1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3 * Driver for Solarflare network controllers and boards
4 * Copyright 2005-2006 Fen Systems Ltd.
5 * Copyright 2005-2013 Solarflare Communications Inc.
6 */
7
8 #include <linux/module.h>
9 #include <linux/pci.h>
10 #include <linux/netdevice.h>
11 #include <linux/etherdevice.h>
12 #include <linux/delay.h>
13 #include <linux/notifier.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/in.h>
17 #include <linux/ethtool.h>
18 #include <linux/topology.h>
19 #include <linux/gfp.h>
20 #include <linux/aer.h>
21 #include <linux/interrupt.h>
22 #include "net_driver.h"
23 #include <net/gre.h>
24 #include <net/udp_tunnel.h>
25 #include "efx.h"
26 #include "efx_common.h"
27 #include "efx_channels.h"
28 #include "ef100.h"
29 #include "rx_common.h"
30 #include "tx_common.h"
31 #include "nic.h"
32 #include "io.h"
33 #include "selftest.h"
34 #include "sriov.h"
35
36 #include "mcdi_port_common.h"
37 #include "mcdi_pcol.h"
38 #include "workarounds.h"
39
40 /**************************************************************************
41 *
42 * Configurable values
43 *
44 *************************************************************************/
45
46 module_param_named(interrupt_mode, efx_interrupt_mode, uint, 0444);
47 MODULE_PARM_DESC(interrupt_mode,
48 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
49
50 module_param(rss_cpus, uint, 0444);
51 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
52
53 /*
54 * Use separate channels for TX and RX events
55 *
56 * Set this to 1 to use separate channels for TX and RX. It allows us
57 * to control interrupt affinity separately for TX and RX.
58 *
59 * This is only used in MSI-X interrupt mode
60 */
61 bool efx_separate_tx_channels;
62 module_param(efx_separate_tx_channels, bool, 0444);
63 MODULE_PARM_DESC(efx_separate_tx_channels,
64 "Use separate channels for TX and RX");
65
66 /* Initial interrupt moderation settings. They can be modified after
67 * module load with ethtool.
68 *
69 * The default for RX should strike a balance between increasing the
70 * round-trip latency and reducing overhead.
71 */
72 static unsigned int rx_irq_mod_usec = 60;
73
74 /* Initial interrupt moderation settings. They can be modified after
75 * module load with ethtool.
76 *
77 * This default is chosen to ensure that a 10G link does not go idle
78 * while a TX queue is stopped after it has become full. A queue is
79 * restarted when it drops below half full. The time this takes (assuming
80 * worst case 3 descriptors per packet and 1024 descriptors) is
81 * 512 / 3 * 1.2 = 205 usec.
82 */
83 static unsigned int tx_irq_mod_usec = 150;
84
85 static bool phy_flash_cfg;
86 module_param(phy_flash_cfg, bool, 0644);
87 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
88
89 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
90 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
91 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
92 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
93 module_param(debug, uint, 0);
94 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
95
96 /**************************************************************************
97 *
98 * Utility functions and prototypes
99 *
100 *************************************************************************/
101
102 static void efx_remove_port(struct efx_nic *efx);
103 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog);
104 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp);
105 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
106 u32 flags);
107
108 #define EFX_ASSERT_RESET_SERIALISED(efx) \
109 do { \
110 if ((efx->state == STATE_READY) || \
111 (efx->state == STATE_RECOVERY) || \
112 (efx->state == STATE_DISABLED)) \
113 ASSERT_RTNL(); \
114 } while (0)
115
116 /**************************************************************************
117 *
118 * Port handling
119 *
120 **************************************************************************/
121
122 static void efx_fini_port(struct efx_nic *efx);
123
efx_probe_port(struct efx_nic * efx)124 static int efx_probe_port(struct efx_nic *efx)
125 {
126 int rc;
127
128 netif_dbg(efx, probe, efx->net_dev, "create port\n");
129
130 if (phy_flash_cfg)
131 efx->phy_mode = PHY_MODE_SPECIAL;
132
133 /* Connect up MAC/PHY operations table */
134 rc = efx->type->probe_port(efx);
135 if (rc)
136 return rc;
137
138 /* Initialise MAC address to permanent address */
139 eth_hw_addr_set(efx->net_dev, efx->net_dev->perm_addr);
140
141 return 0;
142 }
143
efx_init_port(struct efx_nic * efx)144 static int efx_init_port(struct efx_nic *efx)
145 {
146 int rc;
147
148 netif_dbg(efx, drv, efx->net_dev, "init port\n");
149
150 mutex_lock(&efx->mac_lock);
151
152 efx->port_initialized = true;
153
154 /* Ensure the PHY advertises the correct flow control settings */
155 rc = efx_mcdi_port_reconfigure(efx);
156 if (rc && rc != -EPERM)
157 goto fail;
158
159 mutex_unlock(&efx->mac_lock);
160 return 0;
161
162 fail:
163 mutex_unlock(&efx->mac_lock);
164 return rc;
165 }
166
efx_fini_port(struct efx_nic * efx)167 static void efx_fini_port(struct efx_nic *efx)
168 {
169 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
170
171 if (!efx->port_initialized)
172 return;
173
174 efx->port_initialized = false;
175
176 efx->link_state.up = false;
177 efx_link_status_changed(efx);
178 }
179
