1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23 #include <linux/mutex.h>
24 #include <linux/log2.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/mmu_context.h>
29 #include <linux/slab.h>
30 #include <linux/amd-iommu.h>
31 #include <linux/notifier.h>
32 #include <linux/compat.h>
33 #include <linux/mman.h>
34 #include <linux/file.h>
35 #include <linux/pm_runtime.h>
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu.h"
38
39 struct mm_struct;
40
41 #include "kfd_priv.h"
42 #include "kfd_device_queue_manager.h"
43 #include "kfd_dbgmgr.h"
44 #include "kfd_iommu.h"
45 #include "kfd_svm.h"
46
47 /*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51 DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52 static DEFINE_MUTEX(kfd_processes_mutex);
53
54 DEFINE_SRCU(kfd_processes_srcu);
55
56 /* For process termination handling */
57 static struct workqueue_struct *kfd_process_wq;
58
59 /* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65 static struct workqueue_struct *kfd_restore_wq;
66
67 static struct kfd_process *find_process(const struct task_struct *thread);
68 static void kfd_process_ref_release(struct kref *ref);
69 static struct kfd_process *create_process(const struct task_struct *thread);
70 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
71
72 static void evict_process_worker(struct work_struct *work);
73 static void restore_process_worker(struct work_struct *work);
74
75 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77 struct kfd_procfs_tree {
78 struct kobject *kobj;
79 };
80
81 static struct kfd_procfs_tree procfs;
82
83 /*
84 * Structure for SDMA activity tracking
85 */
86 struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90 };
91
92 struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97 };
98
kfd_sdma_activity_worker(struct work_struct * work)99 static void kfd_sdma_activity_worker(struct work_struct *work)
100 {
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246 cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251 }
252
253 /**
254 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @atr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 *
262 * @buffer: Handle of user provided buffer updated with wave count
263 *
264 * Return: Number of bytes written to user buffer or an error value
265 */
kfd_get_cu_occupancy(struct attribute * attr,char * buffer)266 static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
267 {
268 int cu_cnt;
269 int wave_cnt;
270 int max_waves_per_cu;
271 struct kfd_dev *dev = NULL;
272 struct kfd_process *proc = NULL;
273 struct kfd_process_device *pdd = NULL;
274
275 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
276 dev = pdd->dev;
277 if (dev->kfd2kgd->get_cu_occupancy == NULL)
278 return -EINVAL;
279
280 cu_cnt = 0;
281 proc = pdd->process;
282 if (pdd->qpd.queue_count == 0) {
283 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
284 dev->id, proc->pasid);
285 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
286 }
287
288 /* Collect wave count from device if it supports */
289 wave_cnt = 0;
290 max_waves_per_cu = 0;
291 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
292 &max_waves_per_cu);
293
294 /* Translate wave count to number of compute units */
295 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
296 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
297 }
298
kfd_procfs_show(struct kobject * kobj,struct attribute * attr,char * buffer)299 static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
300 char *buffer)
301 {
302 if (strcmp(attr->name, "pasid") == 0) {
303 struct kfd_process *p = container_of(attr, struct kfd_process,
304 attr_pasid);
305
306 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
307 } else if (strncmp(attr->name, "vram_", 5) == 0) {
308 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
309 attr_vram);
310 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
311 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
312 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
313 attr_sdma);
314 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
315
316 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
317 kfd_sdma_activity_worker);
318
319 sdma_activity_work_handler.pdd = pdd;
320 sdma_activity_work_handler.sdma_activity_counter = 0;
321
322 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
323
324 flush_work(&sdma_activity_work_handler.sdma_activity_work);
325
326 return snprintf(buffer, PAGE_SIZE, "%llu\n",
327 (sdma_activity_work_handler.sdma_activity_counter)/
328 SDMA_ACTIVITY_DIVISOR);
329 } else {
330 pr_err("Invalid attribute");
331 return -EINVAL;
332 }
333
334 return 0;
335 }
336
kfd_procfs_kobj_release(struct kobject * kobj)337 static void kfd_procfs_kobj_release(struct kobject *kobj)
338 {
339 kfree(kobj);
340 }
341
342 static const struct sysfs_ops kfd_procfs_ops = {
343 .show = kfd_procfs_show,
344 };
345
346 static struct kobj_type procfs_type = {
347 .release = kfd_procfs_kobj_release,
348 .sysfs_ops = &kfd_procfs_ops,
349 };
350
kfd_procfs_init(void)351 void kfd_procfs_init(void)
352 {
353 int ret = 0;
354
355 procfs.kobj = kfd_alloc_struct(procfs.kobj);
356 if (!procfs.kobj)
357 return;
358
359 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
360 &kfd_device->kobj, "proc");
361 if (ret) {
362 pr_warn("Could not create procfs proc folder");
363 /* If we fail to create the procfs, clean up */
364 kfd_procfs_shutdown();
365 }
366 }
367
kfd_procfs_shutdown(void)368 void kfd_procfs_shutdown(void)
369 {
370 if (procfs.kobj) {
371 kobject_del(procfs.kobj);
372 kobject_put(procfs.kobj);
373 procfs.kobj = NULL;
374 }
375 }
376
kfd_procfs_queue_show(struct kobject * kobj,struct attribute * attr,char * buffer)377 static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
378 struct attribute *attr, char *buffer)
379 {
380 struct queue *q = container_of(kobj, struct queue, kobj);
381
382 if (!strcmp(attr->name, "size"))
383 return snprintf(buffer, PAGE_SIZE, "%llu",
384 q->properties.queue_size);
385 else if (!strcmp(attr->name, "type"))
386 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
387 else if (!strcmp(attr->name, "gpuid"))
388 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
389 else
390 pr_err("Invalid attribute");
391
392 return 0;
393 }
394
kfd_procfs_stats_show(struct kobject * kobj,struct attribute * attr,char * buffer)395 static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
396 struct attribute *attr, char *buffer)
397 {
398 if (strcmp(attr->name, "evicted_ms") == 0) {
399 struct kfd_process_device *pdd = container_of(attr,
400 struct kfd_process_device,
401 attr_evict);
402 uint64_t evict_jiffies;
403
404 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
405
406 return snprintf(buffer,
407 PAGE_SIZE,
408 "%llu\n",
409 jiffies64_to_msecs(evict_jiffies));
410
411 /* Sysfs handle that gets CU occupancy is per device */
412 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
413 return kfd_get_cu_occupancy(attr, buffer);
414 } else {
415 pr_err("Invalid attribute");
416 }
417
418 return 0;
419 }
420
kfd_sysfs_counters_show(struct kobject * kobj,struct attribute * attr,char * buf)421 static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
422 struct attribute *attr, char *buf)
423 {
424 struct kfd_process_device *pdd;
425
426 if (!strcmp(attr->name, "faults")) {
427 pdd = container_of(attr, struct kfd_process_device,
428 attr_faults);
429 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
430 }
