1 /*
2  *  The RSA public-key cryptosystem
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 
20 /*
21  *  The following sources were referenced in the design of this implementation
22  *  of the RSA algorithm:
23  *
24  *  [1] A method for obtaining digital signatures and public-key cryptosystems
25  *      R Rivest, A Shamir, and L Adleman
26  *      http://people.csail.mit.edu/rivest/pubs.html#RSA78
27  *
28  *  [2] Handbook of Applied Cryptography - 1997, Chapter 8
29  *      Menezes, van Oorschot and Vanstone
30  *
31  *  [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
32  *      Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
33  *      Stefan Mangard
34  *      https://arxiv.org/abs/1702.08719v2
35  *
36  */
37 
38 #include "common.h"
39 
40 #if defined(MBEDTLS_RSA_C)
41 
42 #include "mbedtls/rsa.h"
43 #include "mbedtls/rsa_internal.h"
44 #include "mbedtls/oid.h"
45 #include "mbedtls/platform_util.h"
46 #include "mbedtls/error.h"
47 
48 #include <string.h>
49 
50 #if defined(MBEDTLS_PKCS1_V21)
51 #include "mbedtls/md.h"
52 #endif
53 
54 #if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
55 #include <stdlib.h>
56 #endif
57 
58 #if defined(MBEDTLS_PLATFORM_C)
59 #include "mbedtls/platform.h"
60 #else
61 #include <stdio.h>
62 #define mbedtls_printf printf
63 #define mbedtls_calloc calloc
64 #define mbedtls_free   free
65 #endif
66 
67 #if !defined(MBEDTLS_RSA_ALT)
68 
69 /* Parameter validation macros */
70 #define RSA_VALIDATE_RET( cond )                                       \
71     MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_RSA_BAD_INPUT_DATA )
72 #define RSA_VALIDATE( cond )                                           \
73     MBEDTLS_INTERNAL_VALIDATE( cond )
74 
75 #if defined(MBEDTLS_PKCS1_V15)
76 /* constant-time buffer comparison */
mbedtls_safer_memcmp(const void * a,const void * b,size_t n)77 static inline int mbedtls_safer_memcmp( const void *a, const void *b, size_t n )
78 {
79     size_t i;
80     const unsigned char *A = (const unsigned char *) a;
81     const unsigned char *B = (const unsigned char *) b;
82     unsigned char diff = 0;
83 
84     for( i = 0; i < n; i++ )
85         diff |= A[i] ^ B[i];
86 
87     return( diff );
88 }
89 #endif /* MBEDTLS_PKCS1_V15 */
90 
mbedtls_rsa_import(mbedtls_rsa_context * ctx,const mbedtls_mpi * N,const mbedtls_mpi * P,const mbedtls_mpi * Q,const mbedtls_mpi * D,const mbedtls_mpi * E)91 int mbedtls_rsa_import( mbedtls_rsa_context *ctx,
92                         const mbedtls_mpi *N,
93                         const mbedtls_mpi *P, const mbedtls_mpi *Q,
94                         const mbedtls_mpi *D, const mbedtls_mpi *E )
95 {
96     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
97     RSA_VALIDATE_RET( ctx != NULL );
98 
99     if( ( N != NULL && ( ret = mbedtls_mpi_copy( &ctx->N, N ) ) != 0 ) ||
100         ( P != NULL && ( ret = mbedtls_mpi_copy( &ctx->P, P ) ) != 0 ) ||
101         ( Q != NULL && ( ret = mbedtls_mpi_copy( &ctx->Q, Q ) ) != 0 ) ||
102         ( D != NULL && ( ret = mbedtls_mpi_copy( &ctx->D, D ) ) != 0 ) ||
103         ( E != NULL && ( ret = mbedtls_mpi_copy( &ctx->E, E ) ) != 0 ) )
104     {
105         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
106     }
107 
108     if( N != NULL )
109         ctx->len = mbedtls_mpi_size( &ctx->N );
110 
111     return( 0 );
112 }
113 
mbedtls_rsa_import_raw(mbedtls_rsa_context * ctx,unsigned char const * N,size_t N_len,unsigned char const * P,size_t P_len,unsigned char const * Q,size_t Q_len,unsigned char const * D,size_t D_len,unsigned char const * E,size_t E_len)114 int mbedtls_rsa_import_raw( mbedtls_rsa_context *ctx,
115                             unsigned char const *N, size_t N_len,
116                             unsigned char const *P, size_t P_len,
117                             unsigned char const *Q, size_t Q_len,
118                             unsigned char const *D, size_t D_len,
119                             unsigned char const *E, size_t E_len )
120 {
121     int ret = 0;
122     RSA_VALIDATE_RET( ctx != NULL );
123 
124     if( N != NULL )
125     {
126         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->N, N, N_len ) );
127         ctx->len = mbedtls_mpi_size( &ctx->N );
128     }
129 
130     if( P != NULL )
131         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->P, P, P_len ) );
132 
133     if( Q != NULL )
134         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->Q, Q, Q_len ) );
135 
136     if( D != NULL )
137         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->D, D, D_len ) );
138 
139     if( E != NULL )
140         MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &ctx->E, E, E_len ) );
141 
142 cleanup:
143 
144     if( ret != 0 )
145         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
146 
147     return( 0 );
148 }
149 
150 /*
151  * Checks whether the context fields are set in such a way
152  * that the RSA primitives will be able to execute without error.
153  * It does *not* make guarantees for consistency of the parameters.
154  */
rsa_check_context(mbedtls_rsa_context const * ctx,int is_priv,int blinding_needed)155 static int rsa_check_context( mbedtls_rsa_context const *ctx, int is_priv,
156                               int blinding_needed )
157 {
158 #if !defined(MBEDTLS_RSA_NO_CRT)
159     /* blinding_needed is only used for NO_CRT to decide whether
160      * P,Q need to be present or not. */
161     ((void) blinding_needed);
162 #endif
163 
164     if( ctx->len != mbedtls_mpi_size( &ctx->N ) ||
165         ctx->len > MBEDTLS_MPI_MAX_SIZE )
166     {
167         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
168     }
169 
170     /*
171      * 1. Modular exponentiation needs positive, odd moduli.
172      */
173 
174     /* Modular exponentiation wrt. N is always used for
175      * RSA public key operations. */
176     if( mbedtls_mpi_cmp_int( &ctx->N, 0 ) <= 0 ||
177         mbedtls_mpi_get_bit( &ctx->N, 0 ) == 0  )
178     {
179         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
180     }
181 
182 #if !defined(MBEDTLS_RSA_NO_CRT)
183     /* Modular exponentiation for P and Q is only
184      * used for private key operations and if CRT
185      * is used. */
186     if( is_priv &&
187         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
188           mbedtls_mpi_get_bit( &ctx->P, 0 ) == 0 ||
189           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ||
190           mbedtls_mpi_get_bit( &ctx->Q, 0 ) == 0  ) )
191     {
192         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
193     }
194 #endif /* !MBEDTLS_RSA_NO_CRT */
195 
196     /*
197      * 2. Exponents must be positive
198      */
199 
200     /* Always need E for public key operations */
201     if( mbedtls_mpi_cmp_int( &ctx->E, 0 ) <= 0 )
202         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
203 
204 #if defined(MBEDTLS_RSA_NO_CRT)
205     /* For private key operations, use D or DP & DQ
206      * as (unblinded) exponents. */
207     if( is_priv && mbedtls_mpi_cmp_int( &ctx->D, 0 ) <= 0 )
208         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
209 #else
210     if( is_priv &&
211         ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) <= 0 ||
212           mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) <= 0  ) )
213     {
214         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
215     }
216 #endif /* MBEDTLS_RSA_NO_CRT */
217 
218     /* Blinding shouldn't make exponents negative either,
219      * so check that P, Q >= 1 if that hasn't yet been
220      * done as part of 1. */
221 #if defined(MBEDTLS_RSA_NO_CRT)
222     if( is_priv && blinding_needed &&
223         ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) <= 0 ||
224           mbedtls_mpi_cmp_int( &ctx->Q, 0 ) <= 0 ) )
225     {
226         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
227     }
228 #endif
229 
230     /* It wouldn't lead to an error if it wasn't satisfied,
231      * but check for QP >= 1 nonetheless. */
232 #if !defined(MBEDTLS_RSA_NO_CRT)
233     if( is_priv &&
234         mbedtls_mpi_cmp_int( &ctx->QP, 0 ) <= 0 )
235     {
236         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
237     }
238 #endif
239 
240     return( 0 );
241 }
242 
mbedtls_rsa_complete(mbedtls_rsa_context * ctx)243 int mbedtls_rsa_complete( mbedtls_rsa_context *ctx )
244 {
245     int ret = 0;
246     int have_N, have_P, have_Q, have_D, have_E;
247 #if !defined(MBEDTLS_RSA_NO_CRT)
248     int have_DP, have_DQ, have_QP;
249 #endif
250     int n_missing, pq_missing, d_missing, is_pub, is_priv;
251 
252     RSA_VALIDATE_RET( ctx != NULL );
253 
254     have_N = ( mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 );
255     have_P = ( mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 );
256     have_Q = ( mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 );
257     have_D = ( mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 );
258     have_E = ( mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0 );
259 
260 #if !defined(MBEDTLS_RSA_NO_CRT)
261     have_DP = ( mbedtls_mpi_cmp_int( &ctx->DP, 0 ) != 0 );
262     have_DQ = ( mbedtls_mpi_cmp_int( &ctx->DQ, 0 ) != 0 );
263     have_QP = ( mbedtls_mpi_cmp_int( &ctx->QP, 0 ) != 0 );
264 #endif
265 
266     /*
267      * Check whether provided parameters are enough
268      * to deduce all others. The following incomplete
269      * parameter sets for private keys are supported:
270      *
271      * (1) P, Q missing.
272      * (2) D and potentially N missing.
273      *
274      */
275 
276     n_missing  =              have_P &&  have_Q &&  have_D && have_E;
277     pq_missing =   have_N && !have_P && !have_Q &&  have_D && have_E;
278     d_missing  =              have_P &&  have_Q && !have_D && have_E;
279     is_pub     =   have_N && !have_P && !have_Q && !have_D && have_E;
280 
281     /* These three alternatives are mutually exclusive */
282     is_priv = n_missing || pq_missing || d_missing;
283 
284     if( !is_priv && !is_pub )
285         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
286 
287     /*
288      * Step 1: Deduce N if P, Q are provided.
289      */
290 
291     if( !have_N && have_P && have_Q )
292     {
293         if( ( ret = mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P,
294                                          &ctx->Q ) ) != 0 )
295         {
296             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
297         }
298 
299         ctx->len = mbedtls_mpi_size( &ctx->N );
300     }
301 
302     /*
303      * Step 2: Deduce and verify all remaining core parameters.
304      */
305 
306     if( pq_missing )
307     {
308         ret = mbedtls_rsa_deduce_primes( &ctx->N, &ctx->E, &ctx->D,
309                                          &ctx->P, &ctx->Q );
310         if( ret != 0 )
311             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
312 
313     }
314     else if( d_missing )
315     {
316         if( ( ret = mbedtls_rsa_deduce_private_exponent( &ctx->P,
317                                                          &ctx->Q,
318                                                          &ctx->E,
319                                                          &ctx->D ) ) != 0 )
320         {
321             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
322         }
323     }
324 
325     /*
326      * Step 3: Deduce all additional parameters specific
327      *         to our current RSA implementation.
