1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36 #include "cgroup.h"
37
38 #include <linux/ctype.h>
39 #include <symbol/kallsyms.h>
40 #include <linux/mman.h>
41 #include <linux/string.h>
42 #include <linux/zalloc.h>
43
44 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
45
machine__kernel_dso(struct machine * machine)46 static struct dso *machine__kernel_dso(struct machine *machine)
47 {
48 return machine->vmlinux_map->dso;
49 }
50
dsos__init(struct dsos * dsos)51 static void dsos__init(struct dsos *dsos)
52 {
53 INIT_LIST_HEAD(&dsos->head);
54 dsos->root = RB_ROOT;
55 init_rwsem(&dsos->lock);
56 }
57
machine__threads_init(struct machine * machine)58 static void machine__threads_init(struct machine *machine)
59 {
60 int i;
61
62 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
63 struct threads *threads = &machine->threads[i];
64 threads->entries = RB_ROOT_CACHED;
65 init_rwsem(&threads->lock);
66 threads->nr = 0;
67 INIT_LIST_HEAD(&threads->dead);
68 threads->last_match = NULL;
69 }
70 }
71
machine__set_mmap_name(struct machine * machine)72 static int machine__set_mmap_name(struct machine *machine)
73 {
74 if (machine__is_host(machine))
75 machine->mmap_name = strdup("[kernel.kallsyms]");
76 else if (machine__is_default_guest(machine))
77 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
78 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
79 machine->pid) < 0)
80 machine->mmap_name = NULL;
81
82 return machine->mmap_name ? 0 : -ENOMEM;
83 }
84
machine__init(struct machine * machine,const char * root_dir,pid_t pid)85 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
86 {
87 int err = -ENOMEM;
88
89 memset(machine, 0, sizeof(*machine));
90 maps__init(&machine->kmaps, machine);
91 RB_CLEAR_NODE(&machine->rb_node);
92 dsos__init(&machine->dsos);
93
94 machine__threads_init(machine);
95
96 machine->vdso_info = NULL;
97 machine->env = NULL;
98
99 machine->pid = pid;
100
101 machine->id_hdr_size = 0;
102 machine->kptr_restrict_warned = false;
103 machine->comm_exec = false;
104 machine->kernel_start = 0;
105 machine->vmlinux_map = NULL;
106
107 machine->root_dir = strdup(root_dir);
108 if (machine->root_dir == NULL)
109 return -ENOMEM;
110
111 if (machine__set_mmap_name(machine))
112 goto out;
113
114 if (pid != HOST_KERNEL_ID) {
115 struct thread *thread = machine__findnew_thread(machine, -1,
116 pid);
117 char comm[64];
118
119 if (thread == NULL)
120 goto out;
121
122 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
123 thread__set_comm(thread, comm, 0);
124 thread__put(thread);
125 }
126
127 machine->current_tid = NULL;
128 err = 0;
129
130 out:
131 if (err) {
132 zfree(&machine->root_dir);
133 zfree(&machine->mmap_name);
134 }
135 return 0;
136 }
137
machine__new_host(void)138 struct machine *machine__new_host(void)
139 {
140 struct machine *machine = malloc(sizeof(*machine));
141
142 if (machine != NULL) {
143 machine__init(machine, "", HOST_KERNEL_ID);
144
145 if (machine__create_kernel_maps(machine) < 0)
146 goto out_delete;
147 }
148
149 return machine;
150 out_delete:
151 free(machine);
152 return NULL;
153 }
154
machine__new_kallsyms(void)155 struct machine *machine__new_kallsyms(void)
156 {
157 struct machine *machine = machine__new_host();
158 /*
159 * FIXME:
160 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
161 * ask for not using the kcore parsing code, once this one is fixed
162 * to create a map per module.
163 */
164 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
165 machine__delete(machine);
166 machine = NULL;
167 }
168
169 return machine;
170 }
171
dsos__purge(struct dsos * dsos)172 static void dsos__purge(struct dsos *dsos)
173 {
174 struct dso *pos, *n;
175
176 down_write(&dsos->lock);
177
178 list_for_each_entry_safe(pos, n, &dsos->head, node) {
179 RB_CLEAR_NODE(&pos->rb_node);
180 pos->root = NULL;
181 list_del_init(&pos->node);
182 dso__put(pos);
183 }
184
185 up_write(&dsos->lock);
186 }
187
dsos__exit(struct dsos * dsos)188 static void dsos__exit(struct dsos *dsos)
189 {
190 dsos__purge(dsos);
191 exit_rwsem(&dsos->lock);
192 }
193
machine__delete_threads(struct machine * machine)194 void machine__delete_threads(struct machine *machine)
195 {
196 struct rb_node *nd;
197 int i;
198
199 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
200 struct threads *threads = &machine->threads[i];
201 down_write(&threads->lock);
202 nd = rb_first_cached(&threads->entries);
203 while (nd) {
204 struct thread *t = rb_entry(nd, struct thread, rb_node);
205
206 nd = rb_next(nd);
207 __machine__remove_thread(machine, t, false);
208 }
209 up_write(&threads->lock);
210 }
211 }
212
machine__exit(struct machine * machine)213 void machine__exit(struct machine *machine)
214 {
215 int i;
216
217 if (machine == NULL)
218 return;
219
220 machine__destroy_kernel_maps(machine);
221 maps__exit(&machine->kmaps);
222 dsos__exit(&machine->dsos);
223 machine__exit_vdso(machine);
224 zfree(&machine->root_dir);
225 zfree(&machine->mmap_name);
226 zfree(&machine->current_tid);
227
228 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
229 struct threads *threads = &machine->threads[i];
230 struct thread *thread, *n;
231 /*
232 * Forget about the dead, at this point whatever threads were
233 * left in the dead lists better have a reference count taken
234 * by who is using them, and then, when they drop those references
235 * and it finally hits zero, thread__put() will check and see that
236 * its not in the dead threads list and will not try to remove it
237 * from there, just calling thread__delete() straight away.
238 */
239 list_for_each_entry_safe(thread, n, &threads->dead, node)
240 list_del_init(&thread->node);
241
242 exit_rwsem(&threads->lock);
243 }
244 }
245
machine__delete(struct machine * machine)246 void machine__delete(struct machine *machine)
247 {
248 if (machine) {
249 machine__exit(machine);
250 free(machine);
251 }
252 }
253
machines__init(struct machines * machines)254 void machines__init(struct machines *machines)
255 {
256 machine__init(&machines->host, "", HOST_KERNEL_ID);
257 machines->guests = RB_ROOT_CACHED;
258 }
259
machines__exit(struct machines * machines)260 void machines__exit(struct machines *machines)
261 {
262 machine__exit(&machines->host);
263 /* XXX exit guest */
264 }
265
machines__add(struct machines * machines,pid_t pid,const char * root_dir)266 struct machine *machines__add(struct machines *machines, pid_t pid,
267 const char *root_dir)
268 {
269 struct rb_node **p = &machines->guests.rb_root.rb_node;
270 struct rb_node *parent = NULL;
271 struct machine *pos, *machine = malloc(sizeof(*machine));
272 bool leftmost = true;
273
274 if (machine == NULL)
275 return NULL;
276
277 if (machine__init(machine, root_dir, pid) != 0) {
278 free(machine);
279 return NULL;
280 }
281
282 while (*p != NULL) {
283 parent = *p;
284 pos = rb_entry(parent, struct machine, rb_node);
285 if (pid < pos->pid)
286 p = &(*p)->rb_left;
287 else {
288 p = &(*p)->rb_right;
289 leftmost = false;
290 }
291 }
292
293 rb_link_node(&machine->rb_node, parent, p);
294 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
295
296 return machine;
297 }
298
machines__set_comm_exec(struct machines * machines,bool comm_exec)299 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
300 {
301 struct rb_node *nd;
302
303 machines->host.comm_exec = comm_exec;
304
305 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
306 struct machine *machine = rb_entry(nd, struct machine, rb_node);
307
308 machine->comm_exec = comm_exec;
309 }
310 }
311
machines__find(struct machines * machines,pid_t pid)312 struct machine *machines__find(struct machines *machines, pid_t pid)
313 {
314 struct rb_node **p = &machines->guests.rb_root.rb_node;
315 struct rb_node *parent = NULL;
316 struct machine *machine;
317 struct machine *default_machine = NULL;
318
319 if (pid == HOST_KERNEL_ID)
320 return &machines->host;
321
322 while (*p != NULL) {
323 parent = *p;
324 machine = rb_entry(parent, struct machine, rb_node);
325 if (pid < machine->pid)
326 p = &(*p)->rb_left;
327 else if (pid > machine->pid)
328 p = &(*p)->rb_right;
329 else
330 return machine;
331 if (!machine->pid)
332 default_machine = machine;
333 }
334
335 return default_machine;
336 }
337
machines__findnew(struct machines * machines,pid_t pid)338 struct machine *machines__findnew(struct machines *machines, pid_t pid)
339 {
340 char path[PATH_MAX];
341 const char *root_dir = "";
342 struct machine *machine = machines__find(machines, pid);
343
344 if (machine && (machine->pid == pid))
345 goto out;
346
347 if ((pid != HOST_KERNEL_ID) &&
348 (pid != DEFAULT_GUEST_KERNEL_ID) &&
349 (symbol_conf.guestmount)) {
350 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
351 if (access(path, R_OK)) {
352 static struct strlist *seen;
353
354 if (!seen)
355 seen = strlist__new(NULL, NULL);
356
357 if (!strlist__has_entry(seen, path)) {
358 pr_err("Can't access file %s\n", path);
359 strlist__add(seen, path);
360 }
361 machine = NULL;
362 goto out;
363 }
364 root_dir = path;
365 }
366
367 machine = machines__add(machines, pid, root_dir);
368 out:
369 return machine;
370 }
371
machines__find_guest(struct machines * machines,pid_t pid)372 struct machine *machines__find_guest(struct machines *machines, pid_t pid)
373 {
374 struct machine *machine = machines__find(machines, pid);
375
376 if (!machine)
377 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
378 return machine;
379 }
380
machines__process_guests(struct machines * machines,machine__process_t process,void * data)381 void machines__process_guests(struct machines *machines,
382 machine__process_t process, void *data)
383 {
384 struct rb_node *nd;
385
386 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
387 struct machine *pos = rb_entry(nd, struct machine, rb_node);
388 process(pos, data);
389 }
390 }
391
machines__set_id_hdr_size(struct machines * machines,u16 id_hdr_size)392 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
393 {
394 struct rb_node *node;
395 struct machine *machine;
396
397 machines->host.id_hdr_size = id_hdr_size;
398
399 for (node = rb_first_cached(&machines->guests); node;
400 node = rb_next(node)) {
401 machine = rb_entry(node, struct machine, rb_node);
402 machine->id_hdr_size = id_hdr_size;
403 }
404
405 return;
406 }
407
machine__update_thread_pid(struct machine * machine,struct thread * th,pid_t pid)408 static void machine__update_thread_pid(struct machine *machine,
409 struct thread *th, pid_t pid)
410 {
411 struct thread *leader;
412
413 if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
414 return;
415
416 th->pid_ = pid;
417
418 if (th->pid_ == th->tid)
419 return;
420
421 leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
422 if (!leader)
423 goto out_err;
424
425 if (!leader->maps)
426 leader->maps = maps__new(machine);
427
428 if (!leader->maps)
429 goto out_err;
430
431 if (th->maps == leader->maps)
432 return;
433
434 if (th->maps) {
435 /*
436 * Maps are created from MMAP events which provide the pid and
437 * tid. Consequently there never should be any maps on a thread
438 * with an unknown pid. Just print an error if there are.
