struct ef4_nic *efx = dev_get_drvdata(dev);
2960
2961 rtnl_lock();
2962
2963 if (efx->state != STATE_DISABLED) {
2964 efx->state = STATE_UNINIT;
2965
2966 ef4_device_detach_sync(efx);
2967
2968 ef4_stop_all(efx);
2969 ef4_disable_interrupts(efx);
2970 }
2971
2972 rtnl_unlock();
2973
2974 return 0;
2975 }
2976
ef4_pm_thaw(struct device * dev)2977 static int ef4_pm_thaw(struct device *dev)
2978 {
2979 int rc;
2980 struct ef4_nic *efx = dev_get_drvdata(dev);
2981
2982 rtnl_lock();
2983
2984 if (efx->state != STATE_DISABLED) {
2985 rc = ef4_enable_interrupts(efx);
2986 if (rc)
2987 goto fail;
2988
2989 mutex_lock(&efx->mac_lock);
2990 efx->phy_op->reconfigure(efx);
2991 mutex_unlock(&efx->mac_lock);
2992
2993 ef4_start_all(efx);
2994
2995 netif_device_attach(efx->net_dev);
2996
2997 efx->state = STATE_READY;
2998
2999 efx->type->resume_wol(efx);
3000 }
3001
3002 rtnl_unlock();
3003
3004 /* Reschedule any quenched resets scheduled during ef4_pm_freeze() */
3005 queue_work(reset_workqueue, &efx->reset_work);
3006
3007 return 0;
3008
3009 fail:
3010 rtnl_unlock();
3011
3012 return rc;
3013 }
3014
ef4_pm_poweroff(struct device * dev)3015 static int ef4_pm_poweroff(struct device *dev)
3016 {
3017 struct pci_dev *pci_dev = to_pci_dev(dev);
3018 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3019
3020 efx->type->fini(efx);
3021
3022 efx->reset_pending = 0;
3023
3024 pci_save_state(pci_dev);
3025 return pci_set_power_state(pci_dev, PCI_D3hot);
3026 }
3027
3028 /* Used for both resume and restore */
ef4_pm_resume(struct device * dev)3029 static int ef4_pm_resume(struct device *dev)
3030 {
3031 struct pci_dev *pci_dev = to_pci_dev(dev);
3032 struct ef4_nic *efx = pci_get_drvdata(pci_dev);
3033 int rc;
3034
3035 rc = pci_set_power_state(pci_dev, PCI_D0);
3036 if (rc)
3037 return rc;
3038 pci_restore_state(pci_dev);
3039 rc = pci_enable_device(pci_dev);
3040 if (rc)
3041 return rc;
3042 pci_set_master(efx->pci_dev);
3043 rc = efx->type->reset(efx, RESET_TYPE_ALL);
3044 if (rc)
3045 return rc;
3046 rc = efx->type->init(efx);
3047 if (rc)
3048 return rc;
3049 rc = ef4_pm_thaw(dev);
3050 return rc;
3051 }
3052
ef4_pm_suspend(struct device * dev)3053 static int ef4_pm_suspend(struct device *dev)
3054 {
3055 int rc;
3056
3057 ef4_pm_freeze(dev);
3058 rc = ef4_pm_poweroff(dev);
3059 if (rc)
3060 ef4_pm_resume(dev);
3061 return rc;
3062 }
3063
3064 static const struct dev_pm_ops ef4_pm_ops = {
3065 .suspend = ef4_pm_suspend,
3066 .resume = ef4_pm_resume,
3067 .freeze = ef4_pm_freeze,
3068 .thaw = ef4_pm_thaw,
3069 .poweroff = ef4_pm_poweroff,
3070 .restore = ef4_pm_resume,
3071 };
3072
3073 /* A PCI error affecting this device was detected.
3074 * At this point MMIO and DMA may be disabled.
3075 * Stop the software path and request a slot reset.
3076 */
ef4_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)3077 static pci_ers_result_t ef4_io_error_detected(struct pci_dev *pdev,
3078 pci_channel_state_t state)
3079 {
3080 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3081 struct ef4_nic *efx = pci_get_drvdata(pdev);
3082
3083 if (state == pci_channel_io_perm_failure)
3084 return PCI_ERS_RESULT_DISCONNECT;
3085
3086 rtnl_lock();
3087
3088 if (efx->state != STATE_DISABLED) {
3089 efx->state = STATE_RECOVERY;
3090 efx->reset_pending = 0;
3091
3092 ef4_device_detach_sync(efx);
3093
3094 ef4_stop_all(efx);
3095 ef4_disable_interrupts(efx);
3096
3097 status = PCI_ERS_RESULT_NEED_RESET;
3098 } else {
3099 /* If the interface is disabled we don't want to do anything
3100 * with it.
