1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 *
4 * Copyright 2010-2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7 #include <linux/types.h>
8 #include <linux/string.h>
9 #include <linux/kvm.h>
10 #include <linux/kvm_host.h>
11 #include <linux/hugetlb.h>
12 #include <linux/module.h>
13 #include <linux/log2.h>
14 #include <linux/sizes.h>
15
16 #include <asm/trace.h>
17 #include <asm/kvm_ppc.h>
18 #include <asm/kvm_book3s.h>
19 #include <asm/book3s/64/mmu-hash.h>
20 #include <asm/hvcall.h>
21 #include <asm/synch.h>
22 #include <asm/ppc-opcode.h>
23 #include <asm/pte-walk.h>
24
25 /* Translate address of a vmalloc'd thing to a linear map address */
real_vmalloc_addr(void * addr)26 static void *real_vmalloc_addr(void *addr)
27 {
28 return __va(ppc_find_vmap_phys((unsigned long)addr));
29 }
30
31 /* Return 1 if we need to do a global tlbie, 0 if we can use tlbiel */
global_invalidates(struct kvm * kvm)32 static int global_invalidates(struct kvm *kvm)
33 {
34 int global;
35 int cpu;
36
37 /*
38 * If there is only one vcore, and it's currently running,
39 * as indicated by local_paca->kvm_hstate.kvm_vcpu being set,
40 * we can use tlbiel as long as we mark all other physical
41 * cores as potentially having stale TLB entries for this lpid.
42 * Otherwise, don't use tlbiel.
43 */
44 if (kvm->arch.online_vcores == 1 && local_paca->kvm_hstate.kvm_vcpu)
45 global = 0;
46 else
47 global = 1;
48
49 /* LPID has been switched to host if in virt mode so can't do local */
50 if (!global && (mfmsr() & (MSR_IR|MSR_DR)))
51 global = 1;
52
53 if (!global) {
54 /* any other core might now have stale TLB entries... */
55 smp_wmb();
56 cpumask_setall(&kvm->arch.need_tlb_flush);
57 cpu = local_paca->kvm_hstate.kvm_vcore->pcpu;
58 /*
59 * On POWER9, threads are independent but the TLB is shared,
60 * so use the bit for the first thread to represent the core.
61 */
62 if (cpu_has_feature(CPU_FTR_ARCH_300))
63 cpu = cpu_first_tlb_thread_sibling(cpu);
64 cpumask_clear_cpu(cpu, &kvm->arch.need_tlb_flush);
65 }
66
67 return global;
68 }
69
70 /*
71 * Add this HPTE into the chain for the real page.
72 * Must be called with the chain locked; it unlocks the chain.
73 */
kvmppc_add_revmap_chain(struct kvm * kvm,struct revmap_entry * rev,unsigned long * rmap,long pte_index,int realmode)74 void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
75 unsigned long *rmap, long pte_index, int realmode)
76 {
77 struct revmap_entry *head, *tail;
78 unsigned long i;
79
80 if (*rmap & KVMPPC_RMAP_PRESENT) {
81 i = *rmap & KVMPPC_RMAP_INDEX;
82 head = &kvm->arch.hpt.rev[i];
83 if (realmode)
84 head = real_vmalloc_addr(head);
85 tail = &kvm->arch.hpt.rev[head->back];
86 if (realmode)
87 tail = real_vmalloc_addr(tail);
88 rev->forw = i;
89 rev->back = head->back;
90 tail->forw = pte_index;
91 head->back = pte_index;
92 } else {
93 rev->forw = rev->back = pte_index;
94 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) |
95 pte_index | KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_HPT;
96 }
97 unlock_rmap(rmap);
98 }
99 EXPORT_SYMBOL_GPL(kvmppc_add_revmap_chain);
100
101 /* Update the dirty bitmap of a memslot */
kvmppc_update_dirty_map(const struct kvm_memory_slot * memslot,unsigned long gfn,unsigned long psize)102 void kvmppc_update_dirty_map(const struct kvm_memory_slot *memslot,
103 unsigned long gfn, unsigned long psize)
104 {
105 unsigned long npages;
106
107 if (!psize || !memslot->dirty_bitmap)
108 return;
109 npages = (psize + PAGE_SIZE - 1) / PAGE_SIZE;
110 gfn -= memslot->base_gfn;
111 set_dirty_bits_atomic(memslot->dirty_bitmap, gfn, npages);
112 }
113 EXPORT_SYMBOL_GPL(kvmppc_update_dirty_map);
114
kvmppc_set_dirty_from_hpte(struct kvm * kvm,unsigned long hpte_v,unsigned long hpte_gr)115 static void kvmppc_set_dirty_from_hpte(struct kvm *kvm,
116 unsigned long hpte_v, unsigned long hpte_gr)
117 {
118 struct kvm_memory_slot *memslot;
119 unsigned long gfn;
120 unsigned long psize;
121
122 psize = kvmppc_actual_pgsz(hpte_v, hpte_gr);
123 gfn = hpte_rpn(hpte_gr, psize);
124 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
125 if (memslot && memslot->dirty_bitmap)
126 kvmppc_update_dirty_map(memslot, gfn, psize);
127 }
128
129 /* Returns a pointer to the revmap entry for the page mapped by a HPTE */
revmap_for_hpte(struct kvm * kvm,unsigned long hpte_v,unsigned long hpte_gr,struct kvm_memory_slot ** memslotp,unsigned long * gfnp)130 static unsigned long *revmap_for_hpte(struct kvm *kvm, unsigned long hpte_v,
131 unsigned long hpte_gr,
132 struct kvm_memory_slot **memslotp,
133 unsigned long *gfnp)
134 {
135 struct kvm_memory_slot *memslot;
136 unsigned long *rmap;
137 unsigned long gfn;
138
139 gfn = hpte_rpn(hpte_gr, kvmppc_actual_pgsz(hpte_v, hpte_gr));
140 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
141 if (memslotp)
142 *memslotp = memslot;
143 if (gfnp)
144 *gfnp = gfn;
145 if (!memslot)
146 return NULL;
147
148 rmap = real_vmalloc_addr(&memslot->arch.rmap[gfn - memslot->base_gfn]);
149 return rmap;
150 }
151
152 /* Remove this HPTE from the chain for a real page */
remove_revmap_chain(struct kvm * kvm,long pte_index,struct revmap_entry * rev,unsigned long hpte_v,unsigned long hpte_r)153 static void remove_revmap_chain(struct kvm *kvm, long pte_index,
154 struct revmap_entry *rev,
155 unsigned long hpte_v, unsigned long hpte_r)
156 {
157 struct revmap_entry *next, *prev;