431 if (!strcmp(attr->name, "page_in")) {
432 pdd = container_of(attr, struct kfd_process_device,
433 attr_page_in);
434 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
435 }
436 if (!strcmp(attr->name, "page_out")) {
437 pdd = container_of(attr, struct kfd_process_device,
438 attr_page_out);
439 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
440 }
441 return 0;
442 }
443
444 static struct attribute attr_queue_size = {
445 .name = "size",
446 .mode = KFD_SYSFS_FILE_MODE
447 };
448
449 static struct attribute attr_queue_type = {
450 .name = "type",
451 .mode = KFD_SYSFS_FILE_MODE
452 };
453
454 static struct attribute attr_queue_gpuid = {
455 .name = "gpuid",
456 .mode = KFD_SYSFS_FILE_MODE
457 };
458
459 static struct attribute *procfs_queue_attrs[] = {
460 &attr_queue_size,
461 &attr_queue_type,
462 &attr_queue_gpuid,
463 NULL
464 };
465
466 static const struct sysfs_ops procfs_queue_ops = {
467 .show = kfd_procfs_queue_show,
468 };
469
470 static struct kobj_type procfs_queue_type = {
471 .sysfs_ops = &procfs_queue_ops,
472 .default_attrs = procfs_queue_attrs,
473 };
474
475 static const struct sysfs_ops procfs_stats_ops = {
476 .show = kfd_procfs_stats_show,
477 };
478
479 static struct kobj_type procfs_stats_type = {
480 .sysfs_ops = &procfs_stats_ops,
481 .release = kfd_procfs_kobj_release,
482 };
483
484 static const struct sysfs_ops sysfs_counters_ops = {
485 .show = kfd_sysfs_counters_show,
486 };
487
488 static struct kobj_type sysfs_counters_type = {
489 .sysfs_ops = &sysfs_counters_ops,
490 .release = kfd_procfs_kobj_release,
491 };
492
kfd_procfs_add_queue(struct queue * q)493 int kfd_procfs_add_queue(struct queue *q)
494 {
495 struct kfd_process *proc;
496 int ret;
497
498 if (!q || !q->process)
499 return -EINVAL;
500 proc = q->process;
501
502 /* Create proc/<pid>/queues/<queue id> folder */
503 if (!proc->kobj_queues)
504 return -EFAULT;
505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 proc->kobj_queues, "%u", q->properties.queue_id);
507 if (ret < 0) {
508 pr_warn("Creating proc/<pid>/queues/%u failed",
509 q->properties.queue_id);
510 kobject_put(&q->kobj);
511 return ret;
512 }
513
514 return 0;
515 }
516
kfd_sysfs_create_file(struct kobject * kobj,struct attribute * attr,char * name)517 static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 char *name)
519 {
520 int ret;
521
522 if (!kobj || !attr || !name)
523 return;
524
525 attr->name = name;
526 attr->mode = KFD_SYSFS_FILE_MODE;
527 sysfs_attr_init(attr);
528
529 ret = sysfs_create_file(kobj, attr);
530 if (ret)
531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532 }
533
kfd_procfs_add_sysfs_stats(struct kfd_process * p)534 static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535 {
536 int ret;
537 int i;
538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540 if (!p || !p->kobj)
541 return;
542
543 /*
544 * Create sysfs files for each GPU:
545 * - proc/<pid>/stats_<gpuid>/
546 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 */
549 for (i = 0; i < p->n_pdds; i++) {
550 struct kfd_process_device *pdd = p->pdds[i];
551
552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 "stats_%u", pdd->dev->id);
554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 if (!pdd->kobj_stats)
556 return;
557
558 ret = kobject_init_and_add(pdd->kobj_stats,
559 &procfs_stats_type,
560 p->kobj,
561 stats_dir_filename);
562
563 if (ret) {
564 pr_warn("Creating KFD proc/stats_%s folder failed",
565 stats_dir_filename);
566 kobject_put(pdd->kobj_stats);
567 pdd->kobj_stats = NULL;
568 return;
569 }
570
571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 "evicted_ms");
573 /* Add sysfs file to report compute unit occupancy */
574 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 kfd_sysfs_create_file(pdd->kobj_stats,
576 &pdd->attr_cu_occupancy,
577 "cu_occupancy");
578 }
579 }
580
kfd_procfs_add_sysfs_counters(struct kfd_process * p)581 static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582 {
583 int ret = 0;
584 int i;
585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587 if (!p || !p->kobj)
588 return;
589
590 /*
591 * Create sysfs files for each GPU which supports SVM
592 * - proc/<pid>/counters_<gpuid>/
593 * - proc/<pid>/counters_<gpuid>/faults
594 * - proc/<pid>/counters_<gpuid>/page_in
595 * - proc/<pid>/counters_<gpuid>/page_out
596 */
597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 struct kfd_process_device *pdd = p->pdds[i];
599 struct kobject *kobj_counters;
600
601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 "counters_%u", pdd->dev->id);
603 kobj_counters = kfd_alloc_struct(kobj_counters);
604 if (!kobj_counters)
605 return;
606
607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 p->kobj, counters_dir_filename);
609 if (ret) {
610 pr_warn("Creating KFD proc/%s folder failed",
611 counters_dir_filename);
612 kobject_put(kobj_counters);
613 return;
614 }
615
616 pdd->kobj_counters = kobj_counters;
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 "faults");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 "page_in");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 "page_out");
623 }
624 }
625
kfd_procfs_add_sysfs_files(struct kfd_process * p)626 static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627 {
628 int i;
629
630 if (!p || !p->kobj)
631 return;
632
633 /*
634 * Create sysfs files for each GPU:
635 * - proc/<pid>/vram_<gpuid>
636 * - proc/<pid>/sdma_<gpuid>
637 */
638 for (i = 0; i < p->n_pdds; i++) {
639 struct kfd_process_device *pdd = p->pdds[i];
640
641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 pdd->dev->id);
643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 pdd->vram_filename);
645
646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 pdd->dev->id);
648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 pdd->sdma_filename);
650 }
651 }
652
kfd_procfs_del_queue(struct queue * q)653 void kfd_procfs_del_queue(struct queue *q)
654 {
655 if (!q)
656 return;
657
658 kobject_del(&q->kobj);
659 kobject_put(&q->kobj);
660 }
661
kfd_process_create_wq(void)662 int kfd_process_create_wq(void)
663 {
664 if (!kfd_process_wq)
665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 if (!kfd_restore_wq)
667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
668
669 if (!kfd_process_wq || !kfd_restore_wq) {
670 kfd_process_destroy_wq();
671 return -ENOMEM;
672 }
673
674 return 0;
675 }
676
kfd_process_destroy_wq(void)677 void kfd_process_destroy_wq(void)
678 {
679 if (kfd_process_wq) {
680 destroy_workqueue(kfd_process_wq);
681 kfd_process_wq = NULL;
682 }
683 if (kfd_restore_wq) {
684 destroy_workqueue(kfd_restore_wq);
685 kfd_restore_wq = NULL;
686 }
687 }
688
kfd_process_free_gpuvm(struct kgd_mem * mem,struct kfd_process_device * pdd,void * kptr)689 static void kfd_process_free_gpuvm(struct kgd_mem *mem,
690 struct kfd_process_device *pdd, void *kptr)
691 {
692 struct kfd_dev *dev = pdd->dev;
693
694 if (kptr) {
695 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(dev->kgd, mem);
696 kptr = NULL;
697 }
698
699 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
700 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
701 NULL);
702 }
703
704 /* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
705 * This function should be only called right after the process
706 * is created and when kfd_processes_mutex is still being held
707 * to avoid concurrency. Because of that exclusiveness, we do
708 * not need to take p->mutex.
