1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/ratelimit.h>
25 #include <linux/printk.h>
26 #include <linux/slab.h>
27 #include <linux/list.h>
28 #include <linux/types.h>
29 #include <linux/bitops.h>
30 #include <linux/sched.h>
31 #include "kfd_priv.h"
32 #include "kfd_device_queue_manager.h"
33 #include "kfd_mqd_manager.h"
34 #include "cik_regs.h"
35 #include "kfd_kernel_queue.h"
36 #include "amdgpu_amdkfd.h"
37
38 /* Size of the per-pipe EOP queue */
39 #define CIK_HPD_EOP_BYTES_LOG2 11
40 #define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
41
42 static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
43 u32 pasid, unsigned int vmid);
44
45 static int execute_queues_cpsch(struct device_queue_manager *dqm,
46 enum kfd_unmap_queues_filter filter,
47 uint32_t filter_param);
48 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
49 enum kfd_unmap_queues_filter filter,
50 uint32_t filter_param);
51
52 static int map_queues_cpsch(struct device_queue_manager *dqm);
53
54 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55 struct queue *q);
56
57 static inline void deallocate_hqd(struct device_queue_manager *dqm,
58 struct queue *q);
59 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q);
60 static int allocate_sdma_queue(struct device_queue_manager *dqm,
61 struct queue *q);
62 static void kfd_process_hw_exception(struct work_struct *work);
63
64 static inline
get_mqd_type_from_queue_type(enum kfd_queue_type type)65 enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
66 {
67 if (type == KFD_QUEUE_TYPE_SDMA || type == KFD_QUEUE_TYPE_SDMA_XGMI)
68 return KFD_MQD_TYPE_SDMA;
69 return KFD_MQD_TYPE_CP;
70 }
71
is_pipe_enabled(struct device_queue_manager * dqm,int mec,int pipe)72 static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
73 {
74 int i;
75 int pipe_offset = (mec * dqm->dev->shared_resources.num_pipe_per_mec
76 + pipe) * dqm->dev->shared_resources.num_queue_per_pipe;
77
78 /* queue is available for KFD usage if bit is 1 */
79 for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i)
80 if (test_bit(pipe_offset + i,
81 dqm->dev->shared_resources.cp_queue_bitmap))
82 return true;
83 return false;
84 }
85
get_cp_queues_num(struct device_queue_manager * dqm)86 unsigned int get_cp_queues_num(struct device_queue_manager *dqm)
87 {
88 return bitmap_weight(dqm->dev->shared_resources.cp_queue_bitmap,
89 KGD_MAX_QUEUES);
90 }
91
get_queues_per_pipe(struct device_queue_manager * dqm)92 unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
93 {
94 return dqm->dev->shared_resources.num_queue_per_pipe;
95 }
96
get_pipes_per_mec(struct device_queue_manager * dqm)97 unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
98 {
99 return dqm->dev->shared_resources.num_pipe_per_mec;
100 }
101
get_num_sdma_engines(struct device_queue_manager * dqm)102 static unsigned int get_num_sdma_engines(struct device_queue_manager *dqm)
103 {
104 return dqm->dev->device_info->num_sdma_engines;
105 }
106
get_num_xgmi_sdma_engines(struct device_queue_manager * dqm)107 static unsigned int get_num_xgmi_sdma_engines(struct device_queue_manager *dqm)
108 {
109 return dqm->dev->device_info->num_xgmi_sdma_engines;
110 }
111
get_num_all_sdma_engines(struct device_queue_manager * dqm)112 static unsigned int get_num_all_sdma_engines(struct device_queue_manager *dqm)
113 {
114 return get_num_sdma_engines(dqm) + get_num_xgmi_sdma_engines(dqm);
115 }
116
get_num_sdma_queues(struct device_queue_manager * dqm)117 unsigned int get_num_sdma_queues(struct device_queue_manager *dqm)
118 {
119 return dqm->dev->device_info->num_sdma_engines
120 * dqm->dev->device_info->num_sdma_queues_per_engine;
121 }
122
get_num_xgmi_sdma_queues(struct device_queue_manager * dqm)123 unsigned int get_num_xgmi_sdma_queues(struct device_queue_manager *dqm)
124 {
125 return dqm->dev->device_info->num_xgmi_sdma_engines
126 * dqm->dev->device_info->num_sdma_queues_per_engine;
127 }
128
program_sh_mem_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)129 void program_sh_mem_settings(struct device_queue_manager *dqm,
130 struct qcm_process_device *qpd)
131 {
132 return dqm->dev->kfd2kgd->program_sh_mem_settings(
133 dqm->dev->kgd, qpd->vmid,
134 qpd->sh_mem_config,
135 qpd->sh_mem_ape1_base,
136 qpd->sh_mem_ape1_limit,
137 qpd->sh_mem_bases);
138 }
139
increment_queue_count(struct device_queue_manager * dqm,enum kfd_queue_type type)140 static void increment_queue_count(struct device_queue_manager *dqm,
141 enum kfd_queue_type type)
142 {
143 dqm->active_queue_count++;
144 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
145 dqm->active_cp_queue_count++;
146 }
147
decrement_queue_count(struct device_queue_manager * dqm,enum kfd_queue_type type)148 static void decrement_queue_count(struct device_queue_manager *dqm,
149 enum kfd_queue_type type)
150 {
151 dqm->active_queue_count--;
152 if (type == KFD_QUEUE_TYPE_COMPUTE || type == KFD_QUEUE_TYPE_DIQ)
153 dqm->active_cp_queue_count--;
154 }
155
allocate_doorbell(struct qcm_process_device * qpd,struct queue * q)156 static int allocate_doorbell(struct qcm_process_device *qpd, struct queue *q)
157 {
158 struct kfd_dev *dev = qpd->dqm->dev;
159
160 if (!KFD_IS_SOC15(dev->device_info->asic_family)) {
161 /* On pre-SOC15 chips we need to use the queue ID to
162 * preserve the user mode ABI.
163 */
164 q->doorbell_id = q->properties.queue_id;
165 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
166 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
167 /* For SDMA queues on SOC15 with 8-byte doorbell, use static
168 * doorbell assignments based on the engine and queue id.
169 * The doobell index distance between RLC (2*i) and (2*i+1)
170 * for a SDMA engine is 512.
171 */
172 uint32_t *idx_offset =
173 dev->shared_resources.sdma_doorbell_idx;
174
175 q->doorbell_id = idx_offset[q->properties.sdma_engine_id]
176 + (q->properties.sdma_queue_id & 1)
177 * KFD_QUEUE_DOORBELL_MIRROR_OFFSET
178 + (q->properties.sdma_queue_id >> 1);
179 } else {
180 /* For CP queues on SOC15 reserve a free doorbell ID */
181 unsigned int found;
182
183 found = find_first_zero_bit(qpd->doorbell_bitmap,
184 KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
185 if (found >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS) {
186 pr_debug("No doorbells available");
187 return -EBUSY;
188 }
189 set_bit(found, qpd->doorbell_bitmap);
190 q->doorbell_id = found;
191 }
192
193 q->properties.doorbell_off =
194 kfd_get_doorbell_dw_offset_in_bar(dev, qpd_to_pdd(qpd),
195 q->doorbell_id);
196 return 0;
197 }
198
deallocate_doorbell(struct qcm_process_device * qpd,struct queue * q)199 static void deallocate_doorbell(struct qcm_process_device *qpd,
200 struct queue *q)
201 {
202 unsigned int old;
203 struct kfd_dev *dev = qpd->dqm->dev;
204
205 if (!KFD_IS_SOC15(dev->device_info->asic_family) ||
206 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
207 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
208 return;
209
210 old = test_and_clear_bit(q->doorbell_id, qpd->doorbell_bitmap);
211 WARN_ON(!old);
212 }
213
program_trap_handler_settings(struct device_queue_manager * dqm,struct qcm_process_device * qpd)214 static void program_trap_handler_settings(struct device_queue_manager *dqm,
215 struct qcm_process_device *qpd)
216 {
217 if (dqm->dev->kfd2kgd->program_trap_handler_settings)
218 dqm->dev->kfd2kgd->program_trap_handler_settings(
219 dqm->dev->kgd, qpd->vmid,
220 qpd->tba_addr, qpd->tma_addr);
221 }
222
allocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)223 static int allocate_vmid(struct device_queue_manager *dqm,
224 struct qcm_process_device *qpd,
225 struct queue *q)
226 {
227 int allocated_vmid = -1, i;
228
229 for (i = dqm->dev->vm_info.first_vmid_kfd;
230 i <= dqm->dev->vm_info.last_vmid_kfd; i++) {
231 if (!dqm->vmid_pasid[i]) {
232 allocated_vmid = i;
233 break;
234 }
235 }
236
237 if (allocated_vmid < 0) {
238 pr_err("no more vmid to allocate\n");
239 return -ENOSPC;
240 }
241
242 pr_debug("vmid allocated: %d\n", allocated_vmid);
243
244 dqm->vmid_pasid[allocated_vmid] = q->process->pasid;
245
246 set_pasid_vmid_mapping(dqm, q->process->pasid, allocated_vmid);
247
248 qpd->vmid = allocated_vmid;
249 q->properties.vmid = allocated_vmid;
250
251 program_sh_mem_settings(dqm, qpd);
252
253 if (dqm->dev->device_info->asic_family >= CHIP_VEGA10 &&
254 dqm->dev->cwsr_enabled)
255 program_trap_handler_settings(dqm, qpd);
256
257 /* qpd->page_table_base is set earlier when register_process()
258 * is called, i.e. when the first queue is created.