158 unsigned long ptel, head;
159 unsigned long *rmap;
160 unsigned long rcbits;
161 struct kvm_memory_slot *memslot;
162 unsigned long gfn;
163
164 rcbits = hpte_r & (HPTE_R_R | HPTE_R_C);
165 ptel = rev->guest_rpte |= rcbits;
166 rmap = revmap_for_hpte(kvm, hpte_v, ptel, &memslot, &gfn);
167 if (!rmap)
168 return;
169 lock_rmap(rmap);
170
171 head = *rmap & KVMPPC_RMAP_INDEX;
172 next = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->forw]);
173 prev = real_vmalloc_addr(&kvm->arch.hpt.rev[rev->back]);
174 next->back = rev->back;
175 prev->forw = rev->forw;
176 if (head == pte_index) {
177 head = rev->forw;
178 if (head == pte_index)
179 *rmap &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
180 else
181 *rmap = (*rmap & ~KVMPPC_RMAP_INDEX) | head;
182 }
183 *rmap |= rcbits << KVMPPC_RMAP_RC_SHIFT;
184 if (rcbits & HPTE_R_C)
185 kvmppc_update_dirty_map(memslot, gfn,
186 kvmppc_actual_pgsz(hpte_v, hpte_r));
187 unlock_rmap(rmap);
188 }
189
kvmppc_do_h_enter(struct kvm * kvm,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel,pgd_t * pgdir,bool realmode,unsigned long * pte_idx_ret)190 long kvmppc_do_h_enter(struct kvm *kvm, unsigned long flags,
191 long pte_index, unsigned long pteh, unsigned long ptel,
192 pgd_t *pgdir, bool realmode, unsigned long *pte_idx_ret)
193 {
194 unsigned long i, pa, gpa, gfn, psize;
195 unsigned long slot_fn, hva;
196 __be64 *hpte;
197 struct revmap_entry *rev;
198 unsigned long g_ptel;
199 struct kvm_memory_slot *memslot;
200 unsigned hpage_shift;
201 bool is_ci;
202 unsigned long *rmap;
203 pte_t *ptep;
204 unsigned int writing;
205 unsigned long mmu_seq;
206 unsigned long rcbits;
207
208 if (kvm_is_radix(kvm))
209 return H_FUNCTION;
210 /*
211 * The HPTE gets used by compute_tlbie_rb() to set TLBIE bits, so
212 * these functions should work together -- must ensure a guest can not
213 * cause problems with the TLBIE that KVM executes.
214 */
215 if ((pteh >> HPTE_V_SSIZE_SHIFT) & 0x2) {
216 /* B=0b1x is a reserved value, disallow it. */
217 return H_PARAMETER;
218 }
219 psize = kvmppc_actual_pgsz(pteh, ptel);
220 if (!psize)
221 return H_PARAMETER;
222 writing = hpte_is_writable(ptel);
223 pteh &= ~(HPTE_V_HVLOCK | HPTE_V_ABSENT | HPTE_V_VALID);
224 ptel &= ~HPTE_GR_RESERVED;
225 g_ptel = ptel;
226
227 /* used later to detect if we might have been invalidated */
228 mmu_seq = kvm->mmu_notifier_seq;
229 smp_rmb();
230
231 /* Find the memslot (if any) for this address */
232 gpa = (ptel & HPTE_R_RPN) & ~(psize - 1);
233 gfn = gpa >> PAGE_SHIFT;
234 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
235 pa = 0;
236 is_ci = false;
237 rmap = NULL;
238 if (!(memslot && !(memslot->flags & KVM_MEMSLOT_INVALID))) {
239 /* Emulated MMIO - mark this with key=31 */
240 pteh |= HPTE_V_ABSENT;
241 ptel |= HPTE_R_KEY_HI | HPTE_R_KEY_LO;
242 goto do_insert;
243 }
244
245 /* Check if the requested page fits entirely in the memslot. */
246 if (!slot_is_aligned(memslot, psize))
247 return H_PARAMETER;
248 slot_fn = gfn - memslot->base_gfn;
249 rmap = &memslot->arch.rmap[slot_fn];
250
251 /* Translate to host virtual address */
252 hva = __gfn_to_hva_memslot(memslot, gfn);
253
254 arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
255 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &hpage_shift);
256 if (ptep) {
257 pte_t pte;
258 unsigned int host_pte_size;
259
260 if (hpage_shift)
261 host_pte_size = 1ul << hpage_shift;
262 else
263 host_pte_size = PAGE_SIZE;
264 /*
265 * We should always find the guest page size
266 * to <= host page size, if host is using hugepage
267 */
268 if (host_pte_size < psize) {
269 arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
270 return H_PARAMETER;
271 }
272 pte = kvmppc_read_update_linux_pte(ptep, writing);
273 if (pte_present(pte) && !pte_protnone(pte)) {
274 if (writing && !__pte_write(pte))
275 /* make the actual HPTE be read-only */
276 ptel = hpte_make_readonly(ptel);
277 is_ci = pte_ci(pte);
278 pa = pte_pfn(pte) << PAGE_SHIFT;
279 pa |= hva & (host_pte_size - 1);
280 pa |= gpa & ~PAGE_MASK;
281 }
282 }
283 arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
284
285 ptel &= HPTE_R_KEY | HPTE_R_PP0 | (psize-1);
286 ptel |= pa;
287
288 if (pa)
289 pteh |= HPTE_V_VALID;
290 else {
291 pteh |= HPTE_V_ABSENT;
292 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
293 }
294
295 /*If we had host pte mapping then Check WIMG */
296 if (ptep && !hpte_cache_flags_ok(ptel, is_ci)) {
297 if (is_ci)
298 return H_PARAMETER;
299 /*
300 * Allow guest to map emulated device memory as
301 * uncacheable, but actually make it cacheable.
302 */
303 ptel &= ~(HPTE_R_W|HPTE_R_I|HPTE_R_G);
304 ptel |= HPTE_R_M;
305 }
306
307 /* Find and lock the HPTEG slot to use */
308 do_insert:
309 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
310 return H_PARAMETER;
311 if (likely((flags & H_EXACT) == 0)) {
312 pte_index &= ~7UL;
313 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
314 for (i = 0; i < 8; ++i) {
315 if ((be64_to_cpu(*hpte) & HPTE_V_VALID) == 0 &&
316 try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
317 HPTE_V_ABSENT))
318 break;
319 hpte += 2;
320 }
321 if (i == 8) {
322 /*
323 * Since try_lock_hpte doesn't retry (not even stdcx.
324 * failures), it could be that there is a free slot
325 * but we transiently failed to lock it. Try again,
326 * actually locking each slot and checking it.