efx_remove_port(struct efx_nic * efx)180 static void efx_remove_port(struct efx_nic *efx)
181 {
182 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
183
184 efx->type->remove_port(efx);
185 }
186
187 /**************************************************************************
188 *
189 * NIC handling
190 *
191 **************************************************************************/
192
193 static LIST_HEAD(efx_primary_list);
194 static LIST_HEAD(efx_unassociated_list);
195
efx_same_controller(struct efx_nic * left,struct efx_nic * right)196 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right)
197 {
198 return left->type == right->type &&
199 left->vpd_sn && right->vpd_sn &&
200 !strcmp(left->vpd_sn, right->vpd_sn);
201 }
202
efx_associate(struct efx_nic * efx)203 static void efx_associate(struct efx_nic *efx)
204 {
205 struct efx_nic *other, *next;
206
207 if (efx->primary == efx) {
208 /* Adding primary function; look for secondaries */
209
210 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n");
211 list_add_tail(&efx->node, &efx_primary_list);
212
213 list_for_each_entry_safe(other, next, &efx_unassociated_list,
214 node) {
215 if (efx_same_controller(efx, other)) {
216 list_del(&other->node);
217 netif_dbg(other, probe, other->net_dev,
218 "moving to secondary list of %s %s\n",
219 pci_name(efx->pci_dev),
220 efx->net_dev->name);
221 list_add_tail(&other->node,
222 &efx->secondary_list);
223 other->primary = efx;
224 }
225 }
226 } else {
227 /* Adding secondary function; look for primary */
228
229 list_for_each_entry(other, &efx_primary_list, node) {
230 if (efx_same_controller(efx, other)) {
231 netif_dbg(efx, probe, efx->net_dev,
232 "adding to secondary list of %s %s\n",
233 pci_name(other->pci_dev),
234 other->net_dev->name);
235 list_add_tail(&efx->node,
236 &other->secondary_list);
237 efx->primary = other;
238 return;
239 }
240 }
241
242 netif_dbg(efx, probe, efx->net_dev,
243 "adding to unassociated list\n");
244 list_add_tail(&efx->node, &efx_unassociated_list);
245 }
246 }
247
efx_dissociate(struct efx_nic * efx)248 static void efx_dissociate(struct efx_nic *efx)
249 {
250 struct efx_nic *other, *next;
251
252 list_del(&efx->node);
253 efx->primary = NULL;
254
255 list_for_each_entry_safe(other, next, &efx->secondary_list, node) {
256 list_del(&other->node);
257 netif_dbg(other, probe, other->net_dev,
258 "moving to unassociated list\n");
259 list_add_tail(&other->node, &efx_unassociated_list);
260 other->primary = NULL;
261 }
262 }
263
efx_probe_nic(struct efx_nic * efx)264 static int efx_probe_nic(struct efx_nic *efx)
265 {
266 int rc;
267
268 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
269
270 /* Carry out hardware-type specific initialisation */
271 rc = efx->type->probe(efx);
272 if (rc)
273 return rc;
274
275 do {
276 if (!efx->max_channels || !efx->max_tx_channels) {
277 netif_err(efx, drv, efx->net_dev,
278 "Insufficient resources to allocate"
279 " any channels\n");
280 rc = -ENOSPC;
281 goto fail1;
282 }
283
284 /* Determine the number of channels and queues by trying
285 * to hook in MSI-X interrupts.
286 */
287 rc = efx_probe_interrupts(efx);
288 if (rc)
289 goto fail1;
290
291 rc = efx_set_channels(efx);
292 if (rc)
293 goto fail1;
294
295 /* dimension_resources can fail with EAGAIN */
296 rc = efx->type->dimension_resources(efx);
297 if (rc != 0 && rc != -EAGAIN)
298 goto fail2;
299
300 if (rc == -EAGAIN)
301 /* try again with new max_channels */
302 efx_remove_interrupts(efx);
303
304 } while (rc == -EAGAIN);
305
306 if (efx->n_channels > 1)
307 netdev_rss_key_fill(efx->rss_context.rx_hash_key,
308 sizeof(efx->rss_context.rx_hash_key));
309 efx_set_default_rx_indir_table(efx, &efx->rss_context);
310
311 /* Initialise the interrupt moderation settings */
312 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000);
313 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
314 true);
315
316 return 0;
317
318 fail2:
319 efx_remove_interrupts(efx);
320 fail1:
321 efx->type->remove(efx);
322 return rc;
323 }
324
efx_remove_nic(struct efx_nic * efx)325 static void efx_remove_nic(struct efx_nic *efx)
326 {
327 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
328
329 efx_remove_interrupts(efx);
330 efx->type->remove(efx);
331 }
332
333 /**************************************************************************
334 *
335 * NIC startup/shutdown
336 *
337 *************************************************************************/
338
efx_probe_all(struct efx_nic * efx)339 static int efx_probe_all(struct efx_nic *efx)
340 {
341 int rc;
342
343 rc = efx_probe_nic(efx);
344 if (rc) {
345 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
346 goto fail1;
347 }
348
349 rc = efx_probe_port(efx);
350 if (rc) {
351 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
352 goto fail2;
353 }
354
355 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
356 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
357 rc = -EINVAL;
358 goto fail3;
359 }
360
361 #ifdef CONFIG_SFC_SRIOV
362 rc = efx->type->vswitching_probe(efx);
363 if (rc) /* not fatal; the PF will still work fine */
364 netif_warn(efx, probe, efx->net_dev,
365 "failed to setup vswitching rc=%d;"
366 " VFs may not function\n", rc);
367 #endif
368
369 rc = efx_probe_filters(efx);
370 if (rc) {
371 netif_err(efx, probe, efx->net_dev,
372 "failed to create filter tables\n");
373 goto fail4;
374 }
375
376 rc = efx_probe_channels(efx);