709 */
kfd_process_alloc_gpuvm(struct kfd_process_device * pdd,uint64_t gpu_va,uint32_t size,uint32_t flags,struct kgd_mem ** mem,void ** kptr)710 static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
711 uint64_t gpu_va, uint32_t size,
712 uint32_t flags, struct kgd_mem **mem, void **kptr)
713 {
714 struct kfd_dev *kdev = pdd->dev;
715 int err;
716
717 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
718 pdd->drm_priv, mem, NULL, flags);
719 if (err)
720 goto err_alloc_mem;
721
722 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, *mem,
723 pdd->drm_priv, NULL);
724 if (err)
725 goto err_map_mem;
726
727 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, *mem, true);
728 if (err) {
729 pr_debug("Sync memory failed, wait interrupted by user signal\n");
730 goto sync_memory_failed;
731 }
732
733 if (kptr) {
734 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
735 (struct kgd_mem *)*mem, kptr, NULL);
736 if (err) {
737 pr_debug("Map GTT BO to kernel failed\n");
738 goto sync_memory_failed;
739 }
740 }
741
742 return err;
743
744 sync_memory_failed:
745 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->kgd, *mem, pdd->drm_priv);
746
747 err_map_mem:
748 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, *mem, pdd->drm_priv,
749 NULL);
750 err_alloc_mem:
751 *mem = NULL;
752 *kptr = NULL;
753 return err;
754 }
755
756 /* kfd_process_device_reserve_ib_mem - Reserve memory inside the
757 * process for IB usage The memory reserved is for KFD to submit
758 * IB to AMDGPU from kernel. If the memory is reserved
759 * successfully, ib_kaddr will have the CPU/kernel
760 * address. Check ib_kaddr before accessing the memory.
761 */
kfd_process_device_reserve_ib_mem(struct kfd_process_device * pdd)762 static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
763 {
764 struct qcm_process_device *qpd = &pdd->qpd;
765 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
766 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
767 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
768 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
769 struct kgd_mem *mem;
770 void *kaddr;
771 int ret;
772
773 if (qpd->ib_kaddr || !qpd->ib_base)
774 return 0;
775
776 /* ib_base is only set for dGPU */
777 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
778 &mem, &kaddr);
779 if (ret)
780 return ret;
781
782 qpd->ib_mem = mem;
783 qpd->ib_kaddr = kaddr;
784
785 return 0;
786 }
787
kfd_process_device_destroy_ib_mem(struct kfd_process_device * pdd)788 static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
789 {
790 struct qcm_process_device *qpd = &pdd->qpd;
791
792 if (!qpd->ib_kaddr || !qpd->ib_base)
793 return;
794
795 kfd_process_free_gpuvm(qpd->ib_mem, pdd, qpd->ib_kaddr);
796 }
797
kfd_create_process(struct file * filep)798 struct kfd_process *kfd_create_process(struct file *filep)
799 {
800 struct kfd_process *process;
801 struct task_struct *thread = current;
802 int ret;
803
804 if (!thread->mm)
805 return ERR_PTR(-EINVAL);
806
807 /* Only the pthreads threading model is supported. */
808 if (thread->group_leader->mm != thread->mm)
809 return ERR_PTR(-EINVAL);
810
811 /*
812 * take kfd processes mutex before starting of process creation
813 * so there won't be a case where two threads of the same process
814 * create two kfd_process structures
815 */
816 mutex_lock(&kfd_processes_mutex);
817
818 /* A prior open of /dev/kfd could have already created the process. */
819 process = find_process(thread);
820 if (process) {
821 pr_debug("Process already found\n");
822 } else {
823 process = create_process(thread);
824 if (IS_ERR(process))
825 goto out;
826
827 ret = kfd_process_init_cwsr_apu(process, filep);
828 if (ret)
829 goto out_destroy;
830
831 if (!procfs.kobj)
832 goto out;
833
834 process->kobj = kfd_alloc_struct(process->kobj);
835 if (!process->kobj) {
836 pr_warn("Creating procfs kobject failed");
837 goto out;
838 }
839 ret = kobject_init_and_add(process->kobj, &procfs_type,
840 procfs.kobj, "%d",
841 (int)process->lead_thread->pid);
842 if (ret) {
843 pr_warn("Creating procfs pid directory failed");
844 kobject_put(process->kobj);
845 goto out;
846 }
847
848 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
849 "pasid");
850
851 process->kobj_queues = kobject_create_and_add("queues",
852 process->kobj);
853 if (!process->kobj_queues)
854 pr_warn("Creating KFD proc/queues folder failed");
855
856 kfd_procfs_add_sysfs_stats(process);
857 kfd_procfs_add_sysfs_files(process);
858 kfd_procfs_add_sysfs_counters(process);
859 }
860 out:
861 if (!IS_ERR(process))
862 kref_get(&process->ref);
863 mutex_unlock(&kfd_processes_mutex);
864
865 return process;
866
867 out_destroy:
868 hash_del_rcu(&process->kfd_processes);
869 mutex_unlock(&kfd_processes_mutex);
870 synchronize_srcu(&kfd_processes_srcu);
871 /* kfd_process_free_notifier will trigger the cleanup */
872 mmu_notifier_put(&process->mmu_notifier);
873 return ERR_PTR(ret);
874 }
875
kfd_get_process(const struct task_struct * thread)876 struct kfd_process *kfd_get_process(const struct task_struct *thread)
877 {
878 struct kfd_process *process;
879
880 if (!thread->mm)
881 return ERR_PTR(-EINVAL);
882
883 /* Only the pthreads threading model is supported. */
884 if (thread->group_leader->mm != thread->mm)
885 return ERR_PTR(-EINVAL);
886
887 process = find_process(thread);
888 if (!process)
889 return ERR_PTR(-EINVAL);
890
891 return process;
