1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * Copyright (C) 2007 Oracle.  All rights reserved.
4   */
5  
6  #ifndef BTRFS_INODE_H
7  #define BTRFS_INODE_H
8  
9  #include <linux/hash.h>
10  #include <linux/refcount.h>
11  #include "extent_map.h"
12  #include "extent_io.h"
13  #include "ordered-data.h"
14  #include "delayed-inode.h"
15  
16  /*
17   * ordered_data_close is set by truncate when a file that used
18   * to have good data has been truncated to zero.  When it is set
19   * the btrfs file release call will add this inode to the
20   * ordered operations list so that we make sure to flush out any
21   * new data the application may have written before commit.
22   */
23  enum {
24  	BTRFS_INODE_FLUSH_ON_CLOSE,
25  	BTRFS_INODE_DUMMY,
26  	BTRFS_INODE_IN_DEFRAG,
27  	BTRFS_INODE_HAS_ASYNC_EXTENT,
28  	 /*
29  	  * Always set under the VFS' inode lock, otherwise it can cause races
30  	  * during fsync (we start as a fast fsync and then end up in a full
31  	  * fsync racing with ordered extent completion).
32  	  */
33  	BTRFS_INODE_NEEDS_FULL_SYNC,
34  	BTRFS_INODE_COPY_EVERYTHING,
35  	BTRFS_INODE_IN_DELALLOC_LIST,
36  	BTRFS_INODE_HAS_PROPS,
37  	BTRFS_INODE_SNAPSHOT_FLUSH,
38  	/*
39  	 * Set and used when logging an inode and it serves to signal that an
40  	 * inode does not have xattrs, so subsequent fsyncs can avoid searching
41  	 * for xattrs to log. This bit must be cleared whenever a xattr is added
42  	 * to an inode.
43  	 */
44  	BTRFS_INODE_NO_XATTRS,
45  	/*
46  	 * Set when we are in a context where we need to start a transaction and
47  	 * have dirty pages with the respective file range locked. This is to
48  	 * ensure that when reserving space for the transaction, if we are low
49  	 * on available space and need to flush delalloc, we will not flush
50  	 * delalloc for this inode, because that could result in a deadlock (on
51  	 * the file range, inode's io_tree).
52  	 */
53  	BTRFS_INODE_NO_DELALLOC_FLUSH,
54  	/*
55  	 * Set when we are working on enabling verity for a file. Computing and
56  	 * writing the whole Merkle tree can take a while so we want to prevent
57  	 * races where two separate tasks attempt to simultaneously start verity
58  	 * on the same file.
59  	 */
60  	BTRFS_INODE_VERITY_IN_PROGRESS,
61  };
62  
63  /* in memory btrfs inode */
64  struct btrfs_inode {
65  	/* which subvolume this inode belongs to */
66  	struct btrfs_root *root;
67  
68  	/* key used to find this inode on disk.  This is used by the code
69  	 * to read in roots of subvolumes
70  	 */
71  	struct btrfs_key location;
72  
73  	/*
74  	 * Lock for counters and all fields used to determine if the inode is in
75  	 * the log or not (last_trans, last_sub_trans, last_log_commit,
76  	 * logged_trans), to access/update new_delalloc_bytes and to update the
77  	 * VFS' inode number of bytes used.
78  	 */
79  	spinlock_t lock;
80  
81  	/* the extent_tree has caches of all the extent mappings to disk */
82  	struct extent_map_tree extent_tree;
83  
84  	/* the io_tree does range state (DIRTY, LOCKED etc) */
85  	struct extent_io_tree io_tree;
86  
87  	/* special utility tree used to record which mirrors have already been
88  	 * tried when checksums fail for a given block
89  	 */
90  	struct extent_io_tree io_failure_tree;
91  
92  	/*
93  	 * Keep track of where the inode has extent items mapped in order to
94  	 * make sure the i_size adjustments are accurate
95  	 */
96  	struct extent_io_tree file_extent_tree;
97  
98  	/* held while logging the inode in tree-log.c */
99  	struct mutex log_mutex;
100  
101  	/* used to order data wrt metadata */
102  	struct btrfs_ordered_inode_tree ordered_tree;
103  
104  	/* list of all the delalloc inodes in the FS.  There are times we need
105  	 * to write all the delalloc pages to disk, and this list is used
106  	 * to walk them all.