327 */
328 hpte -= 16;
329 for (i = 0; i < 8; ++i) {
330 u64 pte;
331 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
332 cpu_relax();
333 pte = be64_to_cpu(hpte[0]);
334 if (!(pte & (HPTE_V_VALID | HPTE_V_ABSENT)))
335 break;
336 __unlock_hpte(hpte, pte);
337 hpte += 2;
338 }
339 if (i == 8)
340 return H_PTEG_FULL;
341 }
342 pte_index += i;
343 } else {
344 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
345 if (!try_lock_hpte(hpte, HPTE_V_HVLOCK | HPTE_V_VALID |
346 HPTE_V_ABSENT)) {
347 /* Lock the slot and check again */
348 u64 pte;
349
350 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
351 cpu_relax();
352 pte = be64_to_cpu(hpte[0]);
353 if (pte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
354 __unlock_hpte(hpte, pte);
355 return H_PTEG_FULL;
356 }
357 }
358 }
359
360 /* Save away the guest's idea of the second HPTE dword */
361 rev = &kvm->arch.hpt.rev[pte_index];
362 if (realmode)
363 rev = real_vmalloc_addr(rev);
364 if (rev) {
365 rev->guest_rpte = g_ptel;
366 note_hpte_modification(kvm, rev);
367 }
368
369 /* Link HPTE into reverse-map chain */
370 if (pteh & HPTE_V_VALID) {
371 if (realmode)
372 rmap = real_vmalloc_addr(rmap);
373 lock_rmap(rmap);
374 /* Check for pending invalidations under the rmap chain lock */
375 if (mmu_notifier_retry(kvm, mmu_seq)) {
376 /* inval in progress, write a non-present HPTE */
377 pteh |= HPTE_V_ABSENT;
378 pteh &= ~HPTE_V_VALID;
379 ptel &= ~(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
380 unlock_rmap(rmap);
381 } else {
382 kvmppc_add_revmap_chain(kvm, rev, rmap, pte_index,
383 realmode);
384 /* Only set R/C in real HPTE if already set in *rmap */
385 rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
386 ptel &= rcbits | ~(HPTE_R_R | HPTE_R_C);
387 }
388 }
389
390 /* Convert to new format on P9 */
391 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
392 ptel = hpte_old_to_new_r(pteh, ptel);
393 pteh = hpte_old_to_new_v(pteh);
394 }
395 hpte[1] = cpu_to_be64(ptel);
396
397 /* Write the first HPTE dword, unlocking the HPTE and making it valid */
398 eieio();
399 __unlock_hpte(hpte, pteh);
400 asm volatile("ptesync" : : : "memory");
401
402 *pte_idx_ret = pte_index;
403 return H_SUCCESS;
404 }
405 EXPORT_SYMBOL_GPL(kvmppc_do_h_enter);
406
kvmppc_h_enter(struct kvm_vcpu * vcpu,unsigned long flags,long pte_index,unsigned long pteh,unsigned long ptel)407 long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
408 long pte_index, unsigned long pteh, unsigned long ptel)
409 {
410 return kvmppc_do_h_enter(vcpu->kvm, flags, pte_index, pteh, ptel,
411 vcpu->arch.pgdir, true,
412 &vcpu->arch.regs.gpr[4]);
413 }
414 EXPORT_SYMBOL_GPL(kvmppc_h_enter);
415
416 #ifdef __BIG_ENDIAN__
417 #define LOCK_TOKEN (*(u32 *)(&get_paca()->lock_token))
418 #else
419 #define LOCK_TOKEN (*(u32 *)(&get_paca()->paca_index))
420 #endif
421
is_mmio_hpte(unsigned long v,unsigned long r)422 static inline int is_mmio_hpte(unsigned long v, unsigned long r)
423 {
424 return ((v & HPTE_V_ABSENT) &&
425 (r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
426 (HPTE_R_KEY_HI | HPTE_R_KEY_LO));
427 }
428
fixup_tlbie_lpid(unsigned long rb_value,unsigned long lpid)429 static inline void fixup_tlbie_lpid(unsigned long rb_value, unsigned long lpid)
430 {
431
432 if (cpu_has_feature(CPU_FTR_P9_TLBIE_ERAT_BUG)) {
433 /* Radix flush for a hash guest */
434
435 unsigned long rb,rs,prs,r,ric;
436
437 rb = PPC_BIT(52); /* IS = 2 */
438 rs = 0; /* lpid = 0 */
439 prs = 0; /* partition scoped */
440 r = 1; /* radix format */
441 ric = 0; /* RIC_FLSUH_TLB */
442
443 /*
444 * Need the extra ptesync to make sure we don't
445 * re-order the tlbie
446 */
447 asm volatile("ptesync": : :"memory");
448 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
449 : : "r"(rb), "i"(r), "i"(prs),
450 "i"(ric), "r"(rs) : "memory");
451 }
452
453 if (cpu_has_feature(CPU_FTR_P9_TLBIE_STQ_BUG)) {
454 asm volatile("ptesync": : :"memory");
455 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
456 "r" (rb_value), "r" (lpid));
457 }
458 }
459
do_tlbies(struct kvm * kvm,unsigned long * rbvalues,long npages,int global,bool need_sync)460 static void do_tlbies(struct kvm *kvm, unsigned long *rbvalues,
461 long npages, int global, bool need_sync)
462 {
463 long i;
464
465 /*
466 * We use the POWER9 5-operand versions of tlbie and tlbiel here.
467 * Since we are using RIC=0 PRS=0 R=0, and P7/P8 tlbiel ignores
468 * the RS field, this is backwards-compatible with P7 and P8.
469 */
470 if (global) {
471 if (need_sync)
472 asm volatile("ptesync" : : : "memory");
473 for (i = 0; i < npages; ++i) {
474 asm volatile(PPC_TLBIE_5(%0,%1,0,0,0) : :
475 "r" (rbvalues[i]), "r" (kvm->arch.lpid));
476 }
477
478 fixup_tlbie_lpid(rbvalues[i - 1], kvm->arch.lpid);
479 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
480 } else {
481 if (need_sync)
482 asm volatile("ptesync" : : : "memory");
483 for (i = 0; i < npages; ++i) {
484 asm volatile(PPC_TLBIEL(%0,%1,0,0,0) : :
485 "r" (rbvalues[i]), "r" (0));
486 }
487 asm volatile("ptesync" : : : "memory");
488 }
489 }
490
kvmppc_do_h_remove(struct kvm * kvm,unsigned long flags,unsigned long pte_index,unsigned long avpn,unsigned long * hpret)491 long kvmppc_do_h_remove(struct kvm *kvm, unsigned long flags,
492 unsigned long pte_index, unsigned long avpn,
493 unsigned long *hpret)
494 {
495 __be64 *hpte;
496 unsigned long v, r, rb;
497 struct revmap_entry *rev;
498 u64 pte, orig_pte, pte_r;
499
500 if (kvm_is_radix(kvm))
501 return H_FUNCTION;
502 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
503 return H_PARAMETER;
504 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
505 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
506 cpu_relax();
507 pte = orig_pte = be64_to_cpu(hpte[0]);
508 pte_r = be64_to_cpu(hpte[1]);
509 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
510 pte = hpte_new_to_old_v(pte, pte_r);
511 pte_r = hpte_new_to_old_r(pte_r);
512 }
513 if ((pte & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
514 ((flags & H_AVPN) && (pte & ~0x7fUL) != avpn) ||
515 ((flags & H_ANDCOND) && (pte & avpn) != 0)) {
516 __unlock_hpte(hpte, orig_pte);
517 return H_NOT_FOUND;
518 }
519
520 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
521 v = pte & ~HPTE_V_HVLOCK;
522 if (v & HPTE_V_VALID) {
523 hpte[0] &= ~cpu_to_be64(HPTE_V_VALID);
524 rb = compute_tlbie_rb(v, pte_r, pte_index);
525 do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
526 /*
527 * The reference (R) and change (C) bits in a HPT
528 * entry can be set by hardware at any time up until
529 * the HPTE is invalidated and the TLB invalidation
530 * sequence has completed. This means that when
531 * removing a HPTE, we need to re-read the HPTE after
532 * the invalidation sequence has completed in order to
533 * obtain reliable values of R and C.