439 */
440 if (!maps__empty(th->maps))
441 pr_err("Discarding thread maps for %d:%d\n",
442 th->pid_, th->tid);
443 maps__put(th->maps);
444 }
445
446 th->maps = maps__get(leader->maps);
447 out_put:
448 thread__put(leader);
449 return;
450 out_err:
451 pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
452 goto out_put;
453 }
454
455 /*
456 * Front-end cache - TID lookups come in blocks,
457 * so most of the time we dont have to look up
458 * the full rbtree:
459 */
460 static struct thread*
__threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)461 __threads__get_last_match(struct threads *threads, struct machine *machine,
462 int pid, int tid)
463 {
464 struct thread *th;
465
466 th = threads->last_match;
467 if (th != NULL) {
468 if (th->tid == tid) {
469 machine__update_thread_pid(machine, th, pid);
470 return thread__get(th);
471 }
472
473 threads->last_match = NULL;
474 }
475
476 return NULL;
477 }
478
479 static struct thread*
threads__get_last_match(struct threads * threads,struct machine * machine,int pid,int tid)480 threads__get_last_match(struct threads *threads, struct machine *machine,
481 int pid, int tid)
482 {
483 struct thread *th = NULL;
484
485 if (perf_singlethreaded)
486 th = __threads__get_last_match(threads, machine, pid, tid);
487
488 return th;
489 }
490
491 static void
__threads__set_last_match(struct threads * threads,struct thread * th)492 __threads__set_last_match(struct threads *threads, struct thread *th)
493 {
494 threads->last_match = th;
495 }
496
497 static void
threads__set_last_match(struct threads * threads,struct thread * th)498 threads__set_last_match(struct threads *threads, struct thread *th)
499 {
500 if (perf_singlethreaded)
501 __threads__set_last_match(threads, th);
502 }
503
504 /*
505 * Caller must eventually drop thread->refcnt returned with a successful
506 * lookup/new thread inserted.
507 */
____machine__findnew_thread(struct machine * machine,struct threads * threads,pid_t pid,pid_t tid,bool create)508 static struct thread *____machine__findnew_thread(struct machine *machine,
509 struct threads *threads,
510 pid_t pid, pid_t tid,
511 bool create)
512 {
513 struct rb_node **p = &threads->entries.rb_root.rb_node;
514 struct rb_node *parent = NULL;
515 struct thread *th;
516 bool leftmost = true;
517
518 th = threads__get_last_match(threads, machine, pid, tid);
519 if (th)
520 return th;
521
522 while (*p != NULL) {
523 parent = *p;
524 th = rb_entry(parent, struct thread, rb_node);
525
526 if (th->tid == tid) {
527 threads__set_last_match(threads, th);
528 machine__update_thread_pid(machine, th, pid);
529 return thread__get(th);
530 }
531
532 if (tid < th->tid)
533 p = &(*p)->rb_left;
534 else {
535 p = &(*p)->rb_right;
536 leftmost = false;
537 }
538 }
539
540 if (!create)
541 return NULL;
542
543 th = thread__new(pid, tid);
544 if (th != NULL) {
545 rb_link_node(&th->rb_node, parent, p);
546 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
547
548 /*
549 * We have to initialize maps separately after rb tree is updated.
550 *
551 * The reason is that we call machine__findnew_thread
552 * within thread__init_maps to find the thread
553 * leader and that would screwed the rb tree.
554 */
555 if (thread__init_maps(th, machine)) {
556 rb_erase_cached(&th->rb_node, &threads->entries);
557 RB_CLEAR_NODE(&th->rb_node);
558 thread__put(th);
559 return NULL;
560 }
561 /*
562 * It is now in the rbtree, get a ref
563 */
564 thread__get(th);
565 threads__set_last_match(threads, th);
566 ++threads->nr;
567 }
568
569 return th;
570 }
571
__machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)572 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
573 {
574 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
575 }
576
machine__findnew_thread(struct machine * machine,pid_t pid,pid_t tid)577 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
578 pid_t tid)
579 {
580 struct threads *threads = machine__threads(machine, tid);
581 struct thread *th;
582
583 down_write(&threads->lock);
584 th = __machine__findnew_thread(machine, pid, tid);
585 up_write(&threads->lock);
586 return th;
587 }
588
machine__find_thread(struct machine * machine,pid_t pid,pid_t tid)589 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
590 pid_t tid)
591 {
592 struct threads *threads = machine__threads(machine, tid);
593 struct thread *th;
594
595 down_read(&threads->lock);
596 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
597 up_read(&threads->lock);
598 return th;
599 }
600
601 /*
602 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
603 * So here a single thread is created for that, but actually there is a separate
604 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
605 * is only 1. That causes problems for some tools, requiring workarounds. For
606 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
607 */
machine__idle_thread(struct machine * machine)608 struct thread *machine__idle_thread(struct machine *machine)
609 {
610 struct thread *thread = machine__findnew_thread(machine, 0, 0);
611
612 if (!thread || thread__set_comm(thread, "swapper", 0) ||
613 thread__set_namespaces(thread, 0, NULL))
614 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
615
616 return thread;
617 }
618
machine__thread_exec_comm(struct machine * machine,struct thread * thread)619 struct comm *machine__thread_exec_comm(struct machine *machine,
620 struct thread *thread)
621 {
622 if (machine->comm_exec)
623 return thread__exec_comm(thread);
624 else
625 return thread__comm(thread);
626 }
627
machine__process_comm_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)628 int machine__process_comm_event(struct machine *machine, union perf_event *event,
629 struct perf_sample *sample)
630 {
631 struct thread *thread = machine__findnew_thread(machine,
632 event->comm.pid,
633 event->comm.tid);
634 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
635 int err = 0;
636
637 if (exec)
638 machine->comm_exec = true;
639
640 if (dump_trace)
641 perf_event__fprintf_comm(event, stdout);
642
643 if (thread == NULL ||
644 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
645 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
646 err = -1;
647 }
648
649 thread__put(thread);
650
651 return err;
652 }
653
machine__process_namespaces_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)654 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
655 union perf_event *event,
656 struct perf_sample *sample __maybe_unused)
657 {
658 struct thread *thread = machine__findnew_thread(machine,
659 event->namespaces.pid,
660 event->namespaces.tid);
661 int err = 0;
662
663 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
664 "\nWARNING: kernel seems to support more namespaces than perf"
665 " tool.\nTry updating the perf tool..\n\n");
666
667 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
668 "\nWARNING: perf tool seems to support more namespaces than"
669 " the kernel.\nTry updating the kernel..\n\n");
670
671 if (dump_trace)
672 perf_event__fprintf_namespaces(event, stdout);
673
674 if (thread == NULL ||
675 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
676 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
677 err = -1;
678 }
679
680 thread__put(thread);
681
682 return err;
683 }
684
machine__process_cgroup_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)685 int machine__process_cgroup_event(struct machine *machine,
686 union perf_event *event,
687 struct perf_sample *sample __maybe_unused)
688 {
689 struct cgroup *cgrp;
690
691 if (dump_trace)
692 perf_event__fprintf_cgroup(event, stdout);
693
694 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
695 if (cgrp == NULL)
696 return -ENOMEM;
697
698 return 0;
699 }
700
machine__process_lost_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample __maybe_unused)701 int machine__process_lost_event(struct machine *machine __maybe_unused,
702 union perf_event *event, struct perf_sample *sample __maybe_unused)
703 {
704 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
705 event->lost.id, event->lost.lost);
706 return 0;
707 }
708
machine__process_lost_samples_event(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)709 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
710 union perf_event *event, struct perf_sample *sample)
711 {
712 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
713 sample->id, event->lost_samples.lost);
714 return 0;
715 }
716
machine__findnew_module_dso(struct machine * machine,struct kmod_path * m,const char * filename)717 static struct dso *machine__findnew_module_dso(struct machine *machine,
718 struct kmod_path *m,
719 const char *filename)
720 {
721 struct dso *dso;
722
723 down_write(&machine->dsos.lock);
724
725 dso = __dsos__find(&machine->dsos, m->name, true);
726 if (!dso) {
727 dso = __dsos__addnew(&machine->dsos, m->name);
728 if (dso == NULL)
729 goto out_unlock;
730
731 dso__set_module_info(dso, m, machine);
732 dso__set_long_name(dso, strdup(filename), true);
733 dso->kernel = DSO_SPACE__KERNEL;
734 }
735
736 dso__get(dso);
737 out_unlock:
738 up_write(&machine->dsos.lock);
739 return dso;
740 }
741
machine__process_aux_event(struct machine * machine __maybe_unused,union perf_event * event)742 int machine__process_aux_event(struct machine *machine __maybe_unused,
743 union perf_event *event)
744 {
745 if (dump_trace)
746 perf_event__fprintf_aux(event, stdout);
747 return 0;
748 }
749
machine__process_itrace_start_event(struct machine * machine __maybe_unused,union perf_event * event)750 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
751 union perf_event *event)
752 {
753 if (dump_trace)
754 perf_event__fprintf_itrace_start(event, stdout);
755 return 0;
756 }
757
machine__process_aux_output_hw_id_event(struct machine * machine __maybe_unused,union perf_event * event)758 int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
759 union perf_event *event)
760 {
761 if (dump_trace)
762 perf_event__fprintf_aux_output_hw_id(event, stdout);
763 return 0;
764 }
765
machine__process_switch_event(struct machine * machine __maybe_unused,union perf_event * event)766 int machine__process_switch_event(struct machine *machine __maybe_unused,
767 union perf_event *event)
768 {
769 if (dump_trace)
770 perf_event__fprintf_switch(event, stdout);
771 return 0;
772 }
773
machine__process_ksymbol_register(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)774 static int machine__process_ksymbol_register(struct machine *machine,
775 union perf_event *event,
776 struct perf_sample *sample __maybe_unused)
777 {
778 struct symbol *sym;
779 struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
780
781 if (!map) {
782 struct dso *dso = dso__new(event->ksymbol.name);
783
784 if (dso) {
785 dso->kernel = DSO_SPACE__KERNEL;
786 map = map__new2(0, dso);
787 dso__put(dso);
788 }
789
790 if (!dso || !map) {
791 return -ENOMEM;
792 }
793
794 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
795 map->dso->binary_type = DSO_BINARY_TYPE__OOL;
796 map->dso->data.file_size = event->ksymbol.len;
797 dso__set_loaded(map->dso);
798 }
799
800 map->start = event->ksymbol.addr;
801 map->end = map->start + event->ksymbol.len;
802 maps__insert(&machine->kmaps, map);
803 map__put(map);
804 dso__set_loaded(dso);
805
806 if (is_bpf_image(event->ksymbol.name)) {
807 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
808 dso__set_long_name(dso, "", false);
809 }
810 }
811
812 sym = symbol__new(map->map_ip(map, map->start),
813 event->ksymbol.len,
814 0, 0, event->ksymbol.name);
815 if (!sym)
816 return -ENOMEM;
817 dso__insert_symbol(map->dso, sym);
818 return 0;
819 }
820
machine__process_ksymbol_unregister(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)821 static int machine__process_ksymbol_unregister(struct machine *machine,
822 union perf_event *event,
823 struct perf_sample *sample __maybe_unused)
824 {
825 struct symbol *sym;
826 struct map *map;
827
828 map = maps__find(&machine->kmaps, event->ksymbol.addr);
829 if (!map)
830 return 0;
831
832 if (map != machine->vmlinux_map)
833 maps__remove(&machine->kmaps, map);
834 else {
835 sym = dso__find_symbol(map->dso, map->map_ip(map, map->start));
836 if (sym)
837 dso__delete_symbol(map->dso, sym);
838 }
839
840 return 0;
841 }
842
machine__process_ksymbol(struct machine * machine __maybe_unused,union perf_event * event,struct perf_sample * sample)843 int machine__process_ksymbol(struct machine *machine __maybe_unused,
844 union perf_event *event,
845 struct perf_sample *sample)
846 {
847 if (dump_trace)
848 perf_event__fprintf_ksymbol(event, stdout);
849
850 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
851 return machine__process_ksymbol_unregister(machine, event,
852 sample);
853 return machine__process_ksymbol_register(machine, event, sample);
854 }
855
machine__process_text_poke(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)856 int machine__process_text_poke(struct machine *machine, union perf_event *event,
857 struct perf_sample *sample __maybe_unused)
858 {
859 struct map *map = maps__find(&machine->kmaps, event->text_poke.addr);
860 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
861
862 if (dump_trace)
863 perf_event__fprintf_text_poke(event, machine, stdout);
864
865 if (!event->text_poke.new_len)
866 return 0;
867
868 if (cpumode != PERF_RECORD_MISC_KERNEL) {
869 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
870 return 0;
871 }
872
873 if (map && map->dso) {
874 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
875 int ret;
876
877 /*
878 * Kernel maps might be changed when loading symbols so loading
879 * must be done prior to using kernel maps.