892 }
893
find_process_by_mm(const struct mm_struct * mm)894 static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895 {
896 struct kfd_process *process;
897
898 hash_for_each_possible_rcu(kfd_processes_table, process,
899 kfd_processes, (uintptr_t)mm)
900 if (process->mm == mm)
901 return process;
902
903 return NULL;
904 }
905
find_process(const struct task_struct * thread)906 static struct kfd_process *find_process(const struct task_struct *thread)
907 {
908 struct kfd_process *p;
909 int idx;
910
911 idx = srcu_read_lock(&kfd_processes_srcu);
912 p = find_process_by_mm(thread->mm);
913 srcu_read_unlock(&kfd_processes_srcu, idx);
914
915 return p;
916 }
917
kfd_unref_process(struct kfd_process * p)918 void kfd_unref_process(struct kfd_process *p)
919 {
920 kref_put(&p->ref, kfd_process_ref_release);
921 }
922
923
kfd_process_device_free_bos(struct kfd_process_device * pdd)924 static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
925 {
926 struct kfd_process *p = pdd->process;
927 void *mem;
928 int id;
929 int i;
930
931 /*
932 * Remove all handles from idr and release appropriate
933 * local memory object
934 */
935 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
936
937 for (i = 0; i < p->n_pdds; i++) {
938 struct kfd_process_device *peer_pdd = p->pdds[i];
939
940 if (!peer_pdd->drm_priv)
941 continue;
942 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
943 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
944 }
945
946 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
947 pdd->drm_priv, NULL);
948 kfd_process_device_remove_obj_handle(pdd, id);
949 }
950 }
951
952 /*
953 * Just kunmap and unpin signal BO here. It will be freed in
954 * kfd_process_free_outstanding_kfd_bos()
955 */
kfd_process_kunmap_signal_bo(struct kfd_process * p)956 static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
957 {
958 struct kfd_process_device *pdd;
959 struct kfd_dev *kdev;
960 void *mem;
961
962 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
963 if (!kdev)
964 return;
965
966 mutex_lock(&p->mutex);
967
968 pdd = kfd_get_process_device_data(kdev, p);
969 if (!pdd)
970 goto out;
971
972 mem = kfd_process_device_translate_handle(
973 pdd, GET_IDR_HANDLE(p->signal_handle));
974 if (!mem)
975 goto out;
976
977 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(kdev->kgd, mem);
978
979 out:
980 mutex_unlock(&p->mutex);
981 }
982
kfd_process_free_outstanding_kfd_bos(struct kfd_process * p)983 static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
984 {
985 int i;
986
987 for (i = 0; i < p->n_pdds; i++)
988 kfd_process_device_free_bos(p->pdds[i]);
989 }
990
kfd_process_destroy_pdds(struct kfd_process * p)991 static void kfd_process_destroy_pdds(struct kfd_process *p)
992 {
993 int i;
994
995 for (i = 0; i < p->n_pdds; i++) {
996 struct kfd_process_device *pdd = p->pdds[i];
997
998 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
999 pdd->dev->id, p->pasid);
1000
1001 kfd_process_device_destroy_cwsr_dgpu(pdd);
1002 kfd_process_device_destroy_ib_mem(pdd);
1003
1004 if (pdd->drm_file) {
1005 amdgpu_amdkfd_gpuvm_release_process_vm(
1006 pdd->dev->kgd, pdd->drm_priv);
1007 fput(pdd->drm_file);
1008 }
1009
1010 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1011 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1012 get_order(KFD_CWSR_TBA_TMA_SIZE));
1013
1014 kfree(pdd->qpd.doorbell_bitmap);
1015 idr_destroy(&pdd->alloc_idr);
1016
1017 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1018
1019 /*
1020 * before destroying pdd, make sure to report availability
1021 * for auto suspend
1022 */
1023 if (pdd->runtime_inuse) {
1024 pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
1025 pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
1026 pdd->runtime_inuse = false;
1027 }
1028
1029 kfree(pdd);
1030 p->pdds[i] = NULL;
1031 }
1032 p->n_pdds = 0;
1033 }
1034
kfd_process_remove_sysfs(struct kfd_process * p)1035 static void kfd_process_remove_sysfs(struct kfd_process *p)
1036 {
1037 struct kfd_process_device *pdd;
1038 int i;
1039
1040 if (!p->kobj)
1041 return;
1042
1043 sysfs_remove_file(p->kobj, &p->attr_pasid);
1044 kobject_del(p->kobj_queues);
1045 kobject_put(p->kobj_queues);
1046 p->kobj_queues = NULL;
1047
1048 for (i = 0; i < p->n_pdds; i++) {
1049 pdd = p->pdds[i];
1050
1051 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1052 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1053
1054 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1055 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1056 sysfs_remove_file(pdd->kobj_stats,
1057 &pdd->attr_cu_occupancy);
1058 kobject_del(pdd->kobj_stats);
1059 kobject_put(pdd->kobj_stats);
1060 pdd->kobj_stats = NULL;
1061 }
1062
1063 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1064 pdd = p->pdds[i];
1065
1066 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1067 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1068 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1069 kobject_del(pdd->kobj_counters);
1070 kobject_put(pdd->kobj_counters);
1071 pdd->kobj_counters = NULL;
1072 }
1073
1074 kobject_del(p->kobj);
1075 kobject_put(p->kobj);
1076 p->kobj = NULL;
1077 }
1078
1079 /* No process locking is needed in this function, because the process
1080 * is not findable any more. We must assume that no other thread is
1081 * using it any more, otherwise we couldn't safely free the process
1082 * structure in the end.