259 */
260 dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
261 qpd->vmid,
262 qpd->page_table_base);
263 /* invalidate the VM context after pasid and vmid mapping is set up */
264 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
265
266 if (dqm->dev->kfd2kgd->set_scratch_backing_va)
267 dqm->dev->kfd2kgd->set_scratch_backing_va(dqm->dev->kgd,
268 qpd->sh_hidden_private_base, qpd->vmid);
269
270 return 0;
271 }
272
flush_texture_cache_nocpsch(struct kfd_dev * kdev,struct qcm_process_device * qpd)273 static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
274 struct qcm_process_device *qpd)
275 {
276 const struct packet_manager_funcs *pmf = qpd->dqm->packet_mgr.pmf;
277 int ret;
278
279 if (!qpd->ib_kaddr)
280 return -ENOMEM;
281
282 ret = pmf->release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
283 if (ret)
284 return ret;
285
286 return amdgpu_amdkfd_submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
287 qpd->ib_base, (uint32_t *)qpd->ib_kaddr,
288 pmf->release_mem_size / sizeof(uint32_t));
289 }
290
deallocate_vmid(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)291 static void deallocate_vmid(struct device_queue_manager *dqm,
292 struct qcm_process_device *qpd,
293 struct queue *q)
294 {
295 /* On GFX v7, CP doesn't flush TC at dequeue */
296 if (q->device->device_info->asic_family == CHIP_HAWAII)
297 if (flush_texture_cache_nocpsch(q->device, qpd))
298 pr_err("Failed to flush TC\n");
299
300 kfd_flush_tlb(qpd_to_pdd(qpd), TLB_FLUSH_LEGACY);
301
302 /* Release the vmid mapping */
303 set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
304 dqm->vmid_pasid[qpd->vmid] = 0;
305
306 qpd->vmid = 0;
307 q->properties.vmid = 0;
308 }
309
create_queue_nocpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)310 static int create_queue_nocpsch(struct device_queue_manager *dqm,
311 struct queue *q,
312 struct qcm_process_device *qpd)
313 {
314 struct mqd_manager *mqd_mgr;
315 int retval;
316
317 dqm_lock(dqm);
318
319 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
320 pr_warn("Can't create new usermode queue because %d queues were already created\n",
321 dqm->total_queue_count);
322 retval = -EPERM;
323 goto out_unlock;
324 }
325
326 if (list_empty(&qpd->queues_list)) {
327 retval = allocate_vmid(dqm, qpd, q);
328 if (retval)
329 goto out_unlock;
330 }
331 q->properties.vmid = qpd->vmid;
332 /*
333 * Eviction state logic: mark all queues as evicted, even ones
334 * not currently active. Restoring inactive queues later only
335 * updates the is_evicted flag but is a no-op otherwise.
336 */
337 q->properties.is_evicted = !!qpd->evicted;
338
339 q->properties.tba_addr = qpd->tba_addr;
340 q->properties.tma_addr = qpd->tma_addr;
341
342 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
343 q->properties.type)];
344 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
345 retval = allocate_hqd(dqm, q);
346 if (retval)
347 goto deallocate_vmid;
348 pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
349 q->pipe, q->queue);
350 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
351 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
352 retval = allocate_sdma_queue(dqm, q);
353 if (retval)
354 goto deallocate_vmid;
355 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
356 }
357
358 retval = allocate_doorbell(qpd, q);
359 if (retval)
360 goto out_deallocate_hqd;
361
362 /* Temporarily release dqm lock to avoid a circular lock dependency */
363 dqm_unlock(dqm);
364 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
365 dqm_lock(dqm);
366
367 if (!q->mqd_mem_obj) {
368 retval = -ENOMEM;
369 goto out_deallocate_doorbell;
370 }
371 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
372 &q->gart_mqd_addr, &q->properties);
373 if (q->properties.is_active) {
374 if (!dqm->sched_running) {
375 WARN_ONCE(1, "Load non-HWS mqd while stopped\n");
376 goto add_queue_to_list;
377 }
378
379 if (WARN(q->process->mm != current->mm,
380 "should only run in user thread"))
381 retval = -EFAULT;
382 else
383 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
384 q->queue, &q->properties, current->mm);
385 if (retval)
386 goto out_free_mqd;
387 }
388
389 add_queue_to_list:
390 list_add(&q->list, &qpd->queues_list);
391 qpd->queue_count++;
392 if (q->properties.is_active)
393 increment_queue_count(dqm, q->properties.type);
394
395 /*
396 * Unconditionally increment this counter, regardless of the queue's
397 * type or whether the queue is active.
398 */
399 dqm->total_queue_count++;
400 pr_debug("Total of %d queues are accountable so far\n",
401 dqm->total_queue_count);
402 goto out_unlock;
403
404 out_free_mqd:
405 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
406 out_deallocate_doorbell:
407 deallocate_doorbell(qpd, q);
408 out_deallocate_hqd:
409 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
410 deallocate_hqd(dqm, q);
411 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
412 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
413 deallocate_sdma_queue(dqm, q);
414 deallocate_vmid:
415 if (list_empty(&qpd->queues_list))
416 deallocate_vmid(dqm, qpd, q);
417 out_unlock:
418 dqm_unlock(dqm);
419 return retval;
420 }
421
allocate_hqd(struct device_queue_manager * dqm,struct queue * q)422 static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
423 {
424 bool set;
425 int pipe, bit, i;
426
427 set = false;
428
429 for (pipe = dqm->next_pipe_to_allocate, i = 0;
430 i < get_pipes_per_mec(dqm);
431 pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
432
433 if (!is_pipe_enabled(dqm, 0, pipe))
434 continue;
435
436 if (dqm->allocated_queues[pipe] != 0) {
437 bit = ffs(dqm->allocated_queues[pipe]) - 1;
438 dqm->allocated_queues[pipe] &= ~(1 << bit);
439 q->pipe = pipe;
440 q->queue = bit;
441 set = true;
442 break;
443 }
444 }
445
446 if (!set)
447 return -EBUSY;
448
449 pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
450 /* horizontal hqd allocation */
451 dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
452
453 return 0;
454 }
455
deallocate_hqd(struct device_queue_manager * dqm,struct queue * q)456 static inline void deallocate_hqd(struct device_queue_manager *dqm,
457 struct queue *q)
458 {
459 dqm->allocated_queues[q->pipe] |= (1 << q->queue);
460 }
461
462 /* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
463 * to avoid asynchronized access
464 */
destroy_queue_nocpsch_locked(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)465 static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
466 struct qcm_process_device *qpd,
467 struct queue *q)
468 {
469 int retval;
470 struct mqd_manager *mqd_mgr;
471
472 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
473 q->properties.type)];
474
475 if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
476 deallocate_hqd(dqm, q);
477 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
478 deallocate_sdma_queue(dqm, q);
479 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
480 deallocate_sdma_queue(dqm, q);
481 else {
482 pr_debug("q->properties.type %d is invalid\n",
483 q->properties.type);
484 return -EINVAL;
485 }
486 dqm->total_queue_count--;
487
488 deallocate_doorbell(qpd, q);
489
490 if (!dqm->sched_running) {
491 WARN_ONCE(1, "Destroy non-HWS queue while stopped\n");
492 return 0;
493 }
494
495 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
496 KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
497 KFD_UNMAP_LATENCY_MS,
498 q->pipe, q->queue);
499 if (retval == -ETIME)
500 qpd->reset_wavefronts = true;
501
502 list_del(&q->list);
503 if (list_empty(&qpd->queues_list)) {
504 if (qpd->reset_wavefronts) {
505 pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
506 dqm->dev);
507 /* dbgdev_wave_reset_wavefronts has to be called before
508 * deallocate_vmid(), i.e. when vmid is still in use.