107  	 */
108  	struct list_head delalloc_inodes;
109  
110  	/* node for the red-black tree that links inodes in subvolume root */
111  	struct rb_node rb_node;
112  
113  	unsigned long runtime_flags;
114  
115  	/* Keep track of who's O_SYNC/fsyncing currently */
116  	atomic_t sync_writers;
117  
118  	/* full 64 bit generation number, struct vfs_inode doesn't have a big
119  	 * enough field for this.
120  	 */
121  	u64 generation;
122  
123  	/*
124  	 * transid of the trans_handle that last modified this inode
125  	 */
126  	u64 last_trans;
127  
128  	/*
129  	 * transid that last logged this inode
130  	 */
131  	u64 logged_trans;
132  
133  	/*
134  	 * log transid when this inode was last modified
135  	 */
136  	int last_sub_trans;
137  
138  	/* a local copy of root's last_log_commit */
139  	int last_log_commit;
140  
141  	union {
142  		/*
143  		 * Total number of bytes pending delalloc, used by stat to
144  		 * calculate the real block usage of the file. This is used
145  		 * only for files.
146  		 */
147  		u64 delalloc_bytes;
148  		/*
149  		 * The offset of the last dir item key that was logged.
150  		 * This is used only for directories.
151  		 */
152  		u64 last_dir_item_offset;
153  	};
154  
155  	union {
156  		/*
157  		 * Total number of bytes pending delalloc that fall within a file
158  		 * range that is either a hole or beyond EOF (and no prealloc extent
159  		 * exists in the range). This is always <= delalloc_bytes and this
160  		 * is used only for files.
161  		 */
162  		u64 new_delalloc_bytes;
163  		/*
164  		 * The offset of the last dir index key that was logged.
165  		 * This is used only for directories.
166  		 */
167  		u64 last_dir_index_offset;
168  	};
169  
170  	/*
171  	 * total number of bytes pending defrag, used by stat to check whether
172  	 * it needs COW.
173  	 */
174  	u64 defrag_bytes;
175  
176  	/*
177  	 * the size of the file stored in the metadata on disk.  data=ordered
178  	 * means the in-memory i_size might be larger than the size on disk
179  	 * because not all the blocks are written yet.
180  	 */
181  	u64 disk_i_size;
182  
183  	/*
184  	 * if this is a directory then index_cnt is the counter for the index
185  	 * number for new files that are created
186  	 */
187  	u64 index_cnt;
188  
189  	/* Cache the directory index number to speed the dir/file remove */
190  	u64 dir_index;
191  
192  	/* the fsync log has some corner cases that mean we have to check
193  	 * directories to see if any unlinks have been done before
194  	 * the directory was logged.  See tree-log.c for all the
195  	 * details
196  	 */
197  	u64 last_unlink_trans;
198  
199  	/*
200  	 * The id/generation of the last transaction where this inode was
201  	 * either the source or the destination of a clone/dedupe operation.
202  	 * Used when logging an inode to know if there are shared extents that
203  	 * need special care when logging checksum items, to avoid duplicate
204  	 * checksum items in a log (which can lead to a corruption where we end
205  	 * up with missing checksum ranges after log replay).
206  	 * Protected by the vfs inode lock.
207  	 */
208  	u64 last_reflink_trans;
209  
210  	/*
211  	 * Number of bytes outstanding that are going to need csums.  This is
212  	 * used in ENOSPC accounting.
213  	 */
214  	u64 csum_bytes;
215  
216  	/* Backwards incompatible flags, lower half of inode_item::flags  */
217  	u32 flags;
218  	/* Read-only compatibility flags, upper half of inode_item::flags */
219  	u32 ro_flags;
220  
221  	/*
222  	 * Counters to keep track of the number of extent item's we may use due
223  	 * to delalloc and such.  outstanding_extents is the number of extent
224  	 * items we think we'll end up using, and reserved_extents is the number
225  	 * of extent items we've reserved metadata for.