328      */
329 
330 #if !defined(MBEDTLS_RSA_NO_CRT)
331     if( is_priv && ! ( have_DP && have_DQ && have_QP ) )
332     {
333         ret = mbedtls_rsa_deduce_crt( &ctx->P,  &ctx->Q,  &ctx->D,
334                                       &ctx->DP, &ctx->DQ, &ctx->QP );
335         if( ret != 0 )
336             return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
337     }
338 #endif /* MBEDTLS_RSA_NO_CRT */
339 
340     /*
341      * Step 3: Basic sanity checks
342      */
343 
344     return( rsa_check_context( ctx, is_priv, 1 ) );
345 }
346 
mbedtls_rsa_export_raw(const mbedtls_rsa_context * ctx,unsigned char * N,size_t N_len,unsigned char * P,size_t P_len,unsigned char * Q,size_t Q_len,unsigned char * D,size_t D_len,unsigned char * E,size_t E_len)347 int mbedtls_rsa_export_raw( const mbedtls_rsa_context *ctx,
348                             unsigned char *N, size_t N_len,
349                             unsigned char *P, size_t P_len,
350                             unsigned char *Q, size_t Q_len,
351                             unsigned char *D, size_t D_len,
352                             unsigned char *E, size_t E_len )
353 {
354     int ret = 0;
355     int is_priv;
356     RSA_VALIDATE_RET( ctx != NULL );
357 
358     /* Check if key is private or public */
359     is_priv =
360         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
361         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
362         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
363         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
364         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
365 
366     if( !is_priv )
367     {
368         /* If we're trying to export private parameters for a public key,
369          * something must be wrong. */
370         if( P != NULL || Q != NULL || D != NULL )
371             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
372 
373     }
374 
375     if( N != NULL )
376         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->N, N, N_len ) );
377 
378     if( P != NULL )
379         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->P, P, P_len ) );
380 
381     if( Q != NULL )
382         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->Q, Q, Q_len ) );
383 
384     if( D != NULL )
385         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->D, D, D_len ) );
386 
387     if( E != NULL )
388         MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &ctx->E, E, E_len ) );
389 
390 cleanup:
391 
392     return( ret );
393 }
394 
mbedtls_rsa_export(const mbedtls_rsa_context * ctx,mbedtls_mpi * N,mbedtls_mpi * P,mbedtls_mpi * Q,mbedtls_mpi * D,mbedtls_mpi * E)395 int mbedtls_rsa_export( const mbedtls_rsa_context *ctx,
396                         mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
397                         mbedtls_mpi *D, mbedtls_mpi *E )
398 {
399     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
400     int is_priv;
401     RSA_VALIDATE_RET( ctx != NULL );
402 
403     /* Check if key is private or public */
404     is_priv =
405         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
406         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
407         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
408         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
409         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
410 
411     if( !is_priv )
412     {
413         /* If we're trying to export private parameters for a public key,
414          * something must be wrong. */
415         if( P != NULL || Q != NULL || D != NULL )
416             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
417 
418     }
419 
420     /* Export all requested core parameters. */
421 
422     if( ( N != NULL && ( ret = mbedtls_mpi_copy( N, &ctx->N ) ) != 0 ) ||
423         ( P != NULL && ( ret = mbedtls_mpi_copy( P, &ctx->P ) ) != 0 ) ||
424         ( Q != NULL && ( ret = mbedtls_mpi_copy( Q, &ctx->Q ) ) != 0 ) ||
425         ( D != NULL && ( ret = mbedtls_mpi_copy( D, &ctx->D ) ) != 0 ) ||
426         ( E != NULL && ( ret = mbedtls_mpi_copy( E, &ctx->E ) ) != 0 ) )
427     {
428         return( ret );
429     }
430 
431     return( 0 );
432 }
433 
434 /*
435  * Export CRT parameters
436  * This must also be implemented if CRT is not used, for being able to
437  * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
438  * can be used in this case.
439  */
mbedtls_rsa_export_crt(const mbedtls_rsa_context * ctx,mbedtls_mpi * DP,mbedtls_mpi * DQ,mbedtls_mpi * QP)440 int mbedtls_rsa_export_crt( const mbedtls_rsa_context *ctx,
441                             mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP )
442 {
443     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
444     int is_priv;
445     RSA_VALIDATE_RET( ctx != NULL );
446 
447     /* Check if key is private or public */
448     is_priv =
449         mbedtls_mpi_cmp_int( &ctx->N, 0 ) != 0 &&
450         mbedtls_mpi_cmp_int( &ctx->P, 0 ) != 0 &&
451         mbedtls_mpi_cmp_int( &ctx->Q, 0 ) != 0 &&
452         mbedtls_mpi_cmp_int( &ctx->D, 0 ) != 0 &&
453         mbedtls_mpi_cmp_int( &ctx->E, 0 ) != 0;
454 
455     if( !is_priv )
456         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
457 
458 #if !defined(MBEDTLS_RSA_NO_CRT)
459     /* Export all requested blinding parameters. */
460     if( ( DP != NULL && ( ret = mbedtls_mpi_copy( DP, &ctx->DP ) ) != 0 ) ||
461         ( DQ != NULL && ( ret = mbedtls_mpi_copy( DQ, &ctx->DQ ) ) != 0 ) ||
462         ( QP != NULL && ( ret = mbedtls_mpi_copy( QP, &ctx->QP ) ) != 0 ) )
463     {
464         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
465     }
466 #else
467     if( ( ret = mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
468                                         DP, DQ, QP ) ) != 0 )
469     {
470         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret ) );
471     }
472 #endif
473 
474     return( 0 );
475 }
476 
477 /*
478  * Initialize an RSA context
479  */
mbedtls_rsa_init(mbedtls_rsa_context * ctx,int padding,int hash_id)480 void mbedtls_rsa_init( mbedtls_rsa_context *ctx,
481                int padding,
482                int hash_id )
483 {
484     RSA_VALIDATE( ctx != NULL );
485     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
486                   padding == MBEDTLS_RSA_PKCS_V21 );
487 
488     memset( ctx, 0, sizeof( mbedtls_rsa_context ) );
489 
490     mbedtls_rsa_set_padding( ctx, padding, hash_id );
491 
492 #if defined(MBEDTLS_THREADING_C)
493     /* Set ctx->ver to nonzero to indicate that the mutex has been
494      * initialized and will need to be freed. */
495     ctx->ver = 1;
496     mbedtls_mutex_init( &ctx->mutex );
497 #endif
498 }
499 
500 /*
501  * Set padding for an existing RSA context
502  */
mbedtls_rsa_set_padding(mbedtls_rsa_context * ctx,int padding,int hash_id)503 void mbedtls_rsa_set_padding( mbedtls_rsa_context *ctx, int padding,
504                               int hash_id )
505 {
506     RSA_VALIDATE( ctx != NULL );
507     RSA_VALIDATE( padding == MBEDTLS_RSA_PKCS_V15 ||
508                   padding == MBEDTLS_RSA_PKCS_V21 );
509 
510     ctx->padding = padding;
511     ctx->hash_id = hash_id;
512 }
513 
514 /*
515  * Get length in bytes of RSA modulus
516  */
517 
mbedtls_rsa_get_len(const mbedtls_rsa_context * ctx)518 size_t mbedtls_rsa_get_len( const mbedtls_rsa_context *ctx )
519 {
520     return( ctx->len );
521 }
522 
523 
524 #if defined(MBEDTLS_GENPRIME)
525 
526 /*
527  * Generate an RSA keypair
528  *
529  * This generation method follows the RSA key pair generation procedure of
530  * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
531  */
mbedtls_rsa_gen_key(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,unsigned int nbits,int exponent)532 int mbedtls_rsa_gen_key( mbedtls_rsa_context *ctx,
533                  int (*f_rng)(void *, unsigned char *, size_t),
534                  void *p_rng,
535                  unsigned int nbits, int exponent )
536 {
537     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
538     mbedtls_mpi H, G, L;
539     int prime_quality = 0;
540     RSA_VALIDATE_RET( ctx != NULL );
541     RSA_VALIDATE_RET( f_rng != NULL );
542 
543     /*
544      * If the modulus is 1024 bit long or shorter, then the security strength of
545      * the RSA algorithm is less than or equal to 80 bits and therefore an error
546      * rate of 2^-80 is sufficient.