377 if (rc)
378 goto fail5;
379
380 return 0;
381
382 fail5:
383 efx_remove_filters(efx);
384 fail4:
385 #ifdef CONFIG_SFC_SRIOV
386 efx->type->vswitching_remove(efx);
387 #endif
388 fail3:
389 efx_remove_port(efx);
390 fail2:
391 efx_remove_nic(efx);
392 fail1:
393 return rc;
394 }
395
efx_remove_all(struct efx_nic * efx)396 static void efx_remove_all(struct efx_nic *efx)
397 {
398 rtnl_lock();
399 efx_xdp_setup_prog(efx, NULL);
400 rtnl_unlock();
401
402 efx_remove_channels(efx);
403 efx_remove_filters(efx);
404 #ifdef CONFIG_SFC_SRIOV
405 efx->type->vswitching_remove(efx);
406 #endif
407 efx_remove_port(efx);
408 efx_remove_nic(efx);
409 }
410
411 /**************************************************************************
412 *
413 * Interrupt moderation
414 *
415 **************************************************************************/
efx_usecs_to_ticks(struct efx_nic * efx,unsigned int usecs)416 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs)
417 {
418 if (usecs == 0)
419 return 0;
420 if (usecs * 1000 < efx->timer_quantum_ns)
421 return 1; /* never round down to 0 */
422 return usecs * 1000 / efx->timer_quantum_ns;
423 }
424
efx_ticks_to_usecs(struct efx_nic * efx,unsigned int ticks)425 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks)
426 {
427 /* We must round up when converting ticks to microseconds
428 * because we round down when converting the other way.
429 */
430 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000);
431 }
432
433 /* Set interrupt moderation parameters */
efx_init_irq_moderation(struct efx_nic * efx,unsigned int tx_usecs,unsigned int rx_usecs,bool rx_adaptive,bool rx_may_override_tx)434 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
435 unsigned int rx_usecs, bool rx_adaptive,
436 bool rx_may_override_tx)
437 {
438 struct efx_channel *channel;
439 unsigned int timer_max_us;
440
441 EFX_ASSERT_RESET_SERIALISED(efx);
442
443 timer_max_us = efx->timer_max_ns / 1000;
444
445 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us)
446 return -EINVAL;
447
448 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 &&
449 !rx_may_override_tx) {
450 netif_err(efx, drv, efx->net_dev, "Channels are shared. "
451 "RX and TX IRQ moderation must be equal\n");
452 return -EINVAL;
453 }
454
455 efx->irq_rx_adaptive = rx_adaptive;
456 efx->irq_rx_moderation_us = rx_usecs;
457 efx_for_each_channel(channel, efx) {
458 if (efx_channel_has_rx_queue(channel))
459 channel->irq_moderation_us = rx_usecs;
460 else if (efx_channel_has_tx_queues(channel))
461 channel->irq_moderation_us = tx_usecs;
462 else if (efx_channel_is_xdp_tx(channel))
463 channel->irq_moderation_us = tx_usecs;
464 }
465
466 return 0;
467 }
468
efx_get_irq_moderation(struct efx_nic * efx,unsigned int * tx_usecs,unsigned int * rx_usecs,bool * rx_adaptive)469 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
470 unsigned int *rx_usecs, bool *rx_adaptive)
471 {
472 *rx_adaptive = efx->irq_rx_adaptive;
473 *rx_usecs = efx->irq_rx_moderation_us;
474
475 /* If channels are shared between RX and TX, so is IRQ
476 * moderation. Otherwise, IRQ moderation is the same for all
477 * TX channels and is not adaptive.
478 */
479 if (efx->tx_channel_offset == 0) {
480 *tx_usecs = *rx_usecs;
481 } else {
482 struct efx_channel *tx_channel;
483
484 tx_channel = efx->channel[efx->tx_channel_offset];
485 *tx_usecs = tx_channel->irq_moderation_us;
486 }
487 }
488
489 /**************************************************************************
490 *
491 * ioctls
492 *
493 *************************************************************************/
494
495 /* Net device ioctl
496 * Context: process, rtnl_lock() held.
497 */
efx_ioctl(struct net_device * net_dev,struct ifreq * ifr,int cmd)498 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
499 {
500 struct efx_nic *efx = netdev_priv(net_dev);
501 struct mii_ioctl_data *data = if_mii(ifr);
502
503 if (cmd == SIOCSHWTSTAMP)
504 return efx_ptp_set_ts_config(efx, ifr);
505 if (cmd == SIOCGHWTSTAMP)
506 return efx_ptp_get_ts_config(efx, ifr);
507
508 /* Convert phy_id from older PRTAD/DEVAD format */
509 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
510 (data->phy_id & 0xfc00) == 0x0400)
511 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
512
513 return mdio_mii_ioctl(&efx->mdio, data, cmd);
514 }
515
516 /**************************************************************************
517 *
518 * Kernel net device interface
519 *
520 *************************************************************************/
521
522 /* Context: process, rtnl_lock() held. */
efx_net_open(struct net_device * net_dev)523 int efx_net_open(struct net_device *net_dev)
524 {
525 struct efx_nic *efx = netdev_priv(net_dev);
526 int rc;
527
528 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
529 raw_smp_processor_id());
530
531 rc = efx_check_disabled(efx);
532 if (rc)
533 return rc;
534 if (efx->phy_mode & PHY_MODE_SPECIAL)
535 return -EBUSY;
536 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
537 return -EIO;
538
539 /* Notify the kernel of the link state polled during driver load,
540 * before the monitor starts running */
541 efx_link_status_changed(efx);
542
543 efx_start_all(efx);
544 if (efx->state == STATE_DISABLED || efx->reset_pending)
545 netif_device_detach(efx->net_dev);
546 efx_selftest_async_start(efx);
547 return 0;
548 }
549
550 /* Context: process, rtnl_lock() held.