880 */
881 map__load(map);
882 ret = dso__data_write_cache_addr(map->dso, map, machine,
883 event->text_poke.addr,
884 new_bytes,
885 event->text_poke.new_len);
886 if (ret != event->text_poke.new_len)
887 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
888 event->text_poke.addr);
889 } else {
890 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
891 event->text_poke.addr);
892 }
893
894 return 0;
895 }
896
machine__addnew_module_map(struct machine * machine,u64 start,const char * filename)897 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
898 const char *filename)
899 {
900 struct map *map = NULL;
901 struct kmod_path m;
902 struct dso *dso;
903
904 if (kmod_path__parse_name(&m, filename))
905 return NULL;
906
907 dso = machine__findnew_module_dso(machine, &m, filename);
908 if (dso == NULL)
909 goto out;
910
911 map = map__new2(start, dso);
912 if (map == NULL)
913 goto out;
914
915 maps__insert(&machine->kmaps, map);
916
917 /* Put the map here because maps__insert already got it */
918 map__put(map);
919 out:
920 /* put the dso here, corresponding to machine__findnew_module_dso */
921 dso__put(dso);
922 zfree(&m.name);
923 return map;
924 }
925
machines__fprintf_dsos(struct machines * machines,FILE * fp)926 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
927 {
928 struct rb_node *nd;
929 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
930
931 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
932 struct machine *pos = rb_entry(nd, struct machine, rb_node);
933 ret += __dsos__fprintf(&pos->dsos.head, fp);
934 }
935
936 return ret;
937 }
938
machine__fprintf_dsos_buildid(struct machine * m,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)939 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
940 bool (skip)(struct dso *dso, int parm), int parm)
941 {
942 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
943 }
944
machines__fprintf_dsos_buildid(struct machines * machines,FILE * fp,bool (skip)(struct dso * dso,int parm),int parm)945 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
946 bool (skip)(struct dso *dso, int parm), int parm)
947 {
948 struct rb_node *nd;
949 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
950
951 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
952 struct machine *pos = rb_entry(nd, struct machine, rb_node);
953 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
954 }
955 return ret;
956 }
957
machine__fprintf_vmlinux_path(struct machine * machine,FILE * fp)958 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
959 {
960 int i;
961 size_t printed = 0;
962 struct dso *kdso = machine__kernel_dso(machine);
963
964 if (kdso->has_build_id) {
965 char filename[PATH_MAX];
966 if (dso__build_id_filename(kdso, filename, sizeof(filename),
967 false))
968 printed += fprintf(fp, "[0] %s\n", filename);
969 }
970
971 for (i = 0; i < vmlinux_path__nr_entries; ++i)
972 printed += fprintf(fp, "[%d] %s\n",
973 i + kdso->has_build_id, vmlinux_path[i]);
974
975 return printed;
976 }
977
machine__fprintf(struct machine * machine,FILE * fp)978 size_t machine__fprintf(struct machine *machine, FILE *fp)
979 {
980 struct rb_node *nd;
981 size_t ret;
982 int i;
983
984 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
985 struct threads *threads = &machine->threads[i];
986
987 down_read(&threads->lock);
988
989 ret = fprintf(fp, "Threads: %u\n", threads->nr);
990
991 for (nd = rb_first_cached(&threads->entries); nd;
992 nd = rb_next(nd)) {
993 struct thread *pos = rb_entry(nd, struct thread, rb_node);
994
995 ret += thread__fprintf(pos, fp);
996 }
997
998 up_read(&threads->lock);
999 }
1000 return ret;
1001 }
1002
machine__get_kernel(struct machine * machine)1003 static struct dso *machine__get_kernel(struct machine *machine)
1004 {
1005 const char *vmlinux_name = machine->mmap_name;
1006 struct dso *kernel;
1007
1008 if (machine__is_host(machine)) {
1009 if (symbol_conf.vmlinux_name)
1010 vmlinux_name = symbol_conf.vmlinux_name;
1011
1012 kernel = machine__findnew_kernel(machine, vmlinux_name,
1013 "[kernel]", DSO_SPACE__KERNEL);
1014 } else {
1015 if (symbol_conf.default_guest_vmlinux_name)
1016 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1017
1018 kernel = machine__findnew_kernel(machine, vmlinux_name,
1019 "[guest.kernel]",
1020 DSO_SPACE__KERNEL_GUEST);
1021 }
1022
1023 if (kernel != NULL && (!kernel->has_build_id))
1024 dso__read_running_kernel_build_id(kernel, machine);
1025
1026 return kernel;
1027 }
1028
1029 struct process_args {
1030 u64 start;
1031 };
1032
machine__get_kallsyms_filename(struct machine * machine,char * buf,size_t bufsz)1033 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1034 size_t bufsz)
1035 {
1036 if (machine__is_default_guest(machine))
1037 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1038 else
1039 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1040 }
1041
1042 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1043
1044 /* Figure out the start address of kernel map from /proc/kallsyms.
1045 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1046 * symbol_name if it's not that important.
1047 */
machine__get_running_kernel_start(struct machine * machine,const char ** symbol_name,u64 * start,u64 * end)1048 static int machine__get_running_kernel_start(struct machine *machine,
1049 const char **symbol_name,
1050 u64 *start, u64 *end)
1051 {
1052 char filename[PATH_MAX];
1053 int i, err = -1;
1054 const char *name;
1055 u64 addr = 0;
1056
1057 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1058
1059 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1060 return 0;
1061
1062 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1063 err = kallsyms__get_function_start(filename, name, &addr);
1064 if (!err)
1065 break;
1066 }
1067
1068 if (err)
1069 return -1;
1070
1071 if (symbol_name)
1072 *symbol_name = name;
1073
1074 *start = addr;
1075
1076 err = kallsyms__get_function_start(filename, "_etext", &addr);
1077 if (!err)
1078 *end = addr;
1079
1080 return 0;
1081 }
1082
machine__create_extra_kernel_map(struct machine * machine,struct dso * kernel,struct extra_kernel_map * xm)1083 int machine__create_extra_kernel_map(struct machine *machine,
1084 struct dso *kernel,
1085 struct extra_kernel_map *xm)
1086 {
1087 struct kmap *kmap;
1088 struct map *map;
1089
1090 map = map__new2(xm->start, kernel);
1091 if (!map)
1092 return -1;
1093
1094 map->end = xm->end;
1095 map->pgoff = xm->pgoff;
1096
1097 kmap = map__kmap(map);
1098
1099 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1100
1101 maps__insert(&machine->kmaps, map);
1102
1103 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1104 kmap->name, map->start, map->end);
1105
1106 map__put(map);
1107
1108 return 0;
1109 }
1110
find_entry_trampoline(struct dso * dso)1111 static u64 find_entry_trampoline(struct dso *dso)
1112 {
1113 /* Duplicates are removed so lookup all aliases */
1114 const char *syms[] = {
1115 "_entry_trampoline",
1116 "__entry_trampoline_start",
1117 "entry_SYSCALL_64_trampoline",
1118 };
1119 struct symbol *sym = dso__first_symbol(dso);
1120 unsigned int i;
1121
1122 for (; sym; sym = dso__next_symbol(sym)) {
1123 if (sym->binding != STB_GLOBAL)
1124 continue;
1125 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1126 if (!strcmp(sym->name, syms[i]))
1127 return sym->start;
1128 }
1129 }
1130
1131 return 0;
1132 }
1133
1134 /*
1135 * These values can be used for kernels that do not have symbols for the entry
1136 * trampolines in kallsyms.
1137 */
1138 #define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1139 #define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1140 #define X86_64_ENTRY_TRAMPOLINE 0x6000
1141
1142 /* Map x86_64 PTI entry trampolines */
machine__map_x86_64_entry_trampolines(struct machine * machine,struct dso * kernel)1143 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1144 struct dso *kernel)
1145 {
1146 struct maps *kmaps = &machine->kmaps;
1147 int nr_cpus_avail, cpu;
1148 bool found = false;
1149 struct map *map;
1150 u64 pgoff;
1151
1152 /*
1153 * In the vmlinux case, pgoff is a virtual address which must now be
1154 * mapped to a vmlinux offset.
1155 */
1156 maps__for_each_entry(kmaps, map) {
1157 struct kmap *kmap = __map__kmap(map);
1158 struct map *dest_map;
1159
1160 if (!kmap || !is_entry_trampoline(kmap->name))
1161 continue;
1162
1163 dest_map = maps__find(kmaps, map->pgoff);
1164 if (dest_map != map)
1165 map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1166 found = true;
1167 }
1168 if (found || machine->trampolines_mapped)
1169 return 0;
1170
1171 pgoff = find_entry_trampoline(kernel);
1172 if (!pgoff)
1173 return 0;
1174
1175 nr_cpus_avail = machine__nr_cpus_avail(machine);
1176
1177 /* Add a 1 page map for each CPU's entry trampoline */
1178 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1179 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1180 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1181 X86_64_ENTRY_TRAMPOLINE;
1182 struct extra_kernel_map xm = {
1183 .start = va,
1184 .end = va + page_size,
1185 .pgoff = pgoff,
1186 };
1187
1188 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1189
1190 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1191 return -1;
1192 }
1193
1194 machine->trampolines_mapped = nr_cpus_avail;
1195
1196 return 0;
1197 }
1198
machine__create_extra_kernel_maps(struct machine * machine __maybe_unused,struct dso * kernel __maybe_unused)1199 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1200 struct dso *kernel __maybe_unused)
1201 {
1202 return 0;
1203 }
1204
1205 static int
__machine__create_kernel_maps(struct machine * machine,struct dso * kernel)1206 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1207 {
1208 /* In case of renewal the kernel map, destroy previous one */
1209 machine__destroy_kernel_maps(machine);
1210
1211 machine->vmlinux_map = map__new2(0, kernel);
1212 if (machine->vmlinux_map == NULL)
1213 return -1;
1214
1215 machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1216 maps__insert(&machine->kmaps, machine->vmlinux_map);
1217 return 0;
1218 }
1219
machine__destroy_kernel_maps(struct machine * machine)1220 void machine__destroy_kernel_maps(struct machine *machine)
1221 {
1222 struct kmap *kmap;
1223 struct map *map = machine__kernel_map(machine);
1224
1225 if (map == NULL)
1226 return;
1227
1228 kmap = map__kmap(map);
1229 maps__remove(&machine->kmaps, map);
1230 if (kmap && kmap->ref_reloc_sym) {
1231 zfree((char **)&kmap->ref_reloc_sym->name);
1232 zfree(&kmap->ref_reloc_sym);
1233 }
1234
1235 map__zput(machine->vmlinux_map);
1236 }
1237
machines__create_guest_kernel_maps(struct machines * machines)1238 int machines__create_guest_kernel_maps(struct machines *machines)
1239 {
1240 int ret = 0;
1241 struct dirent **namelist = NULL;
1242 int i, items = 0;
1243 char path[PATH_MAX];
1244 pid_t pid;
1245 char *endp;
1246
1247 if (symbol_conf.default_guest_vmlinux_name ||
1248 symbol_conf.default_guest_modules ||
1249 symbol_conf.default_guest_kallsyms) {
1250 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1251 }
1252
1253 if (symbol_conf.guestmount) {
1254 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1255 if (items <= 0)
1256 return -ENOENT;
1257 for (i = 0; i < items; i++) {
1258 if (!isdigit(namelist[i]->d_name[0])) {
1259 /* Filter out . and .. */
1260 continue;
1261 }
1262 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1263 if ((*endp != '\0') ||
1264 (endp == namelist[i]->d_name) ||
1265 (errno == ERANGE)) {
1266 pr_debug("invalid directory (%s). Skipping.\n",
1267 namelist[i]->d_name);
1268 continue;
1269 }
1270 sprintf(path, "%s/%s/proc/kallsyms",
1271 symbol_conf.guestmount,
1272 namelist[i]->d_name);
1273 ret = access(path, R_OK);
1274 if (ret) {
1275 pr_debug("Can't access file %s\n", path);
1276 goto failure;
1277 }
1278 machines__create_kernel_maps(machines, pid);
1279 }
1280 failure:
1281 free(namelist);
1282 }
1283
1284 return ret;
1285 }
1286
machines__destroy_kernel_maps(struct machines * machines)1287 void machines__destroy_kernel_maps(struct machines *machines)
1288 {
1289 struct rb_node *next = rb_first_cached(&machines->guests);
1290
1291 machine__destroy_kernel_maps(&machines->host);
1292
1293 while (next) {
1294 struct machine *pos = rb_entry(next, struct machine, rb_node);
1295
1296 next = rb_next(&pos->rb_node);
1297 rb_erase_cached(&pos->rb_node, &machines->guests);
1298 machine__delete(pos);
1299 }
1300 }
1301
machines__create_kernel_maps(struct machines * machines,pid_t pid)1302 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1303 {
1304 struct machine *machine = machines__findnew(machines, pid);
1305
1306 if (machine == NULL)
1307 return -1;
1308
1309 return machine__create_kernel_maps(machine);
1310 }
1311
machine__load_kallsyms(struct machine * machine,const char * filename)1312 int machine__load_kallsyms(struct machine *machine, const char *filename)
1313 {
1314 struct map *map = machine__kernel_map(machine);
1315 int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1316
1317 if (ret > 0) {
1318 dso__set_loaded(map->dso);
1319 /*
1320 * Since /proc/kallsyms will have multiple sessions for the
1321 * kernel, with modules between them, fixup the end of all
1322 * sections.