547      */
548     if( nbits > 1024 )
549         prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
550 
551     mbedtls_mpi_init( &H );
552     mbedtls_mpi_init( &G );
553     mbedtls_mpi_init( &L );
554 
555     if( nbits < 128 || exponent < 3 || nbits % 2 != 0 )
556     {
557         ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
558         goto cleanup;
559     }
560 
561     /*
562      * find primes P and Q with Q < P so that:
563      * 1.  |P-Q| > 2^( nbits / 2 - 100 )
564      * 2.  GCD( E, (P-1)*(Q-1) ) == 1
565      * 3.  E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
566      */
567     MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &ctx->E, exponent ) );
568 
569     do
570     {
571         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->P, nbits >> 1,
572                                                 prime_quality, f_rng, p_rng ) );
573 
574         MBEDTLS_MPI_CHK( mbedtls_mpi_gen_prime( &ctx->Q, nbits >> 1,
575                                                 prime_quality, f_rng, p_rng ) );
576 
577         /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
578         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &H, &ctx->P, &ctx->Q ) );
579         if( mbedtls_mpi_bitlen( &H ) <= ( ( nbits >= 200 ) ? ( ( nbits >> 1 ) - 99 ) : 0 ) )
580             continue;
581 
582         /* not required by any standards, but some users rely on the fact that P > Q */
583         if( H.s < 0 )
584             mbedtls_mpi_swap( &ctx->P, &ctx->Q );
585 
586         /* Temporarily replace P,Q by P-1, Q-1 */
587         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->P, &ctx->P, 1 ) );
588         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &ctx->Q, &ctx->Q, 1 ) );
589         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &H, &ctx->P, &ctx->Q ) );
590 
591         /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
592         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->E, &H  ) );
593         if( mbedtls_mpi_cmp_int( &G, 1 ) != 0 )
594             continue;
595 
596         /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
597         MBEDTLS_MPI_CHK( mbedtls_mpi_gcd( &G, &ctx->P, &ctx->Q ) );
598         MBEDTLS_MPI_CHK( mbedtls_mpi_div_mpi( &L, NULL, &H, &G ) );
599         MBEDTLS_MPI_CHK( mbedtls_mpi_inv_mod( &ctx->D, &ctx->E, &L ) );
600 
601         if( mbedtls_mpi_bitlen( &ctx->D ) <= ( ( nbits + 1 ) / 2 ) ) // (FIPS 186-4 §B.3.1 criterion 3(a))
602             continue;
603 
604         break;
605     }
606     while( 1 );
607 
608     /* Restore P,Q */
609     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->P,  &ctx->P, 1 ) );
610     MBEDTLS_MPI_CHK( mbedtls_mpi_add_int( &ctx->Q,  &ctx->Q, 1 ) );
611 
612     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) );
613 
614     ctx->len = mbedtls_mpi_size( &ctx->N );
615 
616 #if !defined(MBEDTLS_RSA_NO_CRT)
617     /*
618      * DP = D mod (P - 1)
619      * DQ = D mod (Q - 1)
620      * QP = Q^-1 mod P
621      */
622     MBEDTLS_MPI_CHK( mbedtls_rsa_deduce_crt( &ctx->P, &ctx->Q, &ctx->D,
623                                              &ctx->DP, &ctx->DQ, &ctx->QP ) );
624 #endif /* MBEDTLS_RSA_NO_CRT */
625 
626     /* Double-check */
627     MBEDTLS_MPI_CHK( mbedtls_rsa_check_privkey( ctx ) );
628 
629 cleanup:
630 
631     mbedtls_mpi_free( &H );
632     mbedtls_mpi_free( &G );
633     mbedtls_mpi_free( &L );
634 
635     if( ret != 0 )
636     {
637         mbedtls_rsa_free( ctx );
638 
639         if( ( -ret & ~0x7f ) == 0 )
640             ret = MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret );
641         return( ret );
642     }
643 
644     return( 0 );
645 }
646 
647 #endif /* MBEDTLS_GENPRIME */
648 
649 /*
650  * Check a public RSA key
651  */
mbedtls_rsa_check_pubkey(const mbedtls_rsa_context * ctx)652 int mbedtls_rsa_check_pubkey( const mbedtls_rsa_context *ctx )
653 {
654     RSA_VALIDATE_RET( ctx != NULL );
655 
656     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) != 0 )
657         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
658 
659     if( mbedtls_mpi_bitlen( &ctx->N ) < 128 )
660     {
661         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
662     }
663 
664     if( mbedtls_mpi_get_bit( &ctx->E, 0 ) == 0 ||
665         mbedtls_mpi_bitlen( &ctx->E )     < 2  ||
666         mbedtls_mpi_cmp_mpi( &ctx->E, &ctx->N ) >= 0 )
667     {
668         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
669     }
670 
671     return( 0 );
672 }
673 
674 /*
675  * Check for the consistency of all fields in an RSA private key context
676  */
mbedtls_rsa_check_privkey(const mbedtls_rsa_context * ctx)677 int mbedtls_rsa_check_privkey( const mbedtls_rsa_context *ctx )
678 {
679     RSA_VALIDATE_RET( ctx != NULL );
680 
681     if( mbedtls_rsa_check_pubkey( ctx ) != 0 ||
682         rsa_check_context( ctx, 1 /* private */, 1 /* blinding */ ) != 0 )
683     {
684         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
685     }
686 
687     if( mbedtls_rsa_validate_params( &ctx->N, &ctx->P, &ctx->Q,
688                                      &ctx->D, &ctx->E, NULL, NULL ) != 0 )
689     {
690         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
691     }
692 
693 #if !defined(MBEDTLS_RSA_NO_CRT)
694     else if( mbedtls_rsa_validate_crt( &ctx->P, &ctx->Q, &ctx->D,
695                                        &ctx->DP, &ctx->DQ, &ctx->QP ) != 0 )
696     {
697         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
698     }
699 #endif
700 
701     return( 0 );
702 }
703 
704 /*
705  * Check if contexts holding a public and private key match
706  */
mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context * pub,const mbedtls_rsa_context * prv)707 int mbedtls_rsa_check_pub_priv( const mbedtls_rsa_context *pub,
708                                 const mbedtls_rsa_context *prv )
709 {
710     RSA_VALIDATE_RET( pub != NULL );
711     RSA_VALIDATE_RET( prv != NULL );
712 
713     if( mbedtls_rsa_check_pubkey( pub )  != 0 ||
714         mbedtls_rsa_check_privkey( prv ) != 0 )
715     {
716         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
717     }
718 
719     if( mbedtls_mpi_cmp_mpi( &pub->N, &prv->N ) != 0 ||
720         mbedtls_mpi_cmp_mpi( &pub->E, &prv->E ) != 0 )
721     {
722         return( MBEDTLS_ERR_RSA_KEY_CHECK_FAILED );
723     }
724 
725     return( 0 );
726 }
727 
728 /*
729  * Do an RSA public key operation
730  */
mbedtls_rsa_public(mbedtls_rsa_context * ctx,const unsigned char * input,unsigned char * output)731 int mbedtls_rsa_public( mbedtls_rsa_context *ctx,
732                 const unsigned char *input,
733                 unsigned char *output )
734 {
735     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
736     size_t olen;
737     mbedtls_mpi T;
738     RSA_VALIDATE_RET( ctx != NULL );
739     RSA_VALIDATE_RET( input != NULL );
740     RSA_VALIDATE_RET( output != NULL );
741 
742     if( rsa_check_context( ctx, 0 /* public */, 0 /* no blinding */ ) )
743         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
744 
745     mbedtls_mpi_init( &T );
746 
747 #if defined(MBEDTLS_THREADING_C)
748     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
749         return( ret );
750 #endif
751 
752     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
753 
754     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
755     {
756         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
757         goto cleanup;
758     }
759 
760     olen = ctx->len;
761     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) );
762     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
763 
764 cleanup:
765 #if defined(MBEDTLS_THREADING_C)
766     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
767         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
768 #endif
769 
770     mbedtls_mpi_free( &T );
771 
772     if( ret != 0 )
773         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret ) );
774 
775     return( 0 );
776 }
777 
778 /*
779  * Generate or update blinding values, see section 10 of:
780  *  KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
781  *  DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
782  *  Berlin Heidelberg, 1996. p. 104-113.
783  */
rsa_prepare_blinding(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng)784 static int rsa_prepare_blinding( mbedtls_rsa_context *ctx,
785                  int (*f_rng)(void *, unsigned char *, size_t), void *p_rng )
786 {
787     int ret, count = 0;
788     mbedtls_mpi R;
789 
790     mbedtls_mpi_init( &R );
791 
792     if( ctx->Vf.p != NULL )
793     {
794         /* We already have blinding values, just update them by squaring */
795         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &ctx->Vi ) );
796         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
797         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vf, &ctx->Vf, &ctx->Vf ) );
798         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vf, &ctx->Vf, &ctx->N ) );
799 
800         goto cleanup;
801     }
802 
803     /* Unblinding value: Vf = random number, invertible mod N */
804     do {
805         if( count++ > 10 )
806         {
807             ret = MBEDTLS_ERR_RSA_RNG_FAILED;
808             goto cleanup;
809         }
810 
811         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &ctx->Vf, ctx->len - 1, f_rng, p_rng ) );
812 
813         /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
814         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, ctx->len - 1, f_rng, p_rng ) );
815         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vf, &R ) );
816         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
817 
818         /* At this point, Vi is invertible mod N if and only if both Vf and R
819          * are invertible mod N. If one of them isn't, we don't need to know
820          * which one, we just loop and choose new values for both of them.
821          * (Each iteration succeeds with overwhelming probability.) */
822         ret = mbedtls_mpi_inv_mod( &ctx->Vi, &ctx->Vi, &ctx->N );
823         if( ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE )
824             goto cleanup;
825 
826     } while( ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE );
827 
828     /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
829     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &ctx->Vi, &ctx->Vi, &R ) );
830     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &ctx->Vi, &ctx->Vi, &ctx->N ) );
831 
832     /* Blinding value: Vi = Vf^(-e) mod N
833      * (Vi already contains Vf^-1 at this point) */
834     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN ) );
835 
836 
837 cleanup:
838     mbedtls_mpi_free( &R );
839 
840     return( ret );
841 }
842 
843 /*
844  * Exponent blinding supposed to prevent side-channel attacks using multiple
845  * traces of measurements to recover the RSA key. The more collisions are there,
846  * the more bits of the key can be recovered. See [3].
847  *
848  * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
849  * observations on avarage.
850  *
851  * For example with 28 byte blinding to achieve 2 collisions the adversary has
852  * to make 2^112 observations on avarage.
853  *
854  * (With the currently (as of 2017 April) known best algorithms breaking 2048
855  * bit RSA requires approximately as much time as trying out 2^112 random keys.
856  * Thus in this sense with 28 byte blinding the security is not reduced by
857  * side-channel attacks like the one in [3])
858  *
859  * This countermeasure does not help if the key recovery is possible with a
860  * single trace.
861  */
862 #define RSA_EXPONENT_BLINDING 28
863 
864 /*
865  * Do an RSA private key operation
866  */
mbedtls_rsa_private(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,const unsigned char * input,unsigned char * output)867 int mbedtls_rsa_private( mbedtls_rsa_context *ctx,
868                  int (*f_rng)(void *, unsigned char *, size_t),
869                  void *p_rng,
870                  const unsigned char *input,
871                  unsigned char *output )
872 {
873     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
874     size_t olen;
875 
876     /* Temporary holding the result */
877     mbedtls_mpi T;
878 
879     /* Temporaries holding P-1, Q-1 and the
880      * exponent blinding factor, respectively. */