509 */
510 dbgdev_wave_reset_wavefronts(dqm->dev,
511 qpd->pqm->process);
512 qpd->reset_wavefronts = false;
513 }
514
515 deallocate_vmid(dqm, qpd, q);
516 }
517 qpd->queue_count--;
518 if (q->properties.is_active) {
519 decrement_queue_count(dqm, q->properties.type);
520 if (q->properties.is_gws) {
521 dqm->gws_queue_count--;
522 qpd->mapped_gws_queue = false;
523 }
524 }
525
526 return retval;
527 }
528
destroy_queue_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)529 static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
530 struct qcm_process_device *qpd,
531 struct queue *q)
532 {
533 int retval;
534 uint64_t sdma_val = 0;
535 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
536 struct mqd_manager *mqd_mgr =
537 dqm->mqd_mgrs[get_mqd_type_from_queue_type(q->properties.type)];
538
539 /* Get the SDMA queue stats */
540 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
541 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
542 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
543 &sdma_val);
544 if (retval)
545 pr_err("Failed to read SDMA queue counter for queue: %d\n",
546 q->properties.queue_id);
547 }
548
549 dqm_lock(dqm);
550 retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
551 if (!retval)
552 pdd->sdma_past_activity_counter += sdma_val;
553 dqm_unlock(dqm);
554
555 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
556
557 return retval;
558 }
559
update_queue(struct device_queue_manager * dqm,struct queue * q,struct mqd_update_info * minfo)560 static int update_queue(struct device_queue_manager *dqm, struct queue *q,
561 struct mqd_update_info *minfo)
562 {
563 int retval = 0;
564 struct mqd_manager *mqd_mgr;
565 struct kfd_process_device *pdd;
566 bool prev_active = false;
567
568 dqm_lock(dqm);
569 pdd = kfd_get_process_device_data(q->device, q->process);
570 if (!pdd) {
571 retval = -ENODEV;
572 goto out_unlock;
573 }
574 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
575 q->properties.type)];
576
577 /* Save previous activity state for counters */
578 prev_active = q->properties.is_active;
579
580 /* Make sure the queue is unmapped before updating the MQD */
581 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
582 retval = unmap_queues_cpsch(dqm,
583 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
584 if (retval) {
585 pr_err("unmap queue failed\n");
586 goto out_unlock;
587 }
588 } else if (prev_active &&
589 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
590 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
591 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
592
593 if (!dqm->sched_running) {
594 WARN_ONCE(1, "Update non-HWS queue while stopped\n");
595 goto out_unlock;
596 }
597
598 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
599 (dqm->dev->cwsr_enabled?
600 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
601 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
602 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
603 if (retval) {
604 pr_err("destroy mqd failed\n");
605 goto out_unlock;
606 }
607 }
608
609 mqd_mgr->update_mqd(mqd_mgr, q->mqd, &q->properties, minfo);
610
611 /*
612 * check active state vs. the previous state and modify
613 * counter accordingly. map_queues_cpsch uses the
614 * dqm->active_queue_count to determine whether a new runlist must be
615 * uploaded.
616 */
617 if (q->properties.is_active && !prev_active)
618 increment_queue_count(dqm, q->properties.type);
619 else if (!q->properties.is_active && prev_active)
620 decrement_queue_count(dqm, q->properties.type);
621
622 if (q->gws && !q->properties.is_gws) {
623 if (q->properties.is_active) {
624 dqm->gws_queue_count++;
625 pdd->qpd.mapped_gws_queue = true;
626 }
627 q->properties.is_gws = true;
628 } else if (!q->gws && q->properties.is_gws) {
629 if (q->properties.is_active) {
630 dqm->gws_queue_count--;
631 pdd->qpd.mapped_gws_queue = false;
632 }
633 q->properties.is_gws = false;
634 }
635
636 if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
637 retval = map_queues_cpsch(dqm);
638 else if (q->properties.is_active &&
639 (q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
640 q->properties.type == KFD_QUEUE_TYPE_SDMA ||
641 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
642 if (WARN(q->process->mm != current->mm,
643 "should only run in user thread"))
644 retval = -EFAULT;
645 else
646 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd,
647 q->pipe, q->queue,
648 &q->properties, current->mm);
649 }
650
651 out_unlock:
652 dqm_unlock(dqm);
653 return retval;
654 }
655
evict_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)656 static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
657 struct qcm_process_device *qpd)
658 {
659 struct queue *q;
660 struct mqd_manager *mqd_mgr;
661 struct kfd_process_device *pdd;
662 int retval, ret = 0;
663
664 dqm_lock(dqm);
665 if (qpd->evicted++ > 0) /* already evicted, do nothing */
666 goto out;
667
668 pdd = qpd_to_pdd(qpd);
669 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
670 pdd->process->pasid);
671
672 pdd->last_evict_timestamp = get_jiffies_64();
673 /* Mark all queues as evicted. Deactivate all active queues on
674 * the qpd.
675 */
676 list_for_each_entry(q, &qpd->queues_list, list) {
677 q->properties.is_evicted = true;
678 if (!q->properties.is_active)
679 continue;
680
681 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
682 q->properties.type)];
683 q->properties.is_active = false;
684 decrement_queue_count(dqm, q->properties.type);
685 if (q->properties.is_gws) {
686 dqm->gws_queue_count--;
687 qpd->mapped_gws_queue = false;
688 }
689
690 if (WARN_ONCE(!dqm->sched_running, "Evict when stopped\n"))
691 continue;
692
693 retval = mqd_mgr->destroy_mqd(mqd_mgr, q->mqd,
694 (dqm->dev->cwsr_enabled?
695 KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
696 KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN),
697 KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
698 if (retval && !ret)
699 /* Return the first error, but keep going to
700 * maintain a consistent eviction state
701 */
702 ret = retval;
703 }
704
705 out:
706 dqm_unlock(dqm);
707 return ret;
708 }
709
evict_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)710 static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
711 struct qcm_process_device *qpd)
712 {
713 struct queue *q;
714 struct kfd_process_device *pdd;
715 int retval = 0;
716
717 dqm_lock(dqm);
718 if (qpd->evicted++ > 0) /* already evicted, do nothing */
719 goto out;
720
721 pdd = qpd_to_pdd(qpd);
722 pr_debug_ratelimited("Evicting PASID 0x%x queues\n",
723 pdd->process->pasid);
724
725 /* Mark all queues as evicted. Deactivate all active queues on
726 * the qpd.
727 */
728 list_for_each_entry(q, &qpd->queues_list, list) {
729 q->properties.is_evicted = true;
730 if (!q->properties.is_active)
731 continue;
732
733 q->properties.is_active = false;
734 decrement_queue_count(dqm, q->properties.type);
735 }
736 pdd->last_evict_timestamp = get_jiffies_64();
737 retval = execute_queues_cpsch(dqm,
738 qpd->is_debug ?
739 KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
740 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
741
742 out:
743 dqm_unlock(dqm);
744 return retval;
745 }
746
restore_process_queues_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)747 static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
748 struct qcm_process_device *qpd)
749 {
750 struct mm_struct *mm = NULL;
751 struct queue *q;
752 struct mqd_manager *mqd_mgr;
753 struct kfd_process_device *pdd;
754 uint64_t pd_base;
755 uint64_t eviction_duration;
756 int retval, ret = 0;
757
758 pdd = qpd_to_pdd(qpd);
759 /* Retrieve PD base */
760 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
761
762 dqm_lock(dqm);
763 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
764 goto out;
765 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
766 qpd->evicted--;
767 goto out;
768 }
769
770 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
771 pdd->process->pasid);
772
773 /* Update PD Base in QPD */
774 qpd->page_table_base = pd_base;
775 pr_debug("Updated PD address to 0x%llx\n", pd_base);
776
777 if (!list_empty(&qpd->queues_list)) {
778 dqm->dev->kfd2kgd->set_vm_context_page_table_base(
779 dqm->dev->kgd,
780 qpd->vmid,
781 qpd->page_table_base);
782 kfd_flush_tlb(pdd, TLB_FLUSH_LEGACY);
783 }
784
785 /* Take a safe reference to the mm_struct, which may otherwise
786 * disappear even while the kfd_process is still referenced.
787 */
788 mm = get_task_mm(pdd->process->lead_thread);
789 if (!mm) {
790 ret = -EFAULT;
791 goto out;
792 }
793
794 /* Remove the eviction flags. Activate queues that are not
795 * inactive for other reasons.
796 */
797 list_for_each_entry(q, &qpd->queues_list, list) {
798 q->properties.is_evicted = false;
799 if (!QUEUE_IS_ACTIVE(q->properties))
800 continue;
801
802 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
803 q->properties.type)];
804 q->properties.is_active = true;
805 increment_queue_count(dqm, q->properties.type);
806 if (q->properties.is_gws) {
807 dqm->gws_queue_count++;
808 qpd->mapped_gws_queue = true;
809 }
810
811 if (WARN_ONCE(!dqm->sched_running, "Restore when stopped\n"))
812 continue;
813
814 retval = mqd_mgr->load_mqd(mqd_mgr, q->mqd, q->pipe,
815 q->queue, &q->properties, mm);
816 if (retval && !ret)
817 /* Return the first error, but keep going to
818 * maintain a consistent eviction state
819 */
820 ret = retval;
821 }
822 qpd->evicted = 0;
823 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
824 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
825 out:
826 if (mm)
827 mmput(mm);
828 dqm_unlock(dqm);
829 return ret;
830 }
831
restore_process_queues_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)832 static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
833 struct qcm_process_device *qpd)
834 {
835 struct queue *q;
836 struct kfd_process_device *pdd;
837 uint64_t pd_base;
838 uint64_t eviction_duration;
839 int retval = 0;
840
841 pdd = qpd_to_pdd(qpd);
842 /* Retrieve PD base */
843 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
844
845 dqm_lock(dqm);
846 if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
847 goto out;
848 if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
849 qpd->evicted--;
850 goto out;
851 }
852
853 pr_debug_ratelimited("Restoring PASID 0x%x queues\n",
854 pdd->process->pasid);
855
856 /* Update PD Base in QPD */
857 qpd->page_table_base = pd_base;
858 pr_debug("Updated PD address to 0x%llx\n", pd_base);
859
860 /* activate all active queues on the qpd */
861 list_for_each_entry(q, &qpd->queues_list, list) {
862 q->properties.is_evicted = false;
863 if (!QUEUE_IS_ACTIVE(q->properties))
864 continue;
865
866 q->properties.is_active = true;
867 increment_queue_count(dqm, q->properties.type);
868 }
869 retval = execute_queues_cpsch(dqm,
870 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
871 qpd->evicted = 0;
872 eviction_duration = get_jiffies_64() - pdd->last_evict_timestamp;
873 atomic64_add(eviction_duration, &pdd->evict_duration_counter);
874 out:
875 dqm_unlock(dqm);
876 return retval;
877 }
878
register_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)879 static int register_process(struct device_queue_manager *dqm,
880 struct qcm_process_device *qpd)
881 {
882 struct device_process_node *n;
883 struct kfd_process_device *pdd;
884 uint64_t pd_base;
885 int retval;
886
887 n = kzalloc(sizeof(*n), GFP_KERNEL);
888 if (!n)
889 return -ENOMEM;
890
891 n->qpd = qpd;
892
893 pdd = qpd_to_pdd(qpd);
894 /* Retrieve PD base */
895 pd_base = amdgpu_amdkfd_gpuvm_get_process_page_dir(pdd->drm_priv);
896
897 dqm_lock(dqm);
898 list_add(&n->list, &dqm->queues);
899
900 /* Update PD Base in QPD */
901 qpd->page_table_base = pd_base;
902 pr_debug("Updated PD address to 0x%llx\n", pd_base);
903
904 retval = dqm->asic_ops.update_qpd(dqm, qpd);
905
906 dqm->processes_count++;
907
908 dqm_unlock(dqm);
909
910 /* Outside the DQM lock because under the DQM lock we can't do
911 * reclaim or take other locks that others hold while reclaiming.
