1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/bitops.h>
3 #include <linux/types.h>
4 #include <linux/slab.h>
5
6 #include <asm/cpu_entry_area.h>
7 #include <asm/perf_event.h>
8 #include <asm/tlbflush.h>
9 #include <asm/insn.h>
10 #include <asm/io.h>
11
12 #include "../perf_event.h"
13
14 /* Waste a full page so it can be mapped into the cpu_entry_area */
15 DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
16
17 /* The size of a BTS record in bytes: */
18 #define BTS_RECORD_SIZE 24
19
20 #define PEBS_FIXUP_SIZE PAGE_SIZE
21
22 /*
23 * pebs_record_32 for p4 and core not supported
24
25 struct pebs_record_32 {
26 u32 flags, ip;
27 u32 ax, bc, cx, dx;
28 u32 si, di, bp, sp;
29 };
30
31 */
32
33 union intel_x86_pebs_dse {
34 u64 val;
35 struct {
36 unsigned int ld_dse:4;
37 unsigned int ld_stlb_miss:1;
38 unsigned int ld_locked:1;
39 unsigned int ld_data_blk:1;
40 unsigned int ld_addr_blk:1;
41 unsigned int ld_reserved:24;
42 };
43 struct {
44 unsigned int st_l1d_hit:1;
45 unsigned int st_reserved1:3;
46 unsigned int st_stlb_miss:1;
47 unsigned int st_locked:1;
48 unsigned int st_reserved2:26;
49 };
50 struct {
51 unsigned int st_lat_dse:4;
52 unsigned int st_lat_stlb_miss:1;
53 unsigned int st_lat_locked:1;
54 unsigned int ld_reserved3:26;
55 };
56 };
57
58
59 /*
60 * Map PEBS Load Latency Data Source encodings to generic
61 * memory data source information
62 */
63 #define P(a, b) PERF_MEM_S(a, b)
64 #define OP_LH (P(OP, LOAD) | P(LVL, HIT))
65 #define LEVEL(x) P(LVLNUM, x)
66 #define REM P(REMOTE, REMOTE)
67 #define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
68
69 /* Version for Sandy Bridge and later */
70 static u64 pebs_data_source[] = {
71 P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
72 OP_LH | P(LVL, L1) | LEVEL(L1) | P(SNOOP, NONE), /* 0x01: L1 local */
73 OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
74 OP_LH | P(LVL, L2) | LEVEL(L2) | P(SNOOP, NONE), /* 0x03: L2 hit */
75 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, NONE), /* 0x04: L3 hit */
76 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, MISS), /* 0x05: L3 hit, snoop miss */
77 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT), /* 0x06: L3 hit, snoop hit */
78 OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM), /* 0x07: L3 hit, snoop hitm */
79 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x08: L3 miss snoop hit */
80 OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
81 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | P(SNOOP, HIT), /* 0x0a: L3 miss, shared */
82 OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT), /* 0x0b: L3 miss, shared */
83 OP_LH | P(LVL, LOC_RAM) | LEVEL(RAM) | SNOOP_NONE_MISS, /* 0x0c: L3 miss, excl */
84 OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
85 OP_LH | P(LVL, IO) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
86 OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
87 };
88
89 /* Patch up minor differences in the bits */
intel_pmu_pebs_data_source_nhm(void)90 void __init intel_pmu_pebs_data_source_nhm(void)
91 {
92 pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
93 pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
94 pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
95 }
96
intel_pmu_pebs_data_source_skl(bool pmem)97 void __init intel_pmu_pebs_data_source_skl(bool pmem)
98 {
99 u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
100
101 pebs_data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
102 pebs_data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
103 pebs_data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
104 pebs_data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
105 pebs_data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
106 }
107
precise_store_data(u64 status)108 static u64 precise_store_data(u64 status)
109 {
110 union intel_x86_pebs_dse dse;
111 u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
112
113 dse.val = status;
114
115 /*
116 * bit 4: TLB access
117 * 1 = stored missed 2nd level TLB
118 *
119 * so it either hit the walker or the OS
120 * otherwise hit 2nd level TLB
121 */
122 if (dse.st_stlb_miss)
123 val |= P(TLB, MISS);
124 else
125 val |= P(TLB, HIT);
126
127 /*
128 * bit 0: hit L1 data cache
129 * if not set, then all we know is that
130 * it missed L1D
131 */
132 if (dse.st_l1d_hit)
133 val |= P(LVL, HIT);
134 else
135 val |= P(LVL, MISS);
136
137 /*
138 * bit 5: Locked prefix
139 */
140 if (dse.st_locked)
141 val |= P(LOCK, LOCKED);
142
143 return val;
144 }
145
precise_datala_hsw(struct perf_event * event,u64 status)146 static u64 precise_datala_hsw(struct perf_event *event, u64 status)
147 {
148 union perf_mem_data_src dse;
149
150 dse.val = PERF_MEM_NA;
151
152 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
153 dse.mem_op = PERF_MEM_OP_STORE;
154 else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
155 dse.mem_op = PERF_MEM_OP_LOAD;
156
157 /*
158 * L1 info only valid for following events:
159 *
160 * MEM_UOPS_RETIRED.STLB_MISS_STORES
161 * MEM_UOPS_RETIRED.LOCK_STORES
162 * MEM_UOPS_RETIRED.SPLIT_STORES
163 * MEM_UOPS_RETIRED.ALL_STORES
164 */
165 if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
166 if (status & 1)
167 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
168 else
169 dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
170 }
171 return dse.val;
172 }
173
load_latency_data(u64 status)174 static u64 load_latency_data(u64 status)
175 {
176 union intel_x86_pebs_dse dse;
177 u64 val;
178
179 dse.val = status;
180
181 /*
182 * use the mapping table for bit 0-3
183 */
184 val = pebs_data_source[dse.ld_dse];
185
186 /*
187 * Nehalem models do not support TLB, Lock infos
188 */
189 if (x86_pmu.pebs_no_tlb) {
190 val |= P(TLB, NA) | P(LOCK, NA);
191 return val;
192 }
193 /*
194 * bit 4: TLB access
195 * 0 = did not miss 2nd level TLB
196 * 1 = missed 2nd level TLB
197 */
198 if (dse.ld_stlb_miss)
199 val |= P(TLB, MISS) | P(TLB, L2);
200 else
201 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
202
203 /*
204 * bit 5: locked prefix
205 */
206 if (dse.ld_locked)
207 val |= P(LOCK, LOCKED);
208
209 /*
210 * Ice Lake and earlier models do not support block infos.
211 */
212 if (!x86_pmu.pebs_block) {
213 val |= P(BLK, NA);
214 return val;
215 }
216 /*
217 * bit 6: load was blocked since its data could not be forwarded
218 * from a preceding store
219 */
220 if (dse.ld_data_blk)
221 val |= P(BLK, DATA);
222
223 /*
224 * bit 7: load was blocked due to potential address conflict with
225 * a preceding store
226 */
227 if (dse.ld_addr_blk)
228 val |= P(BLK, ADDR);
229
230 if (!dse.ld_data_blk && !dse.ld_addr_blk)
231 val |= P(BLK, NA);
232
233 return val;
234 }
235
store_latency_data(u64 status)236 static u64 store_latency_data(u64 status)
237 {
238 union intel_x86_pebs_dse dse;
239 u64 val;
240
241 dse.val = status;
242
243 /*
244 * use the mapping table for bit 0-3
245 */
246 val = pebs_data_source[dse.st_lat_dse];
247
248 /*
249 * bit 4: TLB access
250 * 0 = did not miss 2nd level TLB
251 * 1 = missed 2nd level TLB
252 */
253 if (dse.st_lat_stlb_miss)
254 val |= P(TLB, MISS) | P(TLB, L2);
255 else
256 val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
257
258 /*
259 * bit 5: locked prefix
260 */
261 if (dse.st_lat_locked)
262 val |= P(LOCK, LOCKED);
263
264 val |= P(BLK, NA);
265
266 return val;
267 }
268
269 struct pebs_record_core {
270 u64 flags, ip;
271 u64 ax, bx, cx, dx;
272 u64 si, di, bp, sp;
273 u64 r8, r9, r10, r11;
274 u64 r12, r13, r14, r15;
275 };
276
277 struct pebs_record_nhm {
278 u64 flags, ip;
279 u64 ax, bx, cx, dx;
280 u64 si, di, bp, sp;
281 u64 r8, r9, r10, r11;
282 u64 r12, r13, r14, r15;
283 u64 status, dla, dse, lat;
284 };
285
286 /*
287 * Same as pebs_record_nhm, with two additional fields.