534 */
535 remove_revmap_chain(kvm, pte_index, rev, v,
536 be64_to_cpu(hpte[1]));
537 }
538 r = rev->guest_rpte & ~HPTE_GR_RESERVED;
539 note_hpte_modification(kvm, rev);
540 unlock_hpte(hpte, 0);
541
542 if (is_mmio_hpte(v, pte_r))
543 atomic64_inc(&kvm->arch.mmio_update);
544
545 if (v & HPTE_V_ABSENT)
546 v = (v & ~HPTE_V_ABSENT) | HPTE_V_VALID;
547 hpret[0] = v;
548 hpret[1] = r;
549 return H_SUCCESS;
550 }
551 EXPORT_SYMBOL_GPL(kvmppc_do_h_remove);
552
kvmppc_h_remove(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index,unsigned long avpn)553 long kvmppc_h_remove(struct kvm_vcpu *vcpu, unsigned long flags,
554 unsigned long pte_index, unsigned long avpn)
555 {
556 return kvmppc_do_h_remove(vcpu->kvm, flags, pte_index, avpn,
557 &vcpu->arch.regs.gpr[4]);
558 }
559 EXPORT_SYMBOL_GPL(kvmppc_h_remove);
560
kvmppc_h_bulk_remove(struct kvm_vcpu * vcpu)561 long kvmppc_h_bulk_remove(struct kvm_vcpu *vcpu)
562 {
563 struct kvm *kvm = vcpu->kvm;
564 unsigned long *args = &vcpu->arch.regs.gpr[4];
565 __be64 *hp, *hptes[4];
566 unsigned long tlbrb[4];
567 long int i, j, k, n, found, indexes[4];
568 unsigned long flags, req, pte_index, rcbits;
569 int global;
570 long int ret = H_SUCCESS;
571 struct revmap_entry *rev, *revs[4];
572 u64 hp0, hp1;
573
574 if (kvm_is_radix(kvm))
575 return H_FUNCTION;
576 global = global_invalidates(kvm);
577 for (i = 0; i < 4 && ret == H_SUCCESS; ) {
578 n = 0;
579 for (; i < 4; ++i) {
580 j = i * 2;
581 pte_index = args[j];
582 flags = pte_index >> 56;
583 pte_index &= ((1ul << 56) - 1);
584 req = flags >> 6;
585 flags &= 3;
586 if (req == 3) { /* no more requests */
587 i = 4;
588 break;
589 }
590 if (req != 1 || flags == 3 ||
591 pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
592 /* parameter error */
593 args[j] = ((0xa0 | flags) << 56) + pte_index;
594 ret = H_PARAMETER;
595 break;
596 }
597 hp = (__be64 *) (kvm->arch.hpt.virt + (pte_index << 4));
598 /* to avoid deadlock, don't spin except for first */
599 if (!try_lock_hpte(hp, HPTE_V_HVLOCK)) {
600 if (n)
601 break;
602 while (!try_lock_hpte(hp, HPTE_V_HVLOCK))
603 cpu_relax();
604 }
605 found = 0;
606 hp0 = be64_to_cpu(hp[0]);
607 hp1 = be64_to_cpu(hp[1]);
608 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
609 hp0 = hpte_new_to_old_v(hp0, hp1);
610 hp1 = hpte_new_to_old_r(hp1);
611 }
612 if (hp0 & (HPTE_V_ABSENT | HPTE_V_VALID)) {
613 switch (flags & 3) {
614 case 0: /* absolute */
615 found = 1;
616 break;
617 case 1: /* andcond */
618 if (!(hp0 & args[j + 1]))
619 found = 1;
620 break;
621 case 2: /* AVPN */
622 if ((hp0 & ~0x7fUL) == args[j + 1])
623 found = 1;
624 break;
625 }
626 }
627 if (!found) {
628 hp[0] &= ~cpu_to_be64(HPTE_V_HVLOCK);
629 args[j] = ((0x90 | flags) << 56) + pte_index;
630 continue;
631 }
632
633 args[j] = ((0x80 | flags) << 56) + pte_index;
634 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
635 note_hpte_modification(kvm, rev);
636
637 if (!(hp0 & HPTE_V_VALID)) {
638 /* insert R and C bits from PTE */
639 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
640 args[j] |= rcbits << (56 - 5);
641 hp[0] = 0;
642 if (is_mmio_hpte(hp0, hp1))
643 atomic64_inc(&kvm->arch.mmio_update);
644 continue;
645 }
646
647 /* leave it locked */
648 hp[0] &= ~cpu_to_be64(HPTE_V_VALID);
649 tlbrb[n] = compute_tlbie_rb(hp0, hp1, pte_index);
650 indexes[n] = j;
651 hptes[n] = hp;
652 revs[n] = rev;
653 ++n;
654 }
655
656 if (!n)
657 break;
658
659 /* Now that we've collected a batch, do the tlbies */
660 do_tlbies(kvm, tlbrb, n, global, true);
661
662 /* Read PTE low words after tlbie to get final R/C values */
663 for (k = 0; k < n; ++k) {
664 j = indexes[k];
665 pte_index = args[j] & ((1ul << 56) - 1);
666 hp = hptes[k];
667 rev = revs[k];
668 remove_revmap_chain(kvm, pte_index, rev,
669 be64_to_cpu(hp[0]), be64_to_cpu(hp[1]));
670 rcbits = rev->guest_rpte & (HPTE_R_R|HPTE_R_C);
671 args[j] |= rcbits << (56 - 5);
672 __unlock_hpte(hp, 0);
673 }
674 }
675
676 return ret;
677 }
678 EXPORT_SYMBOL_GPL(kvmppc_h_bulk_remove);
679
kvmppc_h_protect(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index,unsigned long avpn)680 long kvmppc_h_protect(struct kvm_vcpu *vcpu, unsigned long flags,
681 unsigned long pte_index, unsigned long avpn)
682 {
683 struct kvm *kvm = vcpu->kvm;
684 __be64 *hpte;
685 struct revmap_entry *rev;
686 unsigned long v, r, rb, mask, bits;
687 u64 pte_v, pte_r;
688
689 if (kvm_is_radix(kvm))
690 return H_FUNCTION;
691 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
692 return H_PARAMETER;
693
694 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
695 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
696 cpu_relax();
697 v = pte_v = be64_to_cpu(hpte[0]);
698 if (cpu_has_feature(CPU_FTR_ARCH_300))
699 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[1]));
700 if ((v & (HPTE_V_ABSENT | HPTE_V_VALID)) == 0 ||
701 ((flags & H_AVPN) && (v & ~0x7fUL) != avpn)) {
702 __unlock_hpte(hpte, pte_v);
703 return H_NOT_FOUND;
704 }
705
706 pte_r = be64_to_cpu(hpte[1]);
707 bits = (flags << 55) & HPTE_R_PP0;
708 bits |= (flags << 48) & HPTE_R_KEY_HI;
709 bits |= flags & (HPTE_R_PP | HPTE_R_N | HPTE_R_KEY_LO);
710
711 /* Update guest view of 2nd HPTE dword */
712 mask = HPTE_R_PP0 | HPTE_R_PP | HPTE_R_N |
713 HPTE_R_KEY_HI | HPTE_R_KEY_LO;
714 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
715 if (rev) {
716 r = (rev->guest_rpte & ~mask) | bits;
717 rev->guest_rpte = r;
718 note_hpte_modification(kvm, rev);
719 }
720
721 /* Update HPTE */
722 if (v & HPTE_V_VALID) {
723 /*
724 * If the page is valid, don't let it transition from
725 * readonly to writable. If it should be writable, we'll
726 * take a trap and let the page fault code sort it out.