912 */
913 kfd_inc_compute_active(dqm->dev);
914
915 return retval;
916 }
917
unregister_process(struct device_queue_manager * dqm,struct qcm_process_device * qpd)918 static int unregister_process(struct device_queue_manager *dqm,
919 struct qcm_process_device *qpd)
920 {
921 int retval;
922 struct device_process_node *cur, *next;
923
924 pr_debug("qpd->queues_list is %s\n",
925 list_empty(&qpd->queues_list) ? "empty" : "not empty");
926
927 retval = 0;
928 dqm_lock(dqm);
929
930 list_for_each_entry_safe(cur, next, &dqm->queues, list) {
931 if (qpd == cur->qpd) {
932 list_del(&cur->list);
933 kfree(cur);
934 dqm->processes_count--;
935 goto out;
936 }
937 }
938 /* qpd not found in dqm list */
939 retval = 1;
940 out:
941 dqm_unlock(dqm);
942
943 /* Outside the DQM lock because under the DQM lock we can't do
944 * reclaim or take other locks that others hold while reclaiming.
945 */
946 if (!retval)
947 kfd_dec_compute_active(dqm->dev);
948
949 return retval;
950 }
951
952 static int
set_pasid_vmid_mapping(struct device_queue_manager * dqm,u32 pasid,unsigned int vmid)953 set_pasid_vmid_mapping(struct device_queue_manager *dqm, u32 pasid,
954 unsigned int vmid)
955 {
956 return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
957 dqm->dev->kgd, pasid, vmid);
958 }
959
init_interrupts(struct device_queue_manager * dqm)960 static void init_interrupts(struct device_queue_manager *dqm)
961 {
962 unsigned int i;
963
964 for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
965 if (is_pipe_enabled(dqm, 0, i))
966 dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
967 }
968
initialize_nocpsch(struct device_queue_manager * dqm)969 static int initialize_nocpsch(struct device_queue_manager *dqm)
970 {
971 int pipe, queue;
972
973 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
974
975 dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
976 sizeof(unsigned int), GFP_KERNEL);
977 if (!dqm->allocated_queues)
978 return -ENOMEM;
979
980 mutex_init(&dqm->lock_hidden);
981 INIT_LIST_HEAD(&dqm->queues);
982 dqm->active_queue_count = dqm->next_pipe_to_allocate = 0;
983 dqm->active_cp_queue_count = 0;
984 dqm->gws_queue_count = 0;
985
986 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
987 int pipe_offset = pipe * get_queues_per_pipe(dqm);
988
989 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
990 if (test_bit(pipe_offset + queue,
991 dqm->dev->shared_resources.cp_queue_bitmap))
992 dqm->allocated_queues[pipe] |= 1 << queue;
993 }
994
995 memset(dqm->vmid_pasid, 0, sizeof(dqm->vmid_pasid));
996
997 dqm->sdma_bitmap = ~0ULL >> (64 - get_num_sdma_queues(dqm));
998 dqm->xgmi_sdma_bitmap = ~0ULL >> (64 - get_num_xgmi_sdma_queues(dqm));
999
1000 return 0;
1001 }
1002
uninitialize(struct device_queue_manager * dqm)1003 static void uninitialize(struct device_queue_manager *dqm)
1004 {
1005 int i;
1006
1007 WARN_ON(dqm->active_queue_count > 0 || dqm->processes_count > 0);
1008
1009 kfree(dqm->allocated_queues);
1010 for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
1011 kfree(dqm->mqd_mgrs[i]);
1012 mutex_destroy(&dqm->lock_hidden);
1013 }
1014
start_nocpsch(struct device_queue_manager * dqm)1015 static int start_nocpsch(struct device_queue_manager *dqm)
1016 {
1017 pr_info("SW scheduler is used");
1018 init_interrupts(dqm);
1019
1020 if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1021 return pm_init(&dqm->packet_mgr, dqm);
1022 dqm->sched_running = true;
1023
1024 return 0;
1025 }
1026
stop_nocpsch(struct device_queue_manager * dqm)1027 static int stop_nocpsch(struct device_queue_manager *dqm)
1028 {
1029 if (dqm->dev->device_info->asic_family == CHIP_HAWAII)
1030 pm_uninit(&dqm->packet_mgr, false);
1031 dqm->sched_running = false;
1032
1033 return 0;
1034 }
1035
pre_reset(struct device_queue_manager * dqm)1036 static void pre_reset(struct device_queue_manager *dqm)
1037 {
1038 dqm_lock(dqm);
1039 dqm->is_resetting = true;
1040 dqm_unlock(dqm);
1041 }
1042
allocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1043 static int allocate_sdma_queue(struct device_queue_manager *dqm,
1044 struct queue *q)
1045 {
1046 int bit;
1047
1048 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1049 if (dqm->sdma_bitmap == 0) {
1050 pr_err("No more SDMA queue to allocate\n");
1051 return -ENOMEM;
1052 }
1053
1054 bit = __ffs64(dqm->sdma_bitmap);
1055 dqm->sdma_bitmap &= ~(1ULL << bit);
1056 q->sdma_id = bit;
1057 q->properties.sdma_engine_id = q->sdma_id %
1058 get_num_sdma_engines(dqm);
1059 q->properties.sdma_queue_id = q->sdma_id /
1060 get_num_sdma_engines(dqm);
1061 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1062 if (dqm->xgmi_sdma_bitmap == 0) {
1063 pr_err("No more XGMI SDMA queue to allocate\n");
1064 return -ENOMEM;
1065 }
1066 bit = __ffs64(dqm->xgmi_sdma_bitmap);
1067 dqm->xgmi_sdma_bitmap &= ~(1ULL << bit);
1068 q->sdma_id = bit;
1069 /* sdma_engine_id is sdma id including
1070 * both PCIe-optimized SDMAs and XGMI-
1071 * optimized SDMAs. The calculation below
1072 * assumes the first N engines are always
1073 * PCIe-optimized ones
1074 */
1075 q->properties.sdma_engine_id = get_num_sdma_engines(dqm) +
1076 q->sdma_id % get_num_xgmi_sdma_engines(dqm);
1077 q->properties.sdma_queue_id = q->sdma_id /
1078 get_num_xgmi_sdma_engines(dqm);
1079 }
1080
1081 pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
1082 pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
1083
1084 return 0;
1085 }
1086
deallocate_sdma_queue(struct device_queue_manager * dqm,struct queue * q)1087 static void deallocate_sdma_queue(struct device_queue_manager *dqm,
1088 struct queue *q)
1089 {
1090 if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
1091 if (q->sdma_id >= get_num_sdma_queues(dqm))
1092 return;
1093 dqm->sdma_bitmap |= (1ULL << q->sdma_id);
1094 } else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1095 if (q->sdma_id >= get_num_xgmi_sdma_queues(dqm))
1096 return;
1097 dqm->xgmi_sdma_bitmap |= (1ULL << q->sdma_id);
1098 }
1099 }
1100
1101 /*
1102 * Device Queue Manager implementation for cp scheduler
1103 */
1104
set_sched_resources(struct device_queue_manager * dqm)1105 static int set_sched_resources(struct device_queue_manager *dqm)
1106 {
1107 int i, mec;
1108 struct scheduling_resources res;
1109
1110 res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
1111
1112 res.queue_mask = 0;
1113 for (i = 0; i < KGD_MAX_QUEUES; ++i) {
1114 mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
1115 / dqm->dev->shared_resources.num_pipe_per_mec;
1116
1117 if (!test_bit(i, dqm->dev->shared_resources.cp_queue_bitmap))
1118 continue;
1119
1120 /* only acquire queues from the first MEC */
1121 if (mec > 0)
1122 continue;
1123
1124 /* This situation may be hit in the future if a new HW
1125 * generation exposes more than 64 queues. If so, the
1126 * definition of res.queue_mask needs updating
1127 */
1128 if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
1129 pr_err("Invalid queue enabled by amdgpu: %d\n", i);
1130 break;
1131 }
1132
1133 res.queue_mask |= 1ull
1134 << amdgpu_queue_mask_bit_to_set_resource_bit(
1135 (struct amdgpu_device *)dqm->dev->kgd, i);
1136 }
1137 res.gws_mask = ~0ull;
1138 res.oac_mask = res.gds_heap_base = res.gds_heap_size = 0;
1139
1140 pr_debug("Scheduling resources:\n"
1141 "vmid mask: 0x%8X\n"
1142 "queue mask: 0x%8llX\n",
1143 res.vmid_mask, res.queue_mask);
1144
1145 return pm_send_set_resources(&dqm->packet_mgr, &res);
1146 }
1147
initialize_cpsch(struct device_queue_manager * dqm)1148 static int initialize_cpsch(struct device_queue_manager *dqm)
1149 {
1150 uint64_t num_sdma_queues;
1151 uint64_t num_xgmi_sdma_queues;
1152