226  	 */
227  	unsigned outstanding_extents;
228  
229  	struct btrfs_block_rsv block_rsv;
230  
231  	/*
232  	 * Cached values of inode properties
233  	 */
234  	unsigned prop_compress;		/* per-file compression algorithm */
235  	/*
236  	 * Force compression on the file using the defrag ioctl, could be
237  	 * different from prop_compress and takes precedence if set
238  	 */
239  	unsigned defrag_compress;
240  
241  	struct btrfs_delayed_node *delayed_node;
242  
243  	/* File creation time. */
244  	struct timespec64 i_otime;
245  
246  	/* Hook into fs_info->delayed_iputs */
247  	struct list_head delayed_iput;
248  
249  	struct rw_semaphore i_mmap_lock;
250  	struct inode vfs_inode;
251  };
252  
btrfs_inode_sectorsize(const struct btrfs_inode * inode)253  static inline u32 btrfs_inode_sectorsize(const struct btrfs_inode *inode)
254  {
255  	return inode->root->fs_info->sectorsize;
256  }
257  
BTRFS_I(const struct inode * inode)258  static inline struct btrfs_inode *BTRFS_I(const struct inode *inode)
259  {
260  	return container_of(inode, struct btrfs_inode, vfs_inode);
261  }
262  
btrfs_inode_hash(u64 objectid,const struct btrfs_root * root)263  static inline unsigned long btrfs_inode_hash(u64 objectid,
264  					     const struct btrfs_root *root)
265  {
266  	u64 h = objectid ^ (root->root_key.objectid * GOLDEN_RATIO_PRIME);
267  
268  #if BITS_PER_LONG == 32
269  	h = (h >> 32) ^ (h & 0xffffffff);
270  #endif
271  
272  	return (unsigned long)h;
273  }
274  
btrfs_insert_inode_hash(struct inode * inode)275  static inline void btrfs_insert_inode_hash(struct inode *inode)
276  {
277  	unsigned long h = btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root);
278  
279  	__insert_inode_hash(inode, h);
280  }
281  
btrfs_ino(const struct btrfs_inode * inode)282  static inline u64 btrfs_ino(const struct btrfs_inode *inode)
283  {
284  	u64 ino = inode->location.objectid;
285  
286  	/*
287  	 * !ino: btree_inode
288  	 * type == BTRFS_ROOT_ITEM_KEY: subvol dir
289  	 */
290  	if (!ino || inode->location.type == BTRFS_ROOT_ITEM_KEY)
291  		ino = inode->vfs_inode.i_ino;
292  	return ino;
293  }
294  
btrfs_i_size_write(struct btrfs_inode * inode,u64 size)295  static inline void btrfs_i_size_write(struct btrfs_inode *inode, u64 size)
296  {
297  	i_size_write(&inode->vfs_inode, size);
298  	inode->disk_i_size = size;
299  }
300  
btrfs_is_free_space_inode(struct btrfs_inode * inode)301  static inline bool btrfs_is_free_space_inode(struct btrfs_inode *inode)
302  {
303  	struct btrfs_root *root = inode->root;
304  
305  	if (root == root->fs_info->tree_root &&
306  	    btrfs_ino(inode) != BTRFS_BTREE_INODE_OBJECTID)
307  		return true;
308  	if (inode->location.objectid == BTRFS_FREE_INO_OBJECTID)
309  		return true;
310  	return false;
311  }
312  
is_data_inode(struct inode * inode)313  static inline bool is_data_inode(struct inode *inode)
314  {
315  	return btrfs_ino(BTRFS_I(inode)) != BTRFS_BTREE_INODE_OBJECTID;
316  }
317  
btrfs_mod_outstanding_extents(struct btrfs_inode * inode,int mod)318  static inline void btrfs_mod_outstanding_extents(struct btrfs_inode *inode,
319  						 int mod)
320  {
321  	lockdep_assert_held(&inode->lock);
322  	inode->outstanding_extents += mod;
323  	if (btrfs_is_free_space_inode(inode))
324  		return;
325  	trace_btrfs_inode_mod_outstanding_extents(inode->root, btrfs_ino(inode),
326  						  mod);
327  }
328  
329  /*
330   * Called every time after doing a buffered, direct IO or memory mapped write.
331   *
332   * This is to ensure that if we write to a file that was previously fsynced in
333   * the current transaction, then try to fsync it again in the same transaction,
334   * we will know that there were changes in the file and that it needs to be
335   * logged.