881     mbedtls_mpi P1, Q1, R;
882 
883 #if !defined(MBEDTLS_RSA_NO_CRT)
884     /* Temporaries holding the results mod p resp. mod q. */
885     mbedtls_mpi TP, TQ;
886 
887     /* Temporaries holding the blinded exponents for
888      * the mod p resp. mod q computation (if used). */
889     mbedtls_mpi DP_blind, DQ_blind;
890 
891     /* Pointers to actual exponents to be used - either the unblinded
892      * or the blinded ones, depending on the presence of a PRNG. */
893     mbedtls_mpi *DP = &ctx->DP;
894     mbedtls_mpi *DQ = &ctx->DQ;
895 #else
896     /* Temporary holding the blinded exponent (if used). */
897     mbedtls_mpi D_blind;
898 
899     /* Pointer to actual exponent to be used - either the unblinded
900      * or the blinded one, depending on the presence of a PRNG. */
901     mbedtls_mpi *D = &ctx->D;
902 #endif /* MBEDTLS_RSA_NO_CRT */
903 
904     /* Temporaries holding the initial input and the double
905      * checked result; should be the same in the end. */
906     mbedtls_mpi I, C;
907 
908     RSA_VALIDATE_RET( ctx != NULL );
909     RSA_VALIDATE_RET( input  != NULL );
910     RSA_VALIDATE_RET( output != NULL );
911 
912     if( rsa_check_context( ctx, 1             /* private key checks */,
913                                 f_rng != NULL /* blinding y/n       */ ) != 0 )
914     {
915         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
916     }
917 
918 #if defined(MBEDTLS_THREADING_C)
919     if( ( ret = mbedtls_mutex_lock( &ctx->mutex ) ) != 0 )
920         return( ret );
921 #endif
922 
923     /* MPI Initialization */
924     mbedtls_mpi_init( &T );
925 
926     mbedtls_mpi_init( &P1 );
927     mbedtls_mpi_init( &Q1 );
928     mbedtls_mpi_init( &R );
929 
930     if( f_rng != NULL )
931     {
932 #if defined(MBEDTLS_RSA_NO_CRT)
933         mbedtls_mpi_init( &D_blind );
934 #else
935         mbedtls_mpi_init( &DP_blind );
936         mbedtls_mpi_init( &DQ_blind );
937 #endif
938     }
939 
940 #if !defined(MBEDTLS_RSA_NO_CRT)
941     mbedtls_mpi_init( &TP ); mbedtls_mpi_init( &TQ );
942 #endif
943 
944     mbedtls_mpi_init( &I );
945     mbedtls_mpi_init( &C );
946 
947     /* End of MPI initialization */
948 
949     MBEDTLS_MPI_CHK( mbedtls_mpi_read_binary( &T, input, ctx->len ) );
950     if( mbedtls_mpi_cmp_mpi( &T, &ctx->N ) >= 0 )
951     {
952         ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
953         goto cleanup;
954     }
955 
956     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &I, &T ) );
957 
958     if( f_rng != NULL )
959     {
960         /*
961          * Blinding
962          * T = T * Vi mod N
963          */
964         MBEDTLS_MPI_CHK( rsa_prepare_blinding( ctx, f_rng, p_rng ) );
965         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vi ) );
966         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
967 
968         /*
969          * Exponent blinding
970          */
971         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &P1, &ctx->P, 1 ) );
972         MBEDTLS_MPI_CHK( mbedtls_mpi_sub_int( &Q1, &ctx->Q, 1 ) );
973 
974 #if defined(MBEDTLS_RSA_NO_CRT)
975         /*
976          * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
977          */
978         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
979                          f_rng, p_rng ) );
980         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &P1, &Q1 ) );
981         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &D_blind, &D_blind, &R ) );
982         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &D_blind, &D_blind, &ctx->D ) );
983 
984         D = &D_blind;
985 #else
986         /*
987          * DP_blind = ( P - 1 ) * R + DP
988          */
989         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
990                          f_rng, p_rng ) );
991         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DP_blind, &P1, &R ) );
992         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DP_blind, &DP_blind,
993                     &ctx->DP ) );
994 
995         DP = &DP_blind;
996 
997         /*
998          * DQ_blind = ( Q - 1 ) * R + DQ
999          */
1000         MBEDTLS_MPI_CHK( mbedtls_mpi_fill_random( &R, RSA_EXPONENT_BLINDING,
1001                          f_rng, p_rng ) );
1002         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &DQ_blind, &Q1, &R ) );
1003         MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &DQ_blind, &DQ_blind,
1004                     &ctx->DQ ) );
1005 
1006         DQ = &DQ_blind;
1007 #endif /* MBEDTLS_RSA_NO_CRT */
1008     }
1009 
1010 #if defined(MBEDTLS_RSA_NO_CRT)
1011     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &T, &T, D, &ctx->N, &ctx->RN ) );
1012 #else
1013     /*
1014      * Faster decryption using the CRT
1015      *
1016      * TP = input ^ dP mod P
1017      * TQ = input ^ dQ mod Q
1018      */
1019 
1020     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TP, &T, DP, &ctx->P, &ctx->RP ) );
1021     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &TQ, &T, DQ, &ctx->Q, &ctx->RQ ) );
1022 
1023     /*
1024      * T = (TP - TQ) * (Q^-1 mod P) mod P
1025      */
1026     MBEDTLS_MPI_CHK( mbedtls_mpi_sub_mpi( &T, &TP, &TQ ) );
1027     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->QP ) );
1028     MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &TP, &ctx->P ) );
1029 
1030     /*
1031      * T = TQ + T * Q
1032      */
1033     MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &TP, &T, &ctx->Q ) );
1034     MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &T, &TQ, &TP ) );
1035 #endif /* MBEDTLS_RSA_NO_CRT */
1036 
1037     if( f_rng != NULL )
1038     {
1039         /*
1040          * Unblind
1041          * T = T * Vf mod N
1042          */
1043         MBEDTLS_MPI_CHK( mbedtls_mpi_mul_mpi( &T, &T, &ctx->Vf ) );
1044         MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &T, &T, &ctx->N ) );
1045     }
1046 
1047     /* Verify the result to prevent glitching attacks. */
1048     MBEDTLS_MPI_CHK( mbedtls_mpi_exp_mod( &C, &T, &ctx->E,
1049                                           &ctx->N, &ctx->RN ) );
1050     if( mbedtls_mpi_cmp_mpi( &C, &I ) != 0 )
1051     {
1052         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
1053         goto cleanup;
1054     }
1055 
1056     olen = ctx->len;
1057     MBEDTLS_MPI_CHK( mbedtls_mpi_write_binary( &T, output, olen ) );
1058 
1059 cleanup:
1060 #if defined(MBEDTLS_THREADING_C)
1061     if( mbedtls_mutex_unlock( &ctx->mutex ) != 0 )
1062         return( MBEDTLS_ERR_THREADING_MUTEX_ERROR );
1063 #endif
1064 
1065     mbedtls_mpi_free( &P1 );
1066     mbedtls_mpi_free( &Q1 );
1067     mbedtls_mpi_free( &R );
1068 
1069     if( f_rng != NULL )
1070     {
1071 #if defined(MBEDTLS_RSA_NO_CRT)
1072         mbedtls_mpi_free( &D_blind );
1073 #else
1074         mbedtls_mpi_free( &DP_blind );
1075         mbedtls_mpi_free( &DQ_blind );
1076 #endif
1077     }
1078 
1079     mbedtls_mpi_free( &T );
1080 
1081 #if !defined(MBEDTLS_RSA_NO_CRT)
1082     mbedtls_mpi_free( &TP ); mbedtls_mpi_free( &TQ );
1083 #endif
1084 
1085     mbedtls_mpi_free( &C );
1086     mbedtls_mpi_free( &I );
1087 
1088     if( ret != 0 && ret >= -0x007f )
1089         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret ) );
1090 
1091     return( ret );
1092 }
1093 
1094 #if defined(MBEDTLS_PKCS1_V21)
1095 /**
1096  * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
1097  *
1098  * \param dst       buffer to mask
1099  * \param dlen      length of destination buffer
1100  * \param src       source of the mask generation
1101  * \param slen      length of the source buffer
1102  * \param md_ctx    message digest context to use
1103  */
mgf_mask(unsigned char * dst,size_t dlen,unsigned char * src,size_t slen,mbedtls_md_context_t * md_ctx)1104 static int mgf_mask( unsigned char *dst, size_t dlen, unsigned char *src,
1105                       size_t slen, mbedtls_md_context_t *md_ctx )
1106 {
1107     unsigned char mask[MBEDTLS_MD_MAX_SIZE];
1108     unsigned char counter[4];
1109     unsigned char *p;
1110     unsigned int hlen;
1111     size_t i, use_len;
1112     int ret = 0;
1113 
1114     memset( mask, 0, MBEDTLS_MD_MAX_SIZE );
1115     memset( counter, 0, 4 );
1116 
1117     hlen = mbedtls_md_get_size( md_ctx->md_info );
1118 
1119     /* Generate and apply dbMask */
1120     p = dst;
1121 
1122     while( dlen > 0 )
1123     {
1124         use_len = hlen;
1125         if( dlen < hlen )
1126             use_len = dlen;
1127 
1128         if( ( ret = mbedtls_md_starts( md_ctx ) ) != 0 )
1129             goto exit;
1130         if( ( ret = mbedtls_md_update( md_ctx, src, slen ) ) != 0 )
1131             goto exit;
1132         if( ( ret = mbedtls_md_update( md_ctx, counter, 4 ) ) != 0 )
1133             goto exit;
1134         if( ( ret = mbedtls_md_finish( md_ctx, mask ) ) != 0 )
1135             goto exit;
1136 
1137         for( i = 0; i < use_len; ++i )
1138             *p++ ^= mask[i];
1139 
1140         counter[3]++;
1141 
1142         dlen -= use_len;
1143     }
1144 
1145 exit:
1146     mbedtls_platform_zeroize( mask, sizeof( mask ) );
1147 
1148     return( ret );
1149 }
1150 #endif /* MBEDTLS_PKCS1_V21 */
1151 
1152 #if defined(MBEDTLS_PKCS1_V21)
1153 /*
1154  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
1155  */
mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t ilen,const unsigned char * input,unsigned char * output)1156 int mbedtls_rsa_rsaes_oaep_encrypt( mbedtls_rsa_context *ctx,
1157                             int (*f_rng)(void *, unsigned char *, size_t),
1158                             void *p_rng,
1159                             int mode,
1160                             const unsigned char *label, size_t label_len,
1161                             size_t ilen,
1162                             const unsigned char *input,
1163                             unsigned char *output )
1164 {
1165     size_t olen;
1166     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1167     unsigned char *p = output;
1168     unsigned int hlen;
1169     const mbedtls_md_info_t *md_info;
1170     mbedtls_md_context_t md_ctx;
1171 
1172     RSA_VALIDATE_RET( ctx != NULL );
1173     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1174                       mode == MBEDTLS_RSA_PUBLIC );
1175     RSA_VALIDATE_RET( output != NULL );
1176     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1177     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1178 
1179     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1180         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1181 
1182     if( f_rng == NULL )
1183         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1184 
1185     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1186     if( md_info == NULL )
1187         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1188 
1189     olen = ctx->len;
1190     hlen = mbedtls_md_get_size( md_info );
1191 
1192     /* first comparison checks for overflow */
1193     if( ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2 )
1194         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1195 
1196     memset( output, 0, olen );
1197 
1198     *p++ = 0;
1199 
1200     /* Generate a random octet string seed */
1201     if( ( ret = f_rng( p_rng, p, hlen ) ) != 0 )
1202         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1203 
1204     p += hlen;
1205 
1206     /* Construct DB */
1207     if( ( ret = mbedtls_md( md_info, label, label_len, p ) ) != 0 )
1208         return( ret );
1209     p += hlen;
1210     p += olen - 2 * hlen - 2 - ilen;
1211     *p++ = 1;
1212     if( ilen != 0 )
1213         memcpy( p, input, ilen );
1214 
1215     mbedtls_md_init( &md_ctx );
1216     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1217         goto exit;
1218 
1219     /* maskedDB: Apply dbMask to DB */
1220     if( ( ret = mgf_mask( output + hlen + 1, olen - hlen - 1, output + 1, hlen,
1221                           &md_ctx ) ) != 0 )
1222         goto exit;
1223 
1224     /* maskedSeed: Apply seedMask to seed */
1225     if( ( ret = mgf_mask( output + 1, hlen, output + hlen + 1, olen - hlen - 1,
1226                           &md_ctx ) ) != 0 )
1227         goto exit;
1228 
1229 exit:
1230     mbedtls_md_free( &md_ctx );
1231 
1232     if( ret != 0 )
1233         return( ret );
1234 
1235     return( ( mode == MBEDTLS_RSA_PUBLIC )