551 * Note that the kernel will ignore our return code; this method
552 * should really be a void.
553 */
efx_net_stop(struct net_device * net_dev)554 int efx_net_stop(struct net_device *net_dev)
555 {
556 struct efx_nic *efx = netdev_priv(net_dev);
557
558 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
559 raw_smp_processor_id());
560
561 /* Stop the device and flush all the channels */
562 efx_stop_all(efx);
563
564 return 0;
565 }
566
efx_vlan_rx_add_vid(struct net_device * net_dev,__be16 proto,u16 vid)567 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid)
568 {
569 struct efx_nic *efx = netdev_priv(net_dev);
570
571 if (efx->type->vlan_rx_add_vid)
572 return efx->type->vlan_rx_add_vid(efx, proto, vid);
573 else
574 return -EOPNOTSUPP;
575 }
576
efx_vlan_rx_kill_vid(struct net_device * net_dev,__be16 proto,u16 vid)577 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid)
578 {
579 struct efx_nic *efx = netdev_priv(net_dev);
580
581 if (efx->type->vlan_rx_kill_vid)
582 return efx->type->vlan_rx_kill_vid(efx, proto, vid);
583 else
584 return -EOPNOTSUPP;
585 }
586
587 static const struct net_device_ops efx_netdev_ops = {
588 .ndo_open = efx_net_open,
589 .ndo_stop = efx_net_stop,
590 .ndo_get_stats64 = efx_net_stats,
591 .ndo_tx_timeout = efx_watchdog,
592 .ndo_start_xmit = efx_hard_start_xmit,
593 .ndo_validate_addr = eth_validate_addr,
594 .ndo_eth_ioctl = efx_ioctl,
595 .ndo_change_mtu = efx_change_mtu,
596 .ndo_set_mac_address = efx_set_mac_address,
597 .ndo_set_rx_mode = efx_set_rx_mode,
598 .ndo_set_features = efx_set_features,
599 .ndo_features_check = efx_features_check,
600 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid,
601 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid,
602 #ifdef CONFIG_SFC_SRIOV
603 .ndo_set_vf_mac = efx_sriov_set_vf_mac,
604 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
605 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
606 .ndo_get_vf_config = efx_sriov_get_vf_config,
607 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state,
608 #endif
609 .ndo_get_phys_port_id = efx_get_phys_port_id,
610 .ndo_get_phys_port_name = efx_get_phys_port_name,
611 .ndo_setup_tc = efx_setup_tc,
612 #ifdef CONFIG_RFS_ACCEL
613 .ndo_rx_flow_steer = efx_filter_rfs,
614 #endif
615 .ndo_xdp_xmit = efx_xdp_xmit,
616 .ndo_bpf = efx_xdp
617 };
618
efx_xdp_setup_prog(struct efx_nic * efx,struct bpf_prog * prog)619 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog)
620 {
621 struct bpf_prog *old_prog;
622
623 if (efx->xdp_rxq_info_failed) {
624 netif_err(efx, drv, efx->net_dev,
625 "Unable to bind XDP program due to previous failure of rxq_info\n");
626 return -EINVAL;
627 }
628
629 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) {
630 netif_err(efx, drv, efx->net_dev,
631 "Unable to configure XDP with MTU of %d (max: %d)\n",
632 efx->net_dev->mtu, efx_xdp_max_mtu(efx));
633 return -EINVAL;
634 }
635
636 old_prog = rtnl_dereference(efx->xdp_prog);
637 rcu_assign_pointer(efx->xdp_prog, prog);
638 /* Release the reference that was originally passed by the caller. */
639 if (old_prog)
640 bpf_prog_put(old_prog);
641
642 return 0;
643 }
644
645 /* Context: process, rtnl_lock() held. */
efx_xdp(struct net_device * dev,struct netdev_bpf * xdp)646 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp)
647 {
648 struct efx_nic *efx = netdev_priv(dev);
649
650 switch (xdp->command) {
651 case XDP_SETUP_PROG:
652 return efx_xdp_setup_prog(efx, xdp->prog);
653 default:
654 return -EINVAL;
655 }
656 }
657
efx_xdp_xmit(struct net_device * dev,int n,struct xdp_frame ** xdpfs,u32 flags)658 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs,
659 u32 flags)
660 {
661 struct efx_nic *efx = netdev_priv(dev);
662
663 if (!netif_running(dev))
664 return -EINVAL;
665
666 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH);
667 }
668
efx_update_name(struct efx_nic * efx)669 static void efx_update_name(struct efx_nic *efx)
670 {
671 strcpy(efx->name, efx->net_dev->name);
672 efx_mtd_rename(efx);
673 efx_set_channel_names(efx);
674 }
675
efx_netdev_event(struct notifier_block * this,unsigned long event,void * ptr)676 static int efx_netdev_event(struct notifier_block *this,
677 unsigned long event, void *ptr)
678 {
679 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
680
681 if ((net_dev->netdev_ops == &efx_netdev_ops) &&
682 event == NETDEV_CHANGENAME)
683 efx_update_name(netdev_priv(net_dev));
684
685 return NOTIFY_DONE;
686 }
687
688 static struct notifier_block efx_netdev_notifier = {
689 .notifier_call = efx_netdev_event,
690 };
691
phy_type_show(struct device * dev,struct device_attribute * attr,char * buf)692 static ssize_t phy_type_show(struct device *dev,
693 struct device_attribute *attr, char *buf)
694 {
695 struct efx_nic *efx = dev_get_drvdata(dev);
696 return sprintf(buf, "%d\n", efx->phy_type);
697 }
698 static DEVICE_ATTR_RO(phy_type);
699
efx_register_netdev(struct efx_nic * efx)700 static int efx_register_netdev(struct efx_nic *efx)
701 {
702 struct net_device *net_dev = efx->net_dev;
703 struct efx_channel *channel;
704 int rc;
705
706 net_dev->watchdog_timeo = 5 * HZ;
707 net_dev->irq = efx->pci_dev->irq;
708 net_dev->netdev_ops = &efx_netdev_ops;
709 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0)
710 net_dev->priv_flags |= IFF_UNICAST_FLT;
711 net_dev->ethtool_ops = &efx_ethtool_ops;
712 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
713 net_dev->min_mtu = EFX_MIN_MTU;
714 net_dev->max_mtu = EFX_MAX_MTU;
715
716 rtnl_lock();
717
718 /* Enable resets to be scheduled and check whether any were
719 * already requested. If so, the NIC is probably hosed so we
720 * abort.