336   */
btrfs_set_inode_last_sub_trans(struct btrfs_inode * inode)337  static inline void btrfs_set_inode_last_sub_trans(struct btrfs_inode *inode)
338  {
339  	spin_lock(&inode->lock);
340  	inode->last_sub_trans = inode->root->log_transid;
341  	spin_unlock(&inode->lock);
342  }
343  
btrfs_inode_in_log(struct btrfs_inode * inode,u64 generation)344  static inline bool btrfs_inode_in_log(struct btrfs_inode *inode, u64 generation)
345  {
346  	bool ret = false;
347  
348  	spin_lock(&inode->lock);
349  	if (inode->logged_trans == generation &&
350  	    inode->last_sub_trans <= inode->last_log_commit &&
351  	    inode->last_sub_trans <= inode->root->last_log_commit)
352  		ret = true;
353  	spin_unlock(&inode->lock);
354  	return ret;
355  }
356  
357  struct btrfs_dio_private {
358  	struct inode *inode;
359  
360  	/*
361  	 * Since DIO can use anonymous page, we cannot use page_offset() to
362  	 * grab the file offset, thus need a dedicated member for file offset.
363  	 */
364  	u64 file_offset;
365  	u64 disk_bytenr;
366  	/* Used for bio::bi_size */
367  	u32 bytes;
368  
369  	/*
370  	 * References to this structure. There is one reference per in-flight
371  	 * bio plus one while we're still setting up.
372  	 */
373  	refcount_t refs;
374  
375  	/* dio_bio came from fs/direct-io.c */
376  	struct bio *dio_bio;
377  
378  	/* Array of checksums */
379  	u8 csums[];
380  };
381  
382  /*
383   * btrfs_inode_item stores flags in a u64, btrfs_inode stores them in two
384   * separate u32s. These two functions convert between the two representations.
385   */
btrfs_inode_combine_flags(u32 flags,u32 ro_flags)386  static inline u64 btrfs_inode_combine_flags(u32 flags, u32 ro_flags)
387  {
388  	return (flags | ((u64)ro_flags << 32));
389  }
390  
btrfs_inode_split_flags(u64 inode_item_flags,u32 * flags,u32 * ro_flags)391  static inline void btrfs_inode_split_flags(u64 inode_item_flags,
392  					   u32 *flags, u32 *ro_flags)
393  {
394  	*flags = (u32)inode_item_flags;
395  	*ro_flags = (u32)(inode_item_flags >> 32);
396  }
397  
398  /* Array of bytes with variable length, hexadecimal format 0x1234 */
399  #define CSUM_FMT				"0x%*phN"
400  #define CSUM_FMT_VALUE(size, bytes)		size, bytes
401  
btrfs_print_data_csum_error(struct btrfs_inode * inode,u64 logical_start,u8 * csum,u8 * csum_expected,int mirror_num)402  static inline void btrfs_print_data_csum_error(struct btrfs_inode *inode,
403  		u64 logical_start, u8 *csum, u8 *csum_expected, int mirror_num)
404  {
405  	struct btrfs_root *root = inode->root;
406  	const u32 csum_size = root->fs_info->csum_size;
407  
408  	/* Output minus objectid, which is more meaningful */
409  	if (root->root_key.objectid >= BTRFS_LAST_FREE_OBJECTID)
410  		btrfs_warn_rl(root->fs_info,
411  "csum failed root %lld ino %lld off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
412  			root->root_key.objectid, btrfs_ino(inode),
413  			logical_start,
414  			CSUM_FMT_VALUE(csum_size, csum),
415  			CSUM_FMT_VALUE(csum_size, csum_expected),
416  			mirror_num);
417  	else
418  		btrfs_warn_rl(root->fs_info,
419  "csum failed root %llu ino %llu off %llu csum " CSUM_FMT " expected csum " CSUM_FMT " mirror %d",
420  			root->root_key.objectid, btrfs_ino(inode),
421  			logical_start,
422  			CSUM_FMT_VALUE(csum_size, csum),
423  			CSUM_FMT_VALUE(csum_size, csum_expected),
424  			mirror_num);
425  }
426  
427  #endif
428