1236             ? mbedtls_rsa_public(  ctx, output, output )
1237             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1238 }
1239 #endif /* MBEDTLS_PKCS1_V21 */
1240 
1241 #if defined(MBEDTLS_PKCS1_V15)
1242 /*
1243  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
1244  */
mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1245 int mbedtls_rsa_rsaes_pkcs1_v15_encrypt( mbedtls_rsa_context *ctx,
1246                                  int (*f_rng)(void *, unsigned char *, size_t),
1247                                  void *p_rng,
1248                                  int mode, size_t ilen,
1249                                  const unsigned char *input,
1250                                  unsigned char *output )
1251 {
1252     size_t nb_pad, olen;
1253     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1254     unsigned char *p = output;
1255 
1256     RSA_VALIDATE_RET( ctx != NULL );
1257     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1258                       mode == MBEDTLS_RSA_PUBLIC );
1259     RSA_VALIDATE_RET( output != NULL );
1260     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1261 
1262     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1263         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1264 
1265     olen = ctx->len;
1266 
1267     /* first comparison checks for overflow */
1268     if( ilen + 11 < ilen || olen < ilen + 11 )
1269         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1270 
1271     nb_pad = olen - 3 - ilen;
1272 
1273     *p++ = 0;
1274     if( mode == MBEDTLS_RSA_PUBLIC )
1275     {
1276         if( f_rng == NULL )
1277             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1278 
1279         *p++ = MBEDTLS_RSA_CRYPT;
1280 
1281         while( nb_pad-- > 0 )
1282         {
1283             int rng_dl = 100;
1284 
1285             do {
1286                 ret = f_rng( p_rng, p, 1 );
1287             } while( *p == 0 && --rng_dl && ret == 0 );
1288 
1289             /* Check if RNG failed to generate data */
1290             if( rng_dl == 0 || ret != 0 )
1291                 return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1292 
1293             p++;
1294         }
1295     }
1296     else
1297     {
1298         *p++ = MBEDTLS_RSA_SIGN;
1299 
1300         while( nb_pad-- > 0 )
1301             *p++ = 0xFF;
1302     }
1303 
1304     *p++ = 0;
1305     if( ilen != 0 )
1306         memcpy( p, input, ilen );
1307 
1308     return( ( mode == MBEDTLS_RSA_PUBLIC )
1309             ? mbedtls_rsa_public(  ctx, output, output )
1310             : mbedtls_rsa_private( ctx, f_rng, p_rng, output, output ) );
1311 }
1312 #endif /* MBEDTLS_PKCS1_V15 */
1313 
1314 /*
1315  * Add the message padding, then do an RSA operation
1316  */
mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t ilen,const unsigned char * input,unsigned char * output)1317 int mbedtls_rsa_pkcs1_encrypt( mbedtls_rsa_context *ctx,
1318                        int (*f_rng)(void *, unsigned char *, size_t),
1319                        void *p_rng,
1320                        int mode, size_t ilen,
1321                        const unsigned char *input,
1322                        unsigned char *output )
1323 {
1324     RSA_VALIDATE_RET( ctx != NULL );
1325     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1326                       mode == MBEDTLS_RSA_PUBLIC );
1327     RSA_VALIDATE_RET( output != NULL );
1328     RSA_VALIDATE_RET( ilen == 0 || input != NULL );
1329 
1330     switch( ctx->padding )
1331     {
1332 #if defined(MBEDTLS_PKCS1_V15)
1333         case MBEDTLS_RSA_PKCS_V15:
1334             return mbedtls_rsa_rsaes_pkcs1_v15_encrypt( ctx, f_rng, p_rng, mode, ilen,
1335                                                 input, output );
1336 #endif
1337 
1338 #if defined(MBEDTLS_PKCS1_V21)
1339         case MBEDTLS_RSA_PKCS_V21:
1340             return mbedtls_rsa_rsaes_oaep_encrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1341                                            ilen, input, output );
1342 #endif
1343 
1344         default:
1345             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1346     }
1347 }
1348 
1349 #if defined(MBEDTLS_PKCS1_V21)
1350 /*
1351  * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
1352  */
mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,const unsigned char * label,size_t label_len,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1353 int mbedtls_rsa_rsaes_oaep_decrypt( mbedtls_rsa_context *ctx,
1354                             int (*f_rng)(void *, unsigned char *, size_t),
1355                             void *p_rng,
1356                             int mode,
1357                             const unsigned char *label, size_t label_len,
1358                             size_t *olen,
1359                             const unsigned char *input,
1360                             unsigned char *output,
1361                             size_t output_max_len )
1362 {
1363     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1364     size_t ilen, i, pad_len;
1365     unsigned char *p, bad, pad_done;
1366     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1367     unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
1368     unsigned int hlen;
1369     const mbedtls_md_info_t *md_info;
1370     mbedtls_md_context_t md_ctx;
1371 
1372     RSA_VALIDATE_RET( ctx != NULL );
1373     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1374                       mode == MBEDTLS_RSA_PUBLIC );
1375     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1376     RSA_VALIDATE_RET( label_len == 0 || label != NULL );
1377     RSA_VALIDATE_RET( input != NULL );
1378     RSA_VALIDATE_RET( olen != NULL );
1379 
1380     /*
1381      * Parameters sanity checks
1382      */
1383     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1384         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1385 
1386     ilen = ctx->len;
1387 
1388     if( ilen < 16 || ilen > sizeof( buf ) )
1389         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1390 
1391     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1392     if( md_info == NULL )
1393         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1394 
1395     hlen = mbedtls_md_get_size( md_info );
1396 
1397     // checking for integer underflow
1398     if( 2 * hlen + 2 > ilen )
1399         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1400 
1401     /*
1402      * RSA operation
1403      */
1404     if( ctx->P.n == 0 )
1405         ret = ( mode == MBEDTLS_RSA_PUBLIC )
1406               ? mbedtls_rsa_public(  ctx, input, buf )
1407               : mbedtls_rsa_private( ctx, NULL, NULL, input, buf );
1408     else
1409         ret = ( mode == MBEDTLS_RSA_PUBLIC )
1410               ? mbedtls_rsa_public(  ctx, input, buf )
1411               : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1412 
1413     if( ret != 0 )
1414         goto cleanup;
1415 
1416     /*
1417      * Unmask data and generate lHash
1418      */
1419     mbedtls_md_init( &md_ctx );
1420     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1421     {
1422         mbedtls_md_free( &md_ctx );
1423         goto cleanup;
1424     }
1425 
1426     /* seed: Apply seedMask to maskedSeed */
1427     if( ( ret = mgf_mask( buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
1428                           &md_ctx ) ) != 0 ||
1429     /* DB: Apply dbMask to maskedDB */
1430         ( ret = mgf_mask( buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
1431                           &md_ctx ) ) != 0 )
1432     {
1433         mbedtls_md_free( &md_ctx );
1434         goto cleanup;
1435     }
1436 
1437     mbedtls_md_free( &md_ctx );
1438 
1439     /* Generate lHash */
1440     if( ( ret = mbedtls_md( md_info, label, label_len, lhash ) ) != 0 )
1441         goto cleanup;
1442 
1443     /*
1444      * Check contents, in "constant-time"
1445      */
1446     p = buf;
1447     bad = 0;
1448 
1449     bad |= *p++; /* First byte must be 0 */
1450 
1451     p += hlen; /* Skip seed */
1452 
1453     /* Check lHash */
1454     for( i = 0; i < hlen; i++ )
1455         bad |= lhash[i] ^ *p++;
1456 
1457     /* Get zero-padding len, but always read till end of buffer
1458      * (minus one, for the 01 byte) */
1459     pad_len = 0;
1460     pad_done = 0;
1461     for( i = 0; i < ilen - 2 * hlen - 2; i++ )
1462     {
1463         pad_done |= p[i];
1464         pad_len += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1465     }
1466 
1467     p += pad_len;
1468     bad |= *p++ ^ 0x01;
1469 
1470     /*
1471      * The only information "leaked" is whether the padding was correct or not
1472      * (eg, no data is copied if it was not correct). This meets the
1473      * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
1474      * the different error conditions.
1475      */
1476     if( bad != 0 )
1477     {
1478         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
1479         goto cleanup;
1480     }
1481 
1482     if( ilen - ( p - buf ) > output_max_len )
1483     {
1484         ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
1485         goto cleanup;
1486     }
1487 
1488     *olen = ilen - (p - buf);
1489     if( *olen != 0 )
1490         memcpy( output, p, *olen );
1491     ret = 0;
1492 
1493 cleanup:
1494     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1495     mbedtls_platform_zeroize( lhash, sizeof( lhash ) );
1496 
1497     return( ret );
1498 }
1499 #endif /* MBEDTLS_PKCS1_V21 */
1500 
1501 #if defined(MBEDTLS_PKCS1_V15)
1502 /** Turn zero-or-nonzero into zero-or-all-bits-one, without branches.
1503  *
1504  * \param value     The value to analyze.
1505  * \return          Zero if \p value is zero, otherwise all-bits-one.
1506  */
all_or_nothing_int(unsigned value)1507 static unsigned all_or_nothing_int( unsigned value )
1508 {
1509     /* MSVC has a warning about unary minus on unsigned, but this is
1510      * well-defined and precisely what we want to do here */
1511 #if defined(_MSC_VER)
1512 #pragma warning( push )
1513 #pragma warning( disable : 4146 )
1514 #endif
1515     return( - ( ( value | - value ) >> ( sizeof( value ) * 8 - 1 ) ) );
1516 #if defined(_MSC_VER)
1517 #pragma warning( pop )
1518 #endif
1519 }
1520 
1521 /** Check whether a size is out of bounds, without branches.
1522  *
1523  * This is equivalent to `size > max`, but is likely to be compiled to
1524  * to code using bitwise operation rather than a branch.
1525  *
1526  * \param size      Size to check.
1527  * \param max       Maximum desired value for \p size.
1528  * \return          \c 0 if `size <= max`.
1529  * \return          \c 1 if `size > max`.
1530  */
size_greater_than(size_t size,size_t max)1531 static unsigned size_greater_than( size_t size, size_t max )
1532 {
1533     /* Return the sign bit (1 for negative) of (max - size). */
1534     return( ( max - size ) >> ( sizeof( size_t ) * 8 - 1 ) );
1535 }
1536 
1537 /** Choose between two integer values, without branches.
1538  *
1539  * This is equivalent to `cond ? if1 : if0`, but is likely to be compiled
1540  * to code using bitwise operation rather than a branch.
1541  *
1542  * \param cond      Condition to test.
1543  * \param if1       Value to use if \p cond is nonzero.
1544  * \param if0       Value to use if \p cond is zero.
1545  * \return          \c if1 if \p cond is nonzero, otherwise \c if0.
1546  */
if_int(unsigned cond,unsigned if1,unsigned if0)1547 static unsigned if_int( unsigned cond, unsigned if1, unsigned if0 )
1548 {
1549     unsigned mask = all_or_nothing_int( cond );
1550     return( ( mask & if1 ) | (~mask & if0 ) );
1551 }
1552 
1553 /** Shift some data towards the left inside a buffer without leaking
1554  * the length of the data through side channels.
1555  *
1556  * `mem_move_to_left(start, total, offset)` is functionally equivalent to
1557  * ```
1558  * memmove(start, start + offset, total - offset);
1559  * memset(start + offset, 0, total - offset);
1560  * ```
1561  * but it strives to use a memory access pattern (and thus total timing)
1562  * that does not depend on \p offset. This timing independence comes at
1563  * the expense of performance.
1564  *
1565  * \param start     Pointer to the start of the buffer.
1566  * \param total     Total size of the buffer.
1567  * \param offset    Offset from which to copy \p total - \p offset bytes.
