1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Slab allocator functions that are independent of the allocator strategy
4 *
5 * (C) 2012 Christoph Lameter <cl@linux.com>
6 */
7 #include <linux/slab.h>
8
9 #include <linux/mm.h>
10 #include <linux/poison.h>
11 #include <linux/interrupt.h>
12 #include <linux/memory.h>
13 #include <linux/cache.h>
14 #include <linux/compiler.h>
15 #include <linux/kfence.h>
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/uaccess.h>
19 #include <linux/seq_file.h>
20 #include <linux/proc_fs.h>
21 #include <linux/debugfs.h>
22 #include <linux/kasan.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
25 #include <asm/page.h>
26 #include <linux/memcontrol.h>
27
28 #define CREATE_TRACE_POINTS
29 #include <trace/events/kmem.h>
30
31 #include "internal.h"
32
33 #include "slab.h"
34
35 enum slab_state slab_state;
36 LIST_HEAD(slab_caches);
37 DEFINE_MUTEX(slab_mutex);
38 struct kmem_cache *kmem_cache;
39
40 static LIST_HEAD(slab_caches_to_rcu_destroy);
41 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work);
42 static DECLARE_WORK(slab_caches_to_rcu_destroy_work,
43 slab_caches_to_rcu_destroy_workfn);
44
45 /*
46 * Set of flags that will prevent slab merging
47 */
48 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
49 SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \
50 SLAB_FAILSLAB | kasan_never_merge())
51
52 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
53 SLAB_CACHE_DMA32 | SLAB_ACCOUNT)
54
55 /*
56 * Merge control. If this is set then no merging of slab caches will occur.
57 */
58 static bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT);
59
setup_slab_nomerge(char * str)60 static int __init setup_slab_nomerge(char *str)
61 {
62 slab_nomerge = true;
63 return 1;
64 }
65
setup_slab_merge(char * str)66 static int __init setup_slab_merge(char *str)
67 {
68 slab_nomerge = false;
69 return 1;
70 }
71
72 #ifdef CONFIG_SLUB
73 __setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
74 __setup_param("slub_merge", slub_merge, setup_slab_merge, 0);
75 #endif
76
77 __setup("slab_nomerge", setup_slab_nomerge);
78 __setup("slab_merge", setup_slab_merge);
79
80 /*
81 * Determine the size of a slab object
82 */
kmem_cache_size(struct kmem_cache * s)83 unsigned int kmem_cache_size(struct kmem_cache *s)
84 {
85 return s->object_size;
86 }
87 EXPORT_SYMBOL(kmem_cache_size);
88
89 #ifdef CONFIG_DEBUG_VM
kmem_cache_sanity_check(const char * name,unsigned int size)90 static int kmem_cache_sanity_check(const char *name, unsigned int size)
91 {
92 if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) {
93 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
94 return -EINVAL;
95 }
96
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
98 return 0;
99 }
100 #else
kmem_cache_sanity_check(const char * name,unsigned int size)101 static inline int kmem_cache_sanity_check(const char *name, unsigned int size)
102 {
103 return 0;
104 }
105 #endif
106
__kmem_cache_free_bulk(struct kmem_cache * s,size_t nr,void ** p)107 void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
108 {
109 size_t i;
110
111 for (i = 0; i < nr; i++) {
112 if (s)
113 kmem_cache_free(s, p[i]);
114 else
115 kfree(p[i]);
116 }
117 }
118
__kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t nr,void ** p)119 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
120 void **p)
121 {
122 size_t i;
123
124 for (i = 0; i < nr; i++) {
125 void *x = p[i] = kmem_cache_alloc(s, flags);
126 if (!x) {
127 __kmem_cache_free_bulk(s, i, p);
128 return 0;
129 }
130 }
131 return i;
132 }
133
134 /*
135 * Figure out what the alignment of the objects will be given a set of
136 * flags, a user specified alignment and the size of the objects.
137 */
calculate_alignment(slab_flags_t flags,unsigned int align,unsigned int size)138 static unsigned int calculate_alignment(slab_flags_t flags,
139 unsigned int align, unsigned int size)
140 {
141 /*
142 * If the user wants hardware cache aligned objects then follow that
143 * suggestion if the object is sufficiently large.
144 *
145 * The hardware cache alignment cannot override the specified
146 * alignment though. If that is greater then use it.
147 */
148 if (flags & SLAB_HWCACHE_ALIGN) {
149 unsigned int ralign;
150
151 ralign = cache_line_size();
152 while (size <= ralign / 2)
153 ralign /= 2;
154 align = max(align, ralign);
155 }
156
157 if (align < ARCH_SLAB_MINALIGN)
158 align = ARCH_SLAB_MINALIGN;
159
160 return ALIGN(align, sizeof(void *));
161 }
162
163 /*
164 * Find a mergeable slab cache
165 */
slab_unmergeable(struct kmem_cache * s)166 int slab_unmergeable(struct kmem_cache *s)
167 {
168 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
169 return 1;
170
171 if (s->ctor)
172 return 1;
173
174 if (s->usersize)
175 return 1;
176
177 /*
178 * We may have set a slab to be unmergeable during bootstrap.