727 */
728 r = (pte_r & ~mask) | bits;
729 if (hpte_is_writable(r) && !hpte_is_writable(pte_r))
730 r = hpte_make_readonly(r);
731 /* If the PTE is changing, invalidate it first */
732 if (r != pte_r) {
733 rb = compute_tlbie_rb(v, r, pte_index);
734 hpte[0] = cpu_to_be64((pte_v & ~HPTE_V_VALID) |
735 HPTE_V_ABSENT);
736 do_tlbies(kvm, &rb, 1, global_invalidates(kvm), true);
737 /* Don't lose R/C bit updates done by hardware */
738 r |= be64_to_cpu(hpte[1]) & (HPTE_R_R | HPTE_R_C);
739 hpte[1] = cpu_to_be64(r);
740 }
741 }
742 unlock_hpte(hpte, pte_v & ~HPTE_V_HVLOCK);
743 asm volatile("ptesync" : : : "memory");
744 if (is_mmio_hpte(v, pte_r))
745 atomic64_inc(&kvm->arch.mmio_update);
746
747 return H_SUCCESS;
748 }
749 EXPORT_SYMBOL_GPL(kvmppc_h_protect);
750
kvmppc_h_read(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)751 long kvmppc_h_read(struct kvm_vcpu *vcpu, unsigned long flags,
752 unsigned long pte_index)
753 {
754 struct kvm *kvm = vcpu->kvm;
755 __be64 *hpte;
756 unsigned long v, r;
757 int i, n = 1;
758 struct revmap_entry *rev = NULL;
759
760 if (kvm_is_radix(kvm))
761 return H_FUNCTION;
762 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
763 return H_PARAMETER;
764 if (flags & H_READ_4) {
765 pte_index &= ~3;
766 n = 4;
767 }
768 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
769 for (i = 0; i < n; ++i, ++pte_index) {
770 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
771 v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
772 r = be64_to_cpu(hpte[1]);
773 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
774 v = hpte_new_to_old_v(v, r);
775 r = hpte_new_to_old_r(r);
776 }
777 if (v & HPTE_V_ABSENT) {
778 v &= ~HPTE_V_ABSENT;
779 v |= HPTE_V_VALID;
780 }
781 if (v & HPTE_V_VALID) {
782 r = rev[i].guest_rpte | (r & (HPTE_R_R | HPTE_R_C));
783 r &= ~HPTE_GR_RESERVED;
784 }
785 vcpu->arch.regs.gpr[4 + i * 2] = v;
786 vcpu->arch.regs.gpr[5 + i * 2] = r;
787 }
788 return H_SUCCESS;
789 }
790 EXPORT_SYMBOL_GPL(kvmppc_h_read);
791
kvmppc_h_clear_ref(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)792 long kvmppc_h_clear_ref(struct kvm_vcpu *vcpu, unsigned long flags,
793 unsigned long pte_index)
794 {
795 struct kvm *kvm = vcpu->kvm;
796 __be64 *hpte;
797 unsigned long v, r, gr;
798 struct revmap_entry *rev;
799 unsigned long *rmap;
800 long ret = H_NOT_FOUND;
801
802 if (kvm_is_radix(kvm))
803 return H_FUNCTION;
804 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
805 return H_PARAMETER;
806
807 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
808 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
809 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
810 cpu_relax();
811 v = be64_to_cpu(hpte[0]);
812 r = be64_to_cpu(hpte[1]);
813 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
814 goto out;
815
816 gr = rev->guest_rpte;
817 if (rev->guest_rpte & HPTE_R_R) {
818 rev->guest_rpte &= ~HPTE_R_R;
819 note_hpte_modification(kvm, rev);
820 }
821 if (v & HPTE_V_VALID) {
822 gr |= r & (HPTE_R_R | HPTE_R_C);
823 if (r & HPTE_R_R) {
824 kvmppc_clear_ref_hpte(kvm, hpte, pte_index);
825 rmap = revmap_for_hpte(kvm, v, gr, NULL, NULL);
826 if (rmap) {
827 lock_rmap(rmap);
828 *rmap |= KVMPPC_RMAP_REFERENCED;
829 unlock_rmap(rmap);
830 }
831 }
832 }
833 vcpu->arch.regs.gpr[4] = gr;
834 ret = H_SUCCESS;
835 out:
836 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
837 return ret;
838 }
839 EXPORT_SYMBOL_GPL(kvmppc_h_clear_ref);
840
kvmppc_h_clear_mod(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long pte_index)841 long kvmppc_h_clear_mod(struct kvm_vcpu *vcpu, unsigned long flags,
842 unsigned long pte_index)
843 {
844 struct kvm *kvm = vcpu->kvm;
845 __be64 *hpte;
846 unsigned long v, r, gr;
847 struct revmap_entry *rev;
848 long ret = H_NOT_FOUND;
849
850 if (kvm_is_radix(kvm))
851 return H_FUNCTION;
852 if (pte_index >= kvmppc_hpt_npte(&kvm->arch.hpt))
853 return H_PARAMETER;
854
855 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[pte_index]);
856 hpte = (__be64 *)(kvm->arch.hpt.virt + (pte_index << 4));
857 while (!try_lock_hpte(hpte, HPTE_V_HVLOCK))
858 cpu_relax();
859 v = be64_to_cpu(hpte[0]);
860 r = be64_to_cpu(hpte[1]);
861 if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
862 goto out;
863
864 gr = rev->guest_rpte;
865 if (gr & HPTE_R_C) {
866 rev->guest_rpte &= ~HPTE_R_C;
867 note_hpte_modification(kvm, rev);
868 }
869 if (v & HPTE_V_VALID) {
870 /* need to make it temporarily absent so C is stable */
871 hpte[0] |= cpu_to_be64(HPTE_V_ABSENT);
872 kvmppc_invalidate_hpte(kvm, hpte, pte_index);
873 r = be64_to_cpu(hpte[1]);
874 gr |= r & (HPTE_R_R | HPTE_R_C);
875 if (r & HPTE_R_C) {
876 hpte[1] = cpu_to_be64(r & ~HPTE_R_C);
877 eieio();
878 kvmppc_set_dirty_from_hpte(kvm, v, gr);
879 }
880 }
881 vcpu->arch.regs.gpr[4] = gr;
882 ret = H_SUCCESS;
883 out:
884 unlock_hpte(hpte, v & ~HPTE_V_HVLOCK);
885 return ret;
886 }
887 EXPORT_SYMBOL_GPL(kvmppc_h_clear_mod);
888