1083 */
kfd_process_wq_release(struct work_struct * work)1084 static void kfd_process_wq_release(struct work_struct *work)
1085 {
1086 struct kfd_process *p = container_of(work, struct kfd_process,
1087 release_work);
1088
1089 kfd_process_remove_sysfs(p);
1090 kfd_iommu_unbind_process(p);
1091
1092 kfd_process_kunmap_signal_bo(p);
1093 kfd_process_free_outstanding_kfd_bos(p);
1094 svm_range_list_fini(p);
1095
1096 kfd_process_destroy_pdds(p);
1097 dma_fence_put(p->ef);
1098
1099 kfd_event_free_process(p);
1100
1101 kfd_pasid_free(p->pasid);
1102 mutex_destroy(&p->mutex);
1103
1104 put_task_struct(p->lead_thread);
1105
1106 kfree(p);
1107 }
1108
kfd_process_ref_release(struct kref * ref)1109 static void kfd_process_ref_release(struct kref *ref)
1110 {
1111 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1112
1113 INIT_WORK(&p->release_work, kfd_process_wq_release);
1114 queue_work(kfd_process_wq, &p->release_work);
1115 }
1116
kfd_process_alloc_notifier(struct mm_struct * mm)1117 static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1118 {
1119 int idx = srcu_read_lock(&kfd_processes_srcu);
1120 struct kfd_process *p = find_process_by_mm(mm);
1121
1122 srcu_read_unlock(&kfd_processes_srcu, idx);
1123
1124 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1125 }
1126
kfd_process_free_notifier(struct mmu_notifier * mn)1127 static void kfd_process_free_notifier(struct mmu_notifier *mn)
1128 {
1129 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1130 }
1131
kfd_process_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)1132 static void kfd_process_notifier_release(struct mmu_notifier *mn,
1133 struct mm_struct *mm)
1134 {
1135 struct kfd_process *p;
1136 int i;
1137
1138 /*
1139 * The kfd_process structure can not be free because the
1140 * mmu_notifier srcu is read locked
1141 */
1142 p = container_of(mn, struct kfd_process, mmu_notifier);
1143 if (WARN_ON(p->mm != mm))
1144 return;
1145
1146 mutex_lock(&kfd_processes_mutex);
1147 hash_del_rcu(&p->kfd_processes);
1148 mutex_unlock(&kfd_processes_mutex);
1149 synchronize_srcu(&kfd_processes_srcu);
1150
1151 cancel_delayed_work_sync(&p->eviction_work);
1152 cancel_delayed_work_sync(&p->restore_work);
1153 cancel_delayed_work_sync(&p->svms.restore_work);
1154
1155 mutex_lock(&p->mutex);
1156
1157 /* Iterate over all process device data structures and if the
1158 * pdd is in debug mode, we should first force unregistration,
1159 * then we will be able to destroy the queues
1160 */
1161 for (i = 0; i < p->n_pdds; i++) {
1162 struct kfd_dev *dev = p->pdds[i]->dev;
1163
1164 mutex_lock(kfd_get_dbgmgr_mutex());
1165 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1166 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1167 kfd_dbgmgr_destroy(dev->dbgmgr);
1168 dev->dbgmgr = NULL;
1169 }
1170 }
1171 mutex_unlock(kfd_get_dbgmgr_mutex());
1172 }
1173
1174 kfd_process_dequeue_from_all_devices(p);
1175 pqm_uninit(&p->pqm);
1176
1177 /* Indicate to other users that MM is no longer valid */
1178 p->mm = NULL;
1179 /* Signal the eviction fence after user mode queues are
1180 * destroyed. This allows any BOs to be freed without
1181 * triggering pointless evictions or waiting for fences.
1182 */
1183 dma_fence_signal(p->ef);
1184
1185 mutex_unlock(&p->mutex);
1186
1187 mmu_notifier_put(&p->mmu_notifier);
1188 }
1189
1190 static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1191 .release = kfd_process_notifier_release,
1192 .alloc_notifier = kfd_process_alloc_notifier,
1193 .free_notifier = kfd_process_free_notifier,
1194 };
1195
kfd_process_init_cwsr_apu(struct kfd_process * p,struct file * filep)1196 static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1197 {
1198 unsigned long offset;
1199 int i;
1200
1201 for (i = 0; i < p->n_pdds; i++) {
1202 struct kfd_dev *dev = p->pdds[i]->dev;
1203 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1204
1205 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1206 continue;
1207
1208 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1209 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1210 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1211 MAP_SHARED, offset);
1212
1213 if (IS_ERR_VALUE(qpd->tba_addr)) {
1214 int err = qpd->tba_addr;
1215
1216 pr_err("Failure to set tba address. error %d.\n", err);
1217 qpd->tba_addr = 0;
1218 qpd->cwsr_kaddr = NULL;
1219 return err;
1220 }
1221
1222 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1223
1224 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1225 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1226 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1227 }
1228
1229 return 0;
1230 }
1231
kfd_process_device_init_cwsr_dgpu(struct kfd_process_device * pdd)1232 static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1233 {
1234 struct kfd_dev *dev = pdd->dev;
1235 struct qcm_process_device *qpd = &pdd->qpd;
1236 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1237 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1238 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1239 struct kgd_mem *mem;
1240 void *kaddr;
1241 int ret;
1242
1243 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1244 return 0;
1245
1246 /* cwsr_base is only set for dGPU */
1247 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1248 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1249 if (ret)
1250 return ret;
1251
1252 qpd->cwsr_mem = mem;
1253 qpd->cwsr_kaddr = kaddr;
1254 qpd->tba_addr = qpd->cwsr_base;
1255
1256 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1257
1258 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1259 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1260 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1261
1262 return 0;
1263 }
1264
kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device * pdd)1265 static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1266 {
1267 struct kfd_dev *dev = pdd->dev;
1268 struct qcm_process_device *qpd = &pdd->qpd;
1269
1270 if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1271 return;
1272
1273 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, qpd->cwsr_kaddr);
1274 }
1275
kfd_process_set_trap_handler(struct qcm_process_device * qpd,uint64_t tba_addr,uint64_t tma_addr)1276 void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1277 uint64_t tba_addr,
1278 uint64_t tma_addr)
1279 {
1280 if (qpd->cwsr_kaddr) {
1281 /* KFD trap handler is bound, record as second-level TBA/TMA
1282 * in first-level TMA. First-level trap will jump to second.
1283 */
1284 uint64_t *tma =
1285 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1286 tma[0] = tba_addr;
1287 tma[1] = tma_addr;
1288 } else {
1289 /* No trap handler bound, bind as first-level TBA/TMA. */
1290 qpd->tba_addr = tba_addr;
1291 qpd->tma_addr = tma_addr;
1292 }
1293 }
1294
kfd_process_xnack_mode(struct kfd_process * p,bool supported)1295 bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1296 {
1297 int i;
1298
1299 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1300 * boot time retry setting. Mixing processes with different
1301 * XNACK/retry settings can hang the GPU.
1302 *
1303 * Different GPUs can have different noretry settings depending
1304 * on HW bugs or limitations. We need to find at least one
1305 * XNACK mode for this process that's compatible with all GPUs.
1306 * Fortunately GPUs with retry enabled (noretry=0) can run code
1307 * built for XNACK-off. On GFXv9 it may perform slower.
1308 *
1309 * Therefore applications built for XNACK-off can always be
1310 * supported and will be our fallback if any GPU does not
1311 * support retry.
1312 */
1313 for (i = 0; i < p->n_pdds; i++) {
1314 struct kfd_dev *dev = p->pdds[i]->dev;
1315
1316 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1317 * support the SVM APIs and don't need to be considered
1318 * for the XNACK mode selection.
1319 */
1320 if (dev->device_info->asic_family < CHIP_VEGA10)
1321 continue;
1322 /* Aldebaran can always support XNACK because it can support
1323 * per-process XNACK mode selection. But let the dev->noretry
1324 * setting still influence the default XNACK mode.
1325 */
1326 if (supported &&
1327 dev->device_info->asic_family == CHIP_ALDEBARAN)
1328 continue;
1329
1330 /* GFXv10 and later GPUs do not support shader preemption
1331 * during page faults. This can lead to poor QoS for queue
1332 * management and memory-manager-related preemptions or
1333 * even deadlocks.