179 */
180 if (s->refcount < 0)
181 return 1;
182
183 return 0;
184 }
185
find_mergeable(unsigned int size,unsigned int align,slab_flags_t flags,const char * name,void (* ctor)(void *))186 struct kmem_cache *find_mergeable(unsigned int size, unsigned int align,
187 slab_flags_t flags, const char *name, void (*ctor)(void *))
188 {
189 struct kmem_cache *s;
190
191 if (slab_nomerge)
192 return NULL;
193
194 if (ctor)
195 return NULL;
196
197 size = ALIGN(size, sizeof(void *));
198 align = calculate_alignment(flags, align, size);
199 size = ALIGN(size, align);
200 flags = kmem_cache_flags(size, flags, name);
201
202 if (flags & SLAB_NEVER_MERGE)
203 return NULL;
204
205 list_for_each_entry_reverse(s, &slab_caches, list) {
206 if (slab_unmergeable(s))
207 continue;
208
209 if (size > s->size)
210 continue;
211
212 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
213 continue;
214 /*
215 * Check if alignment is compatible.
216 * Courtesy of Adrian Drzewiecki
217 */
218 if ((s->size & ~(align - 1)) != s->size)
219 continue;
220
221 if (s->size - size >= sizeof(void *))
222 continue;
223
224 if (IS_ENABLED(CONFIG_SLAB) && align &&
225 (align > s->align || s->align % align))
226 continue;
227
228 return s;
229 }
230 return NULL;
231 }
232
create_cache(const char * name,unsigned int object_size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *),struct kmem_cache * root_cache)233 static struct kmem_cache *create_cache(const char *name,
234 unsigned int object_size, unsigned int align,
235 slab_flags_t flags, unsigned int useroffset,
236 unsigned int usersize, void (*ctor)(void *),
237 struct kmem_cache *root_cache)
238 {
239 struct kmem_cache *s;
240 int err;
241
242 if (WARN_ON(useroffset + usersize > object_size))
243 useroffset = usersize = 0;
244
245 err = -ENOMEM;
246 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
247 if (!s)
248 goto out;
249
250 s->name = name;
251 s->size = s->object_size = object_size;
252 s->align = align;
253 s->ctor = ctor;
254 s->useroffset = useroffset;
255 s->usersize = usersize;
256
257 err = __kmem_cache_create(s, flags);
258 if (err)
259 goto out_free_cache;
260
261 s->refcount = 1;
262 list_add(&s->list, &slab_caches);
263 out:
264 if (err)
265 return ERR_PTR(err);
266 return s;
267
268 out_free_cache:
269 kmem_cache_free(kmem_cache, s);
270 goto out;
271 }
272
273 /**
274 * kmem_cache_create_usercopy - Create a cache with a region suitable
275 * for copying to userspace
276 * @name: A string which is used in /proc/slabinfo to identify this cache.
277 * @size: The size of objects to be created in this cache.
278 * @align: The required alignment for the objects.
279 * @flags: SLAB flags
280 * @useroffset: Usercopy region offset
281 * @usersize: Usercopy region size
282 * @ctor: A constructor for the objects.
283 *
284 * Cannot be called within a interrupt, but can be interrupted.
285 * The @ctor is run when new pages are allocated by the cache.
286 *
287 * The flags are
288 *
289 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
290 * to catch references to uninitialised memory.
291 *
292 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
293 * for buffer overruns.
294 *
295 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
296 * cacheline. This can be beneficial if you're counting cycles as closely
297 * as davem.
298 *
299 * Return: a pointer to the cache on success, NULL on failure.
300 */
301 struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))302 kmem_cache_create_usercopy(const char *name,
303 unsigned int size, unsigned int align,
304 slab_flags_t flags,
305 unsigned int useroffset, unsigned int usersize,
306 void (*ctor)(void *))
307 {
308 struct kmem_cache *s = NULL;
309 const char *cache_name;
310 int err;
311
312 #ifdef CONFIG_SLUB_DEBUG
313 /*
314 * If no slub_debug was enabled globally, the static key is not yet
315 * enabled by setup_slub_debug(). Enable it if the cache is being
316 * created with any of the debugging flags passed explicitly.
317 */
318 if (flags & SLAB_DEBUG_FLAGS)
319 static_branch_enable(&slub_debug_enabled);
320 #endif
321
322 mutex_lock(&slab_mutex);
323
324 err = kmem_cache_sanity_check(name, size);
325 if (err) {
326 goto out_unlock;
327 }
328
329 /* Refuse requests with allocator specific flags */
330 if (flags & ~SLAB_FLAGS_PERMITTED) {
331 err = -EINVAL;
332 goto out_unlock;
333 }
334
335 /*
336 * Some allocators will constraint the set of valid flags to a subset
337 * of all flags. We expect them to define CACHE_CREATE_MASK in this
338 * case, and we'll just provide them with a sanitized version of the
339 * passed flags.
340 */
341 flags &= CACHE_CREATE_MASK;
342
343 /* Fail closed on bad usersize of useroffset values. */
344 if (WARN_ON(!usersize && useroffset) ||
345 WARN_ON(size < usersize || size - usersize < useroffset))
346 usersize = useroffset = 0;
347
348 if (!usersize)
349 s = __kmem_cache_alias(name, size, align, flags, ctor);
350 if (s)
351 goto out_unlock;
352
353 cache_name = kstrdup_const(name, GFP_KERNEL);
354 if (!cache_name) {
355 err = -ENOMEM;
356 goto out_unlock;
357 }
358
359 s = create_cache(cache_name, size,
360 calculate_alignment(flags, align, size),
361 flags, useroffset, usersize, ctor, NULL);
362 if (IS_ERR(s)) {
363 err = PTR_ERR(s);
364 kfree_const(cache_name);
365 }
366
367 out_unlock:
368 mutex_unlock(&slab_mutex);
369
370 if (err) {
371 if (flags & SLAB_PANIC)
372 panic("%s: Failed to create slab '%s'. Error %d\n",
373 __func__, name, err);
374 else {
375 pr_warn("%s(%s) failed with error %d\n",
376 __func__, name, err);
377 dump_stack();
378 }
379 return NULL;
380 }
381 return s;
382 }
383 EXPORT_SYMBOL(kmem_cache_create_usercopy);
384
385 /**
386 * kmem_cache_create - Create a cache.