1323 */
1324 maps__fixup_end(&machine->kmaps);
1325 }
1326
1327 return ret;
1328 }
1329
machine__load_vmlinux_path(struct machine * machine)1330 int machine__load_vmlinux_path(struct machine *machine)
1331 {
1332 struct map *map = machine__kernel_map(machine);
1333 int ret = dso__load_vmlinux_path(map->dso, map);
1334
1335 if (ret > 0)
1336 dso__set_loaded(map->dso);
1337
1338 return ret;
1339 }
1340
get_kernel_version(const char * root_dir)1341 static char *get_kernel_version(const char *root_dir)
1342 {
1343 char version[PATH_MAX];
1344 FILE *file;
1345 char *name, *tmp;
1346 const char *prefix = "Linux version ";
1347
1348 sprintf(version, "%s/proc/version", root_dir);
1349 file = fopen(version, "r");
1350 if (!file)
1351 return NULL;
1352
1353 tmp = fgets(version, sizeof(version), file);
1354 fclose(file);
1355 if (!tmp)
1356 return NULL;
1357
1358 name = strstr(version, prefix);
1359 if (!name)
1360 return NULL;
1361 name += strlen(prefix);
1362 tmp = strchr(name, ' ');
1363 if (tmp)
1364 *tmp = '\0';
1365
1366 return strdup(name);
1367 }
1368
is_kmod_dso(struct dso * dso)1369 static bool is_kmod_dso(struct dso *dso)
1370 {
1371 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1372 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1373 }
1374
maps__set_module_path(struct maps * maps,const char * path,struct kmod_path * m)1375 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1376 {
1377 char *long_name;
1378 struct map *map = maps__find_by_name(maps, m->name);
1379
1380 if (map == NULL)
1381 return 0;
1382
1383 long_name = strdup(path);
1384 if (long_name == NULL)
1385 return -ENOMEM;
1386
1387 dso__set_long_name(map->dso, long_name, true);
1388 dso__kernel_module_get_build_id(map->dso, "");
1389
1390 /*
1391 * Full name could reveal us kmod compression, so
1392 * we need to update the symtab_type if needed.
1393 */
1394 if (m->comp && is_kmod_dso(map->dso)) {
1395 map->dso->symtab_type++;
1396 map->dso->comp = m->comp;
1397 }
1398
1399 return 0;
1400 }
1401
maps__set_modules_path_dir(struct maps * maps,const char * dir_name,int depth)1402 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1403 {
1404 struct dirent *dent;
1405 DIR *dir = opendir(dir_name);
1406 int ret = 0;
1407
1408 if (!dir) {
1409 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1410 return -1;
1411 }
1412
1413 while ((dent = readdir(dir)) != NULL) {
1414 char path[PATH_MAX];
1415 struct stat st;
1416
1417 /*sshfs might return bad dent->d_type, so we have to stat*/
1418 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1419 if (stat(path, &st))
1420 continue;
1421
1422 if (S_ISDIR(st.st_mode)) {
1423 if (!strcmp(dent->d_name, ".") ||
1424 !strcmp(dent->d_name, ".."))
1425 continue;
1426
1427 /* Do not follow top-level source and build symlinks */
1428 if (depth == 0) {
1429 if (!strcmp(dent->d_name, "source") ||
1430 !strcmp(dent->d_name, "build"))
1431 continue;
1432 }
1433
1434 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1435 if (ret < 0)
1436 goto out;
1437 } else {
1438 struct kmod_path m;
1439
1440 ret = kmod_path__parse_name(&m, dent->d_name);
1441 if (ret)
1442 goto out;
1443
1444 if (m.kmod)
1445 ret = maps__set_module_path(maps, path, &m);
1446
1447 zfree(&m.name);
1448
1449 if (ret)
1450 goto out;
1451 }
1452 }
1453
1454 out:
1455 closedir(dir);
1456 return ret;
1457 }
1458
machine__set_modules_path(struct machine * machine)1459 static int machine__set_modules_path(struct machine *machine)
1460 {
1461 char *version;
1462 char modules_path[PATH_MAX];
1463
1464 version = get_kernel_version(machine->root_dir);
1465 if (!version)
1466 return -1;
1467
1468 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1469 machine->root_dir, version);
1470 free(version);
1471
1472 return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1473 }
arch__fix_module_text_start(u64 * start __maybe_unused,u64 * size __maybe_unused,const char * name __maybe_unused)1474 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1475 u64 *size __maybe_unused,
1476 const char *name __maybe_unused)
1477 {
1478 return 0;
1479 }
1480
machine__create_module(void * arg,const char * name,u64 start,u64 size)1481 static int machine__create_module(void *arg, const char *name, u64 start,
1482 u64 size)
1483 {
1484 struct machine *machine = arg;
1485 struct map *map;
1486
1487 if (arch__fix_module_text_start(&start, &size, name) < 0)
1488 return -1;
1489
1490 map = machine__addnew_module_map(machine, start, name);
1491 if (map == NULL)
1492 return -1;
1493 map->end = start + size;
1494
1495 dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1496
1497 return 0;
1498 }
1499
machine__create_modules(struct machine * machine)1500 static int machine__create_modules(struct machine *machine)
1501 {
1502 const char *modules;
1503 char path[PATH_MAX];
1504
1505 if (machine__is_default_guest(machine)) {
1506 modules = symbol_conf.default_guest_modules;
1507 } else {
1508 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1509 modules = path;
1510 }
1511
1512 if (symbol__restricted_filename(modules, "/proc/modules"))
1513 return -1;
1514
1515 if (modules__parse(modules, machine, machine__create_module))
1516 return -1;
1517
1518 if (!machine__set_modules_path(machine))
1519 return 0;
1520
1521 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1522
1523 return 0;
1524 }
1525
machine__set_kernel_mmap(struct machine * machine,u64 start,u64 end)1526 static void machine__set_kernel_mmap(struct machine *machine,
1527 u64 start, u64 end)
1528 {
1529 machine->vmlinux_map->start = start;
1530 machine->vmlinux_map->end = end;
1531 /*
1532 * Be a bit paranoid here, some perf.data file came with
1533 * a zero sized synthesized MMAP event for the kernel.
1534 */
1535 if (start == 0 && end == 0)
1536 machine->vmlinux_map->end = ~0ULL;
1537 }
1538
machine__update_kernel_mmap(struct machine * machine,u64 start,u64 end)1539 static void machine__update_kernel_mmap(struct machine *machine,
1540 u64 start, u64 end)
1541 {
1542 struct map *map = machine__kernel_map(machine);
1543
1544 map__get(map);
1545 maps__remove(&machine->kmaps, map);
1546
1547 machine__set_kernel_mmap(machine, start, end);
1548
1549 maps__insert(&machine->kmaps, map);
1550 map__put(map);
1551 }
1552
machine__create_kernel_maps(struct machine * machine)1553 int machine__create_kernel_maps(struct machine *machine)
1554 {
1555 struct dso *kernel = machine__get_kernel(machine);
1556 const char *name = NULL;
1557 struct map *map;
1558 u64 start = 0, end = ~0ULL;
1559 int ret;
1560
1561 if (kernel == NULL)
1562 return -1;
1563
1564 ret = __machine__create_kernel_maps(machine, kernel);
1565 if (ret < 0)
1566 goto out_put;
1567
1568 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1569 if (machine__is_host(machine))
1570 pr_debug("Problems creating module maps, "
1571 "continuing anyway...\n");
1572 else
1573 pr_debug("Problems creating module maps for guest %d, "
1574 "continuing anyway...\n", machine->pid);
1575 }
1576
1577 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1578 if (name &&
1579 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1580 machine__destroy_kernel_maps(machine);
1581 ret = -1;
1582 goto out_put;
1583 }
1584
1585 /*
1586 * we have a real start address now, so re-order the kmaps
1587 * assume it's the last in the kmaps
1588 */
1589 machine__update_kernel_mmap(machine, start, end);
1590 }
1591
1592 if (machine__create_extra_kernel_maps(machine, kernel))
1593 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1594
1595 if (end == ~0ULL) {
1596 /* update end address of the kernel map using adjacent module address */
1597 map = map__next(machine__kernel_map(machine));
1598 if (map)
1599 machine__set_kernel_mmap(machine, start, map->start);
1600 }
1601
1602 out_put:
1603 dso__put(kernel);
1604 return ret;
1605 }
1606
machine__uses_kcore(struct machine * machine)1607 static bool machine__uses_kcore(struct machine *machine)
1608 {
1609 struct dso *dso;
1610
1611 list_for_each_entry(dso, &machine->dsos.head, node) {
1612 if (dso__is_kcore(dso))
1613 return true;
1614 }
1615
1616 return false;
1617 }
1618
perf_event__is_extra_kernel_mmap(struct machine * machine,struct extra_kernel_map * xm)1619 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1620 struct extra_kernel_map *xm)
1621 {
1622 return machine__is(machine, "x86_64") &&
1623 is_entry_trampoline(xm->name);
1624 }
1625
machine__process_extra_kernel_map(struct machine * machine,struct extra_kernel_map * xm)1626 static int machine__process_extra_kernel_map(struct machine *machine,
1627 struct extra_kernel_map *xm)
1628 {
1629 struct dso *kernel = machine__kernel_dso(machine);
1630
1631 if (kernel == NULL)
1632 return -1;
1633
1634 return machine__create_extra_kernel_map(machine, kernel, xm);
1635 }
1636
machine__process_kernel_mmap_event(struct machine * machine,struct extra_kernel_map * xm,struct build_id * bid)1637 static int machine__process_kernel_mmap_event(struct machine *machine,
1638 struct extra_kernel_map *xm,
1639 struct build_id *bid)
1640 {
1641 struct map *map;
1642 enum dso_space_type dso_space;
1643 bool is_kernel_mmap;
1644
1645 /* If we have maps from kcore then we do not need or want any others */
1646 if (machine__uses_kcore(machine))
1647 return 0;
1648
1649 if (machine__is_host(machine))
1650 dso_space = DSO_SPACE__KERNEL;
1651 else
1652 dso_space = DSO_SPACE__KERNEL_GUEST;
1653
1654 is_kernel_mmap = memcmp(xm->name, machine->mmap_name,
1655 strlen(machine->mmap_name) - 1) == 0;
1656 if (xm->name[0] == '/' ||
1657 (!is_kernel_mmap && xm->name[0] == '[')) {
1658 map = machine__addnew_module_map(machine, xm->start,
1659 xm->name);
1660 if (map == NULL)
1661 goto out_problem;
1662
1663 map->end = map->start + xm->end - xm->start;
1664
1665 if (build_id__is_defined(bid))
1666 dso__set_build_id(map->dso, bid);
1667
1668 } else if (is_kernel_mmap) {
1669 const char *symbol_name = (xm->name + strlen(machine->mmap_name));
1670 /*
1671 * Should be there already, from the build-id table in
1672 * the header.