1334 */
1335 if (dev->device_info->asic_family >= CHIP_NAVI10)
1336 return false;
1337
1338 if (dev->noretry)
1339 return false;
1340 }
1341
1342 return true;
1343 }
1344
1345 /*
1346 * On return the kfd_process is fully operational and will be freed when the
1347 * mm is released
1348 */
create_process(const struct task_struct * thread)1349 static struct kfd_process *create_process(const struct task_struct *thread)
1350 {
1351 struct kfd_process *process;
1352 struct mmu_notifier *mn;
1353 int err = -ENOMEM;
1354
1355 process = kzalloc(sizeof(*process), GFP_KERNEL);
1356 if (!process)
1357 goto err_alloc_process;
1358
1359 kref_init(&process->ref);
1360 mutex_init(&process->mutex);
1361 process->mm = thread->mm;
1362 process->lead_thread = thread->group_leader;
1363 process->n_pdds = 0;
1364 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1365 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1366 process->last_restore_timestamp = get_jiffies_64();
1367 kfd_event_init_process(process);
1368 process->is_32bit_user_mode = in_compat_syscall();
1369
1370 process->pasid = kfd_pasid_alloc();
1371 if (process->pasid == 0)
1372 goto err_alloc_pasid;
1373
1374 err = pqm_init(&process->pqm, process);
1375 if (err != 0)
1376 goto err_process_pqm_init;
1377
1378 /* init process apertures*/
1379 err = kfd_init_apertures(process);
1380 if (err != 0)
1381 goto err_init_apertures;
1382
1383 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1384 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1385
1386 err = svm_range_list_init(process);
1387 if (err)
1388 goto err_init_svm_range_list;
1389
1390 /* alloc_notifier needs to find the process in the hash table */
1391 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1392 (uintptr_t)process->mm);
1393
1394 /* MMU notifier registration must be the last call that can fail
1395 * because after this point we cannot unwind the process creation.
1396 * After this point, mmu_notifier_put will trigger the cleanup by
1397 * dropping the last process reference in the free_notifier.
1398 */
1399 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1400 if (IS_ERR(mn)) {
1401 err = PTR_ERR(mn);
1402 goto err_register_notifier;
1403 }
1404 BUG_ON(mn != &process->mmu_notifier);
1405
1406 get_task_struct(process->lead_thread);
1407
1408 return process;
1409
1410 err_register_notifier:
1411 hash_del_rcu(&process->kfd_processes);
1412 svm_range_list_fini(process);
1413 err_init_svm_range_list:
1414 kfd_process_free_outstanding_kfd_bos(process);
1415 kfd_process_destroy_pdds(process);
1416 err_init_apertures:
1417 pqm_uninit(&process->pqm);
1418 err_process_pqm_init:
1419 kfd_pasid_free(process->pasid);
1420 err_alloc_pasid:
1421 mutex_destroy(&process->mutex);
1422 kfree(process);
1423 err_alloc_process:
1424 return ERR_PTR(err);
1425 }
1426
init_doorbell_bitmap(struct qcm_process_device * qpd,struct kfd_dev * dev)1427 static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1428 struct kfd_dev *dev)
1429 {
1430 unsigned int i;
1431 int range_start = dev->shared_resources.non_cp_doorbells_start;
1432 int range_end = dev->shared_resources.non_cp_doorbells_end;
1433
1434 if (!KFD_IS_SOC15(dev->device_info->asic_family))
1435 return 0;
1436
1437 qpd->doorbell_bitmap =
1438 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1439 BITS_PER_BYTE), GFP_KERNEL);
1440 if (!qpd->doorbell_bitmap)
1441 return -ENOMEM;
1442
1443 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1444 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1445 pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1446 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1447 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1448
1449 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1450 if (i >= range_start && i <= range_end) {
1451 set_bit(i, qpd->doorbell_bitmap);
1452 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1453 qpd->doorbell_bitmap);
1454 }
1455 }
1456
1457 return 0;
1458 }
1459
kfd_get_process_device_data(struct kfd_dev * dev,struct kfd_process * p)1460 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1461 struct kfd_process *p)
1462 {
1463 int i;
1464
1465 for (i = 0; i < p->n_pdds; i++)
1466 if (p->pdds[i]->dev == dev)
1467 return p->pdds[i];
1468
1469 return NULL;
1470 }
1471
kfd_create_process_device_data(struct kfd_dev * dev,struct kfd_process * p)1472 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1473 struct kfd_process *p)
1474 {
1475 struct kfd_process_device *pdd = NULL;
1476
1477 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1478 return NULL;
1479 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1480 if (!pdd)
1481 return NULL;
1482
1483 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1484 pr_err("Failed to alloc doorbell for pdd\n");
1485 goto err_free_pdd;
1486 }
1487
1488 if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1489 pr_err("Failed to init doorbell for process\n");
1490 goto err_free_pdd;
1491 }
1492
1493 pdd->dev = dev;
1494 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1495 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1496 pdd->qpd.dqm = dev->dqm;
1497 pdd->qpd.pqm = &p->pqm;
1498 pdd->qpd.evicted = 0;
1499 pdd->qpd.mapped_gws_queue = false;
1500 pdd->process = p;
1501 pdd->bound = PDD_UNBOUND;
1502 pdd->already_dequeued = false;
1503 pdd->runtime_inuse = false;
1504 pdd->vram_usage = 0;
1505 pdd->sdma_past_activity_counter = 0;
1506 atomic64_set(&pdd->evict_duration_counter, 0);
1507 p->pdds[p->n_pdds++] = pdd;
1508
1509 /* Init idr used for memory handle translation */
1510 idr_init(&pdd->alloc_idr);
1511
1512 return pdd;
1513
1514 err_free_pdd:
1515 kfree(pdd);
1516 return NULL;
1517 }
1518
1519 /**
1520 * kfd_process_device_init_vm - Initialize a VM for a process-device
1521 *
1522 * @pdd: The process-device
1523 * @drm_file: Optional pointer to a DRM file descriptor
1524 *
1525 * If @drm_file is specified, it will be used to acquire the VM from
1526 * that file descriptor. If successful, the @pdd takes ownership of
1527 * the file descriptor.
1528 *
1529 * If @drm_file is NULL, a new VM is created.
1530 *
1531 * Returns 0 on success, -errno on failure.