387 * @name: A string which is used in /proc/slabinfo to identify this cache.
388 * @size: The size of objects to be created in this cache.
389 * @align: The required alignment for the objects.
390 * @flags: SLAB flags
391 * @ctor: A constructor for the objects.
392 *
393 * Cannot be called within a interrupt, but can be interrupted.
394 * The @ctor is run when new pages are allocated by the cache.
395 *
396 * The flags are
397 *
398 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
399 * to catch references to uninitialised memory.
400 *
401 * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check
402 * for buffer overruns.
403 *
404 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
405 * cacheline. This can be beneficial if you're counting cycles as closely
406 * as davem.
407 *
408 * Return: a pointer to the cache on success, NULL on failure.
409 */
410 struct kmem_cache *
kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))411 kmem_cache_create(const char *name, unsigned int size, unsigned int align,
412 slab_flags_t flags, void (*ctor)(void *))
413 {
414 return kmem_cache_create_usercopy(name, size, align, flags, 0, 0,
415 ctor);
416 }
417 EXPORT_SYMBOL(kmem_cache_create);
418
slab_caches_to_rcu_destroy_workfn(struct work_struct * work)419 static void slab_caches_to_rcu_destroy_workfn(struct work_struct *work)
420 {
421 LIST_HEAD(to_destroy);
422 struct kmem_cache *s, *s2;
423
424 /*
425 * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the
426 * @slab_caches_to_rcu_destroy list. The slab pages are freed
427 * through RCU and the associated kmem_cache are dereferenced
428 * while freeing the pages, so the kmem_caches should be freed only
429 * after the pending RCU operations are finished. As rcu_barrier()
430 * is a pretty slow operation, we batch all pending destructions
431 * asynchronously.
432 */
433 mutex_lock(&slab_mutex);
434 list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy);
435 mutex_unlock(&slab_mutex);
436
437 if (list_empty(&to_destroy))
438 return;
439
440 rcu_barrier();
441
442 list_for_each_entry_safe(s, s2, &to_destroy, list) {
443 debugfs_slab_release(s);
444 kfence_shutdown_cache(s);
445 #ifdef SLAB_SUPPORTS_SYSFS
446 sysfs_slab_release(s);
447 #else
448 slab_kmem_cache_release(s);
449 #endif
450 }
451 }
452
shutdown_cache(struct kmem_cache * s)453 static int shutdown_cache(struct kmem_cache *s)
454 {
455 /* free asan quarantined objects */
456 kasan_cache_shutdown(s);
457
458 if (__kmem_cache_shutdown(s) != 0)
459 return -EBUSY;
460
461 list_del(&s->list);
462
463 if (s->flags & SLAB_TYPESAFE_BY_RCU) {
464 #ifdef SLAB_SUPPORTS_SYSFS
465 sysfs_slab_unlink(s);
466 #endif
467 list_add_tail(&s->list, &slab_caches_to_rcu_destroy);
468 schedule_work(&slab_caches_to_rcu_destroy_work);
469 } else {
470 kfence_shutdown_cache(s);
471 debugfs_slab_release(s);
472 #ifdef SLAB_SUPPORTS_SYSFS
473 sysfs_slab_unlink(s);
474 sysfs_slab_release(s);
475 #else
476 slab_kmem_cache_release(s);
477 #endif
478 }
479
480 return 0;
481 }
482
slab_kmem_cache_release(struct kmem_cache * s)483 void slab_kmem_cache_release(struct kmem_cache *s)
484 {
485 __kmem_cache_release(s);
486 kfree_const(s->name);
487 kmem_cache_free(kmem_cache, s);
488 }
489
kmem_cache_destroy(struct kmem_cache * s)490 void kmem_cache_destroy(struct kmem_cache *s)
491 {
492 int err;
493
494 if (unlikely(!s))
495 return;
496
497 cpus_read_lock();
498 mutex_lock(&slab_mutex);
499
500 s->refcount--;
501 if (s->refcount)
502 goto out_unlock;
503
504 err = shutdown_cache(s);
505 if (err) {
506 pr_err("%s %s: Slab cache still has objects\n",
507 __func__, s->name);
508 dump_stack();
509 }
510 out_unlock:
511 mutex_unlock(&slab_mutex);
512 cpus_read_unlock();
513 }
514 EXPORT_SYMBOL(kmem_cache_destroy);
515
516 /**
517 * kmem_cache_shrink - Shrink a cache.
518 * @cachep: The cache to shrink.
519 *
520 * Releases as many slabs as possible for a cache.
521 * To help debugging, a zero exit status indicates all slabs were released.
522 *
523 * Return: %0 if all slabs were released, non-zero otherwise
524 */
kmem_cache_shrink(struct kmem_cache * cachep)525 int kmem_cache_shrink(struct kmem_cache *cachep)
526 {
527 int ret;
528
529
530 kasan_cache_shrink(cachep);
531 ret = __kmem_cache_shrink(cachep);
532
533 return ret;
534 }
535 EXPORT_SYMBOL(kmem_cache_shrink);
536
slab_is_available(void)537 bool slab_is_available(void)
538 {
539 return slab_state >= UP;
540 }
541
542 #ifdef CONFIG_PRINTK
543 /**
544 * kmem_valid_obj - does the pointer reference a valid slab object?