288 */
289 struct pebs_record_hsw {
290 u64 flags, ip;
291 u64 ax, bx, cx, dx;
292 u64 si, di, bp, sp;
293 u64 r8, r9, r10, r11;
294 u64 r12, r13, r14, r15;
295 u64 status, dla, dse, lat;
296 u64 real_ip, tsx_tuning;
297 };
298
299 union hsw_tsx_tuning {
300 struct {
301 u32 cycles_last_block : 32,
302 hle_abort : 1,
303 rtm_abort : 1,
304 instruction_abort : 1,
305 non_instruction_abort : 1,
306 retry : 1,
307 data_conflict : 1,
308 capacity_writes : 1,
309 capacity_reads : 1;
310 };
311 u64 value;
312 };
313
314 #define PEBS_HSW_TSX_FLAGS 0xff00000000ULL
315
316 /* Same as HSW, plus TSC */
317
318 struct pebs_record_skl {
319 u64 flags, ip;
320 u64 ax, bx, cx, dx;
321 u64 si, di, bp, sp;
322 u64 r8, r9, r10, r11;
323 u64 r12, r13, r14, r15;
324 u64 status, dla, dse, lat;
325 u64 real_ip, tsx_tuning;
326 u64 tsc;
327 };
328
init_debug_store_on_cpu(int cpu)329 void init_debug_store_on_cpu(int cpu)
330 {
331 struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
332
333 if (!ds)
334 return;
335
336 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
337 (u32)((u64)(unsigned long)ds),
338 (u32)((u64)(unsigned long)ds >> 32));
339 }
340
fini_debug_store_on_cpu(int cpu)341 void fini_debug_store_on_cpu(int cpu)
342 {
343 if (!per_cpu(cpu_hw_events, cpu).ds)
344 return;
345
346 wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
347 }
348
349 static DEFINE_PER_CPU(void *, insn_buffer);
350
ds_update_cea(void * cea,void * addr,size_t size,pgprot_t prot)351 static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
352 {
353 unsigned long start = (unsigned long)cea;
354 phys_addr_t pa;
355 size_t msz = 0;
356
357 pa = virt_to_phys(addr);
358
359 preempt_disable();
360 for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
361 cea_set_pte(cea, pa, prot);
362
363 /*
364 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
365 * all TLB entries for it.
366 */
367 flush_tlb_kernel_range(start, start + size);
368 preempt_enable();
369 }
370
ds_clear_cea(void * cea,size_t size)371 static void ds_clear_cea(void *cea, size_t size)
372 {
373 unsigned long start = (unsigned long)cea;
374 size_t msz = 0;
375
376 preempt_disable();
377 for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
378 cea_set_pte(cea, 0, PAGE_NONE);
379
380 flush_tlb_kernel_range(start, start + size);
381 preempt_enable();
382 }
383
dsalloc_pages(size_t size,gfp_t flags,int cpu)384 static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
385 {
386 unsigned int order = get_order(size);
387 int node = cpu_to_node(cpu);
388 struct page *page;
389
390 page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
391 return page ? page_address(page) : NULL;
392 }
393
dsfree_pages(const void * buffer,size_t size)394 static void dsfree_pages(const void *buffer, size_t size)
395 {
396 if (buffer)
397 free_pages((unsigned long)buffer, get_order(size));
398 }
399
alloc_pebs_buffer(int cpu)400 static int alloc_pebs_buffer(int cpu)
401 {
402 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
403 struct debug_store *ds = hwev->ds;
404 size_t bsiz = x86_pmu.pebs_buffer_size;
405 int max, node = cpu_to_node(cpu);
406 void *buffer, *insn_buff, *cea;
407
408 if (!x86_pmu.pebs)
409 return 0;
410
411 buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
412 if (unlikely(!buffer))
413 return -ENOMEM;
414
415 /*
416 * HSW+ already provides us the eventing ip; no need to allocate this
417 * buffer then.
418 */
419 if (x86_pmu.intel_cap.pebs_format < 2) {
420 insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
421 if (!insn_buff) {
422 dsfree_pages(buffer, bsiz);
423 return -ENOMEM;
424 }
425 per_cpu(insn_buffer, cpu) = insn_buff;
426 }
427 hwev->ds_pebs_vaddr = buffer;
428 /* Update the cpu entry area mapping */
429 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
430 ds->pebs_buffer_base = (unsigned long) cea;
431 ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
432 ds->pebs_index = ds->pebs_buffer_base;
433 max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
434 ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
435 return 0;
436 }
437
release_pebs_buffer(int cpu)438 static void release_pebs_buffer(int cpu)
439 {
440 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
441 void *cea;
442
443 if (!x86_pmu.pebs)
444 return;
445
446 kfree(per_cpu(insn_buffer, cpu));
447 per_cpu(insn_buffer, cpu) = NULL;
448
449 /* Clear the fixmap */
450 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
451 ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
452 dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
453 hwev->ds_pebs_vaddr = NULL;
454 }
455
alloc_bts_buffer(int cpu)456 static int alloc_bts_buffer(int cpu)
457 {
458 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
459 struct debug_store *ds = hwev->ds;
460 void *buffer, *cea;
461 int max;
462
463 if (!x86_pmu.bts)
464 return 0;
465
466 buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
467 if (unlikely(!buffer)) {
468 WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
469 return -ENOMEM;
470 }
471 hwev->ds_bts_vaddr = buffer;
472 /* Update the fixmap */
473 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
474 ds->bts_buffer_base = (unsigned long) cea;
475 ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
476 ds->bts_index = ds->bts_buffer_base;
477 max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
478 ds->bts_absolute_maximum = ds->bts_buffer_base +
479 max * BTS_RECORD_SIZE;
480 ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
481 (max / 16) * BTS_RECORD_SIZE;
482 return 0;
483 }
484
release_bts_buffer(int cpu)485 static void release_bts_buffer(int cpu)
486 {
487 struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
488 void *cea;
489
490 if (!x86_pmu.bts)
491 return;
492
493 /* Clear the fixmap */
494 cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
495 ds_clear_cea(cea, BTS_BUFFER_SIZE);
496 dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
497 hwev->ds_bts_vaddr = NULL;
498 }
499
alloc_ds_buffer(int cpu)500 static int alloc_ds_buffer(int cpu)
501 {
502 struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
503
504 memset(ds, 0, sizeof(*ds));
505 per_cpu(cpu_hw_events, cpu).ds = ds;
506 return 0;
507 }
508
release_ds_buffer(int cpu)509 static void release_ds_buffer(int cpu)
510 {
511 per_cpu(cpu_hw_events, cpu).ds = NULL;
512 }
513
release_ds_buffers(void)514 void release_ds_buffers(void)
515 {
516 int cpu;
517
518 if (!x86_pmu.bts && !x86_pmu.pebs)
519 return;
520
521 for_each_possible_cpu(cpu)
522 release_ds_buffer(cpu);
523
524 for_each_possible_cpu(cpu) {
525 /*
526 * Again, ignore errors from offline CPUs, they will no longer
527 * observe cpu_hw_events.ds and not program the DS_AREA when
528 * they come up.
529 */
530 fini_debug_store_on_cpu(cpu);
531 }
532
533 for_each_possible_cpu(cpu) {
534 release_pebs_buffer(cpu);
535 release_bts_buffer(cpu);
536 }
537 }
538
reserve_ds_buffers(void)539 void reserve_ds_buffers(void)
540 {
541 int bts_err = 0, pebs_err = 0;
542 int cpu;
543
544 x86_pmu.bts_active = 0;
545 x86_pmu.pebs_active = 0;
546
547 if (!x86_pmu.bts && !x86_pmu.pebs)
548 return;
549
550 if (!x86_pmu.bts)
551 bts_err = 1;
552
553 if (!x86_pmu.pebs)
554 pebs_err = 1;
555
556 for_each_possible_cpu(cpu) {
557 if (alloc_ds_buffer(cpu)) {
558 bts_err = 1;
559 pebs_err = 1;
560 }
561
562 if (!bts_err && alloc_bts_buffer(cpu))
563 bts_err = 1;
564
565 if (!pebs_err && alloc_pebs_buffer(cpu))
566 pebs_err = 1;
567
568 if (bts_err && pebs_err)
569 break;
570 }
571
572 if (bts_err) {
573 for_each_possible_cpu(cpu)
574 release_bts_buffer(cpu);
575 }
576
577 if (pebs_err) {
578 for_each_possible_cpu(cpu)
579 release_pebs_buffer(cpu);
580 }
581
582 if (bts_err && pebs_err) {
583 for_each_possible_cpu(cpu)
584 release_ds_buffer(cpu);
585 } else {
586 if (x86_pmu.bts && !bts_err)
587 x86_pmu.bts_active = 1;
588
589 if (x86_pmu.pebs && !pebs_err)
590 x86_pmu.pebs_active = 1;
591
592 for_each_possible_cpu(cpu) {
593 /*
594 * Ignores wrmsr_on_cpu() errors for offline CPUs they
595 * will get this call through intel_pmu_cpu_starting().