1532 */
kfd_process_device_init_vm(struct kfd_process_device * pdd,struct file * drm_file)1533 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1534 struct file *drm_file)
1535 {
1536 struct kfd_process *p;
1537 struct kfd_dev *dev;
1538 int ret;
1539
1540 if (!drm_file)
1541 return -EINVAL;
1542
1543 if (pdd->drm_priv)
1544 return -EBUSY;
1545
1546 p = pdd->process;
1547 dev = pdd->dev;
1548
1549 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1550 dev->kgd, drm_file, p->pasid,
1551 &p->kgd_process_info, &p->ef);
1552 if (ret) {
1553 pr_err("Failed to create process VM object\n");
1554 return ret;
1555 }
1556 pdd->drm_priv = drm_file->private_data;
1557
1558 ret = kfd_process_device_reserve_ib_mem(pdd);
1559 if (ret)
1560 goto err_reserve_ib_mem;
1561 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1562 if (ret)
1563 goto err_init_cwsr;
1564
1565 pdd->drm_file = drm_file;
1566
1567 return 0;
1568
1569 err_init_cwsr:
1570 err_reserve_ib_mem:
1571 kfd_process_device_free_bos(pdd);
1572 pdd->drm_priv = NULL;
1573
1574 return ret;
1575 }
1576
1577 /*
1578 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1579 * to the device.
1580 * Unbinding occurs when the process dies or the device is removed.
1581 *
1582 * Assumes that the process lock is held.
1583 */
kfd_bind_process_to_device(struct kfd_dev * dev,struct kfd_process * p)1584 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1585 struct kfd_process *p)
1586 {
1587 struct kfd_process_device *pdd;
1588 int err;
1589
1590 pdd = kfd_get_process_device_data(dev, p);
1591 if (!pdd) {
1592 pr_err("Process device data doesn't exist\n");
1593 return ERR_PTR(-ENOMEM);
1594 }
1595
1596 if (!pdd->drm_priv)
1597 return ERR_PTR(-ENODEV);
1598
1599 /*
1600 * signal runtime-pm system to auto resume and prevent
1601 * further runtime suspend once device pdd is created until
1602 * pdd is destroyed.
1603 */
1604 if (!pdd->runtime_inuse) {
1605 err = pm_runtime_get_sync(dev->ddev->dev);
1606 if (err < 0) {
1607 pm_runtime_put_autosuspend(dev->ddev->dev);
1608 return ERR_PTR(err);
1609 }
1610 }
1611
1612 err = kfd_iommu_bind_process_to_device(pdd);
1613 if (err)
1614 goto out;
1615
1616 /*
1617 * make sure that runtime_usage counter is incremented just once
1618 * per pdd
1619 */
1620 pdd->runtime_inuse = true;
1621
1622 return pdd;
1623
1624 out:
1625 /* balance runpm reference count and exit with error */
1626 if (!pdd->runtime_inuse) {
1627 pm_runtime_mark_last_busy(dev->ddev->dev);
1628 pm_runtime_put_autosuspend(dev->ddev->dev);
1629 }
1630
1631 return ERR_PTR(err);
1632 }
1633
1634 /* Create specific handle mapped to mem from process local memory idr
1635 * Assumes that the process lock is held.
1636 */
kfd_process_device_create_obj_handle(struct kfd_process_device * pdd,void * mem)1637 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1638 void *mem)
1639 {
1640 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1641 }
1642
1643 /* Translate specific handle from process local memory idr
1644 * Assumes that the process lock is held.
1645 */
kfd_process_device_translate_handle(struct kfd_process_device * pdd,int handle)1646 void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1647 int handle)
1648 {
1649 if (handle < 0)
1650 return NULL;
1651
1652 return idr_find(&pdd->alloc_idr, handle);
1653 }
1654
1655 /* Remove specific handle from process local memory idr
1656 * Assumes that the process lock is held.
1657 */
kfd_process_device_remove_obj_handle(struct kfd_process_device * pdd,int handle)1658 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1659 int handle)
1660 {
1661 if (handle >= 0)
1662 idr_remove(&pdd->alloc_idr, handle);
1663 }
1664
1665 /* This increments the process->ref counter. */
kfd_lookup_process_by_pasid(u32 pasid)1666 struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1667 {
1668 struct kfd_process *p, *ret_p = NULL;
1669 unsigned int temp;
1670
1671 int idx = srcu_read_lock(&kfd_processes_srcu);
1672
1673 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1674 if (p->pasid == pasid) {
1675 kref_get(&p->ref);
1676 ret_p = p;
1677 break;
1678 }
1679 }
1680
1681 srcu_read_unlock(&kfd_processes_srcu, idx);
1682
1683 return ret_p;
1684 }
1685
1686 /* This increments the process->ref counter. */
kfd_lookup_process_by_mm(const struct mm_struct * mm)1687 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1688 {
1689 struct kfd_process *p;
1690
1691 int idx = srcu_read_lock(&kfd_processes_srcu);
1692
1693 p = find_process_by_mm(mm);
1694 if (p)
1695 kref_get(&p->ref);
1696
1697 srcu_read_unlock(&kfd_processes_srcu, idx);
1698
1699 return p;
1700 }
1701
1702 /* kfd_process_evict_queues - Evict all user queues of a process
1703 *
1704 * Eviction is reference-counted per process-device. This means multiple
1705 * evictions from different sources can be nested safely.
1706 */
kfd_process_evict_queues(struct kfd_process * p)1707 int kfd_process_evict_queues(struct kfd_process *p)
1708 {
1709 int r = 0;
1710 int i;
1711 unsigned int n_evicted = 0;
1712
1713 for (i = 0; i < p->n_pdds; i++) {
1714 struct kfd_process_device *pdd = p->pdds[i];
1715
1716 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1717 &pdd->qpd);
1718 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1719 * we would like to set all the queues to be in evicted state to prevent
1720 * them been add back since they actually not be saved right now.