545 * @object: pointer to query.
546 *
547 * Return: %true if the pointer is to a not-yet-freed object from
548 * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer
549 * is to an already-freed object, and %false otherwise.
550 */
kmem_valid_obj(void * object)551 bool kmem_valid_obj(void *object)
552 {
553 struct page *page;
554
555 /* Some arches consider ZERO_SIZE_PTR to be a valid address. */
556 if (object < (void *)PAGE_SIZE || !virt_addr_valid(object))
557 return false;
558 page = virt_to_head_page(object);
559 return PageSlab(page);
560 }
561 EXPORT_SYMBOL_GPL(kmem_valid_obj);
562
563 /**
564 * kmem_dump_obj - Print available slab provenance information
565 * @object: slab object for which to find provenance information.
566 *
567 * This function uses pr_cont(), so that the caller is expected to have
568 * printed out whatever preamble is appropriate. The provenance information
569 * depends on the type of object and on how much debugging is enabled.
570 * For a slab-cache object, the fact that it is a slab object is printed,
571 * and, if available, the slab name, return address, and stack trace from
572 * the allocation and last free path of that object.
573 *
574 * This function will splat if passed a pointer to a non-slab object.
575 * If you are not sure what type of object you have, you should instead
576 * use mem_dump_obj().
577 */
kmem_dump_obj(void * object)578 void kmem_dump_obj(void *object)
579 {
580 char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc";
581 int i;
582 struct page *page;
583 unsigned long ptroffset;
584 struct kmem_obj_info kp = { };
585
586 if (WARN_ON_ONCE(!virt_addr_valid(object)))
587 return;
588 page = virt_to_head_page(object);
589 if (WARN_ON_ONCE(!PageSlab(page))) {
590 pr_cont(" non-slab memory.\n");
591 return;
592 }
593 kmem_obj_info(&kp, object, page);
594 if (kp.kp_slab_cache)
595 pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name);
596 else
597 pr_cont(" slab%s", cp);
598 if (kp.kp_objp)
599 pr_cont(" start %px", kp.kp_objp);
600 if (kp.kp_data_offset)
601 pr_cont(" data offset %lu", kp.kp_data_offset);
602 if (kp.kp_objp) {
603 ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset;
604 pr_cont(" pointer offset %lu", ptroffset);
605 }
606 if (kp.kp_slab_cache && kp.kp_slab_cache->usersize)
607 pr_cont(" size %u", kp.kp_slab_cache->usersize);
608 if (kp.kp_ret)
609 pr_cont(" allocated at %pS\n", kp.kp_ret);
610 else
611 pr_cont("\n");
612 for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) {
613 if (!kp.kp_stack[i])
614 break;
615 pr_info(" %pS\n", kp.kp_stack[i]);
616 }
617
618 if (kp.kp_free_stack[0])
619 pr_cont(" Free path:\n");
620
621 for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) {
622 if (!kp.kp_free_stack[i])
623 break;
624 pr_info(" %pS\n", kp.kp_free_stack[i]);
625 }
626
627 }
628 EXPORT_SYMBOL_GPL(kmem_dump_obj);
629 #endif
630
631 #ifndef CONFIG_SLOB
632 /* Create a cache during boot when no slab services are available yet */
create_boot_cache(struct kmem_cache * s,const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)633 void __init create_boot_cache(struct kmem_cache *s, const char *name,
634 unsigned int size, slab_flags_t flags,
635 unsigned int useroffset, unsigned int usersize)
636 {
637 int err;
638 unsigned int align = ARCH_KMALLOC_MINALIGN;
639
640 s->name = name;
641 s->size = s->object_size = size;
642
643 /*
644 * For power of two sizes, guarantee natural alignment for kmalloc
645 * caches, regardless of SL*B debugging options.
646 */
647 if (is_power_of_2(size))
648 align = max(align, size);
649 s->align = calculate_alignment(flags, align, size);
650
651 s->useroffset = useroffset;
652 s->usersize = usersize;
653
654 err = __kmem_cache_create(s, flags);
655
656 if (err)
657 panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n",
658 name, size, err);
659
660 s->refcount = -1; /* Exempt from merging for now */
661 }
662
create_kmalloc_cache(const char * name,unsigned int size,slab_flags_t flags,unsigned int useroffset,unsigned int usersize)663 struct kmem_cache *__init create_kmalloc_cache(const char *name,
664 unsigned int size, slab_flags_t flags,
665 unsigned int useroffset, unsigned int usersize)
666 {
667 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
668
669 if (!s)
670 panic("Out of memory when creating slab %s\n", name);
671
672 create_boot_cache(s, name, size, flags, useroffset, usersize);
673 kasan_cache_create_kmalloc(s);
674 list_add(&s->list, &slab_caches);
675 s->refcount = 1;
676 return s;
677 }
678
679 struct kmem_cache *
680 kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init =
681 { /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ };
682 EXPORT_SYMBOL(kmalloc_caches);
683
684 /*
685 * Conversion table for small slabs sizes / 8 to the index in the
686 * kmalloc array. This is necessary for slabs < 192 since we have non power
687 * of two cache sizes there. The size of larger slabs can be determined using
688 * fls.