1568  */
mem_move_to_left(void * start,size_t total,size_t offset)1569 static void mem_move_to_left( void *start,
1570                               size_t total,
1571                               size_t offset )
1572 {
1573     volatile unsigned char *buf = start;
1574     size_t i, n;
1575     if( total == 0 )
1576         return;
1577     for( i = 0; i < total; i++ )
1578     {
1579         unsigned no_op = size_greater_than( total - offset, i );
1580         /* The first `total - offset` passes are a no-op. The last
1581          * `offset` passes shift the data one byte to the left and
1582          * zero out the last byte. */
1583         for( n = 0; n < total - 1; n++ )
1584         {
1585             unsigned char current = buf[n];
1586             unsigned char next = buf[n+1];
1587             buf[n] = if_int( no_op, current, next );
1588         }
1589         buf[total-1] = if_int( no_op, buf[total-1], 0 );
1590     }
1591 }
1592 
1593 /*
1594  * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
1595  */
mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1596 int mbedtls_rsa_rsaes_pkcs1_v15_decrypt( mbedtls_rsa_context *ctx,
1597                                  int (*f_rng)(void *, unsigned char *, size_t),
1598                                  void *p_rng,
1599                                  int mode, size_t *olen,
1600                                  const unsigned char *input,
1601                                  unsigned char *output,
1602                                  size_t output_max_len )
1603 {
1604     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1605     size_t ilen, i, plaintext_max_size;
1606     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
1607     /* The following variables take sensitive values: their value must
1608      * not leak into the observable behavior of the function other than
1609      * the designated outputs (output, olen, return value). Otherwise
1610      * this would open the execution of the function to
1611      * side-channel-based variants of the Bleichenbacher padding oracle
1612      * attack. Potential side channels include overall timing, memory
1613      * access patterns (especially visible to an adversary who has access
1614      * to a shared memory cache), and branches (especially visible to
1615      * an adversary who has access to a shared code cache or to a shared
1616      * branch predictor). */
1617     size_t pad_count = 0;
1618     unsigned bad = 0;
1619     unsigned char pad_done = 0;
1620     size_t plaintext_size = 0;
1621     unsigned output_too_large;
1622 
1623     RSA_VALIDATE_RET( ctx != NULL );
1624     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1625                       mode == MBEDTLS_RSA_PUBLIC );
1626     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1627     RSA_VALIDATE_RET( input != NULL );
1628     RSA_VALIDATE_RET( olen != NULL );
1629 
1630     ilen = ctx->len;
1631     plaintext_max_size = ( output_max_len > ilen - 11 ?
1632                            ilen - 11 :
1633                            output_max_len );
1634 
1635     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
1636         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1637 
1638     if( ilen < 16 || ilen > sizeof( buf ) )
1639         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1640 
1641     ret = ( mode == MBEDTLS_RSA_PUBLIC )
1642           ? mbedtls_rsa_public(  ctx, input, buf )
1643           : mbedtls_rsa_private( ctx, f_rng, p_rng, input, buf );
1644 
1645     if( ret != 0 )
1646         goto cleanup;
1647 
1648     /* Check and get padding length in constant time and constant
1649      * memory trace. The first byte must be 0. */
1650     bad |= buf[0];
1651 
1652     if( mode == MBEDTLS_RSA_PRIVATE )
1653     {
1654         /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
1655          * where PS must be at least 8 nonzero bytes. */
1656         bad |= buf[1] ^ MBEDTLS_RSA_CRYPT;
1657 
1658         /* Read the whole buffer. Set pad_done to nonzero if we find
1659          * the 0x00 byte and remember the padding length in pad_count. */
1660         for( i = 2; i < ilen; i++ )
1661         {
1662             pad_done  |= ((buf[i] | (unsigned char)-buf[i]) >> 7) ^ 1;
1663             pad_count += ((pad_done | (unsigned char)-pad_done) >> 7) ^ 1;
1664         }
1665     }
1666     else
1667     {
1668         /* Decode EMSA-PKCS1-v1_5 padding: 0x00 || 0x01 || PS || 0x00
1669          * where PS must be at least 8 bytes with the value 0xFF. */
1670         bad |= buf[1] ^ MBEDTLS_RSA_SIGN;
1671 
1672         /* Read the whole buffer. Set pad_done to nonzero if we find
1673          * the 0x00 byte and remember the padding length in pad_count.
1674          * If there's a non-0xff byte in the padding, the padding is bad. */
1675         for( i = 2; i < ilen; i++ )
1676         {
1677             pad_done |= if_int( buf[i], 0, 1 );
1678             pad_count += if_int( pad_done, 0, 1 );
1679             bad |= if_int( pad_done, 0, buf[i] ^ 0xFF );
1680         }
1681     }
1682 
1683     /* If pad_done is still zero, there's no data, only unfinished padding. */
1684     bad |= if_int( pad_done, 0, 1 );
1685 
1686     /* There must be at least 8 bytes of padding. */
1687     bad |= size_greater_than( 8, pad_count );
1688 
1689     /* If the padding is valid, set plaintext_size to the number of
1690      * remaining bytes after stripping the padding. If the padding
1691      * is invalid, avoid leaking this fact through the size of the
1692      * output: use the maximum message size that fits in the output
1693      * buffer. Do it without branches to avoid leaking the padding
1694      * validity through timing. RSA keys are small enough that all the
1695      * size_t values involved fit in unsigned int. */
1696     plaintext_size = if_int( bad,
1697                              (unsigned) plaintext_max_size,
1698                              (unsigned) ( ilen - pad_count - 3 ) );
1699 
1700     /* Set output_too_large to 0 if the plaintext fits in the output
1701      * buffer and to 1 otherwise. */
1702     output_too_large = size_greater_than( plaintext_size,
1703                                           plaintext_max_size );
1704 
1705     /* Set ret without branches to avoid timing attacks. Return:
1706      * - INVALID_PADDING if the padding is bad (bad != 0).
1707      * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
1708      *   plaintext does not fit in the output buffer.
1709      * - 0 if the padding is correct. */
1710     ret = - (int) if_int( bad, - MBEDTLS_ERR_RSA_INVALID_PADDING,
1711                   if_int( output_too_large, - MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE,
1712                           0 ) );
1713 
1714     /* If the padding is bad or the plaintext is too large, zero the
1715      * data that we're about to copy to the output buffer.
1716      * We need to copy the same amount of data
1717      * from the same buffer whether the padding is good or not to
1718      * avoid leaking the padding validity through overall timing or
1719      * through memory or cache access patterns. */
1720     bad = all_or_nothing_int( bad | output_too_large );
1721     for( i = 11; i < ilen; i++ )
1722         buf[i] &= ~bad;
1723 
1724     /* If the plaintext is too large, truncate it to the buffer size.
1725      * Copy anyway to avoid revealing the length through timing, because
1726      * revealing the length is as bad as revealing the padding validity
1727      * for a Bleichenbacher attack. */
1728     plaintext_size = if_int( output_too_large,
1729                              (unsigned) plaintext_max_size,
1730                              (unsigned) plaintext_size );
1731 
1732     /* Move the plaintext to the leftmost position where it can start in
1733      * the working buffer, i.e. make it start plaintext_max_size from
1734      * the end of the buffer. Do this with a memory access trace that
1735      * does not depend on the plaintext size. After this move, the
1736      * starting location of the plaintext is no longer sensitive
1737      * information. */
1738     mem_move_to_left( buf + ilen - plaintext_max_size,
1739                       plaintext_max_size,
1740                       plaintext_max_size - plaintext_size );
1741 
1742     /* Finally copy the decrypted plaintext plus trailing zeros into the output
1743      * buffer. If output_max_len is 0, then output may be an invalid pointer
1744      * and the result of memcpy() would be undefined; prevent undefined
1745      * behavior making sure to depend only on output_max_len (the size of the
1746      * user-provided output buffer), which is independent from plaintext
1747      * length, validity of padding, success of the decryption, and other
1748      * secrets. */
1749     if( output_max_len != 0 )
1750         memcpy( output, buf + ilen - plaintext_max_size, plaintext_max_size );
1751 
1752     /* Report the amount of data we copied to the output buffer. In case
1753      * of errors (bad padding or output too large), the value of *olen
1754      * when this function returns is not specified. Making it equivalent
1755      * to the good case limits the risks of leaking the padding validity. */
1756     *olen = plaintext_size;
1757 
1758 cleanup:
1759     mbedtls_platform_zeroize( buf, sizeof( buf ) );
1760 
1761     return( ret );
1762 }
1763 #endif /* MBEDTLS_PKCS1_V15 */
1764 
1765 /*
1766  * Do an RSA operation, then remove the message padding
1767  */
mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,size_t * olen,const unsigned char * input,unsigned char * output,size_t output_max_len)1768 int mbedtls_rsa_pkcs1_decrypt( mbedtls_rsa_context *ctx,
1769                        int (*f_rng)(void *, unsigned char *, size_t),
1770                        void *p_rng,
1771                        int mode, size_t *olen,
1772                        const unsigned char *input,
1773                        unsigned char *output,
1774                        size_t output_max_len)
1775 {
1776     RSA_VALIDATE_RET( ctx != NULL );
1777     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1778                       mode == MBEDTLS_RSA_PUBLIC );
1779     RSA_VALIDATE_RET( output_max_len == 0 || output != NULL );
1780     RSA_VALIDATE_RET( input != NULL );
1781     RSA_VALIDATE_RET( olen != NULL );
1782 
1783     switch( ctx->padding )
1784     {
1785 #if defined(MBEDTLS_PKCS1_V15)
1786         case MBEDTLS_RSA_PKCS_V15:
1787             return mbedtls_rsa_rsaes_pkcs1_v15_decrypt( ctx, f_rng, p_rng, mode, olen,
1788                                                 input, output, output_max_len );
1789 #endif
1790 
1791 #if defined(MBEDTLS_PKCS1_V21)
1792         case MBEDTLS_RSA_PKCS_V21:
1793             return mbedtls_rsa_rsaes_oaep_decrypt( ctx, f_rng, p_rng, mode, NULL, 0,
1794                                            olen, input, output,
1795                                            output_max_len );
1796 #endif
1797 
1798         default:
1799             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
1800     }
1801 }
1802 
1803 #if defined(MBEDTLS_PKCS1_V21)
rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1804 static int rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1805                          int (*f_rng)(void *, unsigned char *, size_t),
1806                          void *p_rng,
1807                          int mode,
1808                          mbedtls_md_type_t md_alg,
1809                          unsigned int hashlen,
1810                          const unsigned char *hash,
1811                          int saltlen,
1812                          unsigned char *sig )
1813 {
1814     size_t olen;
1815     unsigned char *p = sig;
1816     unsigned char *salt = NULL;
1817     size_t slen, min_slen, hlen, offset = 0;
1818     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
1819     size_t msb;
1820     const mbedtls_md_info_t *md_info;
1821     mbedtls_md_context_t md_ctx;
1822     RSA_VALIDATE_RET( ctx != NULL );
1823     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
1824                       mode == MBEDTLS_RSA_PUBLIC );
1825     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
1826                         hashlen == 0 ) ||
1827                       hash != NULL );
1828     RSA_VALIDATE_RET( sig != NULL );
1829 
1830     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
1831         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1832 
1833     if( f_rng == NULL )
1834         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1835 
1836     olen = ctx->len;
1837 
1838     if( md_alg != MBEDTLS_MD_NONE )
1839     {
1840         /* Gather length of hash to sign */
1841         md_info = mbedtls_md_info_from_type( md_alg );
1842         if( md_info == NULL )
1843             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1844 
1845         hashlen = mbedtls_md_get_size( md_info );
1846     }
1847 
1848     md_info = mbedtls_md_info_from_type( (mbedtls_md_type_t) ctx->hash_id );
1849     if( md_info == NULL )
1850         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1851 
1852     hlen = mbedtls_md_get_size( md_info );
1853 
1854     if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY)
1855     {
1856        /* Calculate the largest possible salt length, up to the hash size.