1673 */
1674 struct dso *kernel = NULL;
1675 struct dso *dso;
1676
1677 down_read(&machine->dsos.lock);
1678
1679 list_for_each_entry(dso, &machine->dsos.head, node) {
1680
1681 /*
1682 * The cpumode passed to is_kernel_module is not the
1683 * cpumode of *this* event. If we insist on passing
1684 * correct cpumode to is_kernel_module, we should
1685 * record the cpumode when we adding this dso to the
1686 * linked list.
1687 *
1688 * However we don't really need passing correct
1689 * cpumode. We know the correct cpumode must be kernel
1690 * mode (if not, we should not link it onto kernel_dsos
1691 * list).
1692 *
1693 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1694 * is_kernel_module() treats it as a kernel cpumode.
1695 */
1696
1697 if (!dso->kernel ||
1698 is_kernel_module(dso->long_name,
1699 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1700 continue;
1701
1702
1703 kernel = dso;
1704 break;
1705 }
1706
1707 up_read(&machine->dsos.lock);
1708
1709 if (kernel == NULL)
1710 kernel = machine__findnew_dso(machine, machine->mmap_name);
1711 if (kernel == NULL)
1712 goto out_problem;
1713
1714 kernel->kernel = dso_space;
1715 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1716 dso__put(kernel);
1717 goto out_problem;
1718 }
1719
1720 if (strstr(kernel->long_name, "vmlinux"))
1721 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1722
1723 machine__update_kernel_mmap(machine, xm->start, xm->end);
1724
1725 if (build_id__is_defined(bid))
1726 dso__set_build_id(kernel, bid);
1727
1728 /*
1729 * Avoid using a zero address (kptr_restrict) for the ref reloc
1730 * symbol. Effectively having zero here means that at record
1731 * time /proc/sys/kernel/kptr_restrict was non zero.
1732 */
1733 if (xm->pgoff != 0) {
1734 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1735 symbol_name,
1736 xm->pgoff);
1737 }
1738
1739 if (machine__is_default_guest(machine)) {
1740 /*
1741 * preload dso of guest kernel and modules
1742 */
1743 dso__load(kernel, machine__kernel_map(machine));
1744 }
1745 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1746 return machine__process_extra_kernel_map(machine, xm);
1747 }
1748 return 0;
1749 out_problem:
1750 return -1;
1751 }
1752
machine__process_mmap2_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1753 int machine__process_mmap2_event(struct machine *machine,
1754 union perf_event *event,
1755 struct perf_sample *sample)
1756 {
1757 struct thread *thread;
1758 struct map *map;
1759 struct dso_id dso_id = {
1760 .maj = event->mmap2.maj,
1761 .min = event->mmap2.min,
1762 .ino = event->mmap2.ino,
1763 .ino_generation = event->mmap2.ino_generation,
1764 };
1765 struct build_id __bid, *bid = NULL;
1766 int ret = 0;
1767
1768 if (dump_trace)
1769 perf_event__fprintf_mmap2(event, stdout);
1770
1771 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1772 bid = &__bid;
1773 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1774 }
1775
1776 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1777 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1778 struct extra_kernel_map xm = {
1779 .start = event->mmap2.start,
1780 .end = event->mmap2.start + event->mmap2.len,
1781 .pgoff = event->mmap2.pgoff,
1782 };
1783
1784 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1785 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1786 if (ret < 0)
1787 goto out_problem;
1788 return 0;
1789 }
1790
1791 thread = machine__findnew_thread(machine, event->mmap2.pid,
1792 event->mmap2.tid);
1793 if (thread == NULL)
1794 goto out_problem;
1795
1796 map = map__new(machine, event->mmap2.start,
1797 event->mmap2.len, event->mmap2.pgoff,
1798 &dso_id, event->mmap2.prot,
1799 event->mmap2.flags, bid,
1800 event->mmap2.filename, thread);
1801
1802 if (map == NULL)
1803 goto out_problem_map;
1804
1805 ret = thread__insert_map(thread, map);
1806 if (ret)
1807 goto out_problem_insert;
1808
1809 thread__put(thread);
1810 map__put(map);
1811 return 0;
1812
1813 out_problem_insert:
1814 map__put(map);
1815 out_problem_map:
1816 thread__put(thread);
1817 out_problem:
1818 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1819 return 0;
1820 }
1821
machine__process_mmap_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1822 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1823 struct perf_sample *sample)
1824 {
1825 struct thread *thread;
1826 struct map *map;
1827 u32 prot = 0;
1828 int ret = 0;
1829
1830 if (dump_trace)
1831 perf_event__fprintf_mmap(event, stdout);
1832
1833 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1834 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1835 struct extra_kernel_map xm = {
1836 .start = event->mmap.start,
1837 .end = event->mmap.start + event->mmap.len,
1838 .pgoff = event->mmap.pgoff,
1839 };
1840
1841 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1842 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
1843 if (ret < 0)
1844 goto out_problem;
1845 return 0;
1846 }
1847
1848 thread = machine__findnew_thread(machine, event->mmap.pid,
1849 event->mmap.tid);
1850 if (thread == NULL)
1851 goto out_problem;
1852
1853 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1854 prot = PROT_EXEC;
1855
1856 map = map__new(machine, event->mmap.start,
1857 event->mmap.len, event->mmap.pgoff,
1858 NULL, prot, 0, NULL, event->mmap.filename, thread);
1859
1860 if (map == NULL)
1861 goto out_problem_map;
1862
1863 ret = thread__insert_map(thread, map);
1864 if (ret)
1865 goto out_problem_insert;
1866
1867 thread__put(thread);
1868 map__put(map);
1869 return 0;
1870
1871 out_problem_insert:
1872 map__put(map);
1873 out_problem_map:
1874 thread__put(thread);
1875 out_problem:
1876 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1877 return 0;
1878 }
1879
__machine__remove_thread(struct machine * machine,struct thread * th,bool lock)1880 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1881 {
1882 struct threads *threads = machine__threads(machine, th->tid);
1883
1884 if (threads->last_match == th)
1885 threads__set_last_match(threads, NULL);
1886
1887 if (lock)
1888 down_write(&threads->lock);
1889
1890 BUG_ON(refcount_read(&th->refcnt) == 0);
1891
1892 rb_erase_cached(&th->rb_node, &threads->entries);
1893 RB_CLEAR_NODE(&th->rb_node);
1894 --threads->nr;
1895 /*
1896 * Move it first to the dead_threads list, then drop the reference,
1897 * if this is the last reference, then the thread__delete destructor
1898 * will be called and we will remove it from the dead_threads list.
1899 */
1900 list_add_tail(&th->node, &threads->dead);
1901
1902 /*
1903 * We need to do the put here because if this is the last refcount,
1904 * then we will be touching the threads->dead head when removing the
1905 * thread.
1906 */
1907 thread__put(th);
1908
1909 if (lock)
1910 up_write(&threads->lock);
1911 }
1912
machine__remove_thread(struct machine * machine,struct thread * th)1913 void machine__remove_thread(struct machine *machine, struct thread *th)
1914 {
1915 return __machine__remove_thread(machine, th, true);
1916 }
1917
machine__process_fork_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)1918 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1919 struct perf_sample *sample)
1920 {
1921 struct thread *thread = machine__find_thread(machine,
1922 event->fork.pid,
1923 event->fork.tid);
1924 struct thread *parent = machine__findnew_thread(machine,
1925 event->fork.ppid,
1926 event->fork.ptid);
1927 bool do_maps_clone = true;
1928 int err = 0;
1929
1930 if (dump_trace)
1931 perf_event__fprintf_task(event, stdout);
1932
1933 /*
1934 * There may be an existing thread that is not actually the parent,
1935 * either because we are processing events out of order, or because the
1936 * (fork) event that would have removed the thread was lost. Assume the
1937 * latter case and continue on as best we can.
1938 */
1939 if (parent->pid_ != (pid_t)event->fork.ppid) {
1940 dump_printf("removing erroneous parent thread %d/%d\n",
1941 parent->pid_, parent->tid);
1942 machine__remove_thread(machine, parent);
1943 thread__put(parent);
1944 parent = machine__findnew_thread(machine, event->fork.ppid,
1945 event->fork.ptid);
1946 }
1947
1948 /* if a thread currently exists for the thread id remove it */
1949 if (thread != NULL) {
1950 machine__remove_thread(machine, thread);
1951 thread__put(thread);
1952 }
1953
1954 thread = machine__findnew_thread(machine, event->fork.pid,
1955 event->fork.tid);
1956 /*
1957 * When synthesizing FORK events, we are trying to create thread
1958 * objects for the already running tasks on the machine.
1959 *
1960 * Normally, for a kernel FORK event, we want to clone the parent's
1961 * maps because that is what the kernel just did.
1962 *
1963 * But when synthesizing, this should not be done. If we do, we end up
1964 * with overlapping maps as we process the synthesized MMAP2 events that
1965 * get delivered shortly thereafter.
1966 *
1967 * Use the FORK event misc flags in an internal way to signal this
1968 * situation, so we can elide the map clone when appropriate.
1969 */
1970 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1971 do_maps_clone = false;
1972
1973 if (thread == NULL || parent == NULL ||
1974 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1975 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1976 err = -1;
1977 }
1978 thread__put(thread);
1979 thread__put(parent);
1980
1981 return err;
1982 }
1983
machine__process_exit_event(struct machine * machine,union perf_event * event,struct perf_sample * sample __maybe_unused)1984 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1985 struct perf_sample *sample __maybe_unused)
1986 {
1987 struct thread *thread = machine__find_thread(machine,
1988 event->fork.pid,
1989 event->fork.tid);
1990
1991 if (dump_trace)
1992 perf_event__fprintf_task(event, stdout);
1993
1994 if (thread != NULL) {
1995 thread__exited(thread);
1996 thread__put(thread);
1997 }
1998
1999 return 0;
2000 }
2001
machine__process_event(struct machine * machine,union perf_event * event,struct perf_sample * sample)2002 int machine__process_event(struct machine *machine, union perf_event *event,
2003 struct perf_sample *sample)
2004 {
2005 int ret;
2006
2007 switch (event->header.type) {
2008 case PERF_RECORD_COMM:
2009 ret = machine__process_comm_event(machine, event, sample); break;
2010 case PERF_RECORD_MMAP:
2011 ret = machine__process_mmap_event(machine, event, sample); break;
2012 case PERF_RECORD_NAMESPACES:
2013 ret = machine__process_namespaces_event(machine, event, sample); break;
2014 case PERF_RECORD_CGROUP:
2015 ret = machine__process_cgroup_event(machine, event, sample); break;
2016 case PERF_RECORD_MMAP2:
2017 ret = machine__process_mmap2_event(machine, event, sample); break;
2018 case PERF_RECORD_FORK:
2019 ret = machine__process_fork_event(machine, event, sample); break;
2020 case PERF_RECORD_EXIT:
2021 ret = machine__process_exit_event(machine, event, sample); break;
2022 case PERF_RECORD_LOST:
2023 ret = machine__process_lost_event(machine, event, sample); break;
2024 case PERF_RECORD_AUX:
2025 ret = machine__process_aux_event(machine, event); break;
2026 case PERF_RECORD_ITRACE_START:
2027 ret = machine__process_itrace_start_event(machine, event); break;
2028 case PERF_RECORD_LOST_SAMPLES:
2029 ret = machine__process_lost_samples_event(machine, event, sample); break;
2030 case PERF_RECORD_SWITCH:
2031 case PERF_RECORD_SWITCH_CPU_WIDE:
2032 ret = machine__process_switch_event(machine, event); break;
2033 case PERF_RECORD_KSYMBOL:
2034 ret = machine__process_ksymbol(machine, event, sample); break;
2035 case PERF_RECORD_BPF_EVENT:
2036 ret = machine__process_bpf(machine, event, sample); break;
2037 case PERF_RECORD_TEXT_POKE:
2038 ret = machine__process_text_poke(machine, event, sample); break;
2039 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2040 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2041 default:
2042 ret = -1;
2043 break;
2044 }
2045
2046 return ret;
2047 }
2048
symbol__match_regex(struct symbol * sym,regex_t * regex)2049 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2050 {
2051 if (!regexec(regex, sym->name, 0, NULL, 0))
2052 return true;
2053 return false;
2054 }
2055
ip__resolve_ams(struct thread * thread,struct addr_map_symbol * ams,u64 ip)2056 static void ip__resolve_ams(struct thread *thread,
2057 struct addr_map_symbol *ams,
2058 u64 ip)
2059 {
2060 struct addr_location al;
2061
2062 memset(&al, 0, sizeof(al));
2063 /*
2064 * We cannot use the header.misc hint to determine whether a
2065 * branch stack address is user, kernel, guest, hypervisor.