689 */
690 static u8 size_index[24] __ro_after_init = {
691 3, /* 8 */
692 4, /* 16 */
693 5, /* 24 */
694 5, /* 32 */
695 6, /* 40 */
696 6, /* 48 */
697 6, /* 56 */
698 6, /* 64 */
699 1, /* 72 */
700 1, /* 80 */
701 1, /* 88 */
702 1, /* 96 */
703 7, /* 104 */
704 7, /* 112 */
705 7, /* 120 */
706 7, /* 128 */
707 2, /* 136 */
708 2, /* 144 */
709 2, /* 152 */
710 2, /* 160 */
711 2, /* 168 */
712 2, /* 176 */
713 2, /* 184 */
714 2 /* 192 */
715 };
716
size_index_elem(unsigned int bytes)717 static inline unsigned int size_index_elem(unsigned int bytes)
718 {
719 return (bytes - 1) / 8;
720 }
721
722 /*
723 * Find the kmem_cache structure that serves a given size of
724 * allocation
725 */
kmalloc_slab(size_t size,gfp_t flags)726 struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
727 {
728 unsigned int index;
729
730 if (size <= 192) {
731 if (!size)
732 return ZERO_SIZE_PTR;
733
734 index = size_index[size_index_elem(size)];
735 } else {
736 if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE))
737 return NULL;
738 index = fls(size - 1);
739 }
740
741 return kmalloc_caches[kmalloc_type(flags)][index];
742 }
743
744 #ifdef CONFIG_ZONE_DMA
745 #define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz,
746 #else
747 #define KMALLOC_DMA_NAME(sz)
748 #endif
749
750 #ifdef CONFIG_MEMCG_KMEM
751 #define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz,
752 #else
753 #define KMALLOC_CGROUP_NAME(sz)
754 #endif
755
756 #define INIT_KMALLOC_INFO(__size, __short_size) \
757 { \
758 .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \
759 .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #__short_size, \
760 KMALLOC_CGROUP_NAME(__short_size) \
761 KMALLOC_DMA_NAME(__short_size) \
762 .size = __size, \
763 }
764
765 /*
766 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
767 * kmalloc_index() supports up to 2^25=32MB, so the final entry of the table is
768 * kmalloc-32M.
769 */
770 const struct kmalloc_info_struct kmalloc_info[] __initconst = {
771 INIT_KMALLOC_INFO(0, 0),
772 INIT_KMALLOC_INFO(96, 96),
773 INIT_KMALLOC_INFO(192, 192),
774 INIT_KMALLOC_INFO(8, 8),
775 INIT_KMALLOC_INFO(16, 16),
776 INIT_KMALLOC_INFO(32, 32),
777 INIT_KMALLOC_INFO(64, 64),
778 INIT_KMALLOC_INFO(128, 128),
779 INIT_KMALLOC_INFO(256, 256),
780 INIT_KMALLOC_INFO(512, 512),
781 INIT_KMALLOC_INFO(1024, 1k),
782 INIT_KMALLOC_INFO(2048, 2k),
783 INIT_KMALLOC_INFO(4096, 4k),
784 INIT_KMALLOC_INFO(8192, 8k),
785 INIT_KMALLOC_INFO(16384, 16k),
786 INIT_KMALLOC_INFO(32768, 32k),
787 INIT_KMALLOC_INFO(65536, 64k),
788 INIT_KMALLOC_INFO(131072, 128k),
789 INIT_KMALLOC_INFO(262144, 256k),
790 INIT_KMALLOC_INFO(524288, 512k),
791 INIT_KMALLOC_INFO(1048576, 1M),
792 INIT_KMALLOC_INFO(2097152, 2M),
793 INIT_KMALLOC_INFO(4194304, 4M),
794 INIT_KMALLOC_INFO(8388608, 8M),
795 INIT_KMALLOC_INFO(16777216, 16M),
796 INIT_KMALLOC_INFO(33554432, 32M)
797 };
798
799 /*
800 * Patch up the size_index table if we have strange large alignment
801 * requirements for the kmalloc array. This is only the case for
802 * MIPS it seems. The standard arches will not generate any code here.
803 *
804 * Largest permitted alignment is 256 bytes due to the way we
805 * handle the index determination for the smaller caches.
806 *
807 * Make sure that nothing crazy happens if someone starts tinkering
808 * around with ARCH_KMALLOC_MINALIGN
809 */
setup_kmalloc_cache_index_table(void)810 void __init setup_kmalloc_cache_index_table(void)
811 {
812 unsigned int i;
813
814 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
815 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
816
817 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
818 unsigned int elem = size_index_elem(i);
819
820 if (elem >= ARRAY_SIZE(size_index))
821 break;
822 size_index[elem] = KMALLOC_SHIFT_LOW;
823 }
824
825 if (KMALLOC_MIN_SIZE >= 64) {
826 /*
827 * The 96 byte size cache is not used if the alignment
828 * is 64 byte.
829 */
830 for (i = 64 + 8; i <= 96; i += 8)
831 size_index[size_index_elem(i)] = 7;
832
833 }
834
835 if (KMALLOC_MIN_SIZE >= 128) {
836 /*
837 * The 192 byte sized cache is not used if the alignment
838 * is 128 byte. Redirect kmalloc to use the 256 byte cache
839 * instead.