596 */
597 init_debug_store_on_cpu(cpu);
598 }
599 }
600 }
601
602 /*
603 * BTS
604 */
605
606 struct event_constraint bts_constraint =
607 EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
608
intel_pmu_enable_bts(u64 config)609 void intel_pmu_enable_bts(u64 config)
610 {
611 unsigned long debugctlmsr;
612
613 debugctlmsr = get_debugctlmsr();
614
615 debugctlmsr |= DEBUGCTLMSR_TR;
616 debugctlmsr |= DEBUGCTLMSR_BTS;
617 if (config & ARCH_PERFMON_EVENTSEL_INT)
618 debugctlmsr |= DEBUGCTLMSR_BTINT;
619
620 if (!(config & ARCH_PERFMON_EVENTSEL_OS))
621 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
622
623 if (!(config & ARCH_PERFMON_EVENTSEL_USR))
624 debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
625
626 update_debugctlmsr(debugctlmsr);
627 }
628
intel_pmu_disable_bts(void)629 void intel_pmu_disable_bts(void)
630 {
631 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
632 unsigned long debugctlmsr;
633
634 if (!cpuc->ds)
635 return;
636
637 debugctlmsr = get_debugctlmsr();
638
639 debugctlmsr &=
640 ~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
641 DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
642
643 update_debugctlmsr(debugctlmsr);
644 }
645
intel_pmu_drain_bts_buffer(void)646 int intel_pmu_drain_bts_buffer(void)
647 {
648 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
649 struct debug_store *ds = cpuc->ds;
650 struct bts_record {
651 u64 from;
652 u64 to;
653 u64 flags;
654 };
655 struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
656 struct bts_record *at, *base, *top;
657 struct perf_output_handle handle;
658 struct perf_event_header header;
659 struct perf_sample_data data;
660 unsigned long skip = 0;
661 struct pt_regs regs;
662
663 if (!event)
664 return 0;
665
666 if (!x86_pmu.bts_active)
667 return 0;
668
669 base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
670 top = (struct bts_record *)(unsigned long)ds->bts_index;
671
672 if (top <= base)
673 return 0;
674
675 memset(®s, 0, sizeof(regs));
676
677 ds->bts_index = ds->bts_buffer_base;
678
679 perf_sample_data_init(&data, 0, event->hw.last_period);
680
681 /*
682 * BTS leaks kernel addresses in branches across the cpl boundary,
683 * such as traps or system calls, so unless the user is asking for
684 * kernel tracing (and right now it's not possible), we'd need to
685 * filter them out. But first we need to count how many of those we
686 * have in the current batch. This is an extra O(n) pass, however,
687 * it's much faster than the other one especially considering that
688 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
689 * alloc_bts_buffer()).
690 */
691 for (at = base; at < top; at++) {
692 /*
693 * Note that right now *this* BTS code only works if
694 * attr::exclude_kernel is set, but let's keep this extra
695 * check here in case that changes.
696 */
697 if (event->attr.exclude_kernel &&
698 (kernel_ip(at->from) || kernel_ip(at->to)))
699 skip++;
700 }
701
702 /*
703 * Prepare a generic sample, i.e. fill in the invariant fields.
704 * We will overwrite the from and to address before we output
705 * the sample.
706 */
707 rcu_read_lock();
708 perf_prepare_sample(&header, &data, event, ®s);
709
710 if (perf_output_begin(&handle, &data, event,
711 header.size * (top - base - skip)))
712 goto unlock;
713
714 for (at = base; at < top; at++) {
715 /* Filter out any records that contain kernel addresses. */
716 if (event->attr.exclude_kernel &&
717 (kernel_ip(at->from) || kernel_ip(at->to)))
718 continue;
719
720 data.ip = at->from;
721 data.addr = at->to;
722
723 perf_output_sample(&handle, &header, &data, event);
724 }
725
726 perf_output_end(&handle);
727
728 /* There's new data available. */
729 event->hw.interrupts++;
730 event->pending_kill = POLL_IN;
731 unlock:
732 rcu_read_unlock();
733 return 1;
734 }
735
intel_pmu_drain_pebs_buffer(void)736 static inline void intel_pmu_drain_pebs_buffer(void)
737 {
738 struct perf_sample_data data;
739
740 x86_pmu.drain_pebs(NULL, &data);
741 }
742
743 /*
744 * PEBS
745 */
746 struct event_constraint intel_core2_pebs_event_constraints[] = {
747 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
748 INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
749 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
750 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
751 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
752 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
753 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
754 EVENT_CONSTRAINT_END
755 };
756
757 struct event_constraint intel_atom_pebs_event_constraints[] = {
758 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
759 INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
760 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1), /* MEM_LOAD_RETIRED.* */
761 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
762 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
763 /* Allow all events as PEBS with no flags */
764 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
765 EVENT_CONSTRAINT_END
766 };
767
768 struct event_constraint intel_slm_pebs_event_constraints[] = {
769 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
770 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
771 /* Allow all events as PEBS with no flags */
772 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
773 EVENT_CONSTRAINT_END
774 };
775
776 struct event_constraint intel_glm_pebs_event_constraints[] = {
777 /* Allow all events as PEBS with no flags */
778 INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
779 EVENT_CONSTRAINT_END
780 };
781
782 struct event_constraint intel_grt_pebs_event_constraints[] = {
783 /* Allow all events as PEBS with no flags */
784 INTEL_PLD_CONSTRAINT(0x5d0, 0xf),
785 INTEL_PSD_CONSTRAINT(0x6d0, 0xf),
786 EVENT_CONSTRAINT_END
787 };
788
789 struct event_constraint intel_nehalem_pebs_event_constraints[] = {
790 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
791 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
792 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
793 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INST_RETIRED.ANY */
794 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
795 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
796 INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
797 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
798 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
799 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
800 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
801 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
802 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
803 EVENT_CONSTRAINT_END
804 };
805
806 struct event_constraint intel_westmere_pebs_event_constraints[] = {
807 INTEL_PLD_CONSTRAINT(0x100b, 0xf), /* MEM_INST_RETIRED.* */
808 INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf), /* MEM_UNCORE_RETIRED.* */
809 INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
810 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf), /* INSTR_RETIRED.* */
811 INTEL_EVENT_CONSTRAINT(0xc2, 0xf), /* UOPS_RETIRED.* */
812 INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf), /* BR_INST_RETIRED.* */
813 INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf), /* BR_MISP_RETIRED.* */
814 INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf), /* SSEX_UOPS_RETIRED.* */
815 INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
816 INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf), /* MEM_LOAD_RETIRED.* */
817 INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf), /* FP_ASSIST.* */
818 /* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
819 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
820 EVENT_CONSTRAINT_END
821 };
822
823 struct event_constraint intel_snb_pebs_event_constraints[] = {
824 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
825 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
826 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
827 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
828 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
829 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
830 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
831 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
832 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
833 /* Allow all events as PEBS with no flags */
834 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
835 EVENT_CONSTRAINT_END
836 };
837
838 struct event_constraint intel_ivb_pebs_event_constraints[] = {
839 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
840 INTEL_PLD_CONSTRAINT(0x01cd, 0x8), /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
841 INTEL_PST_CONSTRAINT(0x02cd, 0x8), /* MEM_TRANS_RETIRED.PRECISE_STORES */
842 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
843 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
844 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
845 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
846 INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf), /* MEM_UOP_RETIRED.* */
847 INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
848 INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf), /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
849 INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf), /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
850 /* Allow all events as PEBS with no flags */
851 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
852 EVENT_CONSTRAINT_END
853 };
854
855 struct event_constraint intel_hsw_pebs_event_constraints[] = {
856 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
857 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
858 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
859 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
860 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
861 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
862 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
863 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
864 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
865 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
866 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
867 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
868 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
869 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
870 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
871 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
872 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
873 /* Allow all events as PEBS with no flags */
874 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
875 EVENT_CONSTRAINT_END
876 };
877
878 struct event_constraint intel_bdw_pebs_event_constraints[] = {
879 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
880 INTEL_PLD_CONSTRAINT(0x01cd, 0xf), /* MEM_TRANS_RETIRED.* */
881 /* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
882 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
883 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
884 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
885 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
886 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
887 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
888 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
889 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
890 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
891 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
892 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
893 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_UOPS_RETIRED.* */
894 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
895 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
896 /* Allow all events as PEBS with no flags */
897 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
898 EVENT_CONSTRAINT_END
899 };
900
901
902 struct event_constraint intel_skl_pebs_event_constraints[] = {
903 INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2), /* INST_RETIRED.PREC_DIST */
904 /* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
905 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
906 /* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
907 INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
908 INTEL_PLD_CONSTRAINT(0x1cd, 0xf), /* MEM_TRANS_RETIRED.* */
909 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
910 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
911 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
912 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
913 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
914 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
915 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
916 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
917 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf), /* MEM_LOAD_RETIRED.* */
918 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf), /* MEM_LOAD_L3_HIT_RETIRED.* */
919 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf), /* MEM_LOAD_L3_MISS_RETIRED.* */
920 /* Allow all events as PEBS with no flags */
921 INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
922 EVENT_CONSTRAINT_END
923 };
924
925 struct event_constraint intel_icl_pebs_event_constraints[] = {
926 INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL), /* old INST_RETIRED.PREC_DIST */
927 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
928 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL), /* SLOTS */
929
930 INTEL_PLD_CONSTRAINT(0x1cd, 0xff), /* MEM_TRANS_RETIRED.LOAD_LATENCY */
931 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf), /* MEM_INST_RETIRED.LOAD */
932 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf), /* MEM_INST_RETIRED.STORE */
933
934 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
935
936 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf), /* MEM_INST_RETIRED.* */
937
938 /*
939 * Everything else is handled by PMU_FL_PEBS_ALL, because we
940 * need the full constraints from the main table.