1153 pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
1154
1155 mutex_init(&dqm->lock_hidden);
1156 INIT_LIST_HEAD(&dqm->queues);
1157 dqm->active_queue_count = dqm->processes_count = 0;
1158 dqm->active_cp_queue_count = 0;
1159 dqm->gws_queue_count = 0;
1160 dqm->active_runlist = false;
1161
1162 num_sdma_queues = get_num_sdma_queues(dqm);
1163 if (num_sdma_queues >= BITS_PER_TYPE(dqm->sdma_bitmap))
1164 dqm->sdma_bitmap = ULLONG_MAX;
1165 else
1166 dqm->sdma_bitmap = (BIT_ULL(num_sdma_queues) - 1);
1167
1168 num_xgmi_sdma_queues = get_num_xgmi_sdma_queues(dqm);
1169 if (num_xgmi_sdma_queues >= BITS_PER_TYPE(dqm->xgmi_sdma_bitmap))
1170 dqm->xgmi_sdma_bitmap = ULLONG_MAX;
1171 else
1172 dqm->xgmi_sdma_bitmap = (BIT_ULL(num_xgmi_sdma_queues) - 1);
1173
1174 INIT_WORK(&dqm->hw_exception_work, kfd_process_hw_exception);
1175
1176 return 0;
1177 }
1178
start_cpsch(struct device_queue_manager * dqm)1179 static int start_cpsch(struct device_queue_manager *dqm)
1180 {
1181 int retval;
1182
1183 retval = 0;
1184
1185 dqm_lock(dqm);
1186 retval = pm_init(&dqm->packet_mgr, dqm);
1187 if (retval)
1188 goto fail_packet_manager_init;
1189
1190 retval = set_sched_resources(dqm);
1191 if (retval)
1192 goto fail_set_sched_resources;
1193
1194 pr_debug("Allocating fence memory\n");
1195
1196 /* allocate fence memory on the gart */
1197 retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
1198 &dqm->fence_mem);
1199
1200 if (retval)
1201 goto fail_allocate_vidmem;
1202
1203 dqm->fence_addr = (uint64_t *)dqm->fence_mem->cpu_ptr;
1204 dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
1205
1206 init_interrupts(dqm);
1207
1208 /* clear hang status when driver try to start the hw scheduler */
1209 dqm->is_hws_hang = false;
1210 dqm->is_resetting = false;
1211 dqm->sched_running = true;
1212 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1213 dqm_unlock(dqm);
1214
1215 return 0;
1216 fail_allocate_vidmem:
1217 fail_set_sched_resources:
1218 pm_uninit(&dqm->packet_mgr, false);
1219 fail_packet_manager_init:
1220 dqm_unlock(dqm);
1221 return retval;
1222 }
1223
stop_cpsch(struct device_queue_manager * dqm)1224 static int stop_cpsch(struct device_queue_manager *dqm)
1225 {
1226 bool hanging;
1227
1228 dqm_lock(dqm);
1229 if (!dqm->sched_running) {
1230 dqm_unlock(dqm);
1231 return 0;
1232 }
1233
1234 if (!dqm->is_hws_hang)
1235 unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1236 hanging = dqm->is_hws_hang || dqm->is_resetting;
1237 dqm->sched_running = false;
1238
1239 pm_release_ib(&dqm->packet_mgr);
1240
1241 kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
1242 pm_uninit(&dqm->packet_mgr, hanging);
1243 dqm_unlock(dqm);
1244
1245 return 0;
1246 }
1247
create_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1248 static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
1249 struct kernel_queue *kq,
1250 struct qcm_process_device *qpd)
1251 {
1252 dqm_lock(dqm);
1253 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1254 pr_warn("Can't create new kernel queue because %d queues were already created\n",
1255 dqm->total_queue_count);
1256 dqm_unlock(dqm);
1257 return -EPERM;
1258 }
1259
1260 /*
1261 * Unconditionally increment this counter, regardless of the queue's
1262 * type or whether the queue is active.
1263 */
1264 dqm->total_queue_count++;
1265 pr_debug("Total of %d queues are accountable so far\n",
1266 dqm->total_queue_count);
1267
1268 list_add(&kq->list, &qpd->priv_queue_list);
1269 increment_queue_count(dqm, kq->queue->properties.type);
1270 qpd->is_debug = true;
1271 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1272 dqm_unlock(dqm);
1273
1274 return 0;
1275 }
1276
destroy_kernel_queue_cpsch(struct device_queue_manager * dqm,struct kernel_queue * kq,struct qcm_process_device * qpd)1277 static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
1278 struct kernel_queue *kq,
1279 struct qcm_process_device *qpd)
1280 {
1281 dqm_lock(dqm);
1282 list_del(&kq->list);
1283 decrement_queue_count(dqm, kq->queue->properties.type);
1284 qpd->is_debug = false;
1285 execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
1286 /*
1287 * Unconditionally decrement this counter, regardless of the queue's
1288 * type.
1289 */
1290 dqm->total_queue_count--;
1291 pr_debug("Total of %d queues are accountable so far\n",
1292 dqm->total_queue_count);
1293 dqm_unlock(dqm);
1294 }
1295
create_queue_cpsch(struct device_queue_manager * dqm,struct queue * q,struct qcm_process_device * qpd)1296 static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
1297 struct qcm_process_device *qpd)
1298 {
1299 int retval;
1300 struct mqd_manager *mqd_mgr;
1301
1302 if (dqm->total_queue_count >= max_num_of_queues_per_device) {
1303 pr_warn("Can't create new usermode queue because %d queues were already created\n",
1304 dqm->total_queue_count);
1305 retval = -EPERM;
1306 goto out;
1307 }
1308
1309 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1310 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1311 dqm_lock(dqm);
1312 retval = allocate_sdma_queue(dqm, q);
1313 dqm_unlock(dqm);
1314 if (retval)
1315 goto out;
1316 }
1317
1318 retval = allocate_doorbell(qpd, q);
1319 if (retval)
1320 goto out_deallocate_sdma_queue;
1321
1322 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1323 q->properties.type)];
1324
1325 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1326 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1327 dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
1328 q->properties.tba_addr = qpd->tba_addr;
1329 q->properties.tma_addr = qpd->tma_addr;
1330 q->mqd_mem_obj = mqd_mgr->allocate_mqd(mqd_mgr->dev, &q->properties);
1331 if (!q->mqd_mem_obj) {
1332 retval = -ENOMEM;
1333 goto out_deallocate_doorbell;
1334 }
1335
1336 dqm_lock(dqm);
1337 /*
1338 * Eviction state logic: mark all queues as evicted, even ones
1339 * not currently active. Restoring inactive queues later only
1340 * updates the is_evicted flag but is a no-op otherwise.
1341 */
1342 q->properties.is_evicted = !!qpd->evicted;
1343 mqd_mgr->init_mqd(mqd_mgr, &q->mqd, q->mqd_mem_obj,
1344 &q->gart_mqd_addr, &q->properties);
1345
1346 list_add(&q->list, &qpd->queues_list);
1347 qpd->queue_count++;
1348
1349 if (q->properties.is_active) {
1350 increment_queue_count(dqm, q->properties.type);
1351
1352 execute_queues_cpsch(dqm,
1353 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1354 }
1355
1356 /*
1357 * Unconditionally increment this counter, regardless of the queue's
1358 * type or whether the queue is active.
1359 */
1360 dqm->total_queue_count++;
1361
1362 pr_debug("Total of %d queues are accountable so far\n",
1363 dqm->total_queue_count);
1364
1365 dqm_unlock(dqm);
1366 return retval;
1367
1368 out_deallocate_doorbell:
1369 deallocate_doorbell(qpd, q);
1370 out_deallocate_sdma_queue:
1371 if (q->properties.type == KFD_QUEUE_TYPE_SDMA ||
1372 q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI) {
1373 dqm_lock(dqm);
1374 deallocate_sdma_queue(dqm, q);
1375 dqm_unlock(dqm);
1376 }
1377 out:
1378 return retval;
1379 }
1380
amdkfd_fence_wait_timeout(uint64_t * fence_addr,uint64_t fence_value,unsigned int timeout_ms)1381 int amdkfd_fence_wait_timeout(uint64_t *fence_addr,
1382 uint64_t fence_value,
1383 unsigned int timeout_ms)
1384 {
1385 unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
1386
1387 while (*fence_addr != fence_value) {
1388 if (time_after(jiffies, end_jiffies)) {
1389 pr_err("qcm fence wait loop timeout expired\n");
1390 /* In HWS case, this is used to halt the driver thread
1391 * in order not to mess up CP states before doing
1392 * scandumps for FW debugging.