840 */
841 for (i = 128 + 8; i <= 192; i += 8)
842 size_index[size_index_elem(i)] = 8;
843 }
844 }
845
846 static void __init
new_kmalloc_cache(int idx,enum kmalloc_cache_type type,slab_flags_t flags)847 new_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags)
848 {
849 if (type == KMALLOC_RECLAIM) {
850 flags |= SLAB_RECLAIM_ACCOUNT;
851 } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) {
852 if (cgroup_memory_nokmem) {
853 kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx];
854 return;
855 }
856 flags |= SLAB_ACCOUNT;
857 }
858
859 kmalloc_caches[type][idx] = create_kmalloc_cache(
860 kmalloc_info[idx].name[type],
861 kmalloc_info[idx].size, flags, 0,
862 kmalloc_info[idx].size);
863
864 /*
865 * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for
866 * KMALLOC_NORMAL caches.
867 */
868 if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL))
869 kmalloc_caches[type][idx]->refcount = -1;
870 }
871
872 /*
873 * Create the kmalloc array. Some of the regular kmalloc arrays
874 * may already have been created because they were needed to
875 * enable allocations for slab creation.
876 */
create_kmalloc_caches(slab_flags_t flags)877 void __init create_kmalloc_caches(slab_flags_t flags)
878 {
879 int i;
880 enum kmalloc_cache_type type;
881
882 /*
883 * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined
884 */
885 for (type = KMALLOC_NORMAL; type <= KMALLOC_RECLAIM; type++) {
886 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
887 if (!kmalloc_caches[type][i])
888 new_kmalloc_cache(i, type, flags);
889
890 /*
891 * Caches that are not of the two-to-the-power-of size.
892 * These have to be created immediately after the
893 * earlier power of two caches
894 */
895 if (KMALLOC_MIN_SIZE <= 32 && i == 6 &&
896 !kmalloc_caches[type][1])
897 new_kmalloc_cache(1, type, flags);
898 if (KMALLOC_MIN_SIZE <= 64 && i == 7 &&
899 !kmalloc_caches[type][2])
900 new_kmalloc_cache(2, type, flags);
901 }
902 }
903
904 /* Kmalloc array is now usable */
905 slab_state = UP;
906
907 #ifdef CONFIG_ZONE_DMA
908 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
909 struct kmem_cache *s = kmalloc_caches[KMALLOC_NORMAL][i];
910
911 if (s) {
912 kmalloc_caches[KMALLOC_DMA][i] = create_kmalloc_cache(
913 kmalloc_info[i].name[KMALLOC_DMA],
914 kmalloc_info[i].size,
915 SLAB_CACHE_DMA | flags, 0,
916 kmalloc_info[i].size);
917 }
918 }
919 #endif
920 }
921 #endif /* !CONFIG_SLOB */
922
kmalloc_fix_flags(gfp_t flags)923 gfp_t kmalloc_fix_flags(gfp_t flags)
924 {
925 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
926
927 flags &= ~GFP_SLAB_BUG_MASK;
928 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
929 invalid_mask, &invalid_mask, flags, &flags);
930 dump_stack();
931
932 return flags;
933 }
934
935 /*
936 * To avoid unnecessary overhead, we pass through large allocation requests
937 * directly to the page allocator. We use __GFP_COMP, because we will need to
938 * know the allocation order to free the pages properly in kfree.
939 */
kmalloc_order(size_t size,gfp_t flags,unsigned int order)940 void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
941 {
942 void *ret = NULL;
943 struct page *page;
944
945 if (unlikely(flags & GFP_SLAB_BUG_MASK))
946 flags = kmalloc_fix_flags(flags);
947
948 flags |= __GFP_COMP;
949 page = alloc_pages(flags, order);
950 if (likely(page)) {
951 ret = page_address(page);
952 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B,
953 PAGE_SIZE << order);
954 }
955 ret = kasan_kmalloc_large(ret, size, flags);
956 /* As ret might get tagged, call kmemleak hook after KASAN. */
957 kmemleak_alloc(ret, size, 1, flags);
958 return ret;
959 }
960 EXPORT_SYMBOL(kmalloc_order);
961
962 #ifdef CONFIG_TRACING
kmalloc_order_trace(size_t size,gfp_t flags,unsigned int order)963 void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
964 {
965 void *ret = kmalloc_order(size, flags, order);
966 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
967 return ret;
968 }
969 EXPORT_SYMBOL(kmalloc_order_trace);
970 #endif
971
972 #ifdef CONFIG_SLAB_FREELIST_RANDOM
973 /* Randomize a generic freelist */
freelist_randomize(struct rnd_state * state,unsigned int * list,unsigned int count)974 static void freelist_randomize(struct rnd_state *state, unsigned int *list,
975 unsigned int count)
976 {
977 unsigned int rand;
978 unsigned int i;
979
980 for (i = 0; i < count; i++)
981 list[i] = i;
982
983 /* Fisher-Yates shuffle */
984 for (i = count - 1; i > 0; i--) {
985 rand = prandom_u32_state(state);
986 rand %= (i + 1);
987 swap(list[i], list[rand]);
988 }
989 }
990
991 /* Create a random sequence per cache */
cache_random_seq_create(struct kmem_cache * cachep,unsigned int count,gfp_t gfp)992 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
993 gfp_t gfp)
994 {
995 struct rnd_state state;
996
997 if (count < 2 || cachep->random_seq)
998 return 0;
999
1000 cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp);
1001 if (!cachep->random_seq)
1002 return -ENOMEM;
1003
1004 /* Get best entropy at this stage of boot */
1005 prandom_seed_state(&state, get_random_long());
1006
1007 freelist_randomize(&state, cachep->random_seq, count);
1008 return 0;
1009 }
1010
1011 /* Destroy the per-cache random freelist sequence */
cache_random_seq_destroy(struct kmem_cache * cachep)1012 void cache_random_seq_destroy(struct kmem_cache *cachep)
1013 {
1014 kfree(cachep->random_seq);
1015 cachep->random_seq = NULL;
1016 }
1017 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1018
1019 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
1020 #ifdef CONFIG_SLAB
1021 #define SLABINFO_RIGHTS (0600)
1022 #else
1023 #define SLABINFO_RIGHTS (0400)
1024 #endif
1025
print_slabinfo_header(struct seq_file * m)1026 static void print_slabinfo_header(struct seq_file *m)
1027 {
1028 /*
1029 * Output format version, so at least we can change it
1030 * without _too_ many complaints.