941 */
942
943 EVENT_CONSTRAINT_END
944 };
945
946 struct event_constraint intel_spr_pebs_event_constraints[] = {
947 INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL), /* INST_RETIRED.PREC_DIST */
948 INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
949
950 INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
951 INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
952 INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
953 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x1d0, 0xf),
954 INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x2d0, 0xf),
955
956 INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
957
958 INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
959
960 /*
961 * Everything else is handled by PMU_FL_PEBS_ALL, because we
962 * need the full constraints from the main table.
963 */
964
965 EVENT_CONSTRAINT_END
966 };
967
intel_pebs_constraints(struct perf_event * event)968 struct event_constraint *intel_pebs_constraints(struct perf_event *event)
969 {
970 struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
971 struct event_constraint *c;
972
973 if (!event->attr.precise_ip)
974 return NULL;
975
976 if (pebs_constraints) {
977 for_each_event_constraint(c, pebs_constraints) {
978 if (constraint_match(c, event->hw.config)) {
979 event->hw.flags |= c->flags;
980 return c;
981 }
982 }
983 }
984
985 /*
986 * Extended PEBS support
987 * Makes the PEBS code search the normal constraints.
988 */
989 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
990 return NULL;
991
992 return &emptyconstraint;
993 }
994
995 /*
996 * We need the sched_task callback even for per-cpu events when we use
997 * the large interrupt threshold, such that we can provide PID and TID
998 * to PEBS samples.
999 */
pebs_needs_sched_cb(struct cpu_hw_events * cpuc)1000 static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1001 {
1002 if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1003 return false;
1004
1005 return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1006 }
1007
intel_pmu_pebs_sched_task(struct perf_event_context * ctx,bool sched_in)1008 void intel_pmu_pebs_sched_task(struct perf_event_context *ctx, bool sched_in)
1009 {
1010 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1011
1012 if (!sched_in && pebs_needs_sched_cb(cpuc))
1013 intel_pmu_drain_pebs_buffer();
1014 }
1015
pebs_update_threshold(struct cpu_hw_events * cpuc)1016 static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1017 {
1018 struct debug_store *ds = cpuc->ds;
1019 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1020 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1021 u64 threshold;
1022 int reserved;
1023
1024 if (cpuc->n_pebs_via_pt)
1025 return;
1026
1027 if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1028 reserved = max_pebs_events + num_counters_fixed;
1029 else
1030 reserved = max_pebs_events;
1031
1032 if (cpuc->n_pebs == cpuc->n_large_pebs) {
1033 threshold = ds->pebs_absolute_maximum -
1034 reserved * cpuc->pebs_record_size;
1035 } else {
1036 threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1037 }
1038
1039 ds->pebs_interrupt_threshold = threshold;
1040 }
1041
adaptive_pebs_record_size_update(void)1042 static void adaptive_pebs_record_size_update(void)
1043 {
1044 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1045 u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1046 int sz = sizeof(struct pebs_basic);
1047
1048 if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1049 sz += sizeof(struct pebs_meminfo);
1050 if (pebs_data_cfg & PEBS_DATACFG_GP)
1051 sz += sizeof(struct pebs_gprs);
1052 if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1053 sz += sizeof(struct pebs_xmm);
1054 if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1055 sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1056
1057 cpuc->pebs_record_size = sz;
1058 }
1059
1060 #define PERF_PEBS_MEMINFO_TYPE (PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC | \
1061 PERF_SAMPLE_PHYS_ADDR | \
1062 PERF_SAMPLE_WEIGHT_TYPE | \
1063 PERF_SAMPLE_TRANSACTION | \
1064 PERF_SAMPLE_DATA_PAGE_SIZE)
1065
pebs_update_adaptive_cfg(struct perf_event * event)1066 static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1067 {
1068 struct perf_event_attr *attr = &event->attr;
1069 u64 sample_type = attr->sample_type;
1070 u64 pebs_data_cfg = 0;
1071 bool gprs, tsx_weight;
1072
1073 if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1074 attr->precise_ip > 1)
1075 return pebs_data_cfg;
1076
1077 if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1078 pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1079
1080 /*
1081 * We need GPRs when:
1082 * + user requested them
1083 * + precise_ip < 2 for the non event IP
1084 * + For RTM TSX weight we need GPRs for the abort code.
1085 */
1086 gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1087 (attr->sample_regs_intr & PEBS_GP_REGS);
1088
1089 tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1090 ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1091 x86_pmu.rtm_abort_event);
1092
1093 if (gprs || (attr->precise_ip < 2) || tsx_weight)
1094 pebs_data_cfg |= PEBS_DATACFG_GP;
1095
1096 if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1097 (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1098 pebs_data_cfg |= PEBS_DATACFG_XMMS;
1099
1100 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1101 /*
1102 * For now always log all LBRs. Could configure this
1103 * later.
1104 */
1105 pebs_data_cfg |= PEBS_DATACFG_LBRS |
1106 ((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1107 }
1108
1109 return pebs_data_cfg;
1110 }
1111
1112 static void
pebs_update_state(bool needed_cb,struct cpu_hw_events * cpuc,struct perf_event * event,bool add)1113 pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1114 struct perf_event *event, bool add)
1115 {
1116 struct pmu *pmu = event->ctx->pmu;
1117 /*
1118 * Make sure we get updated with the first PEBS
1119 * event. It will trigger also during removal, but
1120 * that does not hurt:
1121 */
1122 bool update = cpuc->n_pebs == 1;
1123
1124 if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1125 if (!needed_cb)
1126 perf_sched_cb_inc(pmu);
1127 else
1128 perf_sched_cb_dec(pmu);
1129
1130 update = true;
1131 }
1132
1133 /*
1134 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1135 * iterating all remaining PEBS events to reconstruct the config.