kvmppc_get_hpa(struct kvm_vcpu * vcpu,unsigned long mmu_seq,unsigned long gpa,int writing,unsigned long * hpa,struct kvm_memory_slot ** memslot_p)889 static int kvmppc_get_hpa(struct kvm_vcpu *vcpu, unsigned long mmu_seq,
890 unsigned long gpa, int writing, unsigned long *hpa,
891 struct kvm_memory_slot **memslot_p)
892 {
893 struct kvm *kvm = vcpu->kvm;
894 struct kvm_memory_slot *memslot;
895 unsigned long gfn, hva, pa, psize = PAGE_SHIFT;
896 unsigned int shift;
897 pte_t *ptep, pte;
898
899 /* Find the memslot for this address */
900 gfn = gpa >> PAGE_SHIFT;
901 memslot = __gfn_to_memslot(kvm_memslots_raw(kvm), gfn);
902 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
903 return H_PARAMETER;
904
905 /* Translate to host virtual address */
906 hva = __gfn_to_hva_memslot(memslot, gfn);
907
908 /* Try to find the host pte for that virtual address */
909 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
910 if (!ptep)
911 return H_TOO_HARD;
912 pte = kvmppc_read_update_linux_pte(ptep, writing);
913 if (!pte_present(pte))
914 return H_TOO_HARD;
915
916 /* Convert to a physical address */
917 if (shift)
918 psize = 1UL << shift;
919 pa = pte_pfn(pte) << PAGE_SHIFT;
920 pa |= hva & (psize - 1);
921 pa |= gpa & ~PAGE_MASK;
922
923 if (hpa)
924 *hpa = pa;
925 if (memslot_p)
926 *memslot_p = memslot;
927
928 return H_SUCCESS;
929 }
930
kvmppc_do_h_page_init_zero(struct kvm_vcpu * vcpu,unsigned long dest)931 static long kvmppc_do_h_page_init_zero(struct kvm_vcpu *vcpu,
932 unsigned long dest)
933 {
934 struct kvm_memory_slot *memslot;
935 struct kvm *kvm = vcpu->kvm;
936 unsigned long pa, mmu_seq;
937 long ret = H_SUCCESS;
938 int i;
939
940 /* Used later to detect if we might have been invalidated */
941 mmu_seq = kvm->mmu_notifier_seq;
942 smp_rmb();
943
944 arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
945
946 ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &pa, &memslot);
947 if (ret != H_SUCCESS)
948 goto out_unlock;
949
950 /* Zero the page */
951 for (i = 0; i < SZ_4K; i += L1_CACHE_BYTES, pa += L1_CACHE_BYTES)
952 dcbz((void *)pa);
953 kvmppc_update_dirty_map(memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
954
955 out_unlock:
956 arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
957 return ret;
958 }
959
kvmppc_do_h_page_init_copy(struct kvm_vcpu * vcpu,unsigned long dest,unsigned long src)960 static long kvmppc_do_h_page_init_copy(struct kvm_vcpu *vcpu,
961 unsigned long dest, unsigned long src)
962 {
963 unsigned long dest_pa, src_pa, mmu_seq;
964 struct kvm_memory_slot *dest_memslot;
965 struct kvm *kvm = vcpu->kvm;
966 long ret = H_SUCCESS;
967
968 /* Used later to detect if we might have been invalidated */
969 mmu_seq = kvm->mmu_notifier_seq;
970 smp_rmb();
971
972 arch_spin_lock(&kvm->mmu_lock.rlock.raw_lock);
973 ret = kvmppc_get_hpa(vcpu, mmu_seq, dest, 1, &dest_pa, &dest_memslot);
974 if (ret != H_SUCCESS)
975 goto out_unlock;
976
977 ret = kvmppc_get_hpa(vcpu, mmu_seq, src, 0, &src_pa, NULL);
978 if (ret != H_SUCCESS)
979 goto out_unlock;
980
981 /* Copy the page */
982 memcpy((void *)dest_pa, (void *)src_pa, SZ_4K);
983
984 kvmppc_update_dirty_map(dest_memslot, dest >> PAGE_SHIFT, PAGE_SIZE);
985
986 out_unlock:
987 arch_spin_unlock(&kvm->mmu_lock.rlock.raw_lock);
988 return ret;
989 }
990
kvmppc_rm_h_page_init(struct kvm_vcpu * vcpu,unsigned long flags,unsigned long dest,unsigned long src)991 long kvmppc_rm_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
992 unsigned long dest, unsigned long src)
993 {
994 struct kvm *kvm = vcpu->kvm;
995 u64 pg_mask = SZ_4K - 1; /* 4K page size */
996 long ret = H_SUCCESS;
997
998 /* Don't handle radix mode here, go up to the virtual mode handler */
999 if (kvm_is_radix(kvm))
1000 return H_TOO_HARD;
1001
1002 /* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
1003 if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
1004 H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
1005 return H_PARAMETER;
1006
1007 /* dest (and src if copy_page flag set) must be page aligned */
1008 if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
1009 return H_PARAMETER;
1010
1011 /* zero and/or copy the page as determined by the flags */
1012 if (flags & H_COPY_PAGE)
1013 ret = kvmppc_do_h_page_init_copy(vcpu, dest, src);
1014 else if (flags & H_ZERO_PAGE)
1015 ret = kvmppc_do_h_page_init_zero(vcpu, dest);
1016
1017 /* We can ignore the other flags */
1018
1019 return ret;
1020 }
1021
kvmppc_invalidate_hpte(struct kvm * kvm,__be64 * hptep,unsigned long pte_index)1022 void kvmppc_invalidate_hpte(struct kvm *kvm, __be64 *hptep,
1023 unsigned long pte_index)
1024 {
1025 unsigned long rb;
1026 u64 hp0, hp1;
1027
1028 hptep[0] &= ~cpu_to_be64(HPTE_V_VALID);
1029 hp0 = be64_to_cpu(hptep[0]);
1030 hp1 = be64_to_cpu(hptep[1]);
1031 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1032 hp0 = hpte_new_to_old_v(hp0, hp1);
1033 hp1 = hpte_new_to_old_r(hp1);
1034 }
1035 rb = compute_tlbie_rb(hp0, hp1, pte_index);
1036 do_tlbies(kvm, &rb, 1, 1, true);
1037 }
1038 EXPORT_SYMBOL_GPL(kvmppc_invalidate_hpte);
1039