1031 */
1032 #ifdef CONFIG_DEBUG_SLAB
1033 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1034 #else
1035 seq_puts(m, "slabinfo - version: 2.1\n");
1036 #endif
1037 seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1038 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1039 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1040 #ifdef CONFIG_DEBUG_SLAB
1041 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1042 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1043 #endif
1044 seq_putc(m, '\n');
1045 }
1046
slab_start(struct seq_file * m,loff_t * pos)1047 void *slab_start(struct seq_file *m, loff_t *pos)
1048 {
1049 mutex_lock(&slab_mutex);
1050 return seq_list_start(&slab_caches, *pos);
1051 }
1052
slab_next(struct seq_file * m,void * p,loff_t * pos)1053 void *slab_next(struct seq_file *m, void *p, loff_t *pos)
1054 {
1055 return seq_list_next(p, &slab_caches, pos);
1056 }
1057
slab_stop(struct seq_file * m,void * p)1058 void slab_stop(struct seq_file *m, void *p)
1059 {
1060 mutex_unlock(&slab_mutex);
1061 }
1062
cache_show(struct kmem_cache * s,struct seq_file * m)1063 static void cache_show(struct kmem_cache *s, struct seq_file *m)
1064 {
1065 struct slabinfo sinfo;
1066
1067 memset(&sinfo, 0, sizeof(sinfo));
1068 get_slabinfo(s, &sinfo);
1069
1070 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
1071 s->name, sinfo.active_objs, sinfo.num_objs, s->size,
1072 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1073
1074 seq_printf(m, " : tunables %4u %4u %4u",
1075 sinfo.limit, sinfo.batchcount, sinfo.shared);
1076 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1077 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1078 slabinfo_show_stats(m, s);
1079 seq_putc(m, '\n');
1080 }
1081
slab_show(struct seq_file * m,void * p)1082 static int slab_show(struct seq_file *m, void *p)
1083 {
1084 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1085
1086 if (p == slab_caches.next)
1087 print_slabinfo_header(m);
1088 cache_show(s, m);
1089 return 0;
1090 }
1091
dump_unreclaimable_slab(void)1092 void dump_unreclaimable_slab(void)
1093 {
1094 struct kmem_cache *s;
1095 struct slabinfo sinfo;
1096
1097 /*
1098 * Here acquiring slab_mutex is risky since we don't prefer to get
1099 * sleep in oom path. But, without mutex hold, it may introduce a
1100 * risk of crash.
1101 * Use mutex_trylock to protect the list traverse, dump nothing
1102 * without acquiring the mutex.
1103 */
1104 if (!mutex_trylock(&slab_mutex)) {
1105 pr_warn("excessive unreclaimable slab but cannot dump stats\n");
1106 return;
1107 }
1108
1109 pr_info("Unreclaimable slab info:\n");
1110 pr_info("Name Used Total\n");
1111
1112 list_for_each_entry(s, &slab_caches, list) {
1113 if (s->flags & SLAB_RECLAIM_ACCOUNT)
1114 continue;
1115
1116 get_slabinfo(s, &sinfo);
1117
1118 if (sinfo.num_objs > 0)
1119 pr_info("%-17s %10luKB %10luKB\n", s->name,
1120 (sinfo.active_objs * s->size) / 1024,
1121 (sinfo.num_objs * s->size) / 1024);
1122 }
1123 mutex_unlock(&slab_mutex);
1124 }
1125
1126 #if defined(CONFIG_MEMCG_KMEM)
memcg_slab_show(struct seq_file * m,void * p)1127 int memcg_slab_show(struct seq_file *m, void *p)
1128 {
1129 /*
1130 * Deprecated.
1131 * Please, take a look at tools/cgroup/slabinfo.py .