1857         * Normally this is the hash length, which is the maximum salt length
1858         * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
1859         * enough room, use the maximum salt length that fits. The constraint is
1860         * that the hash length plus the salt length plus 2 bytes must be at most
1861         * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
1862         * (PKCS#1 v2.2) §9.1.1 step 3. */
1863         min_slen = hlen - 2;
1864         if( olen < hlen + min_slen + 2 )
1865             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1866         else if( olen >= hlen + hlen + 2 )
1867             slen = hlen;
1868         else
1869             slen = olen - hlen - 2;
1870     }
1871     else if ( (saltlen < 0) || (saltlen + hlen + 2 > olen) )
1872     {
1873         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
1874     }
1875     else
1876     {
1877         slen = (size_t) saltlen;
1878     }
1879 
1880     memset( sig, 0, olen );
1881 
1882     /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
1883     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1884     p += olen - hlen - slen - 2;
1885     *p++ = 0x01;
1886 
1887     /* Generate salt of length slen in place in the encoded message */
1888     salt = p;
1889     if( ( ret = f_rng( p_rng, salt, slen ) ) != 0 )
1890         return( MBEDTLS_ERROR_ADD( MBEDTLS_ERR_RSA_RNG_FAILED, ret ) );
1891 
1892     p += slen;
1893 
1894     mbedtls_md_init( &md_ctx );
1895     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
1896         goto exit;
1897 
1898     /* Generate H = Hash( M' ) */
1899     if( ( ret = mbedtls_md_starts( &md_ctx ) ) != 0 )
1900         goto exit;
1901     if( ( ret = mbedtls_md_update( &md_ctx, p, 8 ) ) != 0 )
1902         goto exit;
1903     if( ( ret = mbedtls_md_update( &md_ctx, hash, hashlen ) ) != 0 )
1904         goto exit;
1905     if( ( ret = mbedtls_md_update( &md_ctx, salt, slen ) ) != 0 )
1906         goto exit;
1907     if( ( ret = mbedtls_md_finish( &md_ctx, p ) ) != 0 )
1908         goto exit;
1909 
1910     /* Compensate for boundary condition when applying mask */
1911     if( msb % 8 == 0 )
1912         offset = 1;
1913 
1914     /* maskedDB: Apply dbMask to DB */
1915     if( ( ret = mgf_mask( sig + offset, olen - hlen - 1 - offset, p, hlen,
1916                           &md_ctx ) ) != 0 )
1917         goto exit;
1918 
1919     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
1920     sig[0] &= 0xFF >> ( olen * 8 - msb );
1921 
1922     p += hlen;
1923     *p++ = 0xBC;
1924 
1925 exit:
1926     mbedtls_md_free( &md_ctx );
1927 
1928     if( ret != 0 )
1929         return( ret );
1930 
1931     if( ctx->P.n == 0)
1932         return( ( mode == MBEDTLS_RSA_PUBLIC )
1933                 ? mbedtls_rsa_public(  ctx, sig, sig )
1934                 : mbedtls_rsa_private( ctx, NULL, NULL, sig, sig ) );
1935     else
1936         return( ( mode == MBEDTLS_RSA_PUBLIC )
1937                 ? mbedtls_rsa_public(  ctx, sig, sig )
1938                 : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig ) );
1939 }
1940 
1941 /*
1942  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
1943  * the option to pass in the salt length.
1944  */
mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,int saltlen,unsigned char * sig)1945 int mbedtls_rsa_rsassa_pss_sign_ext( mbedtls_rsa_context *ctx,
1946                          int (*f_rng)(void *, unsigned char *, size_t),
1947                          void *p_rng,
1948                          mbedtls_md_type_t md_alg,
1949                          unsigned int hashlen,
1950                          const unsigned char *hash,
1951                          int saltlen,
1952                          unsigned char *sig )
1953 {
1954     return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, MBEDTLS_RSA_PRIVATE, md_alg,
1955                                 hashlen, hash, saltlen, sig );
1956 }
1957 
1958 
1959 /*
1960  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
1961  */
mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)1962 int mbedtls_rsa_rsassa_pss_sign( mbedtls_rsa_context *ctx,
1963                          int (*f_rng)(void *, unsigned char *, size_t),
1964                          void *p_rng,
1965                          int mode,
1966                          mbedtls_md_type_t md_alg,
1967                          unsigned int hashlen,
1968                          const unsigned char *hash,
1969                          unsigned char *sig )
1970 {
1971     return rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
1972                                 hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig );
1973 }
1974 #endif /* MBEDTLS_PKCS1_V21 */
1975 
1976 #if defined(MBEDTLS_PKCS1_V15)
1977 /*
1978  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
1979  */
1980 
1981 /* Construct a PKCS v1.5 encoding of a hashed message
1982  *
1983  * This is used both for signature generation and verification.
1984  *
1985  * Parameters:
1986  * - md_alg:  Identifies the hash algorithm used to generate the given hash;
1987  *            MBEDTLS_MD_NONE if raw data is signed.
1988  * - hashlen: Length of hash in case hashlen is MBEDTLS_MD_NONE.
1989  * - hash:    Buffer containing the hashed message or the raw data.
1990  * - dst_len: Length of the encoded message.
1991  * - dst:     Buffer to hold the encoded message.
1992  *
1993  * Assumptions:
1994  * - hash has size hashlen if md_alg == MBEDTLS_MD_NONE.
1995  * - hash has size corresponding to md_alg if md_alg != MBEDTLS_MD_NONE.
1996  * - dst points to a buffer of size at least dst_len.
1997  *
1998  */
rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,size_t dst_len,unsigned char * dst)1999 static int rsa_rsassa_pkcs1_v15_encode( mbedtls_md_type_t md_alg,
2000                                         unsigned int hashlen,
2001                                         const unsigned char *hash,
2002                                         size_t dst_len,
2003                                         unsigned char *dst )
2004 {
2005     size_t oid_size  = 0;
2006     size_t nb_pad    = dst_len;
2007     unsigned char *p = dst;
2008     const char *oid  = NULL;
2009 
2010     /* Are we signing hashed or raw data? */
2011     if( md_alg != MBEDTLS_MD_NONE )
2012     {
2013         const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type( md_alg );
2014         if( md_info == NULL )
2015             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2016 
2017         if( mbedtls_oid_get_oid_by_md( md_alg, &oid, &oid_size ) != 0 )
2018             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2019 
2020         hashlen = mbedtls_md_get_size( md_info );
2021 
2022         /* Double-check that 8 + hashlen + oid_size can be used as a
2023          * 1-byte ASN.1 length encoding and that there's no overflow. */
2024         if( 8 + hashlen + oid_size  >= 0x80         ||
2025             10 + hashlen            <  hashlen      ||
2026             10 + hashlen + oid_size <  10 + hashlen )
2027             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2028 
2029         /*
2030          * Static bounds check:
2031          * - Need 10 bytes for five tag-length pairs.
2032          *   (Insist on 1-byte length encodings to protect against variants of
2033          *    Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
2034          * - Need hashlen bytes for hash
2035          * - Need oid_size bytes for hash alg OID.
2036          */
2037         if( nb_pad < 10 + hashlen + oid_size )
2038             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2039         nb_pad -= 10 + hashlen + oid_size;
2040     }
2041     else
2042     {
2043         if( nb_pad < hashlen )
2044             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2045 
2046         nb_pad -= hashlen;
2047     }
2048 
2049     /* Need space for signature header and padding delimiter (3 bytes),
2050      * and 8 bytes for the minimal padding */
2051     if( nb_pad < 3 + 8 )
2052         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2053     nb_pad -= 3;
2054 
2055     /* Now nb_pad is the amount of memory to be filled
2056      * with padding, and at least 8 bytes long. */
2057 
2058     /* Write signature header and padding */
2059     *p++ = 0;
2060     *p++ = MBEDTLS_RSA_SIGN;
2061     memset( p, 0xFF, nb_pad );
2062     p += nb_pad;
2063     *p++ = 0;
2064 
2065     /* Are we signing raw data? */
2066     if( md_alg == MBEDTLS_MD_NONE )
2067     {
2068         memcpy( p, hash, hashlen );
2069         return( 0 );
2070     }
2071 
2072     /* Signing hashed data, add corresponding ASN.1 structure
2073      *
2074      * DigestInfo ::= SEQUENCE {
2075      *   digestAlgorithm DigestAlgorithmIdentifier,
2076      *   digest Digest }
2077      * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
2078      * Digest ::= OCTET STRING
2079      *
2080      * Schematic:
2081      * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID  + LEN [ OID  ]
2082      *                                 TAG-NULL + LEN [ NULL ] ]
2083      *                 TAG-OCTET + LEN [ HASH ] ]
2084      */
2085     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2086     *p++ = (unsigned char)( 0x08 + oid_size + hashlen );
2087     *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
2088     *p++ = (unsigned char)( 0x04 + oid_size );
2089     *p++ = MBEDTLS_ASN1_OID;
2090     *p++ = (unsigned char) oid_size;
2091     memcpy( p, oid, oid_size );
2092     p += oid_size;
2093     *p++ = MBEDTLS_ASN1_NULL;
2094     *p++ = 0x00;
2095     *p++ = MBEDTLS_ASN1_OCTET_STRING;
2096     *p++ = (unsigned char) hashlen;
2097     memcpy( p, hash, hashlen );
2098     p += hashlen;
2099 
2100     /* Just a sanity-check, should be automatic
2101      * after the initial bounds check. */
2102     if( p != dst + dst_len )
2103     {
2104         mbedtls_platform_zeroize( dst, dst_len );
2105         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2106     }
2107 
2108     return( 0 );
2109 }
2110 
2111 /*
2112  * Do an RSA operation to sign the message digest
2113  */
mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2114 int mbedtls_rsa_rsassa_pkcs1_v15_sign( mbedtls_rsa_context *ctx,
2115                                int (*f_rng)(void *, unsigned char *, size_t),
2116                                void *p_rng,
2117                                int mode,
2118                                mbedtls_md_type_t md_alg,
2119                                unsigned int hashlen,
2120                                const unsigned char *hash,
2121                                unsigned char *sig )
2122 {
2123     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2124     unsigned char *sig_try = NULL, *verif = NULL;
2125 
2126     RSA_VALIDATE_RET( ctx != NULL );
2127     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2128                       mode == MBEDTLS_RSA_PUBLIC );
2129     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2130                         hashlen == 0 ) ||
2131                       hash != NULL );
2132     RSA_VALIDATE_RET( sig != NULL );
2133 
2134     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2135         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2136 
2137     /*
2138      * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
2139      */
2140 
2141     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash,
2142                                              ctx->len, sig ) ) != 0 )
2143         return( ret );
2144 
2145     /*
2146      * Call respective RSA primitive
2147      */
2148 
2149     if( mode == MBEDTLS_RSA_PUBLIC )
2150     {
2151         /* Skip verification on a public key operation */
2152         return( mbedtls_rsa_public( ctx, sig, sig ) );
2153     }
2154 
2155     /* Private key operation
2156      *
2157      * In order to prevent Lenstra's attack, make the signature in a
2158      * temporary buffer and check it before returning it.