kvmppc_clear_ref_hpte(struct kvm * kvm,__be64 * hptep,unsigned long pte_index)1040 void kvmppc_clear_ref_hpte(struct kvm *kvm, __be64 *hptep,
1041 unsigned long pte_index)
1042 {
1043 unsigned long rb;
1044 unsigned char rbyte;
1045 u64 hp0, hp1;
1046
1047 hp0 = be64_to_cpu(hptep[0]);
1048 hp1 = be64_to_cpu(hptep[1]);
1049 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1050 hp0 = hpte_new_to_old_v(hp0, hp1);
1051 hp1 = hpte_new_to_old_r(hp1);
1052 }
1053 rb = compute_tlbie_rb(hp0, hp1, pte_index);
1054 rbyte = (be64_to_cpu(hptep[1]) & ~HPTE_R_R) >> 8;
1055 /* modify only the second-last byte, which contains the ref bit */
1056 *((char *)hptep + 14) = rbyte;
1057 do_tlbies(kvm, &rb, 1, 1, false);
1058 }
1059 EXPORT_SYMBOL_GPL(kvmppc_clear_ref_hpte);
1060
1061 static int slb_base_page_shift[4] = {
1062 24, /* 16M */
1063 16, /* 64k */
1064 34, /* 16G */
1065 20, /* 1M, unsupported */
1066 };
1067
mmio_cache_search(struct kvm_vcpu * vcpu,unsigned long eaddr,unsigned long slb_v,long mmio_update)1068 static struct mmio_hpte_cache_entry *mmio_cache_search(struct kvm_vcpu *vcpu,
1069 unsigned long eaddr, unsigned long slb_v, long mmio_update)
1070 {
1071 struct mmio_hpte_cache_entry *entry = NULL;
1072 unsigned int pshift;
1073 unsigned int i;
1074
1075 for (i = 0; i < MMIO_HPTE_CACHE_SIZE; i++) {
1076 entry = &vcpu->arch.mmio_cache.entry[i];
1077 if (entry->mmio_update == mmio_update) {
1078 pshift = entry->slb_base_pshift;
1079 if ((entry->eaddr >> pshift) == (eaddr >> pshift) &&
1080 entry->slb_v == slb_v)
1081 return entry;
1082 }
1083 }
1084 return NULL;
1085 }
1086
1087 static struct mmio_hpte_cache_entry *
next_mmio_cache_entry(struct kvm_vcpu * vcpu)1088 next_mmio_cache_entry(struct kvm_vcpu *vcpu)
1089 {
1090 unsigned int index = vcpu->arch.mmio_cache.index;
1091
1092 vcpu->arch.mmio_cache.index++;
1093 if (vcpu->arch.mmio_cache.index == MMIO_HPTE_CACHE_SIZE)
1094 vcpu->arch.mmio_cache.index = 0;
1095
1096 return &vcpu->arch.mmio_cache.entry[index];
1097 }
1098
1099 /* When called from virtmode, this func should be protected by
1100 * preempt_disable(), otherwise, the holding of HPTE_V_HVLOCK
1101 * can trigger deadlock issue.
1102 */
kvmppc_hv_find_lock_hpte(struct kvm * kvm,gva_t eaddr,unsigned long slb_v,unsigned long valid)1103 long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr, unsigned long slb_v,
1104 unsigned long valid)
1105 {
1106 unsigned int i;
1107 unsigned int pshift;
1108 unsigned long somask;
1109 unsigned long vsid, hash;
1110 unsigned long avpn;
1111 __be64 *hpte;
1112 unsigned long mask, val;
1113 unsigned long v, r, orig_v;
1114
1115 /* Get page shift, work out hash and AVPN etc. */
1116 mask = SLB_VSID_B | HPTE_V_AVPN | HPTE_V_SECONDARY;
1117 val = 0;
1118 pshift = 12;
1119 if (slb_v & SLB_VSID_L) {
1120 mask |= HPTE_V_LARGE;
1121 val |= HPTE_V_LARGE;
1122 pshift = slb_base_page_shift[(slb_v & SLB_VSID_LP) >> 4];
1123 }
1124 if (slb_v & SLB_VSID_B_1T) {
1125 somask = (1UL << 40) - 1;
1126 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T;
1127 vsid ^= vsid << 25;
1128 } else {
1129 somask = (1UL << 28) - 1;
1130 vsid = (slb_v & ~SLB_VSID_B) >> SLB_VSID_SHIFT;
1131 }
1132 hash = (vsid ^ ((eaddr & somask) >> pshift)) & kvmppc_hpt_mask(&kvm->arch.hpt);
1133 avpn = slb_v & ~(somask >> 16); /* also includes B */
1134 avpn |= (eaddr & somask) >> 16;
1135
1136 if (pshift >= 24)
1137 avpn &= ~((1UL << (pshift - 16)) - 1);
1138 else
1139 avpn &= ~0x7fUL;
1140 val |= avpn;
1141
1142 for (;;) {
1143 hpte = (__be64 *)(kvm->arch.hpt.virt + (hash << 7));
1144
1145 for (i = 0; i < 16; i += 2) {
1146 /* Read the PTE racily */
1147 v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1148 if (cpu_has_feature(CPU_FTR_ARCH_300))
1149 v = hpte_new_to_old_v(v, be64_to_cpu(hpte[i+1]));
1150
1151 /* Check valid/absent, hash, segment size and AVPN */
1152 if (!(v & valid) || (v & mask) != val)
1153 continue;
1154
1155 /* Lock the PTE and read it under the lock */
1156 while (!try_lock_hpte(&hpte[i], HPTE_V_HVLOCK))
1157 cpu_relax();
1158 v = orig_v = be64_to_cpu(hpte[i]) & ~HPTE_V_HVLOCK;
1159 r = be64_to_cpu(hpte[i+1]);
1160 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1161 v = hpte_new_to_old_v(v, r);
1162 r = hpte_new_to_old_r(r);
1163 }
1164
1165 /*
1166 * Check the HPTE again, including base page size
1167 */
1168 if ((v & valid) && (v & mask) == val &&
1169 kvmppc_hpte_base_page_shift(v, r) == pshift)
1170 /* Return with the HPTE still locked */
1171 return (hash << 3) + (i >> 1);
1172
1173 __unlock_hpte(&hpte[i], orig_v);
1174 }
1175
1176 if (val & HPTE_V_SECONDARY)
1177 break;
1178 val |= HPTE_V_SECONDARY;
1179 hash = hash ^ kvmppc_hpt_mask(&kvm->arch.hpt);
1180 }
1181 return -1;
1182 }
1183 EXPORT_SYMBOL(kvmppc_hv_find_lock_hpte);
1184
1185 /*
1186 * Called in real mode to check whether an HPTE not found fault
1187 * is due to accessing a paged-out page or an emulated MMIO page,
1188 * or if a protection fault is due to accessing a page that the
1189 * guest wanted read/write access to but which we made read-only.