1132 */
1133 return 0;
1134 }
1135 #endif
1136
1137 /*
1138 * slabinfo_op - iterator that generates /proc/slabinfo
1139 *
1140 * Output layout:
1141 * cache-name
1142 * num-active-objs
1143 * total-objs
1144 * object size
1145 * num-active-slabs
1146 * total-slabs
1147 * num-pages-per-slab
1148 * + further values on SMP and with statistics enabled
1149 */
1150 static const struct seq_operations slabinfo_op = {
1151 .start = slab_start,
1152 .next = slab_next,
1153 .stop = slab_stop,
1154 .show = slab_show,
1155 };
1156
slabinfo_open(struct inode * inode,struct file * file)1157 static int slabinfo_open(struct inode *inode, struct file *file)
1158 {
1159 return seq_open(file, &slabinfo_op);
1160 }
1161
1162 static const struct proc_ops slabinfo_proc_ops = {
1163 .proc_flags = PROC_ENTRY_PERMANENT,
1164 .proc_open = slabinfo_open,
1165 .proc_read = seq_read,
1166 .proc_write = slabinfo_write,
1167 .proc_lseek = seq_lseek,
1168 .proc_release = seq_release,
1169 };
1170
slab_proc_init(void)1171 static int __init slab_proc_init(void)
1172 {
1173 proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops);
1174 return 0;
1175 }
1176 module_init(slab_proc_init);
1177
1178 #endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */
1179
__do_krealloc(const void * p,size_t new_size,gfp_t flags)1180 static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1181 gfp_t flags)
1182 {
1183 void *ret;
1184 size_t ks;
1185
1186 /* Don't use instrumented ksize to allow precise KASAN poisoning. */
1187 if (likely(!ZERO_OR_NULL_PTR(p))) {
1188 if (!kasan_check_byte(p))
1189 return NULL;
1190 ks = kfence_ksize(p) ?: __ksize(p);
1191 } else
1192 ks = 0;
1193
1194 /* If the object still fits, repoison it precisely. */
1195 if (ks >= new_size) {
1196 p = kasan_krealloc((void *)p, new_size, flags);
1197 return (void *)p;
1198 }
1199
1200 ret = kmalloc_track_caller(new_size, flags);
1201 if (ret && p) {
1202 /* Disable KASAN checks as the object's redzone is accessed. */
1203 kasan_disable_current();
1204 memcpy(ret, kasan_reset_tag(p), ks);
1205 kasan_enable_current();
1206 }
1207
1208 return ret;
1209 }
1210
1211 /**
1212 * krealloc - reallocate memory. The contents will remain unchanged.
1213 * @p: object to reallocate memory for.
1214 * @new_size: how many bytes of memory are required.
1215 * @flags: the type of memory to allocate.
1216 *
1217 * The contents of the object pointed to are preserved up to the
1218 * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored).
1219 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
1220 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
1221 *
1222 * Return: pointer to the allocated memory or %NULL in case of error
1223 */
krealloc(const void * p,size_t new_size,gfp_t flags)1224 void *krealloc(const void *p, size_t new_size, gfp_t flags)
1225 {
1226 void *ret;
1227
1228 if (unlikely(!new_size)) {
1229 kfree(p);
1230 return ZERO_SIZE_PTR;
1231 }
1232
1233 ret = __do_krealloc(p, new_size, flags);
1234 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
1235 kfree(p);
1236
1237 return ret;
1238 }
1239 EXPORT_SYMBOL(krealloc);
1240
1241 /**
1242 * kfree_sensitive - Clear sensitive information in memory before freeing
1243 * @p: object to free memory of
1244 *
1245 * The memory of the object @p points to is zeroed before freed.
1246 * If @p is %NULL, kfree_sensitive() does nothing.
1247 *
1248 * Note: this function zeroes the whole allocated buffer which can be a good
1249 * deal bigger than the requested buffer size passed to kmalloc(). So be
1250 * careful when using this function in performance sensitive code.
1251 */
kfree_sensitive(const void * p)1252 void kfree_sensitive(const void *p)
1253 {
1254 size_t ks;
1255 void *mem = (void *)p;
1256
1257 ks = ksize(mem);
1258 if (ks)
1259 memzero_explicit(mem, ks);
1260 kfree(mem);
1261 }
1262 EXPORT_SYMBOL(kfree_sensitive);
1263
1264 /**
1265 * ksize - get the actual amount of memory allocated for a given object
1266 * @objp: Pointer to the object
1267 *
1268 * kmalloc may internally round up allocations and return more memory
1269 * than requested. ksize() can be used to determine the actual amount of
1270 * memory allocated. The caller may use this additional memory, even though
1271 * a smaller amount of memory was initially specified with the kmalloc call.
1272 * The caller must guarantee that objp points to a valid object previously
1273 * allocated with either kmalloc() or kmem_cache_alloc(). The object
1274 * must not be freed during the duration of the call.
1275 *
1276 * Return: size of the actual memory used by @objp in bytes
1277 */
ksize(const void * objp)1278 size_t ksize(const void *objp)
1279 {
1280 size_t size;
1281
1282 /*
1283 * We need to first check that the pointer to the object is valid, and
1284 * only then unpoison the memory. The report printed from ksize() is
1285 * more useful, then when it's printed later when the behaviour could
1286 * be undefined due to a potential use-after-free or double-free.
1287 *
1288 * We use kasan_check_byte(), which is supported for the hardware
1289 * tag-based KASAN mode, unlike kasan_check_read/write().
1290 *
1291 * If the pointed to memory is invalid, we return 0 to avoid users of
1292 * ksize() writing to and potentially corrupting the memory region.
1293 *
1294 * We want to perform the check before __ksize(), to avoid potentially
1295 * crashing in __ksize() due to accessing invalid metadata.
1296 */
1297 if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp))
1298 return 0;
1299
1300 size = kfence_ksize(objp) ?: __ksize(objp);
1301 /*
1302 * We assume that ksize callers could use whole allocated area,
1303 * so we need to unpoison this area.
1304 */
1305 kasan_unpoison_range(objp, size);
1306 return size;
1307 }
1308 EXPORT_SYMBOL(ksize);
1309
1310 /* Tracepoints definitions. */
1311 EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1312 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1313 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1314 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1315 EXPORT_TRACEPOINT_SYMBOL(kfree);
1316 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
1317
should_failslab(struct kmem_cache * s,gfp_t gfpflags)1318 int should_failslab(struct kmem_cache *s, gfp_t gfpflags)
1319 {
1320 if (__should_failslab(s, gfpflags))
1321 return -ENOMEM;
1322 return 0;
1323 }
1324 ALLOW_ERROR_INJECTION(should_failslab, ERRNO);
1325