721 */
722 efx->state = STATE_READY;
723 smp_mb(); /* ensure we change state before checking reset_pending */
724 if (efx->reset_pending) {
725 pci_err(efx->pci_dev, "aborting probe due to scheduled reset\n");
726 rc = -EIO;
727 goto fail_locked;
728 }
729
730 rc = dev_alloc_name(net_dev, net_dev->name);
731 if (rc < 0)
732 goto fail_locked;
733 efx_update_name(efx);
734
735 /* Always start with carrier off; PHY events will detect the link */
736 netif_carrier_off(net_dev);
737
738 rc = register_netdevice(net_dev);
739 if (rc)
740 goto fail_locked;
741
742 efx_for_each_channel(channel, efx) {
743 struct efx_tx_queue *tx_queue;
744 efx_for_each_channel_tx_queue(tx_queue, channel)
745 efx_init_tx_queue_core_txq(tx_queue);
746 }
747
748 efx_associate(efx);
749
750 rtnl_unlock();
751
752 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
753 if (rc) {
754 netif_err(efx, drv, efx->net_dev,
755 "failed to init net dev attributes\n");
756 goto fail_registered;
757 }
758
759 efx_init_mcdi_logging(efx);
760
761 return 0;
762
763 fail_registered:
764 rtnl_lock();
765 efx_dissociate(efx);
766 unregister_netdevice(net_dev);
767 fail_locked:
768 efx->state = STATE_UNINIT;
769 rtnl_unlock();
770 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
771 return rc;
772 }
773
efx_unregister_netdev(struct efx_nic * efx)774 static void efx_unregister_netdev(struct efx_nic *efx)
775 {
776 if (!efx->net_dev)
777 return;
778
779 BUG_ON(netdev_priv(efx->net_dev) != efx);
780
781 if (efx_dev_registered(efx)) {
782 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
783 efx_fini_mcdi_logging(efx);
784 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
785 unregister_netdev(efx->net_dev);
786 }
787 }
788
789 /**************************************************************************
790 *
791 * List of NICs we support
792 *
793 **************************************************************************/
794
795 /* PCI device ID table */
796 static const struct pci_device_id efx_pci_table[] = {
797 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
798 .driver_data = (unsigned long) &siena_a0_nic_type},
799 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
800 .driver_data = (unsigned long) &siena_a0_nic_type},
801 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */
802 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
803 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */
804 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
805 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */
806 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
807 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */
808 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
809 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */
810 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
811 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */
812 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
813 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */
814 .driver_data = (unsigned long) &efx_hunt_a0_nic_type},
815 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */
816 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type},
817 {0} /* end of list */
818 };
819
820 /**************************************************************************
821 *
822 * Data housekeeping
823 *
824 **************************************************************************/
825
efx_update_sw_stats(struct efx_nic * efx,u64 * stats)826 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats)
827 {
828 u64 n_rx_nodesc_trunc = 0;
829 struct efx_channel *channel;
830
831 efx_for_each_channel(channel, efx)
832 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc;
833 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc;
834 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops);
835 }
836
837 /**************************************************************************
838 *
839 * PCI interface
840 *
841 **************************************************************************/
842
843 /* Main body of final NIC shutdown code
844 * This is called only at module unload (or hotplug removal).
845 */
efx_pci_remove_main(struct efx_nic * efx)846 static void efx_pci_remove_main(struct efx_nic *efx)
847 {
848 /* Flush reset_work. It can no longer be scheduled since we
849 * are not READY.
850 */
851 BUG_ON(efx->state == STATE_READY);
852 efx_flush_reset_workqueue(efx);
853
854 efx_disable_interrupts(efx);
855 efx_clear_interrupt_affinity(efx);
856 efx_nic_fini_interrupt(efx);
857 efx_fini_port(efx);
858 efx->type->fini(efx);
859 efx_fini_napi(efx);
860 efx_remove_all(efx);
861 }
862
863 /* Final NIC shutdown
864 * This is called only at module unload (or hotplug removal). A PF can call
865 * this on its VFs to ensure they are unbound first.