1136 */
1137 if (x86_pmu.intel_cap.pebs_baseline && add) {
1138 u64 pebs_data_cfg;
1139
1140 /* Clear pebs_data_cfg and pebs_record_size for first PEBS. */
1141 if (cpuc->n_pebs == 1) {
1142 cpuc->pebs_data_cfg = 0;
1143 cpuc->pebs_record_size = sizeof(struct pebs_basic);
1144 }
1145
1146 pebs_data_cfg = pebs_update_adaptive_cfg(event);
1147
1148 /* Update pebs_record_size if new event requires more data. */
1149 if (pebs_data_cfg & ~cpuc->pebs_data_cfg) {
1150 cpuc->pebs_data_cfg |= pebs_data_cfg;
1151 adaptive_pebs_record_size_update();
1152 update = true;
1153 }
1154 }
1155
1156 if (update)
1157 pebs_update_threshold(cpuc);
1158 }
1159
intel_pmu_pebs_add(struct perf_event * event)1160 void intel_pmu_pebs_add(struct perf_event *event)
1161 {
1162 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1163 struct hw_perf_event *hwc = &event->hw;
1164 bool needed_cb = pebs_needs_sched_cb(cpuc);
1165
1166 cpuc->n_pebs++;
1167 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1168 cpuc->n_large_pebs++;
1169 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1170 cpuc->n_pebs_via_pt++;
1171
1172 pebs_update_state(needed_cb, cpuc, event, true);
1173 }
1174
intel_pmu_pebs_via_pt_disable(struct perf_event * event)1175 static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1176 {
1177 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1178
1179 if (!is_pebs_pt(event))
1180 return;
1181
1182 if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1183 cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1184 }
1185
intel_pmu_pebs_via_pt_enable(struct perf_event * event)1186 static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1187 {
1188 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189 struct hw_perf_event *hwc = &event->hw;
1190 struct debug_store *ds = cpuc->ds;
1191 u64 value = ds->pebs_event_reset[hwc->idx];
1192 u32 base = MSR_RELOAD_PMC0;
1193 unsigned int idx = hwc->idx;
1194
1195 if (!is_pebs_pt(event))
1196 return;
1197
1198 if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1199 cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1200
1201 cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1202
1203 if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1204 base = MSR_RELOAD_FIXED_CTR0;
1205 idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1206 value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1207 }
1208 wrmsrl(base + idx, value);
1209 }
1210
intel_pmu_pebs_enable(struct perf_event * event)1211 void intel_pmu_pebs_enable(struct perf_event *event)
1212 {
1213 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1214 struct hw_perf_event *hwc = &event->hw;
1215 struct debug_store *ds = cpuc->ds;
1216 unsigned int idx = hwc->idx;
1217
1218 hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1219
1220 cpuc->pebs_enabled |= 1ULL << hwc->idx;
1221
1222 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1223 cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1224 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1225 cpuc->pebs_enabled |= 1ULL << 63;
1226
1227 if (x86_pmu.intel_cap.pebs_baseline) {
1228 hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1229 if (cpuc->pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1230 wrmsrl(MSR_PEBS_DATA_CFG, cpuc->pebs_data_cfg);
1231 cpuc->active_pebs_data_cfg = cpuc->pebs_data_cfg;
1232 }
1233 }
1234
1235 if (idx >= INTEL_PMC_IDX_FIXED)
1236 idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1237
1238 /*
1239 * Use auto-reload if possible to save a MSR write in the PMI.
1240 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1241 */
1242 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1243 ds->pebs_event_reset[idx] =
1244 (u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1245 } else {
1246 ds->pebs_event_reset[idx] = 0;
1247 }
1248
1249 intel_pmu_pebs_via_pt_enable(event);
1250 }
1251
intel_pmu_pebs_del(struct perf_event * event)1252 void intel_pmu_pebs_del(struct perf_event *event)
1253 {
1254 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1255 struct hw_perf_event *hwc = &event->hw;
1256 bool needed_cb = pebs_needs_sched_cb(cpuc);
1257
1258 cpuc->n_pebs--;
1259 if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1260 cpuc->n_large_pebs--;
1261 if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1262 cpuc->n_pebs_via_pt--;
1263
1264 pebs_update_state(needed_cb, cpuc, event, false);
1265 }
1266
intel_pmu_pebs_disable(struct perf_event * event)1267 void intel_pmu_pebs_disable(struct perf_event *event)
1268 {
1269 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1270 struct hw_perf_event *hwc = &event->hw;
1271
1272 if (cpuc->n_pebs == cpuc->n_large_pebs &&
1273 cpuc->n_pebs != cpuc->n_pebs_via_pt)
1274 intel_pmu_drain_pebs_buffer();
1275
1276 cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1277
1278 if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1279 (x86_pmu.version < 5))
1280 cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1281 else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1282 cpuc->pebs_enabled &= ~(1ULL << 63);
1283
1284 intel_pmu_pebs_via_pt_disable(event);
1285
1286 if (cpuc->enabled)
1287 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1288
1289 hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1290 }
1291
intel_pmu_pebs_enable_all(void)1292 void intel_pmu_pebs_enable_all(void)
1293 {
1294 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1295
1296 if (cpuc->pebs_enabled)
1297 wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1298 }
1299
intel_pmu_pebs_disable_all(void)1300 void intel_pmu_pebs_disable_all(void)
1301 {
1302 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1303
1304 if (cpuc->pebs_enabled)
1305 __intel_pmu_pebs_disable_all();
1306 }
1307
intel_pmu_pebs_fixup_ip(struct pt_regs * regs)1308 static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1309 {
1310 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1311 unsigned long from = cpuc->lbr_entries[0].from;
1312 unsigned long old_to, to = cpuc->lbr_entries[0].to;
1313 unsigned long ip = regs->ip;
1314 int is_64bit = 0;
1315 void *kaddr;
1316 int size;
1317
1318 /*
1319 * We don't need to fixup if the PEBS assist is fault like
1320 */
1321 if (!x86_pmu.intel_cap.pebs_trap)
1322 return 1;
1323
1324 /*
1325 * No LBR entry, no basic block, no rewinding
1326 */
1327 if (!cpuc->lbr_stack.nr || !from || !to)
1328 return 0;
1329
1330 /*
1331 * Basic blocks should never cross user/kernel boundaries
1332 */
1333 if (kernel_ip(ip) != kernel_ip(to))
1334 return 0;
1335
1336 /*
1337 * unsigned math, either ip is before the start (impossible) or
1338 * the basic block is larger than 1 page (sanity)
1339 */
1340 if ((ip - to) > PEBS_FIXUP_SIZE)
1341 return 0;
1342
1343 /*
1344 * We sampled a branch insn, rewind using the LBR stack
1345 */
1346 if (ip == to) {
1347 set_linear_ip(regs, from);
1348 return 1;
1349 }
1350
1351 size = ip - to;
1352 if (!kernel_ip(ip)) {
1353 int bytes;
1354 u8 *buf = this_cpu_read(insn_buffer);
1355
1356 /* 'size' must fit our buffer, see above */
1357 bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1358 if (bytes != 0)
1359 return 0;
1360
1361 kaddr = buf;
1362 } else {
1363 kaddr = (void *)to;
1364 }
1365
1366 do {
1367 struct insn insn;
1368
1369 old_to = to;
1370
1371 #ifdef CONFIG_X86_64
1372 is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1373 #endif
1374 insn_init(&insn, kaddr, size, is_64bit);
1375
1376 /*
1377 * Make sure there was not a problem decoding the instruction.
1378 * This is doubly important because we have an infinite loop if
1379 * insn.length=0.
1380 */
1381 if (insn_get_length(&insn))
1382 break;
1383
1384 to += insn.length;
1385 kaddr += insn.length;
1386 size -= insn.length;
1387 } while (to < ip);
1388
1389 if (to == ip) {
1390 set_linear_ip(regs, old_to);
1391 return 1;
1392 }
1393
1394 /*
1395 * Even though we decoded the basic block, the instruction stream
1396 * never matched the given IP, either the TO or the IP got corrupted.
1397 */
1398 return 0;
1399 }
1400
intel_get_tsx_weight(u64 tsx_tuning)1401 static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1402 {
1403 if (tsx_tuning) {
1404 union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1405 return tsx.cycles_last_block;
1406 }
1407 return 0;
1408 }
1409
intel_get_tsx_transaction(u64 tsx_tuning,u64 ax)1410 static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1411 {
1412 u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1413
1414 /* For RTM XABORTs also log the abort code from AX */
1415 if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1416 txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1417 return txn;
1418 }
1419
get_pebs_status(void * n)1420 static inline u64 get_pebs_status(void *n)
1421 {
1422 if (x86_pmu.intel_cap.pebs_format < 4)
1423 return ((struct pebs_record_nhm *)n)->status;
1424 return ((struct pebs_basic *)n)->applicable_counters;
1425 }
1426
1427 #define PERF_X86_EVENT_PEBS_HSW_PREC \
1428 (PERF_X86_EVENT_PEBS_ST_HSW | \
1429 PERF_X86_EVENT_PEBS_LD_HSW | \
1430 PERF_X86_EVENT_PEBS_NA_HSW)
1431
get_data_src(struct perf_event * event,u64 aux)1432 static u64 get_data_src(struct perf_event *event, u64 aux)
1433 {
1434 u64 val = PERF_MEM_NA;
1435 int fl = event->hw.flags;
1436 bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1437
1438 if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1439 val = load_latency_data(aux);
1440 else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1441 val = store_latency_data(aux);
1442 else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1443 val = precise_datala_hsw(event, aux);
1444 else if (fst)
1445 val = precise_store_data(aux);
1446 return val;
1447 }
1448
1449 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
1450 PERF_SAMPLE_PHYS_ADDR | \
1451 PERF_SAMPLE_DATA_PAGE_SIZE)
1452
setup_pebs_fixed_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1453 static void setup_pebs_fixed_sample_data(struct perf_event *event,
1454 struct pt_regs *iregs, void *__pebs,
1455 struct perf_sample_data *data,
1456 struct pt_regs *regs)
1457 {
1458 /*
1459 * We cast to the biggest pebs_record but are careful not to
1460 * unconditionally access the 'extra' entries.