2066 * Branches may straddle the kernel/user/hypervisor boundaries.
2067 * Thus, we have to try consecutively until we find a match
2068 * or else, the symbol is unknown
2069 */
2070 thread__find_cpumode_addr_location(thread, ip, &al);
2071
2072 ams->addr = ip;
2073 ams->al_addr = al.addr;
2074 ams->ms.maps = al.maps;
2075 ams->ms.sym = al.sym;
2076 ams->ms.map = al.map;
2077 ams->phys_addr = 0;
2078 ams->data_page_size = 0;
2079 }
2080
ip__resolve_data(struct thread * thread,u8 m,struct addr_map_symbol * ams,u64 addr,u64 phys_addr,u64 daddr_page_size)2081 static void ip__resolve_data(struct thread *thread,
2082 u8 m, struct addr_map_symbol *ams,
2083 u64 addr, u64 phys_addr, u64 daddr_page_size)
2084 {
2085 struct addr_location al;
2086
2087 memset(&al, 0, sizeof(al));
2088
2089 thread__find_symbol(thread, m, addr, &al);
2090
2091 ams->addr = addr;
2092 ams->al_addr = al.addr;
2093 ams->ms.maps = al.maps;
2094 ams->ms.sym = al.sym;
2095 ams->ms.map = al.map;
2096 ams->phys_addr = phys_addr;
2097 ams->data_page_size = daddr_page_size;
2098 }
2099
sample__resolve_mem(struct perf_sample * sample,struct addr_location * al)2100 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2101 struct addr_location *al)
2102 {
2103 struct mem_info *mi = mem_info__new();
2104
2105 if (!mi)
2106 return NULL;
2107
2108 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2109 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2110 sample->addr, sample->phys_addr,
2111 sample->data_page_size);
2112 mi->data_src.val = sample->data_src;
2113
2114 return mi;
2115 }
2116
callchain_srcline(struct map_symbol * ms,u64 ip)2117 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2118 {
2119 struct map *map = ms->map;
2120 char *srcline = NULL;
2121
2122 if (!map || callchain_param.key == CCKEY_FUNCTION)
2123 return srcline;
2124
2125 srcline = srcline__tree_find(&map->dso->srclines, ip);
2126 if (!srcline) {
2127 bool show_sym = false;
2128 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2129
2130 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2131 ms->sym, show_sym, show_addr, ip);
2132 srcline__tree_insert(&map->dso->srclines, ip, srcline);
2133 }
2134
2135 return srcline;
2136 }
2137
2138 struct iterations {
2139 int nr_loop_iter;
2140 u64 cycles;
2141 };
2142
add_callchain_ip(struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,u64 ip,bool branch,struct branch_flags * flags,struct iterations * iter,u64 branch_from)2143 static int add_callchain_ip(struct thread *thread,
2144 struct callchain_cursor *cursor,
2145 struct symbol **parent,
2146 struct addr_location *root_al,
2147 u8 *cpumode,
2148 u64 ip,
2149 bool branch,
2150 struct branch_flags *flags,
2151 struct iterations *iter,
2152 u64 branch_from)
2153 {
2154 struct map_symbol ms;
2155 struct addr_location al;
2156 int nr_loop_iter = 0;
2157 u64 iter_cycles = 0;
2158 const char *srcline = NULL;
2159
2160 al.filtered = 0;
2161 al.sym = NULL;
2162 al.srcline = NULL;
2163 if (!cpumode) {
2164 thread__find_cpumode_addr_location(thread, ip, &al);
2165 } else {
2166 if (ip >= PERF_CONTEXT_MAX) {
2167 switch (ip) {
2168 case PERF_CONTEXT_HV:
2169 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2170 break;
2171 case PERF_CONTEXT_KERNEL:
2172 *cpumode = PERF_RECORD_MISC_KERNEL;
2173 break;
2174 case PERF_CONTEXT_USER:
2175 *cpumode = PERF_RECORD_MISC_USER;
2176 break;
2177 default:
2178 pr_debug("invalid callchain context: "
2179 "%"PRId64"\n", (s64) ip);
2180 /*
2181 * It seems the callchain is corrupted.
2182 * Discard all.
2183 */
2184 callchain_cursor_reset(cursor);
2185 return 1;
2186 }
2187 return 0;
2188 }
2189 thread__find_symbol(thread, *cpumode, ip, &al);
2190 }
2191
2192 if (al.sym != NULL) {
2193 if (perf_hpp_list.parent && !*parent &&
2194 symbol__match_regex(al.sym, &parent_regex))
2195 *parent = al.sym;
2196 else if (have_ignore_callees && root_al &&
2197 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2198 /* Treat this symbol as the root,
2199 forgetting its callees. */
2200 *root_al = al;
2201 callchain_cursor_reset(cursor);
2202 }
2203 }
2204
2205 if (symbol_conf.hide_unresolved && al.sym == NULL)
2206 return 0;
2207
2208 if (iter) {
2209 nr_loop_iter = iter->nr_loop_iter;
2210 iter_cycles = iter->cycles;
2211 }
2212
2213 ms.maps = al.maps;
2214 ms.map = al.map;
2215 ms.sym = al.sym;
2216 srcline = callchain_srcline(&ms, al.addr);
2217 return callchain_cursor_append(cursor, ip, &ms,
2218 branch, flags, nr_loop_iter,
2219 iter_cycles, branch_from, srcline);
2220 }
2221
sample__resolve_bstack(struct perf_sample * sample,struct addr_location * al)2222 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2223 struct addr_location *al)
2224 {
2225 unsigned int i;
2226 const struct branch_stack *bs = sample->branch_stack;
2227 struct branch_entry *entries = perf_sample__branch_entries(sample);
2228 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2229
2230 if (!bi)
2231 return NULL;
2232
2233 for (i = 0; i < bs->nr; i++) {
2234 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2235 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2236 bi[i].flags = entries[i].flags;
2237 }
2238 return bi;
2239 }
2240
save_iterations(struct iterations * iter,struct branch_entry * be,int nr)2241 static void save_iterations(struct iterations *iter,
2242 struct branch_entry *be, int nr)
2243 {
2244 int i;
2245
2246 iter->nr_loop_iter++;
2247 iter->cycles = 0;
2248
2249 for (i = 0; i < nr; i++)
2250 iter->cycles += be[i].flags.cycles;
2251 }
2252
2253 #define CHASHSZ 127
2254 #define CHASHBITS 7
2255 #define NO_ENTRY 0xff
2256
2257 #define PERF_MAX_BRANCH_DEPTH 127
2258
2259 /* Remove loops. */
remove_loops(struct branch_entry * l,int nr,struct iterations * iter)2260 static int remove_loops(struct branch_entry *l, int nr,
2261 struct iterations *iter)
2262 {
2263 int i, j, off;
2264 unsigned char chash[CHASHSZ];
2265
2266 memset(chash, NO_ENTRY, sizeof(chash));
2267
2268 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2269
2270 for (i = 0; i < nr; i++) {
2271 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2272
2273 /* no collision handling for now */
2274 if (chash[h] == NO_ENTRY) {
2275 chash[h] = i;
2276 } else if (l[chash[h]].from == l[i].from) {
2277 bool is_loop = true;
2278 /* check if it is a real loop */
2279 off = 0;
2280 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2281 if (l[j].from != l[i + off].from) {
2282 is_loop = false;
2283 break;
2284 }
2285 if (is_loop) {
2286 j = nr - (i + off);
2287 if (j > 0) {
2288 save_iterations(iter + i + off,
2289 l + i, off);
2290
2291 memmove(iter + i, iter + i + off,
2292 j * sizeof(*iter));
2293
2294 memmove(l + i, l + i + off,
2295 j * sizeof(*l));
2296 }
2297
2298 nr -= off;
2299 }
2300 }
2301 }
2302 return nr;
2303 }
2304
lbr_callchain_add_kernel_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 branch_from,bool callee,int end)2305 static int lbr_callchain_add_kernel_ip(struct thread *thread,
2306 struct callchain_cursor *cursor,
2307 struct perf_sample *sample,
2308 struct symbol **parent,
2309 struct addr_location *root_al,
2310 u64 branch_from,
2311 bool callee, int end)
2312 {
2313 struct ip_callchain *chain = sample->callchain;
2314 u8 cpumode = PERF_RECORD_MISC_USER;
2315 int err, i;
2316
2317 if (callee) {
2318 for (i = 0; i < end + 1; i++) {
2319 err = add_callchain_ip(thread, cursor, parent,
2320 root_al, &cpumode, chain->ips[i],
2321 false, NULL, NULL, branch_from);
2322 if (err)
2323 return err;
2324 }
2325 return 0;
2326 }
2327
2328 for (i = end; i >= 0; i--) {
2329 err = add_callchain_ip(thread, cursor, parent,
2330 root_al, &cpumode, chain->ips[i],
2331 false, NULL, NULL, branch_from);
2332 if (err)
2333 return err;
2334 }
2335
2336 return 0;
2337 }
2338
save_lbr_cursor_node(struct thread * thread,struct callchain_cursor * cursor,int idx)2339 static void save_lbr_cursor_node(struct thread *thread,
2340 struct callchain_cursor *cursor,
2341 int idx)
2342 {
2343 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2344
2345 if (!lbr_stitch)
2346 return;
2347
2348 if (cursor->pos == cursor->nr) {
2349 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2350 return;
2351 }
2352
2353 if (!cursor->curr)
2354 cursor->curr = cursor->first;
2355 else
2356 cursor->curr = cursor->curr->next;
2357 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2358 sizeof(struct callchain_cursor_node));
2359
2360 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2361 cursor->pos++;
2362 }
2363
lbr_callchain_add_lbr_ip(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,u64 * branch_from,bool callee)2364 static int lbr_callchain_add_lbr_ip(struct thread *thread,
2365 struct callchain_cursor *cursor,
2366 struct perf_sample *sample,
2367 struct symbol **parent,
2368 struct addr_location *root_al,
2369 u64 *branch_from,
2370 bool callee)
2371 {
2372 struct branch_stack *lbr_stack = sample->branch_stack;
2373 struct branch_entry *entries = perf_sample__branch_entries(sample);
2374 u8 cpumode = PERF_RECORD_MISC_USER;
2375 int lbr_nr = lbr_stack->nr;
2376 struct branch_flags *flags;
2377 int err, i;
2378 u64 ip;
2379
2380 /*
2381 * The curr and pos are not used in writing session. They are cleared
2382 * in callchain_cursor_commit() when the writing session is closed.
2383 * Using curr and pos to track the current cursor node.
2384 */
2385 if (thread->lbr_stitch) {
2386 cursor->curr = NULL;
2387 cursor->pos = cursor->nr;
2388 if (cursor->nr) {
2389 cursor->curr = cursor->first;
2390 for (i = 0; i < (int)(cursor->nr - 1); i++)
2391 cursor->curr = cursor->curr->next;
2392 }
2393 }
2394
2395 if (callee) {
2396 /* Add LBR ip from first entries.to */
2397 ip = entries[0].to;
2398 flags = &entries[0].flags;
2399 *branch_from = entries[0].from;
2400 err = add_callchain_ip(thread, cursor, parent,
2401 root_al, &cpumode, ip,
2402 true, flags, NULL,
2403 *branch_from);
2404 if (err)
2405 return err;
2406
2407 /*
2408 * The number of cursor node increases.
2409 * Move the current cursor node.
2410 * But does not need to save current cursor node for entry 0.
2411 * It's impossible to stitch the whole LBRs of previous sample.