866 */
efx_pci_remove(struct pci_dev * pci_dev)867 static void efx_pci_remove(struct pci_dev *pci_dev)
868 {
869 struct efx_nic *efx;
870
871 efx = pci_get_drvdata(pci_dev);
872 if (!efx)
873 return;
874
875 /* Mark the NIC as fini, then stop the interface */
876 rtnl_lock();
877 efx_dissociate(efx);
878 dev_close(efx->net_dev);
879 efx_disable_interrupts(efx);
880 efx->state = STATE_UNINIT;
881 rtnl_unlock();
882
883 if (efx->type->sriov_fini)
884 efx->type->sriov_fini(efx);
885
886 efx_unregister_netdev(efx);
887
888 efx_mtd_remove(efx);
889
890 efx_pci_remove_main(efx);
891
892 efx_fini_io(efx);
893 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
894
895 efx_fini_struct(efx);
896 free_netdev(efx->net_dev);
897
898 pci_disable_pcie_error_reporting(pci_dev);
899 };
900
901 /* NIC VPD information
902 * Called during probe to display the part number of the
903 * installed NIC.
904 */
efx_probe_vpd_strings(struct efx_nic * efx)905 static void efx_probe_vpd_strings(struct efx_nic *efx)
906 {
907 struct pci_dev *dev = efx->pci_dev;
908 unsigned int vpd_size, kw_len;
909 u8 *vpd_data;
910 int start;
911
912 vpd_data = pci_vpd_alloc(dev, &vpd_size);
913 if (IS_ERR(vpd_data)) {
914 pci_warn(dev, "Unable to read VPD\n");
915 return;
916 }
917
918 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
919 PCI_VPD_RO_KEYWORD_PARTNO, &kw_len);
920 if (start < 0)
921 pci_err(dev, "Part number not found or incomplete\n");
922 else
923 pci_info(dev, "Part Number : %.*s\n", kw_len, vpd_data + start);
924
925 start = pci_vpd_find_ro_info_keyword(vpd_data, vpd_size,
926 PCI_VPD_RO_KEYWORD_SERIALNO, &kw_len);
927 if (start < 0)
928 pci_err(dev, "Serial number not found or incomplete\n");
929 else
930 efx->vpd_sn = kmemdup_nul(vpd_data + start, kw_len, GFP_KERNEL);
931
932 kfree(vpd_data);
933 }
934
935
936 /* Main body of NIC initialisation
937 * This is called at module load (or hotplug insertion, theoretically).
938 */
efx_pci_probe_main(struct efx_nic * efx)939 static int efx_pci_probe_main(struct efx_nic *efx)
940 {
941 int rc;
942
943 /* Do start-of-day initialisation */
944 rc = efx_probe_all(efx);
945 if (rc)
946 goto fail1;
947
948 efx_init_napi(efx);
949
950 down_write(&efx->filter_sem);
951 rc = efx->type->init(efx);
952 up_write(&efx->filter_sem);
953 if (rc) {
954 pci_err(efx->pci_dev, "failed to initialise NIC\n");
955 goto fail3;
956 }
957
958 rc = efx_init_port(efx);
959 if (rc) {
960 netif_err(efx, probe, efx->net_dev,
961 "failed to initialise port\n");
962 goto fail4;
963 }
964
965 rc = efx_nic_init_interrupt(efx);
966 if (rc)
967 goto fail5;
968
969 efx_set_interrupt_affinity(efx);
970 rc = efx_enable_interrupts(efx);
971 if (rc)
972 goto fail6;
973
974 return 0;
975
976 fail6:
977 efx_clear_interrupt_affinity(efx);
978 efx_nic_fini_interrupt(efx);
979 fail5:
980 efx_fini_port(efx);
981 fail4:
982 efx->type->fini(efx);
983 fail3:
984 efx_fini_napi(efx);
985 efx_remove_all(efx);
986 fail1:
987 return rc;
988 }
989
efx_pci_probe_post_io(struct efx_nic * efx)990 static int efx_pci_probe_post_io(struct efx_nic *efx)
991 {
992 struct net_device *net_dev = efx->net_dev;
993 int rc = efx_pci_probe_main(efx);
994
995 if (rc)
996 return rc;
997
998 if (efx->type->sriov_init) {
999 rc = efx->type->sriov_init(efx);
1000 if (rc)
1001 pci_err(efx->pci_dev, "SR-IOV can't be enabled rc %d\n",
1002 rc);
1003 }
1004
1005 /* Determine netdevice features */
1006 net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
1007 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL);
1008 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM))
1009 net_dev->features |= NETIF_F_TSO6;
1010 /* Check whether device supports TSO */
1011 if (!efx->type->tso_versions || !efx->type->tso_versions(efx))
1012 net_dev->features &= ~NETIF_F_ALL_TSO;
1013 /* Mask for features that also apply to VLAN devices */
1014 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG |
1015 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
1016 NETIF_F_RXCSUM);
1017
1018 net_dev->hw_features |= net_dev->features & ~efx->fixed_features;
1019
1020 /* Disable receiving frames with bad FCS, by default. */
1021 net_dev->features &= ~NETIF_F_RXALL;
1022
1023 /* Disable VLAN filtering by default. It may be enforced if
1024 * the feature is fixed (i.e. VLAN filters are required to
1025 * receive VLAN tagged packets due to vPort restrictions).