3101 */
3102 status = PCI_ERS_RESULT_RECOVERED;
3103 }
3104
3105 rtnl_unlock();
3106
3107 pci_disable_device(pdev);
3108
3109 return status;
3110 }
3111
3112 /* Fake a successful reset, which will be performed later in ef4_io_resume. */
ef4_io_slot_reset(struct pci_dev * pdev)3113 static pci_ers_result_t ef4_io_slot_reset(struct pci_dev *pdev)
3114 {
3115 struct ef4_nic *efx = pci_get_drvdata(pdev);
3116 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
3117
3118 if (pci_enable_device(pdev)) {
3119 netif_err(efx, hw, efx->net_dev,
3120 "Cannot re-enable PCI device after reset.\n");
3121 status = PCI_ERS_RESULT_DISCONNECT;
3122 }
3123
3124 return status;
3125 }
3126
3127 /* Perform the actual reset and resume I/O operations. */
ef4_io_resume(struct pci_dev * pdev)3128 static void ef4_io_resume(struct pci_dev *pdev)
3129 {
3130 struct ef4_nic *efx = pci_get_drvdata(pdev);
3131 int rc;
3132
3133 rtnl_lock();
3134
3135 if (efx->state == STATE_DISABLED)
3136 goto out;
3137
3138 rc = ef4_reset(efx, RESET_TYPE_ALL);
3139 if (rc) {
3140 netif_err(efx, hw, efx->net_dev,
3141 "ef4_reset failed after PCI error (%d)\n", rc);
3142 } else {
3143 efx->state = STATE_READY;
3144 netif_dbg(efx, hw, efx->net_dev,
3145 "Done resetting and resuming IO after PCI error.\n");
3146 }
3147
3148 out:
3149 rtnl_unlock();
3150 }
3151
3152 /* For simplicity and reliability, we always require a slot reset and try to
3153 * reset the hardware when a pci error affecting the device is detected.
3154 * We leave both the link_reset and mmio_enabled callback unimplemented:
3155 * with our request for slot reset the mmio_enabled callback will never be
3156 * called, and the link_reset callback is not used by AER or EEH mechanisms.
3157 */
3158 static const struct pci_error_handlers ef4_err_handlers = {
3159 .error_detected = ef4_io_error_detected,
3160 .slot_reset = ef4_io_slot_reset,
3161 .resume = ef4_io_resume,
3162 };
3163
3164 static struct pci_driver ef4_pci_driver = {
3165 .name = KBUILD_MODNAME,
3166 .id_table = ef4_pci_table,
3167 .probe = ef4_pci_probe,
3168 .remove = ef4_pci_remove,
3169 .driver.pm = &ef4_pm_ops,
3170 .err_handler = &ef4_err_handlers,
3171 };
3172
3173 /**************************************************************************
3174 *
3175 * Kernel module interface
3176 *
3177 *************************************************************************/
3178
3179 module_param(interrupt_mode, uint, 0444);
3180 MODULE_PARM_DESC(interrupt_mode,
3181 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
3182
ef4_init_module(void)3183 static int __init ef4_init_module(void)
3184 {
3185 int rc;
3186
3187 printk(KERN_INFO "Solarflare Falcon driver v" EF4_DRIVER_VERSION "\n");
3188
3189 rc = register_netdevice_notifier(&ef4_netdev_notifier);
3190 if (rc)
3191 goto err_notifier;
3192
3193 reset_workqueue = create_singlethread_workqueue("sfc_reset");
3194 if (!reset_workqueue) {
3195 rc = -ENOMEM;
3196 goto err_reset;
3197 }
3198
3199 rc = pci_register_driver(&ef4_pci_driver);
3200 if (rc < 0)
3201 goto err_pci;
3202
3203 return 0;
3204
3205 err_pci:
3206 destroy_workqueue(reset_workqueue);
3207 err_reset:
3208 unregister_netdevice_notifier(&ef4_netdev_notifier);
3209 err_notifier:
3210 return rc;
3211 }
3212
ef4_exit_module(void)3213 static void __exit ef4_exit_module(void)
3214 {
3215 printk(KERN_INFO "Solarflare Falcon driver unloading\n");
3216
3217 pci_unregister_driver(&ef4_pci_driver);
3218 destroy_workqueue(reset_workqueue);
3219 unregister_netdevice_notifier(&ef4_netdev_notifier);
3220
3221 }
3222
3223 module_init(ef4_init_module);
3224 module_exit(ef4_exit_module);
3225
3226 MODULE_AUTHOR("Solarflare Communications and "
3227 "Michael Brown <mbrown@fensystems.co.uk>");
3228 MODULE_DESCRIPTION("Solarflare Falcon network driver");
3229 MODULE_LICENSE("GPL");
3230 MODULE_DEVICE_TABLE(pci, ef4_pci_table);
3231 MODULE_VERSION(EF4_DRIVER_VERSION);
3232