1461 */
1462 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1463 struct pebs_record_skl *pebs = __pebs;
1464 u64 sample_type;
1465 int fll;
1466
1467 if (pebs == NULL)
1468 return;
1469
1470 sample_type = event->attr.sample_type;
1471 fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1472
1473 perf_sample_data_init(data, 0, event->hw.last_period);
1474
1475 data->period = event->hw.last_period;
1476
1477 /*
1478 * Use latency for weight (only avail with PEBS-LL)
1479 */
1480 if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE))
1481 data->weight.full = pebs->lat;
1482
1483 /*
1484 * data.data_src encodes the data source
1485 */
1486 if (sample_type & PERF_SAMPLE_DATA_SRC)
1487 data->data_src.val = get_data_src(event, pebs->dse);
1488
1489 /*
1490 * We must however always use iregs for the unwinder to stay sane; the
1491 * record BP,SP,IP can point into thin air when the record is from a
1492 * previous PMI context or an (I)RET happened between the record and
1493 * PMI.
1494 */
1495 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1496 data->callchain = perf_callchain(event, iregs);
1497
1498 /*
1499 * We use the interrupt regs as a base because the PEBS record does not
1500 * contain a full regs set, specifically it seems to lack segment
1501 * descriptors, which get used by things like user_mode().
1502 *
1503 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1504 */
1505 *regs = *iregs;
1506
1507 /*
1508 * Initialize regs_>flags from PEBS,
1509 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1510 * i.e., do not rely on it being zero:
1511 */
1512 regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1513
1514 if (sample_type & PERF_SAMPLE_REGS_INTR) {
1515 regs->ax = pebs->ax;
1516 regs->bx = pebs->bx;
1517 regs->cx = pebs->cx;
1518 regs->dx = pebs->dx;
1519 regs->si = pebs->si;
1520 regs->di = pebs->di;
1521
1522 regs->bp = pebs->bp;
1523 regs->sp = pebs->sp;
1524
1525 #ifndef CONFIG_X86_32
1526 regs->r8 = pebs->r8;
1527 regs->r9 = pebs->r9;
1528 regs->r10 = pebs->r10;
1529 regs->r11 = pebs->r11;
1530 regs->r12 = pebs->r12;
1531 regs->r13 = pebs->r13;
1532 regs->r14 = pebs->r14;
1533 regs->r15 = pebs->r15;
1534 #endif
1535 }
1536
1537 if (event->attr.precise_ip > 1) {
1538 /*
1539 * Haswell and later processors have an 'eventing IP'
1540 * (real IP) which fixes the off-by-1 skid in hardware.
1541 * Use it when precise_ip >= 2 :
1542 */
1543 if (x86_pmu.intel_cap.pebs_format >= 2) {
1544 set_linear_ip(regs, pebs->real_ip);
1545 regs->flags |= PERF_EFLAGS_EXACT;
1546 } else {
1547 /* Otherwise, use PEBS off-by-1 IP: */
1548 set_linear_ip(regs, pebs->ip);
1549
1550 /*
1551 * With precise_ip >= 2, try to fix up the off-by-1 IP
1552 * using the LBR. If successful, the fixup function
1553 * corrects regs->ip and calls set_linear_ip() on regs:
1554 */
1555 if (intel_pmu_pebs_fixup_ip(regs))
1556 regs->flags |= PERF_EFLAGS_EXACT;
1557 }
1558 } else {
1559 /*
1560 * When precise_ip == 1, return the PEBS off-by-1 IP,
1561 * no fixup attempted:
1562 */
1563 set_linear_ip(regs, pebs->ip);
1564 }
1565
1566
1567 if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1568 x86_pmu.intel_cap.pebs_format >= 1)
1569 data->addr = pebs->dla;
1570
1571 if (x86_pmu.intel_cap.pebs_format >= 2) {
1572 /* Only set the TSX weight when no memory weight. */
1573 if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll)
1574 data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1575
1576 if (sample_type & PERF_SAMPLE_TRANSACTION)
1577 data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1578 pebs->ax);
1579 }
1580
1581 /*
1582 * v3 supplies an accurate time stamp, so we use that
1583 * for the time stamp.
1584 *
1585 * We can only do this for the default trace clock.
1586 */
1587 if (x86_pmu.intel_cap.pebs_format >= 3 &&
1588 event->attr.use_clockid == 0)
1589 data->time = native_sched_clock_from_tsc(pebs->tsc);
1590
1591 if (has_branch_stack(event))
1592 data->br_stack = &cpuc->lbr_stack;
1593 }
1594
adaptive_pebs_save_regs(struct pt_regs * regs,struct pebs_gprs * gprs)1595 static void adaptive_pebs_save_regs(struct pt_regs *regs,
1596 struct pebs_gprs *gprs)
1597 {
1598 regs->ax = gprs->ax;
1599 regs->bx = gprs->bx;
1600 regs->cx = gprs->cx;
1601 regs->dx = gprs->dx;
1602 regs->si = gprs->si;
1603 regs->di = gprs->di;
1604 regs->bp = gprs->bp;
1605 regs->sp = gprs->sp;
1606 #ifndef CONFIG_X86_32
1607 regs->r8 = gprs->r8;
1608 regs->r9 = gprs->r9;
1609 regs->r10 = gprs->r10;
1610 regs->r11 = gprs->r11;
1611 regs->r12 = gprs->r12;
1612 regs->r13 = gprs->r13;
1613 regs->r14 = gprs->r14;
1614 regs->r15 = gprs->r15;
1615 #endif
1616 }
1617
1618 #define PEBS_LATENCY_MASK 0xffff
1619 #define PEBS_CACHE_LATENCY_OFFSET 32
1620
1621 /*
1622 * With adaptive PEBS the layout depends on what fields are configured.
1623 */
1624
setup_pebs_adaptive_sample_data(struct perf_event * event,struct pt_regs * iregs,void * __pebs,struct perf_sample_data * data,struct pt_regs * regs)1625 static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1626 struct pt_regs *iregs, void *__pebs,
1627 struct perf_sample_data *data,
1628 struct pt_regs *regs)
1629 {
1630 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1631 struct pebs_basic *basic = __pebs;
1632 void *next_record = basic + 1;
1633 u64 sample_type;
1634 u64 format_size;
1635 struct pebs_meminfo *meminfo = NULL;
1636 struct pebs_gprs *gprs = NULL;
1637 struct x86_perf_regs *perf_regs;
1638
1639 if (basic == NULL)
1640 return;
1641
1642 perf_regs = container_of(regs, struct x86_perf_regs, regs);
1643 perf_regs->xmm_regs = NULL;
1644
1645 sample_type = event->attr.sample_type;
1646 format_size = basic->format_size;
1647 perf_sample_data_init(data, 0, event->hw.last_period);
1648 data->period = event->hw.last_period;
1649
1650 if (event->attr.use_clockid == 0)
1651 data->time = native_sched_clock_from_tsc(basic->tsc);
1652
1653 /*
1654 * We must however always use iregs for the unwinder to stay sane; the
1655 * record BP,SP,IP can point into thin air when the record is from a
1656 * previous PMI context or an (I)RET happened between the record and
1657 * PMI.
1658 */
1659 if (sample_type & PERF_SAMPLE_CALLCHAIN)
1660 data->callchain = perf_callchain(event, iregs);
1661
1662 *regs = *iregs;
1663 /* The ip in basic is EventingIP */
1664 set_linear_ip(regs, basic->ip);
1665 regs->flags = PERF_EFLAGS_EXACT;
1666
1667 /*
1668 * The record for MEMINFO is in front of GP
1669 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1670 * Save the pointer here but process later.
1671 */
1672 if (format_size & PEBS_DATACFG_MEMINFO) {
1673 meminfo = next_record;
1674 next_record = meminfo + 1;
1675 }
1676
1677 if (format_size & PEBS_DATACFG_GP) {
1678 gprs = next_record;
1679 next_record = gprs + 1;
1680
1681 if (event->attr.precise_ip < 2) {
1682 set_linear_ip(regs, gprs->ip);
1683 regs->flags &= ~PERF_EFLAGS_EXACT;
1684 }
1685
1686 if (sample_type & PERF_SAMPLE_REGS_INTR)
1687 adaptive_pebs_save_regs(regs, gprs);
1688 }
1689
1690 if (format_size & PEBS_DATACFG_MEMINFO) {
1691 if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1692 u64 weight = meminfo->latency;
1693
1694 if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1695 data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1696 weight >>= PEBS_CACHE_LATENCY_OFFSET;
1697 }
1698
1699 /*
1700 * Although meminfo::latency is defined as a u64,
1701 * only the lower 32 bits include the valid data
1702 * in practice on Ice Lake and earlier platforms.