1393 */
1394 while (halt_if_hws_hang)
1395 schedule();
1396
1397 return -ETIME;
1398 }
1399 schedule();
1400 }
1401
1402 return 0;
1403 }
1404
1405 /* dqm->lock mutex has to be locked before calling this function */
map_queues_cpsch(struct device_queue_manager * dqm)1406 static int map_queues_cpsch(struct device_queue_manager *dqm)
1407 {
1408 int retval;
1409
1410 if (!dqm->sched_running)
1411 return 0;
1412 if (dqm->active_queue_count <= 0 || dqm->processes_count <= 0)
1413 return 0;
1414 if (dqm->active_runlist)
1415 return 0;
1416
1417 retval = pm_send_runlist(&dqm->packet_mgr, &dqm->queues);
1418 pr_debug("%s sent runlist\n", __func__);
1419 if (retval) {
1420 pr_err("failed to execute runlist\n");
1421 return retval;
1422 }
1423 dqm->active_runlist = true;
1424
1425 return retval;
1426 }
1427
1428 /* dqm->lock mutex has to be locked before calling this function */
unmap_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1429 static int unmap_queues_cpsch(struct device_queue_manager *dqm,
1430 enum kfd_unmap_queues_filter filter,
1431 uint32_t filter_param)
1432 {
1433 int retval = 0;
1434 struct mqd_manager *mqd_mgr;
1435
1436 if (!dqm->sched_running)
1437 return 0;
1438 if (dqm->is_hws_hang || dqm->is_resetting)
1439 return -EIO;
1440 if (!dqm->active_runlist)
1441 return retval;
1442
1443 retval = pm_send_unmap_queue(&dqm->packet_mgr, KFD_QUEUE_TYPE_COMPUTE,
1444 filter, filter_param, false, 0);
1445 if (retval)
1446 return retval;
1447
1448 *dqm->fence_addr = KFD_FENCE_INIT;
1449 pm_send_query_status(&dqm->packet_mgr, dqm->fence_gpu_addr,
1450 KFD_FENCE_COMPLETED);
1451 /* should be timed out */
1452 retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
1453 queue_preemption_timeout_ms);
1454 if (retval) {
1455 pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
1456 dqm->is_hws_hang = true;
1457 /* It's possible we're detecting a HWS hang in the
1458 * middle of a GPU reset. No need to schedule another
1459 * reset in this case.
1460 */
1461 if (!dqm->is_resetting)
1462 schedule_work(&dqm->hw_exception_work);
1463 return retval;
1464 }
1465
1466 /* In the current MEC firmware implementation, if compute queue
1467 * doesn't response to the preemption request in time, HIQ will
1468 * abandon the unmap request without returning any timeout error
1469 * to driver. Instead, MEC firmware will log the doorbell of the
1470 * unresponding compute queue to HIQ.MQD.queue_doorbell_id fields.
1471 * To make sure the queue unmap was successful, driver need to
1472 * check those fields
1473 */
1474 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ];
1475 if (mqd_mgr->read_doorbell_id(dqm->packet_mgr.priv_queue->queue->mqd)) {
1476 pr_err("HIQ MQD's queue_doorbell_id0 is not 0, Queue preemption time out\n");
1477 while (halt_if_hws_hang)
1478 schedule();
1479 return -ETIME;
1480 }
1481
1482 pm_release_ib(&dqm->packet_mgr);
1483 dqm->active_runlist = false;
1484
1485 return retval;
1486 }
1487
1488 /* dqm->lock mutex has to be locked before calling this function */
execute_queues_cpsch(struct device_queue_manager * dqm,enum kfd_unmap_queues_filter filter,uint32_t filter_param)1489 static int execute_queues_cpsch(struct device_queue_manager *dqm,
1490 enum kfd_unmap_queues_filter filter,
1491 uint32_t filter_param)
1492 {
1493 int retval;
1494
1495 if (dqm->is_hws_hang)
1496 return -EIO;
1497 retval = unmap_queues_cpsch(dqm, filter, filter_param);
1498 if (retval)
1499 return retval;
1500
1501 return map_queues_cpsch(dqm);
1502 }
1503
destroy_queue_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd,struct queue * q)1504 static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1505 struct qcm_process_device *qpd,
1506 struct queue *q)
1507 {
1508 int retval;
1509 struct mqd_manager *mqd_mgr;
1510 uint64_t sdma_val = 0;
1511 struct kfd_process_device *pdd = qpd_to_pdd(qpd);
1512
1513 /* Get the SDMA queue stats */
1514 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1515 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1516 retval = read_sdma_queue_counter((uint64_t __user *)q->properties.read_ptr,
1517 &sdma_val);
1518 if (retval)
1519 pr_err("Failed to read SDMA queue counter for queue: %d\n",
1520 q->properties.queue_id);
1521 }
1522
1523 retval = 0;
1524
1525 /* remove queue from list to prevent rescheduling after preemption */
1526 dqm_lock(dqm);
1527
1528 if (qpd->is_debug) {
1529 /*
1530 * error, currently we do not allow to destroy a queue
1531 * of a currently debugged process
1532 */
1533 retval = -EBUSY;
1534 goto failed_try_destroy_debugged_queue;
1535
1536 }
1537
1538 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1539 q->properties.type)];
1540
1541 deallocate_doorbell(qpd, q);
1542
1543 if ((q->properties.type == KFD_QUEUE_TYPE_SDMA) ||
1544 (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)) {
1545 deallocate_sdma_queue(dqm, q);
1546 pdd->sdma_past_activity_counter += sdma_val;
1547 }
1548
1549 list_del(&q->list);
1550 qpd->queue_count--;
1551 if (q->properties.is_active) {
1552 decrement_queue_count(dqm, q->properties.type);
1553 retval = execute_queues_cpsch(dqm,
1554 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
1555 if (retval == -ETIME)
1556 qpd->reset_wavefronts = true;
1557 if (q->properties.is_gws) {
1558 dqm->gws_queue_count--;
1559 qpd->mapped_gws_queue = false;
1560 }
1561 }
1562
1563 /*
1564 * Unconditionally decrement this counter, regardless of the queue's
1565 * type
1566 */
1567 dqm->total_queue_count--;
1568 pr_debug("Total of %d queues are accountable so far\n",
1569 dqm->total_queue_count);
1570
1571 dqm_unlock(dqm);
1572
1573 /* Do free_mqd after dqm_unlock(dqm) to avoid circular locking */
1574 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1575
1576 return retval;
1577
1578 failed_try_destroy_debugged_queue:
1579
1580 dqm_unlock(dqm);
1581 return retval;
1582 }
1583
1584 /*
1585 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1586 * stay in user mode.
1587 */
1588 #define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1589 /* APE1 limit is inclusive and 64K aligned. */
1590 #define APE1_LIMIT_ALIGNMENT 0xFFFF
1591
set_cache_memory_policy(struct device_queue_manager * dqm,struct qcm_process_device * qpd,enum cache_policy default_policy,enum cache_policy alternate_policy,void __user * alternate_aperture_base,uint64_t alternate_aperture_size)1592 static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1593 struct qcm_process_device *qpd,
1594 enum cache_policy default_policy,
1595 enum cache_policy alternate_policy,
1596 void __user *alternate_aperture_base,
1597 uint64_t alternate_aperture_size)
1598 {
1599 bool retval = true;
1600
1601 if (!dqm->asic_ops.set_cache_memory_policy)
1602 return retval;
1603
1604 dqm_lock(dqm);
1605
1606 if (alternate_aperture_size == 0) {
1607 /* base > limit disables APE1 */
1608 qpd->sh_mem_ape1_base = 1;
1609 qpd->sh_mem_ape1_limit = 0;
1610 } else {
1611 /*
1612 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1613 * SH_MEM_APE1_BASE[31:0], 0x0000 }
1614 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1615 * SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1616 * Verify that the base and size parameters can be
1617 * represented in this format and convert them.
1618 * Additionally restrict APE1 to user-mode addresses.