1026 */
1027 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
1028 net_dev->features |= efx->fixed_features;
1029
1030 rc = efx_register_netdev(efx);
1031 if (!rc)
1032 return 0;
1033
1034 efx_pci_remove_main(efx);
1035 return rc;
1036 }
1037
1038 /* NIC initialisation
1039 *
1040 * This is called at module load (or hotplug insertion,
1041 * theoretically). It sets up PCI mappings, resets the NIC,
1042 * sets up and registers the network devices with the kernel and hooks
1043 * the interrupt service routine. It does not prepare the device for
1044 * transmission; this is left to the first time one of the network
1045 * interfaces is brought up (i.e. efx_net_open).
1046 */
efx_pci_probe(struct pci_dev * pci_dev,const struct pci_device_id * entry)1047 static int efx_pci_probe(struct pci_dev *pci_dev,
1048 const struct pci_device_id *entry)
1049 {
1050 struct net_device *net_dev;
1051 struct efx_nic *efx;
1052 int rc;
1053
1054 /* Allocate and initialise a struct net_device and struct efx_nic */
1055 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
1056 EFX_MAX_RX_QUEUES);
1057 if (!net_dev)
1058 return -ENOMEM;
1059 efx = netdev_priv(net_dev);
1060 efx->type = (const struct efx_nic_type *) entry->driver_data;
1061 efx->fixed_features |= NETIF_F_HIGHDMA;
1062
1063 pci_set_drvdata(pci_dev, efx);
1064 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
1065 rc = efx_init_struct(efx, pci_dev, net_dev);
1066 if (rc)
1067 goto fail1;
1068
1069 pci_info(pci_dev, "Solarflare NIC detected\n");
1070
1071 if (!efx->type->is_vf)
1072 efx_probe_vpd_strings(efx);
1073
1074 /* Set up basic I/O (BAR mappings etc) */
1075 rc = efx_init_io(efx, efx->type->mem_bar(efx), efx->type->max_dma_mask,
1076 efx->type->mem_map_size(efx));
1077 if (rc)
1078 goto fail2;
1079
1080 rc = efx_pci_probe_post_io(efx);
1081 if (rc) {
1082 /* On failure, retry once immediately.
1083 * If we aborted probe due to a scheduled reset, dismiss it.
1084 */
1085 efx->reset_pending = 0;
1086 rc = efx_pci_probe_post_io(efx);
1087 if (rc) {
1088 /* On another failure, retry once more
1089 * after a 50-305ms delay.
1090 */
1091 unsigned char r;
1092
1093 get_random_bytes(&r, 1);
1094 msleep((unsigned int)r + 50);
1095 efx->reset_pending = 0;
1096 rc = efx_pci_probe_post_io(efx);
1097 }
1098 }
1099 if (rc)
1100 goto fail3;
1101
1102 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
1103
1104 /* Try to create MTDs, but allow this to fail */
1105 rtnl_lock();
1106 rc = efx_mtd_probe(efx);
1107 rtnl_unlock();
1108 if (rc && rc != -EPERM)
1109 netif_warn(efx, probe, efx->net_dev,
1110 "failed to create MTDs (%d)\n", rc);
1111
1112 (void)pci_enable_pcie_error_reporting(pci_dev);
1113
1114 if (efx->type->udp_tnl_push_ports)
1115 efx->type->udp_tnl_push_ports(efx);
1116
1117 return 0;
1118
1119 fail3:
1120 efx_fini_io(efx);
1121 fail2:
1122 efx_fini_struct(efx);
1123 fail1:
1124 WARN_ON(rc > 0);
1125 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
1126 free_netdev(net_dev);
1127 return rc;
1128 }
1129
1130 /* efx_pci_sriov_configure returns the actual number of Virtual Functions
1131 * enabled on success
1132 */
1133 #ifdef CONFIG_SFC_SRIOV
efx_pci_sriov_configure(struct pci_dev * dev,int num_vfs)1134 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
1135 {
1136 int rc;
1137 struct efx_nic *efx = pci_get_drvdata(dev);
1138
1139 if (efx->type->sriov_configure) {
1140 rc = efx->type->sriov_configure(efx, num_vfs);
1141 if (rc)
1142 return rc;
1143 else
1144 return num_vfs;
1145 } else
1146 return -EOPNOTSUPP;
1147 }
1148 #endif
1149
efx_pm_freeze(struct device * dev)1150 static int efx_pm_freeze(struct device *dev)
1151 {
1152 struct efx_nic *efx = dev_get_drvdata(dev);
1153
1154 rtnl_lock();
1155
1156 if (efx->state != STATE_DISABLED) {
1157 efx->state = STATE_UNINIT;
1158
1159 efx_device_detach_sync(efx);
1160
1161 efx_stop_all(efx);
1162 efx_disable_interrupts(efx);
1163 }
1164
1165 rtnl_unlock();
1166
1167 return 0;
1168 }
1169
efx_pm_thaw(struct device * dev)1170 static int efx_pm_thaw(struct device *dev)
1171 {
1172 int rc;
1173 struct efx_nic *efx = dev_get_drvdata(dev);
1174
1175 rtnl_lock();
1176
1177 if (efx->state != STATE_DISABLED) {
1178 rc = efx_enable_interrupts(efx);
1179 if (rc)
1180 goto fail;
1181