1703 */
1704 if (sample_type & PERF_SAMPLE_WEIGHT) {
1705 data->weight.full = weight ?:
1706 intel_get_tsx_weight(meminfo->tsx_tuning);
1707 } else {
1708 data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1709 intel_get_tsx_weight(meminfo->tsx_tuning);
1710 }
1711 }
1712
1713 if (sample_type & PERF_SAMPLE_DATA_SRC)
1714 data->data_src.val = get_data_src(event, meminfo->aux);
1715
1716 if (sample_type & PERF_SAMPLE_ADDR_TYPE)
1717 data->addr = meminfo->address;
1718
1719 if (sample_type & PERF_SAMPLE_TRANSACTION)
1720 data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1721 gprs ? gprs->ax : 0);
1722 }
1723
1724 if (format_size & PEBS_DATACFG_XMMS) {
1725 struct pebs_xmm *xmm = next_record;
1726
1727 next_record = xmm + 1;
1728 perf_regs->xmm_regs = xmm->xmm;
1729 }
1730
1731 if (format_size & PEBS_DATACFG_LBRS) {
1732 struct lbr_entry *lbr = next_record;
1733 int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1734 & 0xff) + 1;
1735 next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1736
1737 if (has_branch_stack(event)) {
1738 intel_pmu_store_pebs_lbrs(lbr);
1739 data->br_stack = &cpuc->lbr_stack;
1740 }
1741 }
1742
1743 WARN_ONCE(next_record != __pebs + (format_size >> 48),
1744 "PEBS record size %llu, expected %llu, config %llx\n",
1745 format_size >> 48,
1746 (u64)(next_record - __pebs),
1747 basic->format_size);
1748 }
1749
1750 static inline void *
get_next_pebs_record_by_bit(void * base,void * top,int bit)1751 get_next_pebs_record_by_bit(void *base, void *top, int bit)
1752 {
1753 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1754 void *at;
1755 u64 pebs_status;
1756
1757 /*
1758 * fmt0 does not have a status bitfield (does not use
1759 * perf_record_nhm format)
1760 */
1761 if (x86_pmu.intel_cap.pebs_format < 1)
1762 return base;
1763
1764 if (base == NULL)
1765 return NULL;
1766
1767 for (at = base; at < top; at += cpuc->pebs_record_size) {
1768 unsigned long status = get_pebs_status(at);
1769
1770 if (test_bit(bit, (unsigned long *)&status)) {
1771 /* PEBS v3 has accurate status bits */
1772 if (x86_pmu.intel_cap.pebs_format >= 3)
1773 return at;
1774
1775 if (status == (1 << bit))
1776 return at;
1777
1778 /* clear non-PEBS bit and re-check */
1779 pebs_status = status & cpuc->pebs_enabled;
1780 pebs_status &= PEBS_COUNTER_MASK;
1781 if (pebs_status == (1 << bit))
1782 return at;
1783 }
1784 }
1785 return NULL;
1786 }
1787
intel_pmu_auto_reload_read(struct perf_event * event)1788 void intel_pmu_auto_reload_read(struct perf_event *event)
1789 {
1790 WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1791
1792 perf_pmu_disable(event->pmu);
1793 intel_pmu_drain_pebs_buffer();
1794 perf_pmu_enable(event->pmu);
1795 }
1796
1797 /*
1798 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1799 */
1800 static int
intel_pmu_save_and_restart_reload(struct perf_event * event,int count)1801 intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1802 {
1803 struct hw_perf_event *hwc = &event->hw;
1804 int shift = 64 - x86_pmu.cntval_bits;
1805 u64 period = hwc->sample_period;
1806 u64 prev_raw_count, new_raw_count;
1807 s64 new, old;
1808
1809 WARN_ON(!period);
1810
1811 /*
1812 * drain_pebs() only happens when the PMU is disabled.
1813 */
1814 WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1815
1816 prev_raw_count = local64_read(&hwc->prev_count);
1817 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1818 local64_set(&hwc->prev_count, new_raw_count);
1819
1820 /*
1821 * Since the counter increments a negative counter value and
1822 * overflows on the sign switch, giving the interval:
1823 *
1824 * [-period, 0]
1825 *
1826 * the difference between two consecutive reads is:
1827 *
1828 * A) value2 - value1;
1829 * when no overflows have happened in between,
1830 *
1831 * B) (0 - value1) + (value2 - (-period));
1832 * when one overflow happened in between,
1833 *
1834 * C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
1835 * when @n overflows happened in between.
1836 *
1837 * Here A) is the obvious difference, B) is the extension to the
1838 * discrete interval, where the first term is to the top of the
1839 * interval and the second term is from the bottom of the next
1840 * interval and C) the extension to multiple intervals, where the
1841 * middle term is the whole intervals covered.
1842 *
1843 * An equivalent of C, by reduction, is:
1844 *
1845 * value2 - value1 + n * period
1846 */
1847 new = ((s64)(new_raw_count << shift) >> shift);
1848 old = ((s64)(prev_raw_count << shift) >> shift);
1849 local64_add(new - old + count * period, &event->count);
1850
1851 local64_set(&hwc->period_left, -new);
1852
1853 perf_event_update_userpage(event);
1854
1855 return 0;
1856 }
1857
1858 static __always_inline void
__intel_pmu_pebs_event(struct perf_event * event,struct pt_regs * iregs,struct perf_sample_data * data,void * base,void * top,int bit,int count,void (* setup_sample)(struct perf_event *,struct pt_regs *,void *,struct perf_sample_data *,struct pt_regs *))1859 __intel_pmu_pebs_event(struct perf_event *event,
1860 struct pt_regs *iregs,
1861 struct perf_sample_data *data,
1862 void *base, void *top,
1863 int bit, int count,
1864 void (*setup_sample)(struct perf_event *,
1865 struct pt_regs *,
1866 void *,
1867 struct perf_sample_data *,
1868 struct pt_regs *))
1869 {
1870 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1871 struct hw_perf_event *hwc = &event->hw;
1872 struct x86_perf_regs perf_regs;
1873 struct pt_regs *regs = &perf_regs.regs;
1874 void *at = get_next_pebs_record_by_bit(base, top, bit);
1875 static struct pt_regs dummy_iregs;
1876
1877 if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1878 /*
1879 * Now, auto-reload is only enabled in fixed period mode.
1880 * The reload value is always hwc->sample_period.
1881 * May need to change it, if auto-reload is enabled in
1882 * freq mode later.
1883 */
1884 intel_pmu_save_and_restart_reload(event, count);
1885 } else if (!intel_pmu_save_and_restart(event))
1886 return;
1887
1888 if (!iregs)
1889 iregs = &dummy_iregs;
1890
1891 while (count > 1) {
1892 setup_sample(event, iregs, at, data, regs);
1893 perf_event_output(event, data, regs);
1894 at += cpuc->pebs_record_size;
1895 at = get_next_pebs_record_by_bit(at, top, bit);
1896 count--;
1897 }
1898
1899 setup_sample(event, iregs, at, data, regs);
1900 if (iregs == &dummy_iregs) {
1901 /*
1902 * The PEBS records may be drained in the non-overflow context,
1903 * e.g., large PEBS + context switch. Perf should treat the
1904 * last record the same as other PEBS records, and doesn't
1905 * invoke the generic overflow handler.
1906 */
1907 perf_event_output(event, data, regs);
1908 } else {
1909 /*
1910 * All but the last records are processed.
1911 * The last one is left to be able to call the overflow handler.
1912 */
1913 if (perf_event_overflow(event, data, regs))
1914 x86_pmu_stop(event, 0);
1915 }
1916 }
1917
intel_pmu_drain_pebs_core(struct pt_regs * iregs,struct perf_sample_data * data)1918 static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
1919 {
1920 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1921 struct debug_store *ds = cpuc->ds;
1922 struct perf_event *event = cpuc->events[0]; /* PMC0 only */
1923 struct pebs_record_core *at, *top;
1924 int n;
1925
1926 if (!x86_pmu.pebs_active)
1927 return;
1928
1929 at = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
1930 top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
1931
1932 /*
1933 * Whatever else happens, drain the thing
1934 */
1935 ds->pebs_index = ds->pebs_buffer_base;
1936
1937 if (!test_bit(0, cpuc->active_mask))
1938 return;
1939
1940 WARN_ON_ONCE(!event);
1941
1942 if (!event->attr.precise_ip)
1943 return;
1944
1945 n = top - at;
1946 if (n <= 0) {
1947 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1948 intel_pmu_save_and_restart_reload(event, 0);
1949 return;
1950 }
1951
1952 __intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
1953 setup_pebs_fixed_sample_data);
1954 }
1955
intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events * cpuc,int size)1956 static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
1957 {
1958 struct perf_event *event;
1959 int bit;
1960
1961 /*
1962 * The drain_pebs() could be called twice in a short period
1963 * for auto-reload event in pmu::read(). There are no
1964 * overflows have happened in between.