2412 */
2413 if (thread->lbr_stitch && (cursor->pos != cursor->nr)) {
2414 if (!cursor->curr)
2415 cursor->curr = cursor->first;
2416 else
2417 cursor->curr = cursor->curr->next;
2418 cursor->pos++;
2419 }
2420
2421 /* Add LBR ip from entries.from one by one. */
2422 for (i = 0; i < lbr_nr; i++) {
2423 ip = entries[i].from;
2424 flags = &entries[i].flags;
2425 err = add_callchain_ip(thread, cursor, parent,
2426 root_al, &cpumode, ip,
2427 true, flags, NULL,
2428 *branch_from);
2429 if (err)
2430 return err;
2431 save_lbr_cursor_node(thread, cursor, i);
2432 }
2433 return 0;
2434 }
2435
2436 /* Add LBR ip from entries.from one by one. */
2437 for (i = lbr_nr - 1; i >= 0; i--) {
2438 ip = entries[i].from;
2439 flags = &entries[i].flags;
2440 err = add_callchain_ip(thread, cursor, parent,
2441 root_al, &cpumode, ip,
2442 true, flags, NULL,
2443 *branch_from);
2444 if (err)
2445 return err;
2446 save_lbr_cursor_node(thread, cursor, i);
2447 }
2448
2449 /* Add LBR ip from first entries.to */
2450 ip = entries[0].to;
2451 flags = &entries[0].flags;
2452 *branch_from = entries[0].from;
2453 err = add_callchain_ip(thread, cursor, parent,
2454 root_al, &cpumode, ip,
2455 true, flags, NULL,
2456 *branch_from);
2457 if (err)
2458 return err;
2459
2460 return 0;
2461 }
2462
lbr_callchain_add_stitched_lbr_ip(struct thread * thread,struct callchain_cursor * cursor)2463 static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2464 struct callchain_cursor *cursor)
2465 {
2466 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2467 struct callchain_cursor_node *cnode;
2468 struct stitch_list *stitch_node;
2469 int err;
2470
2471 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2472 cnode = &stitch_node->cursor;
2473
2474 err = callchain_cursor_append(cursor, cnode->ip,
2475 &cnode->ms,
2476 cnode->branch,
2477 &cnode->branch_flags,
2478 cnode->nr_loop_iter,
2479 cnode->iter_cycles,
2480 cnode->branch_from,
2481 cnode->srcline);
2482 if (err)
2483 return err;
2484 }
2485 return 0;
2486 }
2487
get_stitch_node(struct thread * thread)2488 static struct stitch_list *get_stitch_node(struct thread *thread)
2489 {
2490 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2491 struct stitch_list *stitch_node;
2492
2493 if (!list_empty(&lbr_stitch->free_lists)) {
2494 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2495 struct stitch_list, node);
2496 list_del(&stitch_node->node);
2497
2498 return stitch_node;
2499 }
2500
2501 return malloc(sizeof(struct stitch_list));
2502 }
2503
has_stitched_lbr(struct thread * thread,struct perf_sample * cur,struct perf_sample * prev,unsigned int max_lbr,bool callee)2504 static bool has_stitched_lbr(struct thread *thread,
2505 struct perf_sample *cur,
2506 struct perf_sample *prev,
2507 unsigned int max_lbr,
2508 bool callee)
2509 {
2510 struct branch_stack *cur_stack = cur->branch_stack;
2511 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2512 struct branch_stack *prev_stack = prev->branch_stack;
2513 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2514 struct lbr_stitch *lbr_stitch = thread->lbr_stitch;
2515 int i, j, nr_identical_branches = 0;
2516 struct stitch_list *stitch_node;
2517 u64 cur_base, distance;
2518
2519 if (!cur_stack || !prev_stack)
2520 return false;
2521
2522 /* Find the physical index of the base-of-stack for current sample. */
2523 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2524
2525 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2526 (max_lbr + prev_stack->hw_idx - cur_base);
2527 /* Previous sample has shorter stack. Nothing can be stitched. */
2528 if (distance + 1 > prev_stack->nr)
2529 return false;
2530
2531 /*
2532 * Check if there are identical LBRs between two samples.
2533 * Identical LBRs must have same from, to and flags values. Also,
2534 * they have to be saved in the same LBR registers (same physical
2535 * index).
2536 *
2537 * Starts from the base-of-stack of current sample.
2538 */
2539 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2540 if ((prev_entries[i].from != cur_entries[j].from) ||
2541 (prev_entries[i].to != cur_entries[j].to) ||
2542 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2543 break;
2544 nr_identical_branches++;
2545 }
2546
2547 if (!nr_identical_branches)
2548 return false;
2549
2550 /*
2551 * Save the LBRs between the base-of-stack of previous sample
2552 * and the base-of-stack of current sample into lbr_stitch->lists.
2553 * These LBRs will be stitched later.
2554 */
2555 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2556
2557 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2558 continue;
2559
2560 stitch_node = get_stitch_node(thread);
2561 if (!stitch_node)
2562 return false;
2563
2564 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2565 sizeof(struct callchain_cursor_node));
2566
2567 if (callee)
2568 list_add(&stitch_node->node, &lbr_stitch->lists);
2569 else
2570 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2571 }
2572
2573 return true;
2574 }
2575
alloc_lbr_stitch(struct thread * thread,unsigned int max_lbr)2576 static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2577 {
2578 if (thread->lbr_stitch)
2579 return true;
2580
2581 thread->lbr_stitch = zalloc(sizeof(*thread->lbr_stitch));
2582 if (!thread->lbr_stitch)
2583 goto err;
2584
2585 thread->lbr_stitch->prev_lbr_cursor = calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2586 if (!thread->lbr_stitch->prev_lbr_cursor)
2587 goto free_lbr_stitch;
2588
2589 INIT_LIST_HEAD(&thread->lbr_stitch->lists);
2590 INIT_LIST_HEAD(&thread->lbr_stitch->free_lists);
2591
2592 return true;
2593
2594 free_lbr_stitch:
2595 zfree(&thread->lbr_stitch);
2596 err:
2597 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2598 thread->lbr_stitch_enable = false;
2599 return false;
2600 }
2601
2602 /*
2603 * Resolve LBR callstack chain sample
2604 * Return:
2605 * 1 on success get LBR callchain information
2606 * 0 no available LBR callchain information, should try fp
2607 * negative error code on other errors.
2608 */
resolve_lbr_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack,unsigned int max_lbr)2609 static int resolve_lbr_callchain_sample(struct thread *thread,
2610 struct callchain_cursor *cursor,
2611 struct perf_sample *sample,
2612 struct symbol **parent,
2613 struct addr_location *root_al,
2614 int max_stack,
2615 unsigned int max_lbr)
2616 {
2617 bool callee = (callchain_param.order == ORDER_CALLEE);
2618 struct ip_callchain *chain = sample->callchain;
2619 int chain_nr = min(max_stack, (int)chain->nr), i;
2620 struct lbr_stitch *lbr_stitch;
2621 bool stitched_lbr = false;
2622 u64 branch_from = 0;
2623 int err;
2624
2625 for (i = 0; i < chain_nr; i++) {
2626 if (chain->ips[i] == PERF_CONTEXT_USER)
2627 break;
2628 }
2629
2630 /* LBR only affects the user callchain */
2631 if (i == chain_nr)
2632 return 0;
2633
2634 if (thread->lbr_stitch_enable && !sample->no_hw_idx &&
2635 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2636 lbr_stitch = thread->lbr_stitch;
2637
2638 stitched_lbr = has_stitched_lbr(thread, sample,
2639 &lbr_stitch->prev_sample,
2640 max_lbr, callee);
2641
2642 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2643 list_replace_init(&lbr_stitch->lists,
2644 &lbr_stitch->free_lists);
2645 }
2646 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2647 }
2648
2649 if (callee) {
2650 /* Add kernel ip */
2651 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2652 parent, root_al, branch_from,
2653 true, i);
2654 if (err)
2655 goto error;
2656
2657 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2658 root_al, &branch_from, true);
2659 if (err)
2660 goto error;
2661
2662 if (stitched_lbr) {
2663 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2664 if (err)
2665 goto error;
2666 }
2667
2668 } else {
2669 if (stitched_lbr) {
2670 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2671 if (err)
2672 goto error;
2673 }
2674 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2675 root_al, &branch_from, false);
2676 if (err)
2677 goto error;
2678
2679 /* Add kernel ip */
2680 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2681 parent, root_al, branch_from,
2682 false, i);
2683 if (err)
2684 goto error;
2685 }
2686 return 1;
2687
2688 error:
2689 return (err < 0) ? err : 0;
2690 }
2691
find_prev_cpumode(struct ip_callchain * chain,struct thread * thread,struct callchain_cursor * cursor,struct symbol ** parent,struct addr_location * root_al,u8 * cpumode,int ent)2692 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2693 struct callchain_cursor *cursor,
2694 struct symbol **parent,
2695 struct addr_location *root_al,
2696 u8 *cpumode, int ent)
2697 {
2698 int err = 0;
2699
2700 while (--ent >= 0) {
2701 u64 ip = chain->ips[ent];
2702
2703 if (ip >= PERF_CONTEXT_MAX) {
2704 err = add_callchain_ip(thread, cursor, parent,
2705 root_al, cpumode, ip,
2706 false, NULL, NULL, 0);
2707 break;
2708 }
2709 }
2710 return err;
2711 }
2712
thread__resolve_callchain_sample(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2713 static int thread__resolve_callchain_sample(struct thread *thread,
2714 struct callchain_cursor *cursor,
2715 struct evsel *evsel,
2716 struct perf_sample *sample,
2717 struct symbol **parent,
2718 struct addr_location *root_al,
2719 int max_stack)
2720 {
2721 struct branch_stack *branch = sample->branch_stack;
2722 struct branch_entry *entries = perf_sample__branch_entries(sample);
2723 struct ip_callchain *chain = sample->callchain;
2724 int chain_nr = 0;
2725 u8 cpumode = PERF_RECORD_MISC_USER;
2726 int i, j, err, nr_entries;
2727 int skip_idx = -1;
2728 int first_call = 0;
2729
2730 if (chain)
2731 chain_nr = chain->nr;
2732
2733 if (evsel__has_branch_callstack(evsel)) {
2734 struct perf_env *env = evsel__env(evsel);
2735
2736 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2737 root_al, max_stack,
2738 !env ? 0 : env->max_branches);
2739 if (err)
2740 return (err < 0) ? err : 0;
2741 }
2742
2743 /*
2744 * Based on DWARF debug information, some architectures skip
2745 * a callchain entry saved by the kernel.
2746 */
2747 skip_idx = arch_skip_callchain_idx(thread, chain);
2748
2749 /*
2750 * Add branches to call stack for easier browsing. This gives
2751 * more context for a sample than just the callers.
2752 *
2753 * This uses individual histograms of paths compared to the
2754 * aggregated histograms the normal LBR mode uses.
2755 *
2756 * Limitations for now:
2757 * - No extra filters
2758 * - No annotations (should annotate somehow)
2759 */
2760
2761 if (branch && callchain_param.branch_callstack) {
2762 int nr = min(max_stack, (int)branch->nr);
2763 struct branch_entry be[nr];
2764 struct iterations iter[nr];
2765
2766 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2767 pr_warning("corrupted branch chain. skipping...\n");
2768 goto check_calls;
2769 }
2770
2771 for (i = 0; i < nr; i++) {
2772 if (callchain_param.order == ORDER_CALLEE) {
2773 be[i] = entries[i];
2774
2775 if (chain == NULL)
2776 continue;
2777
2778 /*
2779 * Check for overlap into the callchain.
2780 * The return address is one off compared to
2781 * the branch entry. To adjust for this
2782 * assume the calling instruction is not longer
2783 * than 8 bytes.