1190 * Returns a possibly modified status (DSISR) value if not
1191 * (i.e. pass the interrupt to the guest),
1192 * -1 to pass the fault up to host kernel mode code, -2 to do that
1193 * and also load the instruction word (for MMIO emulation),
1194 * or 0 if we should make the guest retry the access.
1195 */
kvmppc_hpte_hv_fault(struct kvm_vcpu * vcpu,unsigned long addr,unsigned long slb_v,unsigned int status,bool data)1196 long kvmppc_hpte_hv_fault(struct kvm_vcpu *vcpu, unsigned long addr,
1197 unsigned long slb_v, unsigned int status, bool data)
1198 {
1199 struct kvm *kvm = vcpu->kvm;
1200 long int index;
1201 unsigned long v, r, gr, orig_v;
1202 __be64 *hpte;
1203 unsigned long valid;
1204 struct revmap_entry *rev;
1205 unsigned long pp, key;
1206 struct mmio_hpte_cache_entry *cache_entry = NULL;
1207 long mmio_update = 0;
1208
1209 /* For protection fault, expect to find a valid HPTE */
1210 valid = HPTE_V_VALID;
1211 if (status & DSISR_NOHPTE) {
1212 valid |= HPTE_V_ABSENT;
1213 mmio_update = atomic64_read(&kvm->arch.mmio_update);
1214 cache_entry = mmio_cache_search(vcpu, addr, slb_v, mmio_update);
1215 }
1216 if (cache_entry) {
1217 index = cache_entry->pte_index;
1218 v = cache_entry->hpte_v;
1219 r = cache_entry->hpte_r;
1220 gr = cache_entry->rpte;
1221 } else {
1222 index = kvmppc_hv_find_lock_hpte(kvm, addr, slb_v, valid);
1223 if (index < 0) {
1224 if (status & DSISR_NOHPTE)
1225 return status; /* there really was no HPTE */
1226 return 0; /* for prot fault, HPTE disappeared */
1227 }
1228 hpte = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
1229 v = orig_v = be64_to_cpu(hpte[0]) & ~HPTE_V_HVLOCK;
1230 r = be64_to_cpu(hpte[1]);
1231 if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1232 v = hpte_new_to_old_v(v, r);
1233 r = hpte_new_to_old_r(r);
1234 }
1235 rev = real_vmalloc_addr(&kvm->arch.hpt.rev[index]);
1236 gr = rev->guest_rpte;
1237
1238 unlock_hpte(hpte, orig_v);
1239 }
1240
1241 /* For not found, if the HPTE is valid by now, retry the instruction */
1242 if ((status & DSISR_NOHPTE) && (v & HPTE_V_VALID))
1243 return 0;
1244
1245 /* Check access permissions to the page */
1246 pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
1247 key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
1248 status &= ~DSISR_NOHPTE; /* DSISR_NOHPTE == SRR1_ISI_NOPT */
1249 if (!data) {
1250 if (gr & (HPTE_R_N | HPTE_R_G))
1251 return status | SRR1_ISI_N_G_OR_CIP;
1252 if (!hpte_read_permission(pp, slb_v & key))
1253 return status | SRR1_ISI_PROT;
1254 } else if (status & DSISR_ISSTORE) {
1255 /* check write permission */
1256 if (!hpte_write_permission(pp, slb_v & key))
1257 return status | DSISR_PROTFAULT;
1258 } else {
1259 if (!hpte_read_permission(pp, slb_v & key))
1260 return status | DSISR_PROTFAULT;
1261 }
1262
1263 /* Check storage key, if applicable */
1264 if (data && (vcpu->arch.shregs.msr & MSR_DR)) {
1265 unsigned int perm = hpte_get_skey_perm(gr, vcpu->arch.amr);
1266 if (status & DSISR_ISSTORE)
1267 perm >>= 1;
1268 if (perm & 1)
1269 return status | DSISR_KEYFAULT;
1270 }
1271
1272 /* Save HPTE info for virtual-mode handler */
1273 vcpu->arch.pgfault_addr = addr;
1274 vcpu->arch.pgfault_index = index;
1275 vcpu->arch.pgfault_hpte[0] = v;
1276 vcpu->arch.pgfault_hpte[1] = r;
1277 vcpu->arch.pgfault_cache = cache_entry;
1278
1279 /* Check the storage key to see if it is possibly emulated MMIO */
1280 if ((r & (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) ==
1281 (HPTE_R_KEY_HI | HPTE_R_KEY_LO)) {
1282 if (!cache_entry) {
1283 unsigned int pshift = 12;
1284 unsigned int pshift_index;
1285
1286 if (slb_v & SLB_VSID_L) {
1287 pshift_index = ((slb_v & SLB_VSID_LP) >> 4);
1288 pshift = slb_base_page_shift[pshift_index];
1289 }
1290 cache_entry = next_mmio_cache_entry(vcpu);
1291 cache_entry->eaddr = addr;
1292 cache_entry->slb_base_pshift = pshift;
1293 cache_entry->pte_index = index;
1294 cache_entry->hpte_v = v;
1295 cache_entry->hpte_r = r;
1296 cache_entry->rpte = gr;
1297 cache_entry->slb_v = slb_v;
1298 cache_entry->mmio_update = mmio_update;
1299 }
1300 if (data && (vcpu->arch.shregs.msr & MSR_IR))
1301 return -2; /* MMIO emulation - load instr word */
1302 }
1303
1304 return -1; /* send fault up to host kernel mode */
1305 }
1306 EXPORT_SYMBOL_GPL(kvmppc_hpte_hv_fault);
1307