1965 * It needs to call intel_pmu_save_and_restart_reload() to
1966 * update the event->count for this case.
1967 */
1968 for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
1969 event = cpuc->events[bit];
1970 if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
1971 intel_pmu_save_and_restart_reload(event, 0);
1972 }
1973 }
1974
intel_pmu_drain_pebs_nhm(struct pt_regs * iregs,struct perf_sample_data * data)1975 static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
1976 {
1977 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1978 struct debug_store *ds = cpuc->ds;
1979 struct perf_event *event;
1980 void *base, *at, *top;
1981 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1982 short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
1983 int bit, i, size;
1984 u64 mask;
1985
1986 if (!x86_pmu.pebs_active)
1987 return;
1988
1989 base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
1990 top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
1991
1992 ds->pebs_index = ds->pebs_buffer_base;
1993
1994 mask = (1ULL << x86_pmu.max_pebs_events) - 1;
1995 size = x86_pmu.max_pebs_events;
1996 if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
1997 mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
1998 size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
1999 }
2000
2001 if (unlikely(base >= top)) {
2002 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2003 return;
2004 }
2005
2006 for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2007 struct pebs_record_nhm *p = at;
2008 u64 pebs_status;
2009
2010 pebs_status = p->status & cpuc->pebs_enabled;
2011 pebs_status &= mask;
2012
2013 /* PEBS v3 has more accurate status bits */
2014 if (x86_pmu.intel_cap.pebs_format >= 3) {
2015 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2016 counts[bit]++;
2017
2018 continue;
2019 }
2020
2021 /*
2022 * On some CPUs the PEBS status can be zero when PEBS is
2023 * racing with clearing of GLOBAL_STATUS.
2024 *
2025 * Normally we would drop that record, but in the
2026 * case when there is only a single active PEBS event
2027 * we can assume it's for that event.
2028 */
2029 if (!pebs_status && cpuc->pebs_enabled &&
2030 !(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2031 pebs_status = p->status = cpuc->pebs_enabled;
2032
2033 bit = find_first_bit((unsigned long *)&pebs_status,
2034 x86_pmu.max_pebs_events);
2035 if (bit >= x86_pmu.max_pebs_events)
2036 continue;
2037
2038 /*
2039 * The PEBS hardware does not deal well with the situation
2040 * when events happen near to each other and multiple bits
2041 * are set. But it should happen rarely.
2042 *
2043 * If these events include one PEBS and multiple non-PEBS
2044 * events, it doesn't impact PEBS record. The record will
2045 * be handled normally. (slow path)
2046 *
2047 * If these events include two or more PEBS events, the
2048 * records for the events can be collapsed into a single
2049 * one, and it's not possible to reconstruct all events
2050 * that caused the PEBS record. It's called collision.
2051 * If collision happened, the record will be dropped.
2052 */
2053 if (pebs_status != (1ULL << bit)) {
2054 for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2055 error[i]++;
2056 continue;
2057 }
2058
2059 counts[bit]++;
2060 }
2061
2062 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2063 if ((counts[bit] == 0) && (error[bit] == 0))
2064 continue;
2065
2066 event = cpuc->events[bit];
2067 if (WARN_ON_ONCE(!event))
2068 continue;
2069
2070 if (WARN_ON_ONCE(!event->attr.precise_ip))
2071 continue;
2072
2073 /* log dropped samples number */
2074 if (error[bit]) {
2075 perf_log_lost_samples(event, error[bit]);
2076
2077 if (iregs && perf_event_account_interrupt(event))
2078 x86_pmu_stop(event, 0);
2079 }
2080
2081 if (counts[bit]) {
2082 __intel_pmu_pebs_event(event, iregs, data, base,
2083 top, bit, counts[bit],
2084 setup_pebs_fixed_sample_data);
2085 }
2086 }
2087 }
2088
intel_pmu_drain_pebs_icl(struct pt_regs * iregs,struct perf_sample_data * data)2089 static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2090 {
2091 short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2092 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2093 int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2094 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2095 struct debug_store *ds = cpuc->ds;
2096 struct perf_event *event;
2097 void *base, *at, *top;
2098 int bit, size;
2099 u64 mask;
2100
2101 if (!x86_pmu.pebs_active)
2102 return;
2103
2104 base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2105 top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2106
2107 ds->pebs_index = ds->pebs_buffer_base;
2108
2109 mask = ((1ULL << max_pebs_events) - 1) |
2110 (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2111 size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2112
2113 if (unlikely(base >= top)) {
2114 intel_pmu_pebs_event_update_no_drain(cpuc, size);
2115 return;
2116 }
2117
2118 for (at = base; at < top; at += cpuc->pebs_record_size) {
2119 u64 pebs_status;
2120
2121 pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2122 pebs_status &= mask;
2123
2124 for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2125 counts[bit]++;
2126 }
2127
2128 for_each_set_bit(bit, (unsigned long *)&mask, size) {
2129 if (counts[bit] == 0)
2130 continue;
2131
2132 event = cpuc->events[bit];
2133 if (WARN_ON_ONCE(!event))
2134 continue;
2135
2136 if (WARN_ON_ONCE(!event->attr.precise_ip))
2137 continue;
2138
2139 __intel_pmu_pebs_event(event, iregs, data, base,
2140 top, bit, counts[bit],
2141 setup_pebs_adaptive_sample_data);
2142 }
2143 }
2144
2145 /*
2146 * BTS, PEBS probe and setup
2147 */
2148
intel_ds_init(void)2149 void __init intel_ds_init(void)
2150 {
2151 /*
2152 * No support for 32bit formats
2153 */
2154 if (!boot_cpu_has(X86_FEATURE_DTES64))
2155 return;
2156
2157 x86_pmu.bts = boot_cpu_has(X86_FEATURE_BTS);
2158 x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2159 x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2160 if (x86_pmu.version <= 4)
2161 x86_pmu.pebs_no_isolation = 1;
2162
2163 if (x86_pmu.pebs) {
2164 char pebs_type = x86_pmu.intel_cap.pebs_trap ? '+' : '-';
2165 char *pebs_qual = "";
2166 int format = x86_pmu.intel_cap.pebs_format;
2167
2168 if (format < 4)
2169 x86_pmu.intel_cap.pebs_baseline = 0;
2170
2171 switch (format) {
2172 case 0:
2173 pr_cont("PEBS fmt0%c, ", pebs_type);
2174 x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2175 /*
2176 * Using >PAGE_SIZE buffers makes the WRMSR to
2177 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2178 * mysteriously hang on Core2.
2179 *
2180 * As a workaround, we don't do this.
2181 */
2182 x86_pmu.pebs_buffer_size = PAGE_SIZE;
2183 x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2184 break;
2185
2186 case 1:
2187 pr_cont("PEBS fmt1%c, ", pebs_type);
2188 x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2189 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2190 break;
2191
2192 case 2:
2193 pr_cont("PEBS fmt2%c, ", pebs_type);
2194 x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2195 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2196 break;
2197
2198 case 3:
2199 pr_cont("PEBS fmt3%c, ", pebs_type);
2200 x86_pmu.pebs_record_size =
2201 sizeof(struct pebs_record_skl);
2202 x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2203 x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2204 break;
2205
2206 case 4:
2207 x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2208 x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2209 if (x86_pmu.intel_cap.pebs_baseline) {
2210 x86_pmu.large_pebs_flags |=
2211 PERF_SAMPLE_BRANCH_STACK |
2212 PERF_SAMPLE_TIME;
2213 x86_pmu.flags |= PMU_FL_PEBS_ALL;
2214 pebs_qual = "-baseline";
2215 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2216 } else {
2217 /* Only basic record supported */
2218 x86_pmu.large_pebs_flags &=
2219 ~(PERF_SAMPLE_ADDR |
2220 PERF_SAMPLE_TIME |
2221 PERF_SAMPLE_DATA_SRC |
2222 PERF_SAMPLE_TRANSACTION |
2223 PERF_SAMPLE_REGS_USER |
2224 PERF_SAMPLE_REGS_INTR);
2225 }
2226 pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2227
2228 if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2229 pr_cont("PEBS-via-PT, ");
2230 x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2231 }
2232
2233 break;
2234
2235 default:
2236 pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2237 x86_pmu.pebs = 0;
2238 }
2239 }
2240 }
2241
perf_restore_debug_store(void)2242 void perf_restore_debug_store(void)
2243 {
2244 struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2245
2246 if (!x86_pmu.bts && !x86_pmu.pebs)
2247 return;
2248
2249 wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2250 }
2251