2784 */
2785 if (i == skip_idx ||
2786 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2787 first_call++;
2788 else if (be[i].from < chain->ips[first_call] &&
2789 be[i].from >= chain->ips[first_call] - 8)
2790 first_call++;
2791 } else
2792 be[i] = entries[branch->nr - i - 1];
2793 }
2794
2795 memset(iter, 0, sizeof(struct iterations) * nr);
2796 nr = remove_loops(be, nr, iter);
2797
2798 for (i = 0; i < nr; i++) {
2799 err = add_callchain_ip(thread, cursor, parent,
2800 root_al,
2801 NULL, be[i].to,
2802 true, &be[i].flags,
2803 NULL, be[i].from);
2804
2805 if (!err)
2806 err = add_callchain_ip(thread, cursor, parent, root_al,
2807 NULL, be[i].from,
2808 true, &be[i].flags,
2809 &iter[i], 0);
2810 if (err == -EINVAL)
2811 break;
2812 if (err)
2813 return err;
2814 }
2815
2816 if (chain_nr == 0)
2817 return 0;
2818
2819 chain_nr -= nr;
2820 }
2821
2822 check_calls:
2823 if (chain && callchain_param.order != ORDER_CALLEE) {
2824 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2825 &cpumode, chain->nr - first_call);
2826 if (err)
2827 return (err < 0) ? err : 0;
2828 }
2829 for (i = first_call, nr_entries = 0;
2830 i < chain_nr && nr_entries < max_stack; i++) {
2831 u64 ip;
2832
2833 if (callchain_param.order == ORDER_CALLEE)
2834 j = i;
2835 else
2836 j = chain->nr - i - 1;
2837
2838 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2839 if (j == skip_idx)
2840 continue;
2841 #endif
2842 ip = chain->ips[j];
2843 if (ip < PERF_CONTEXT_MAX)
2844 ++nr_entries;
2845 else if (callchain_param.order != ORDER_CALLEE) {
2846 err = find_prev_cpumode(chain, thread, cursor, parent,
2847 root_al, &cpumode, j);
2848 if (err)
2849 return (err < 0) ? err : 0;
2850 continue;
2851 }
2852
2853 err = add_callchain_ip(thread, cursor, parent,
2854 root_al, &cpumode, ip,
2855 false, NULL, NULL, 0);
2856
2857 if (err)
2858 return (err < 0) ? err : 0;
2859 }
2860
2861 return 0;
2862 }
2863
append_inlines(struct callchain_cursor * cursor,struct map_symbol * ms,u64 ip)2864 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2865 {
2866 struct symbol *sym = ms->sym;
2867 struct map *map = ms->map;
2868 struct inline_node *inline_node;
2869 struct inline_list *ilist;
2870 u64 addr;
2871 int ret = 1;
2872
2873 if (!symbol_conf.inline_name || !map || !sym)
2874 return ret;
2875
2876 addr = map__map_ip(map, ip);
2877 addr = map__rip_2objdump(map, addr);
2878
2879 inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2880 if (!inline_node) {
2881 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2882 if (!inline_node)
2883 return ret;
2884 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2885 }
2886
2887 list_for_each_entry(ilist, &inline_node->val, list) {
2888 struct map_symbol ilist_ms = {
2889 .maps = ms->maps,
2890 .map = map,
2891 .sym = ilist->symbol,
2892 };
2893 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2894 NULL, 0, 0, 0, ilist->srcline);
2895
2896 if (ret != 0)
2897 return ret;
2898 }
2899
2900 return ret;
2901 }
2902
unwind_entry(struct unwind_entry * entry,void * arg)2903 static int unwind_entry(struct unwind_entry *entry, void *arg)
2904 {
2905 struct callchain_cursor *cursor = arg;
2906 const char *srcline = NULL;
2907 u64 addr = entry->ip;
2908
2909 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2910 return 0;
2911
2912 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2913 return 0;
2914
2915 /*
2916 * Convert entry->ip from a virtual address to an offset in
2917 * its corresponding binary.
2918 */
2919 if (entry->ms.map)
2920 addr = map__map_ip(entry->ms.map, entry->ip);
2921
2922 srcline = callchain_srcline(&entry->ms, addr);
2923 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2924 false, NULL, 0, 0, 0, srcline);
2925 }
2926
thread__resolve_callchain_unwind(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,int max_stack)2927 static int thread__resolve_callchain_unwind(struct thread *thread,
2928 struct callchain_cursor *cursor,
2929 struct evsel *evsel,
2930 struct perf_sample *sample,
2931 int max_stack)
2932 {
2933 /* Can we do dwarf post unwind? */
2934 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2935 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2936 return 0;
2937
2938 /* Bail out if nothing was captured. */
2939 if ((!sample->user_regs.regs) ||
2940 (!sample->user_stack.size))
2941 return 0;
2942
2943 return unwind__get_entries(unwind_entry, cursor,
2944 thread, sample, max_stack);
2945 }
2946
thread__resolve_callchain(struct thread * thread,struct callchain_cursor * cursor,struct evsel * evsel,struct perf_sample * sample,struct symbol ** parent,struct addr_location * root_al,int max_stack)2947 int thread__resolve_callchain(struct thread *thread,
2948 struct callchain_cursor *cursor,
2949 struct evsel *evsel,
2950 struct perf_sample *sample,
2951 struct symbol **parent,
2952 struct addr_location *root_al,
2953 int max_stack)
2954 {
2955 int ret = 0;
2956
2957 callchain_cursor_reset(cursor);
2958
2959 if (callchain_param.order == ORDER_CALLEE) {
2960 ret = thread__resolve_callchain_sample(thread, cursor,
2961 evsel, sample,
2962 parent, root_al,
2963 max_stack);
2964 if (ret)
2965 return ret;
2966 ret = thread__resolve_callchain_unwind(thread, cursor,
2967 evsel, sample,
2968 max_stack);
2969 } else {
2970 ret = thread__resolve_callchain_unwind(thread, cursor,
2971 evsel, sample,
2972 max_stack);
2973 if (ret)
2974 return ret;
2975 ret = thread__resolve_callchain_sample(thread, cursor,
2976 evsel, sample,
2977 parent, root_al,
2978 max_stack);
2979 }
2980
2981 return ret;
2982 }
2983
machine__for_each_thread(struct machine * machine,int (* fn)(struct thread * thread,void * p),void * priv)2984 int machine__for_each_thread(struct machine *machine,
2985 int (*fn)(struct thread *thread, void *p),
2986 void *priv)
2987 {
2988 struct threads *threads;
2989 struct rb_node *nd;
2990 struct thread *thread;
2991 int rc = 0;
2992 int i;
2993
2994 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2995 threads = &machine->threads[i];
2996 for (nd = rb_first_cached(&threads->entries); nd;
2997 nd = rb_next(nd)) {
2998 thread = rb_entry(nd, struct thread, rb_node);
2999 rc = fn(thread, priv);
3000 if (rc != 0)
3001 return rc;
3002 }
3003
3004 list_for_each_entry(thread, &threads->dead, node) {
3005 rc = fn(thread, priv);
3006 if (rc != 0)
3007 return rc;
3008 }
3009 }
3010 return rc;
3011 }
3012
machines__for_each_thread(struct machines * machines,int (* fn)(struct thread * thread,void * p),void * priv)3013 int machines__for_each_thread(struct machines *machines,
3014 int (*fn)(struct thread *thread, void *p),
3015 void *priv)
3016 {
3017 struct rb_node *nd;
3018 int rc = 0;
3019
3020 rc = machine__for_each_thread(&machines->host, fn, priv);
3021 if (rc != 0)
3022 return rc;
3023
3024 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3025 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3026
3027 rc = machine__for_each_thread(machine, fn, priv);
3028 if (rc != 0)
3029 return rc;
3030 }
3031 return rc;
3032 }
3033
machine__get_current_tid(struct machine * machine,int cpu)3034 pid_t machine__get_current_tid(struct machine *machine, int cpu)
3035 {
3036 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3037
3038 if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
3039 return -1;
3040
3041 return machine->current_tid[cpu];
3042 }
3043
machine__set_current_tid(struct machine * machine,int cpu,pid_t pid,pid_t tid)3044 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3045 pid_t tid)
3046 {
3047 struct thread *thread;
3048 int nr_cpus = min(machine->env->nr_cpus_avail, MAX_NR_CPUS);
3049
3050 if (cpu < 0)
3051 return -EINVAL;
3052
3053 if (!machine->current_tid) {
3054 int i;
3055
3056 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
3057 if (!machine->current_tid)
3058 return -ENOMEM;
3059 for (i = 0; i < nr_cpus; i++)
3060 machine->current_tid[i] = -1;
3061 }
3062
3063 if (cpu >= nr_cpus) {
3064 pr_err("Requested CPU %d too large. ", cpu);
3065 pr_err("Consider raising MAX_NR_CPUS\n");
3066 return -EINVAL;
3067 }
3068
3069 machine->current_tid[cpu] = tid;
3070
3071 thread = machine__findnew_thread(machine, pid, tid);
3072 if (!thread)
3073 return -ENOMEM;
3074
3075 thread->cpu = cpu;
3076 thread__put(thread);
3077
3078 return 0;
3079 }
3080
3081 /*
3082 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
3083 * normalized arch is needed.
3084 */
machine__is(struct machine * machine,const char * arch)3085 bool machine__is(struct machine *machine, const char *arch)
3086 {
3087 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3088 }
3089
machine__nr_cpus_avail(struct machine * machine)3090 int machine__nr_cpus_avail(struct machine *machine)
3091 {
3092 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3093 }
3094
machine__get_kernel_start(struct machine * machine)3095 int machine__get_kernel_start(struct machine *machine)
3096 {
3097 struct map *map = machine__kernel_map(machine);
3098 int err = 0;
3099
3100 /*
3101 * The only addresses above 2^63 are kernel addresses of a 64-bit
3102 * kernel. Note that addresses are unsigned so that on a 32-bit system
3103 * all addresses including kernel addresses are less than 2^32. In
3104 * that case (32-bit system), if the kernel mapping is unknown, all
3105 * addresses will be assumed to be in user space - see
3106 * machine__kernel_ip().
3107 */
3108 machine->kernel_start = 1ULL << 63;
3109 if (map) {
3110 err = map__load(map);
3111 /*
3112 * On x86_64, PTI entry trampolines are less than the
3113 * start of kernel text, but still above 2^63. So leave
3114 * kernel_start = 1ULL << 63 for x86_64.
3115 */
3116 if (!err && !machine__is(machine, "x86_64"))
3117 machine->kernel_start = map->start;
3118 }
3119 return err;
3120 }
3121
machine__addr_cpumode(struct machine * machine,u8 cpumode,u64 addr)3122 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3123 {
3124 u8 addr_cpumode = cpumode;
3125 bool kernel_ip;
3126
3127 if (!machine->single_address_space)
3128 goto out;
3129
3130 kernel_ip = machine__kernel_ip(machine, addr);
3131 switch (cpumode) {
3132 case PERF_RECORD_MISC_KERNEL:
3133 case PERF_RECORD_MISC_USER:
3134 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3135 PERF_RECORD_MISC_USER;
3136 break;
3137 case PERF_RECORD_MISC_GUEST_KERNEL:
3138 case PERF_RECORD_MISC_GUEST_USER:
3139 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3140 PERF_RECORD_MISC_GUEST_USER;
3141 break;
3142 default:
3143 break;
3144 }
3145 out:
3146 return addr_cpumode;
3147 }
3148
machine__findnew_dso_id(struct machine * machine,const char * filename,struct dso_id * id)3149 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3150 {
3151 return dsos__findnew_id(&machine->dsos, filename, id);
3152 }
3153
machine__findnew_dso(struct machine * machine,const char * filename)3154 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3155 {
3156 return machine__findnew_dso_id(machine, filename, NULL);
3157 }
3158
machine__resolve_kernel_addr(void * vmachine,unsigned long long * addrp,char ** modp)3159 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3160 {
3161 struct machine *machine = vmachine;
3162 struct map *map;
3163 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3164
3165 if (sym == NULL)
3166 return NULL;
3167
3168 *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
3169 *addrp = map->unmap_ip(map, sym->start);
3170 return sym->name;
3171 }
3172
machine__for_each_dso(struct machine * machine,machine__dso_t fn,void * priv)3173 int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3174 {
3175 struct dso *pos;
3176 int err = 0;
3177
3178 list_for_each_entry(pos, &machine->dsos.head, node) {
3179 if (fn(pos, machine, priv))
3180 err = -1;
3181 }
3182 return err;
3183 }
3184