1721 */
1722 if (r && r != -EIO) {
1723 pr_err("Failed to evict process queues\n");
1724 goto fail;
1725 }
1726 n_evicted++;
1727 }
1728
1729 return r;
1730
1731 fail:
1732 /* To keep state consistent, roll back partial eviction by
1733 * restoring queues
1734 */
1735 for (i = 0; i < p->n_pdds; i++) {
1736 struct kfd_process_device *pdd = p->pdds[i];
1737
1738 if (n_evicted == 0)
1739 break;
1740 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1741 &pdd->qpd))
1742 pr_err("Failed to restore queues\n");
1743
1744 n_evicted--;
1745 }
1746
1747 return r;
1748 }
1749
1750 /* kfd_process_restore_queues - Restore all user queues of a process */
kfd_process_restore_queues(struct kfd_process * p)1751 int kfd_process_restore_queues(struct kfd_process *p)
1752 {
1753 int r, ret = 0;
1754 int i;
1755
1756 for (i = 0; i < p->n_pdds; i++) {
1757 struct kfd_process_device *pdd = p->pdds[i];
1758
1759 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1760 &pdd->qpd);
1761 if (r) {
1762 pr_err("Failed to restore process queues\n");
1763 if (!ret)
1764 ret = r;
1765 }
1766 }
1767
1768 return ret;
1769 }
1770
kfd_process_gpuidx_from_gpuid(struct kfd_process * p,uint32_t gpu_id)1771 int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1772 {
1773 int i;
1774
1775 for (i = 0; i < p->n_pdds; i++)
1776 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1777 return i;
1778 return -EINVAL;
1779 }
1780
1781 int
kfd_process_gpuid_from_kgd(struct kfd_process * p,struct amdgpu_device * adev,uint32_t * gpuid,uint32_t * gpuidx)1782 kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1783 uint32_t *gpuid, uint32_t *gpuidx)
1784 {
1785 struct kgd_dev *kgd = (struct kgd_dev *)adev;
1786 int i;
1787
1788 for (i = 0; i < p->n_pdds; i++)
1789 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1790 *gpuid = p->pdds[i]->dev->id;
1791 *gpuidx = i;
1792 return 0;
1793 }
1794 return -EINVAL;
1795 }
1796
evict_process_worker(struct work_struct * work)1797 static void evict_process_worker(struct work_struct *work)
1798 {
1799 int ret;
1800 struct kfd_process *p;
1801 struct delayed_work *dwork;
1802
1803 dwork = to_delayed_work(work);
1804
1805 /* Process termination destroys this worker thread. So during the
1806 * lifetime of this thread, kfd_process p will be valid
1807 */
1808 p = container_of(dwork, struct kfd_process, eviction_work);
1809 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1810 "Eviction fence mismatch\n");
1811
1812 /* Narrow window of overlap between restore and evict work
1813 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1814 * unreserves KFD BOs, it is possible to evicted again. But
1815 * restore has few more steps of finish. So lets wait for any
1816 * previous restore work to complete
1817 */
1818 flush_delayed_work(&p->restore_work);
1819
1820 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1821 ret = kfd_process_evict_queues(p);
1822 if (!ret) {
1823 dma_fence_signal(p->ef);
1824 dma_fence_put(p->ef);
1825 p->ef = NULL;
1826 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1827 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1828
1829 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1830 } else
1831 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1832 }
1833
restore_process_worker(struct work_struct * work)1834 static void restore_process_worker(struct work_struct *work)
1835 {
1836 struct delayed_work *dwork;
1837 struct kfd_process *p;
1838 int ret = 0;
1839
1840 dwork = to_delayed_work(work);
1841
1842 /* Process termination destroys this worker thread. So during the
1843 * lifetime of this thread, kfd_process p will be valid
1844 */
1845 p = container_of(dwork, struct kfd_process, restore_work);
1846 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1847
1848 /* Setting last_restore_timestamp before successful restoration.
1849 * Otherwise this would have to be set by KGD (restore_process_bos)
1850 * before KFD BOs are unreserved. If not, the process can be evicted
1851 * again before the timestamp is set.
1852 * If restore fails, the timestamp will be set again in the next
1853 * attempt. This would mean that the minimum GPU quanta would be
1854 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1855 * functions)
1856 */
1857
1858 p->last_restore_timestamp = get_jiffies_64();
1859 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1860 &p->ef);
1861 if (ret) {
1862 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1863 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1864 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1865 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1866 WARN(!ret, "reschedule restore work failed\n");
1867 return;
1868 }
1869
1870 ret = kfd_process_restore_queues(p);
1871 if (!ret)
1872 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1873 else
1874 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1875 }
1876
kfd_suspend_all_processes(void)1877 void kfd_suspend_all_processes(void)
1878 {
1879 struct kfd_process *p;
1880 unsigned int temp;
1881 int idx = srcu_read_lock(&kfd_processes_srcu);
1882
1883 WARN(debug_evictions, "Evicting all processes");
1884 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1885 cancel_delayed_work_sync(&p->eviction_work);
1886 cancel_delayed_work_sync(&p->restore_work);
1887
1888 if (kfd_process_evict_queues(p))
1889 pr_err("Failed to suspend process 0x%x\n", p->pasid);
1890 dma_fence_signal(p->ef);
1891 dma_fence_put(p->ef);
1892 p->ef = NULL;
1893 }
1894 srcu_read_unlock(&kfd_processes_srcu, idx);
1895 }
1896
kfd_resume_all_processes(void)1897 int kfd_resume_all_processes(void)
1898 {
1899 struct kfd_process *p;
1900 unsigned int temp;
1901 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1902
1903 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1904 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1905 pr_err("Restore process %d failed during resume\n",
1906 p->pasid);
1907 ret = -EFAULT;
1908 }
1909 }
1910 srcu_read_unlock(&kfd_processes_srcu, idx);
1911 return ret;
1912 }
1913
kfd_reserved_mem_mmap(struct kfd_dev * dev,struct kfd_process * process,struct vm_area_struct * vma)1914 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1915 struct vm_area_struct *vma)
1916 {
1917 struct kfd_process_device *pdd;
1918 struct qcm_process_device *qpd;
1919
1920 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1921 pr_err("Incorrect CWSR mapping size.\n");
1922 return -EINVAL;
1923 }
1924
1925 pdd = kfd_get_process_device_data(dev, process);
1926 if (!pdd)
1927 return -EINVAL;
1928 qpd = &pdd->qpd;
1929
1930 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1931 get_order(KFD_CWSR_TBA_TMA_SIZE));
1932 if (!qpd->cwsr_kaddr) {
1933 pr_err("Error allocating per process CWSR buffer.\n");
1934 return -ENOMEM;
1935 }
1936
1937 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1938 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1939 /* Mapping pages to user process */
1940 return remap_pfn_range(vma, vma->vm_start,
1941 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1942 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1943 }
1944
kfd_flush_tlb(struct kfd_process_device * pdd,enum TLB_FLUSH_TYPE type)1945 void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1946 {
1947 struct kfd_dev *dev = pdd->dev;
1948
1949 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1950 /* Nothing to flush until a VMID is assigned, which
1951 * only happens when the first queue is created.
1952 */
1953 if (pdd->qpd.vmid)
1954 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1955 pdd->qpd.vmid);
1956 } else {
1957 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1958 pdd->process->pasid, type);
1959 }
1960 }
1961
1962 #if defined(CONFIG_DEBUG_FS)
1963
kfd_debugfs_mqds_by_process(struct seq_file * m,void * data)1964 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1965 {
1966 struct kfd_process *p;
1967 unsigned int temp;
1968 int r = 0;
1969
1970 int idx = srcu_read_lock(&kfd_processes_srcu);
1971
1972 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1973 seq_printf(m, "Process %d PASID 0x%x:\n",
1974 p->lead_thread->tgid, p->pasid);
1975
1976 mutex_lock(&p->mutex);
1977 r = pqm_debugfs_mqds(m, &p->pqm);
1978 mutex_unlock(&p->mutex);
1979
1980 if (r)
1981 break;
1982 }
1983
1984 srcu_read_unlock(&kfd_processes_srcu, idx);
1985
1986 return r;
1987 }
1988
1989 #endif
1990
1991