1619 */
1620
1621 uint64_t base = (uintptr_t)alternate_aperture_base;
1622 uint64_t limit = base + alternate_aperture_size - 1;
1623
1624 if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
1625 (limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
1626 retval = false;
1627 goto out;
1628 }
1629
1630 qpd->sh_mem_ape1_base = base >> 16;
1631 qpd->sh_mem_ape1_limit = limit >> 16;
1632 }
1633
1634 retval = dqm->asic_ops.set_cache_memory_policy(
1635 dqm,
1636 qpd,
1637 default_policy,
1638 alternate_policy,
1639 alternate_aperture_base,
1640 alternate_aperture_size);
1641
1642 if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1643 program_sh_mem_settings(dqm, qpd);
1644
1645 pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1646 qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1647 qpd->sh_mem_ape1_limit);
1648
1649 out:
1650 dqm_unlock(dqm);
1651 return retval;
1652 }
1653
process_termination_nocpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1654 static int process_termination_nocpsch(struct device_queue_manager *dqm,
1655 struct qcm_process_device *qpd)
1656 {
1657 struct queue *q;
1658 struct device_process_node *cur, *next_dpn;
1659 int retval = 0;
1660 bool found = false;
1661
1662 dqm_lock(dqm);
1663
1664 /* Clear all user mode queues */
1665 while (!list_empty(&qpd->queues_list)) {
1666 struct mqd_manager *mqd_mgr;
1667 int ret;
1668
1669 q = list_first_entry(&qpd->queues_list, struct queue, list);
1670 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1671 q->properties.type)];
1672 ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
1673 if (ret)
1674 retval = ret;
1675 dqm_unlock(dqm);
1676 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1677 dqm_lock(dqm);
1678 }
1679
1680 /* Unregister process */
1681 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1682 if (qpd == cur->qpd) {
1683 list_del(&cur->list);
1684 kfree(cur);
1685 dqm->processes_count--;
1686 found = true;
1687 break;
1688 }
1689 }
1690
1691 dqm_unlock(dqm);
1692
1693 /* Outside the DQM lock because under the DQM lock we can't do
1694 * reclaim or take other locks that others hold while reclaiming.
1695 */
1696 if (found)
1697 kfd_dec_compute_active(dqm->dev);
1698
1699 return retval;
1700 }
1701
get_wave_state(struct device_queue_manager * dqm,struct queue * q,void __user * ctl_stack,u32 * ctl_stack_used_size,u32 * save_area_used_size)1702 static int get_wave_state(struct device_queue_manager *dqm,
1703 struct queue *q,
1704 void __user *ctl_stack,
1705 u32 *ctl_stack_used_size,
1706 u32 *save_area_used_size)
1707 {
1708 struct mqd_manager *mqd_mgr;
1709
1710 dqm_lock(dqm);
1711
1712 mqd_mgr = dqm->mqd_mgrs[KFD_MQD_TYPE_CP];
1713
1714 if (q->properties.type != KFD_QUEUE_TYPE_COMPUTE ||
1715 q->properties.is_active || !q->device->cwsr_enabled ||
1716 !mqd_mgr->get_wave_state) {
1717 dqm_unlock(dqm);
1718 return -EINVAL;
1719 }
1720
1721 dqm_unlock(dqm);
1722
1723 /*
1724 * get_wave_state is outside the dqm lock to prevent circular locking
1725 * and the queue should be protected against destruction by the process
1726 * lock.
1727 */
1728 return mqd_mgr->get_wave_state(mqd_mgr, q->mqd, ctl_stack,
1729 ctl_stack_used_size, save_area_used_size);
1730 }
1731
process_termination_cpsch(struct device_queue_manager * dqm,struct qcm_process_device * qpd)1732 static int process_termination_cpsch(struct device_queue_manager *dqm,
1733 struct qcm_process_device *qpd)
1734 {
1735 int retval;
1736 struct queue *q;
1737 struct kernel_queue *kq, *kq_next;
1738 struct mqd_manager *mqd_mgr;
1739 struct device_process_node *cur, *next_dpn;
1740 enum kfd_unmap_queues_filter filter =
1741 KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
1742 bool found = false;
1743
1744 retval = 0;
1745
1746 dqm_lock(dqm);
1747
1748 /* Clean all kernel queues */
1749 list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
1750 list_del(&kq->list);
1751 decrement_queue_count(dqm, kq->queue->properties.type);
1752 qpd->is_debug = false;
1753 dqm->total_queue_count--;
1754 filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
1755 }
1756
1757 /* Clear all user mode queues */
1758 list_for_each_entry(q, &qpd->queues_list, list) {
1759 if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1760 deallocate_sdma_queue(dqm, q);
1761 else if (q->properties.type == KFD_QUEUE_TYPE_SDMA_XGMI)
1762 deallocate_sdma_queue(dqm, q);
1763
1764 if (q->properties.is_active) {
1765 decrement_queue_count(dqm, q->properties.type);
1766 if (q->properties.is_gws) {
1767 dqm->gws_queue_count--;
1768 qpd->mapped_gws_queue = false;
1769 }
1770 }
1771
1772 dqm->total_queue_count--;
1773 }
1774
1775 /* Unregister process */
1776 list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
1777 if (qpd == cur->qpd) {
1778 list_del(&cur->list);
1779 kfree(cur);
1780 dqm->processes_count--;
1781 found = true;
1782 break;
1783 }
1784 }
1785
1786 retval = execute_queues_cpsch(dqm, filter, 0);
1787 if ((!dqm->is_hws_hang) && (retval || qpd->reset_wavefronts)) {
1788 pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
1789 dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
1790 qpd->reset_wavefronts = false;
1791 }
1792
1793 /* Lastly, free mqd resources.
1794 * Do free_mqd() after dqm_unlock to avoid circular locking.
1795 */
1796 while (!list_empty(&qpd->queues_list)) {
1797 q = list_first_entry(&qpd->queues_list, struct queue, list);
1798 mqd_mgr = dqm->mqd_mgrs[get_mqd_type_from_queue_type(
1799 q->properties.type)];
1800 list_del(&q->list);
1801 qpd->queue_count--;
1802 dqm_unlock(dqm);
1803 mqd_mgr->free_mqd(mqd_mgr, q->mqd, q->mqd_mem_obj);
1804 dqm_lock(dqm);
1805 }
1806 dqm_unlock(dqm);
1807
1808 /* Outside the DQM lock because under the DQM lock we can't do
1809 * reclaim or take other locks that others hold while reclaiming.
1810 */
1811 if (found)
1812 kfd_dec_compute_active(dqm->dev);
1813
1814 return retval;
1815 }
1816
init_mqd_managers(struct device_queue_manager * dqm)1817 static int init_mqd_managers(struct device_queue_manager *dqm)
1818 {
1819 int i, j;
1820 struct mqd_manager *mqd_mgr;
1821
1822 for (i = 0; i < KFD_MQD_TYPE_MAX; i++) {
1823 mqd_mgr = dqm->asic_ops.mqd_manager_init(i, dqm->dev);
1824 if (!mqd_mgr) {
1825 pr_err("mqd manager [%d] initialization failed\n", i);
1826 goto out_free;
1827 }
1828 dqm->mqd_mgrs[i] = mqd_mgr;
1829 }
1830
1831 return 0;
1832
1833 out_free:
1834 for (j = 0; j < i; j++) {
1835 kfree(dqm->mqd_mgrs[j]);
1836 dqm->mqd_mgrs[j] = NULL;
1837 }
1838
1839 return -ENOMEM;
1840 }
1841
1842 /* Allocate one hiq mqd (HWS) and all SDMA mqd in a continuous trunk*/
allocate_hiq_sdma_mqd(struct device_queue_manager * dqm)1843 static int allocate_hiq_sdma_mqd(struct device_queue_manager *dqm)
1844 {
1845 int retval;
1846 struct kfd_dev *dev = dqm->dev;
1847 struct kfd_mem_obj *mem_obj = &dqm->hiq_sdma_mqd;
1848 uint32_t size = dqm->mqd_mgrs[KFD_MQD_TYPE_SDMA]->mqd_size *
1849 get_num_all_sdma_engines(dqm) *
1850 dev->device_info->num_sdma_queues_per_engine +
1851 dqm->mqd_mgrs[KFD_MQD_TYPE_HIQ]->mqd_size;
1852
1853 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->kgd, size,
1854 &(mem_obj->gtt_mem), &(mem_obj->gpu_addr),
1855 (void *)&(mem_obj->cpu_ptr), false);
1856
1857 return retval;
1858 }
1859
device_queue_manager_init(struct kfd_dev * dev)1860 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1861 {
1862 struct device_queue_manager *dqm;
1863
1864 pr_debug("Loading device queue manager\n");
1865
1866 dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
1867 if (!dqm)
1868 return NULL;
1869
1870 switch (dev->device_info->asic_family) {
1871 /* HWS is not available on Hawaii. */
1872 case CHIP_HAWAII:
1873 /* HWS depends on CWSR for timely dequeue. CWSR is not
1874 * available on Tonga.
1875 *
1876 * FIXME: This argument also applies to Kaveri.