1182 mutex_lock(&efx->mac_lock);
1183 efx_mcdi_port_reconfigure(efx);
1184 mutex_unlock(&efx->mac_lock);
1185
1186 efx_start_all(efx);
1187
1188 efx_device_attach_if_not_resetting(efx);
1189
1190 efx->state = STATE_READY;
1191
1192 efx->type->resume_wol(efx);
1193 }
1194
1195 rtnl_unlock();
1196
1197 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
1198 efx_queue_reset_work(efx);
1199
1200 return 0;
1201
1202 fail:
1203 rtnl_unlock();
1204
1205 return rc;
1206 }
1207
efx_pm_poweroff(struct device * dev)1208 static int efx_pm_poweroff(struct device *dev)
1209 {
1210 struct pci_dev *pci_dev = to_pci_dev(dev);
1211 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1212
1213 efx->type->fini(efx);
1214
1215 efx->reset_pending = 0;
1216
1217 pci_save_state(pci_dev);
1218 return pci_set_power_state(pci_dev, PCI_D3hot);
1219 }
1220
1221 /* Used for both resume and restore */
efx_pm_resume(struct device * dev)1222 static int efx_pm_resume(struct device *dev)
1223 {
1224 struct pci_dev *pci_dev = to_pci_dev(dev);
1225 struct efx_nic *efx = pci_get_drvdata(pci_dev);
1226 int rc;
1227
1228 rc = pci_set_power_state(pci_dev, PCI_D0);
1229 if (rc)
1230 return rc;
1231 pci_restore_state(pci_dev);
1232 rc = pci_enable_device(pci_dev);
1233 if (rc)
1234 return rc;
1235 pci_set_master(efx->pci_dev);
1236 rc = efx->type->reset(efx, RESET_TYPE_ALL);
1237 if (rc)
1238 return rc;
1239 down_write(&efx->filter_sem);
1240 rc = efx->type->init(efx);
1241 up_write(&efx->filter_sem);
1242 if (rc)
1243 return rc;
1244 rc = efx_pm_thaw(dev);
1245 return rc;
1246 }
1247
efx_pm_suspend(struct device * dev)1248 static int efx_pm_suspend(struct device *dev)
1249 {
1250 int rc;
1251
1252 efx_pm_freeze(dev);
1253 rc = efx_pm_poweroff(dev);
1254 if (rc)
1255 efx_pm_resume(dev);
1256 return rc;
1257 }
1258
1259 static const struct dev_pm_ops efx_pm_ops = {
1260 .suspend = efx_pm_suspend,
1261 .resume = efx_pm_resume,
1262 .freeze = efx_pm_freeze,
1263 .thaw = efx_pm_thaw,
1264 .poweroff = efx_pm_poweroff,
1265 .restore = efx_pm_resume,
1266 };
1267
1268 static struct pci_driver efx_pci_driver = {
1269 .name = KBUILD_MODNAME,
1270 .id_table = efx_pci_table,
1271 .probe = efx_pci_probe,
1272 .remove = efx_pci_remove,
1273 .driver.pm = &efx_pm_ops,
1274 .err_handler = &efx_err_handlers,
1275 #ifdef CONFIG_SFC_SRIOV
1276 .sriov_configure = efx_pci_sriov_configure,
1277 #endif
1278 };
1279
1280 /**************************************************************************
1281 *
1282 * Kernel module interface
1283 *
1284 *************************************************************************/
1285
efx_init_module(void)1286 static int __init efx_init_module(void)
1287 {
1288 int rc;
1289
1290 printk(KERN_INFO "Solarflare NET driver\n");
1291
1292 rc = register_netdevice_notifier(&efx_netdev_notifier);
1293 if (rc)
1294 goto err_notifier;
1295
1296 #ifdef CONFIG_SFC_SRIOV
1297 rc = efx_init_sriov();
1298 if (rc)
1299 goto err_sriov;
1300 #endif
1301
1302 rc = efx_create_reset_workqueue();
1303 if (rc)
1304 goto err_reset;
1305
1306 rc = pci_register_driver(&efx_pci_driver);
1307 if (rc < 0)
1308 goto err_pci;
1309
1310 rc = pci_register_driver(&ef100_pci_driver);
1311 if (rc < 0)
1312 goto err_pci_ef100;
1313
1314 return 0;
1315
1316 err_pci_ef100:
1317 pci_unregister_driver(&efx_pci_driver);
1318 err_pci:
1319 efx_destroy_reset_workqueue();
1320 err_reset:
1321 #ifdef CONFIG_SFC_SRIOV
1322 efx_fini_sriov();
1323 err_sriov:
1324 #endif
1325 unregister_netdevice_notifier(&efx_netdev_notifier);
1326 err_notifier:
1327 return rc;
1328 }
1329
efx_exit_module(void)1330 static void __exit efx_exit_module(void)
1331 {
1332 printk(KERN_INFO "Solarflare NET driver unloading\n");
1333
1334 pci_unregister_driver(&ef100_pci_driver);
1335 pci_unregister_driver(&efx_pci_driver);
1336 efx_destroy_reset_workqueue();
1337 #ifdef CONFIG_SFC_SRIOV
1338 efx_fini_sriov();
1339 #endif
1340 unregister_netdevice_notifier(&efx_netdev_notifier);
1341
1342 }
1343
1344 module_init(efx_init_module);
1345 module_exit(efx_exit_module);
1346
1347 MODULE_AUTHOR("Solarflare Communications and "
1348 "Michael Brown <mbrown@fensystems.co.uk>");
1349 MODULE_DESCRIPTION("Solarflare network driver");
1350 MODULE_LICENSE("GPL");
1351 MODULE_DEVICE_TABLE(pci, efx_pci_table);
1352