1877 */
1878 case CHIP_TONGA:
1879 dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
1880 break;
1881 default:
1882 dqm->sched_policy = sched_policy;
1883 break;
1884 }
1885
1886 dqm->dev = dev;
1887 switch (dqm->sched_policy) {
1888 case KFD_SCHED_POLICY_HWS:
1889 case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1890 /* initialize dqm for cp scheduling */
1891 dqm->ops.create_queue = create_queue_cpsch;
1892 dqm->ops.initialize = initialize_cpsch;
1893 dqm->ops.start = start_cpsch;
1894 dqm->ops.stop = stop_cpsch;
1895 dqm->ops.pre_reset = pre_reset;
1896 dqm->ops.destroy_queue = destroy_queue_cpsch;
1897 dqm->ops.update_queue = update_queue;
1898 dqm->ops.register_process = register_process;
1899 dqm->ops.unregister_process = unregister_process;
1900 dqm->ops.uninitialize = uninitialize;
1901 dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1902 dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1903 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1904 dqm->ops.process_termination = process_termination_cpsch;
1905 dqm->ops.evict_process_queues = evict_process_queues_cpsch;
1906 dqm->ops.restore_process_queues = restore_process_queues_cpsch;
1907 dqm->ops.get_wave_state = get_wave_state;
1908 break;
1909 case KFD_SCHED_POLICY_NO_HWS:
1910 /* initialize dqm for no cp scheduling */
1911 dqm->ops.start = start_nocpsch;
1912 dqm->ops.stop = stop_nocpsch;
1913 dqm->ops.pre_reset = pre_reset;
1914 dqm->ops.create_queue = create_queue_nocpsch;
1915 dqm->ops.destroy_queue = destroy_queue_nocpsch;
1916 dqm->ops.update_queue = update_queue;
1917 dqm->ops.register_process = register_process;
1918 dqm->ops.unregister_process = unregister_process;
1919 dqm->ops.initialize = initialize_nocpsch;
1920 dqm->ops.uninitialize = uninitialize;
1921 dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1922 dqm->ops.process_termination = process_termination_nocpsch;
1923 dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
1924 dqm->ops.restore_process_queues =
1925 restore_process_queues_nocpsch;
1926 dqm->ops.get_wave_state = get_wave_state;
1927 break;
1928 default:
1929 pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
1930 goto out_free;
1931 }
1932
1933 switch (dev->device_info->asic_family) {
1934 case CHIP_CARRIZO:
1935 device_queue_manager_init_vi(&dqm->asic_ops);
1936 break;
1937
1938 case CHIP_KAVERI:
1939 device_queue_manager_init_cik(&dqm->asic_ops);
1940 break;
1941
1942 case CHIP_HAWAII:
1943 device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
1944 break;
1945
1946 case CHIP_TONGA:
1947 case CHIP_FIJI:
1948 case CHIP_POLARIS10:
1949 case CHIP_POLARIS11:
1950 case CHIP_POLARIS12:
1951 case CHIP_VEGAM:
1952 device_queue_manager_init_vi_tonga(&dqm->asic_ops);
1953 break;
1954
1955 case CHIP_VEGA10:
1956 case CHIP_VEGA12:
1957 case CHIP_VEGA20:
1958 case CHIP_RAVEN:
1959 case CHIP_RENOIR:
1960 case CHIP_ARCTURUS:
1961 case CHIP_ALDEBARAN:
1962 device_queue_manager_init_v9(&dqm->asic_ops);
1963 break;
1964 case CHIP_NAVI10:
1965 case CHIP_NAVI12:
1966 case CHIP_NAVI14:
1967 case CHIP_SIENNA_CICHLID:
1968 case CHIP_NAVY_FLOUNDER:
1969 case CHIP_VANGOGH:
1970 case CHIP_DIMGREY_CAVEFISH:
1971 case CHIP_BEIGE_GOBY:
1972 case CHIP_YELLOW_CARP:
1973 case CHIP_CYAN_SKILLFISH:
1974 device_queue_manager_init_v10_navi10(&dqm->asic_ops);
1975 break;
1976 default:
1977 WARN(1, "Unexpected ASIC family %u",
1978 dev->device_info->asic_family);
1979 goto out_free;
1980 }
1981
1982 if (init_mqd_managers(dqm))
1983 goto out_free;
1984
1985 if (allocate_hiq_sdma_mqd(dqm)) {
1986 pr_err("Failed to allocate hiq sdma mqd trunk buffer\n");
1987 goto out_free;
1988 }
1989
1990 if (!dqm->ops.initialize(dqm))
1991 return dqm;
1992
1993 out_free:
1994 kfree(dqm);
1995 return NULL;
1996 }
1997
deallocate_hiq_sdma_mqd(struct kfd_dev * dev,struct kfd_mem_obj * mqd)1998 static void deallocate_hiq_sdma_mqd(struct kfd_dev *dev,
1999 struct kfd_mem_obj *mqd)
2000 {
2001 WARN(!mqd, "No hiq sdma mqd trunk to free");
2002
2003 amdgpu_amdkfd_free_gtt_mem(dev->kgd, mqd->gtt_mem);
2004 }
2005
device_queue_manager_uninit(struct device_queue_manager * dqm)2006 void device_queue_manager_uninit(struct device_queue_manager *dqm)
2007 {
2008 dqm->ops.uninitialize(dqm);
2009 deallocate_hiq_sdma_mqd(dqm->dev, &dqm->hiq_sdma_mqd);
2010 kfree(dqm);
2011 }
2012
kfd_process_vm_fault(struct device_queue_manager * dqm,u32 pasid)2013 int kfd_process_vm_fault(struct device_queue_manager *dqm, u32 pasid)
2014 {
2015 struct kfd_process_device *pdd;
2016 struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
2017 int ret = 0;
2018
2019 if (!p)
2020 return -EINVAL;
2021 WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
2022 pdd = kfd_get_process_device_data(dqm->dev, p);
2023 if (pdd)
2024 ret = dqm->ops.evict_process_queues(dqm, &pdd->qpd);
2025 kfd_unref_process(p);
2026
2027 return ret;
2028 }
2029
kfd_process_hw_exception(struct work_struct * work)2030 static void kfd_process_hw_exception(struct work_struct *work)
2031 {
2032 struct device_queue_manager *dqm = container_of(work,
2033 struct device_queue_manager, hw_exception_work);
2034 amdgpu_amdkfd_gpu_reset(dqm->dev->kgd);
2035 }
2036
2037 #if defined(CONFIG_DEBUG_FS)
2038
seq_reg_dump(struct seq_file * m,uint32_t (* dump)[2],uint32_t n_regs)2039 static void seq_reg_dump(struct seq_file *m,
2040 uint32_t (*dump)[2], uint32_t n_regs)
2041 {
2042 uint32_t i, count;
2043
2044 for (i = 0, count = 0; i < n_regs; i++) {
2045 if (count == 0 ||
2046 dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
2047 seq_printf(m, "%s %08x: %08x",
2048 i ? "\n" : "",
2049 dump[i][0], dump[i][1]);
2050 count = 7;
2051 } else {
2052 seq_printf(m, " %08x", dump[i][1]);
2053 count--;
2054 }
2055 }
2056
2057 seq_puts(m, "\n");
2058 }
2059
dqm_debugfs_hqds(struct seq_file * m,void * data)2060 int dqm_debugfs_hqds(struct seq_file *m, void *data)
2061 {
2062 struct device_queue_manager *dqm = data;
2063 uint32_t (*dump)[2], n_regs;
2064 int pipe, queue;
2065 int r = 0;
2066
2067 if (!dqm->sched_running) {
2068 seq_printf(m, " Device is stopped\n");
2069
2070 return 0;
2071 }
2072
2073 r = dqm->dev->kfd2kgd->hqd_dump(dqm->dev->kgd,
2074 KFD_CIK_HIQ_PIPE, KFD_CIK_HIQ_QUEUE,
2075 &dump, &n_regs);
2076 if (!r) {
2077 seq_printf(m, " HIQ on MEC %d Pipe %d Queue %d\n",
2078 KFD_CIK_HIQ_PIPE/get_pipes_per_mec(dqm)+1,
2079 KFD_CIK_HIQ_PIPE%get_pipes_per_mec(dqm),
2080 KFD_CIK_HIQ_QUEUE);
2081 seq_reg_dump(m, dump, n_regs);
2082
2083 kfree(dump);
2084 }
2085
2086 for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
2087 int pipe_offset = pipe * get_queues_per_pipe(dqm);
2088
2089 for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
2090 if (!test_bit(pipe_offset + queue,
2091 dqm->dev->shared_resources.cp_queue_bitmap))
2092 continue;
2093
2094 r = dqm->dev->kfd2kgd->hqd_dump(
2095 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2096 if (r)
2097 break;
2098
2099 seq_printf(m, " CP Pipe %d, Queue %d\n",
2100 pipe, queue);
2101 seq_reg_dump(m, dump, n_regs);
2102
2103 kfree(dump);
2104 }
2105 }
2106
2107 for (pipe = 0; pipe < get_num_all_sdma_engines(dqm); pipe++) {
2108 for (queue = 0;
2109 queue < dqm->dev->device_info->num_sdma_queues_per_engine;
2110 queue++) {
2111 r = dqm->dev->kfd2kgd->hqd_sdma_dump(
2112 dqm->dev->kgd, pipe, queue, &dump, &n_regs);
2113 if (r)
2114 break;
2115
2116 seq_printf(m, " SDMA Engine %d, RLC %d\n",
2117 pipe, queue);
2118 seq_reg_dump(m, dump, n_regs);
2119
2120 kfree(dump);
2121 }
2122 }
2123
2124 return r;
2125 }
2126
dqm_debugfs_hang_hws(struct device_queue_manager * dqm)2127 int dqm_debugfs_hang_hws(struct device_queue_manager *dqm)
2128 {
2129 int r = 0;
2130
2131 dqm_lock(dqm);
2132 r = pm_debugfs_hang_hws(&dqm->packet_mgr);
2133 if (r) {
2134 dqm_unlock(dqm);
2135 return r;
2136 }
2137 dqm->active_runlist = true;
2138 r = execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
2139 dqm_unlock(dqm);
2140
2141 return r;
2142 }
2143
2144 #endif
2145