2159      */
2160 
2161     sig_try = mbedtls_calloc( 1, ctx->len );
2162     if( sig_try == NULL )
2163         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2164 
2165     verif = mbedtls_calloc( 1, ctx->len );
2166     if( verif == NULL )
2167     {
2168         mbedtls_free( sig_try );
2169         return( MBEDTLS_ERR_MPI_ALLOC_FAILED );
2170     }
2171 
2172     MBEDTLS_MPI_CHK( mbedtls_rsa_private( ctx, f_rng, p_rng, sig, sig_try ) );
2173     MBEDTLS_MPI_CHK( mbedtls_rsa_public( ctx, sig_try, verif ) );
2174 
2175     if( mbedtls_safer_memcmp( verif, sig, ctx->len ) != 0 )
2176     {
2177         ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
2178         goto cleanup;
2179     }
2180 
2181     memcpy( sig, sig_try, ctx->len );
2182 
2183 cleanup:
2184     mbedtls_free( sig_try );
2185     mbedtls_free( verif );
2186 
2187     return( ret );
2188 }
2189 #endif /* MBEDTLS_PKCS1_V15 */
2190 
2191 /*
2192  * Do an RSA operation to sign the message digest
2193  */
mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,unsigned char * sig)2194 int mbedtls_rsa_pkcs1_sign( mbedtls_rsa_context *ctx,
2195                     int (*f_rng)(void *, unsigned char *, size_t),
2196                     void *p_rng,
2197                     int mode,
2198                     mbedtls_md_type_t md_alg,
2199                     unsigned int hashlen,
2200                     const unsigned char *hash,
2201                     unsigned char *sig )
2202 {
2203     RSA_VALIDATE_RET( ctx != NULL );
2204     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2205                       mode == MBEDTLS_RSA_PUBLIC );
2206     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2207                         hashlen == 0 ) ||
2208                       hash != NULL );
2209     RSA_VALIDATE_RET( sig != NULL );
2210 
2211     switch( ctx->padding )
2212     {
2213 #if defined(MBEDTLS_PKCS1_V15)
2214         case MBEDTLS_RSA_PKCS_V15:
2215             return mbedtls_rsa_rsassa_pkcs1_v15_sign( ctx, f_rng, p_rng, mode, md_alg,
2216                                               hashlen, hash, sig );
2217 #endif
2218 
2219 #if defined(MBEDTLS_PKCS1_V21)
2220         case MBEDTLS_RSA_PKCS_V21:
2221             return mbedtls_rsa_rsassa_pss_sign( ctx, f_rng, p_rng, mode, md_alg,
2222                                         hashlen, hash, sig );
2223 #endif
2224 
2225         default:
2226             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2227     }
2228 }
2229 
2230 #if defined(MBEDTLS_PKCS1_V21)
2231 /*
2232  * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2233  */
mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,mbedtls_md_type_t mgf1_hash_id,int expected_salt_len,const unsigned char * sig)2234 int mbedtls_rsa_rsassa_pss_verify_ext( mbedtls_rsa_context *ctx,
2235                                int (*f_rng)(void *, unsigned char *, size_t),
2236                                void *p_rng,
2237                                int mode,
2238                                mbedtls_md_type_t md_alg,
2239                                unsigned int hashlen,
2240                                const unsigned char *hash,
2241                                mbedtls_md_type_t mgf1_hash_id,
2242                                int expected_salt_len,
2243                                const unsigned char *sig )
2244 {
2245     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2246     size_t siglen;
2247     unsigned char *p;
2248     unsigned char *hash_start;
2249     unsigned char result[MBEDTLS_MD_MAX_SIZE];
2250     unsigned char zeros[8];
2251     unsigned int hlen;
2252     size_t observed_salt_len, msb;
2253     const mbedtls_md_info_t *md_info;
2254     mbedtls_md_context_t md_ctx;
2255     unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
2256 
2257     RSA_VALIDATE_RET( ctx != NULL );
2258     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2259                       mode == MBEDTLS_RSA_PUBLIC );
2260     RSA_VALIDATE_RET( sig != NULL );
2261     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2262                         hashlen == 0 ) ||
2263                       hash != NULL );
2264 
2265     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V21 )
2266         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2267 
2268     siglen = ctx->len;
2269 
2270     if( siglen < 16 || siglen > sizeof( buf ) )
2271         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2272 
2273     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2274           ? mbedtls_rsa_public(  ctx, sig, buf )
2275           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, buf );
2276 
2277     if( ret != 0 )
2278         return( ret );
2279 
2280     p = buf;
2281 
2282     if( buf[siglen - 1] != 0xBC )
2283         return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2284 
2285     if( md_alg != MBEDTLS_MD_NONE )
2286     {
2287         /* Gather length of hash to sign */
2288         md_info = mbedtls_md_info_from_type( md_alg );
2289         if( md_info == NULL )
2290             return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2291 
2292         hashlen = mbedtls_md_get_size( md_info );
2293     }
2294 
2295     md_info = mbedtls_md_info_from_type( mgf1_hash_id );
2296     if( md_info == NULL )
2297         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2298 
2299     hlen = mbedtls_md_get_size( md_info );
2300 
2301     memset( zeros, 0, 8 );
2302 
2303     /*
2304      * Note: EMSA-PSS verification is over the length of N - 1 bits
2305      */
2306     msb = mbedtls_mpi_bitlen( &ctx->N ) - 1;
2307 
2308     if( buf[0] >> ( 8 - siglen * 8 + msb ) )
2309         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2310 
2311     /* Compensate for boundary condition when applying mask */
2312     if( msb % 8 == 0 )
2313     {
2314         p++;
2315         siglen -= 1;
2316     }
2317 
2318     if( siglen < hlen + 2 )
2319         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2320     hash_start = p + siglen - hlen - 1;
2321 
2322     mbedtls_md_init( &md_ctx );
2323     if( ( ret = mbedtls_md_setup( &md_ctx, md_info, 0 ) ) != 0 )
2324         goto exit;
2325 
2326     ret = mgf_mask( p, siglen - hlen - 1, hash_start, hlen, &md_ctx );
2327     if( ret != 0 )
2328         goto exit;
2329 
2330     buf[0] &= 0xFF >> ( siglen * 8 - msb );
2331 
2332     while( p < hash_start - 1 && *p == 0 )
2333         p++;
2334 
2335     if( *p++ != 0x01 )
2336     {
2337         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2338         goto exit;
2339     }
2340 
2341     observed_salt_len = hash_start - p;
2342 
2343     if( expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
2344         observed_salt_len != (size_t) expected_salt_len )
2345     {
2346         ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
2347         goto exit;
2348     }
2349 
2350     /*
2351      * Generate H = Hash( M' )
2352      */
2353     ret = mbedtls_md_starts( &md_ctx );
2354     if ( ret != 0 )
2355         goto exit;
2356     ret = mbedtls_md_update( &md_ctx, zeros, 8 );
2357     if ( ret != 0 )
2358         goto exit;
2359     ret = mbedtls_md_update( &md_ctx, hash, hashlen );
2360     if ( ret != 0 )
2361         goto exit;
2362     ret = mbedtls_md_update( &md_ctx, p, observed_salt_len );
2363     if ( ret != 0 )
2364         goto exit;
2365     ret = mbedtls_md_finish( &md_ctx, result );
2366     if ( ret != 0 )
2367         goto exit;
2368 
2369     if( memcmp( hash_start, result, hlen ) != 0 )
2370     {
2371         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2372         goto exit;
2373     }
2374 
2375 exit:
2376     mbedtls_md_free( &md_ctx );
2377 
2378     return( ret );
2379 }
2380 
2381 /*
2382  * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
2383  */
mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2384 int mbedtls_rsa_rsassa_pss_verify( mbedtls_rsa_context *ctx,
2385                            int (*f_rng)(void *, unsigned char *, size_t),
2386                            void *p_rng,
2387                            int mode,
2388                            mbedtls_md_type_t md_alg,
2389                            unsigned int hashlen,
2390                            const unsigned char *hash,
2391                            const unsigned char *sig )
2392 {
2393     mbedtls_md_type_t mgf1_hash_id;
2394     RSA_VALIDATE_RET( ctx != NULL );
2395     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2396                       mode == MBEDTLS_RSA_PUBLIC );
2397     RSA_VALIDATE_RET( sig != NULL );
2398     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2399                         hashlen == 0 ) ||
2400                       hash != NULL );
2401 
2402     mgf1_hash_id = ( ctx->hash_id != MBEDTLS_MD_NONE )
2403                              ? (mbedtls_md_type_t) ctx->hash_id
2404                              : md_alg;
2405 
2406     return( mbedtls_rsa_rsassa_pss_verify_ext( ctx, f_rng, p_rng, mode,
2407                                        md_alg, hashlen, hash,
2408                                        mgf1_hash_id, MBEDTLS_RSA_SALT_LEN_ANY,
2409                                        sig ) );
2410 
2411 }
2412 #endif /* MBEDTLS_PKCS1_V21 */
2413 
2414 #if defined(MBEDTLS_PKCS1_V15)
2415 /*
2416  * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
2417  */
mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2418 int mbedtls_rsa_rsassa_pkcs1_v15_verify( mbedtls_rsa_context *ctx,
2419                                  int (*f_rng)(void *, unsigned char *, size_t),
2420                                  void *p_rng,
2421                                  int mode,
2422                                  mbedtls_md_type_t md_alg,
2423                                  unsigned int hashlen,
2424                                  const unsigned char *hash,
2425                                  const unsigned char *sig )
2426 {
2427     int ret = 0;
2428     size_t sig_len;
2429     unsigned char *encoded = NULL, *encoded_expected = NULL;
2430 
2431     RSA_VALIDATE_RET( ctx != NULL );
2432     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2433                       mode == MBEDTLS_RSA_PUBLIC );
2434     RSA_VALIDATE_RET( sig != NULL );
2435     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2436                         hashlen == 0 ) ||
2437                       hash != NULL );
2438 
2439     sig_len = ctx->len;
2440 
2441     if( mode == MBEDTLS_RSA_PRIVATE && ctx->padding != MBEDTLS_RSA_PKCS_V15 )
2442         return( MBEDTLS_ERR_RSA_BAD_INPUT_DATA );
2443 
2444     /*
2445      * Prepare expected PKCS1 v1.5 encoding of hash.
2446      */
2447 
2448     if( ( encoded          = mbedtls_calloc( 1, sig_len ) ) == NULL ||
2449         ( encoded_expected = mbedtls_calloc( 1, sig_len ) ) == NULL )
2450     {
2451         ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
2452         goto cleanup;
2453     }
2454 
2455     if( ( ret = rsa_rsassa_pkcs1_v15_encode( md_alg, hashlen, hash, sig_len,
2456                                              encoded_expected ) ) != 0 )
2457         goto cleanup;
2458 
2459     /*
2460      * Apply RSA primitive to get what should be PKCS1 encoded hash.
2461      */
2462 
2463     ret = ( mode == MBEDTLS_RSA_PUBLIC )
2464           ? mbedtls_rsa_public(  ctx, sig, encoded )
2465           : mbedtls_rsa_private( ctx, f_rng, p_rng, sig, encoded );
2466     if( ret != 0 )
2467         goto cleanup;
2468 
2469     /*
2470      * Compare
2471      */
2472 
2473     if( ( ret = mbedtls_safer_memcmp( encoded, encoded_expected,
2474                                       sig_len ) ) != 0 )
2475     {
2476         ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
2477         goto cleanup;
2478     }
2479 
2480 cleanup:
2481 
2482     if( encoded != NULL )
2483     {
2484         mbedtls_platform_zeroize( encoded, sig_len );
2485         mbedtls_free( encoded );
2486     }
2487 
2488     if( encoded_expected != NULL )
2489     {
2490         mbedtls_platform_zeroize( encoded_expected, sig_len );
2491         mbedtls_free( encoded_expected );
2492     }
2493 
2494     return( ret );
2495 }
2496 #endif /* MBEDTLS_PKCS1_V15 */
2497 
2498 /*
2499  * Do an RSA operation and check the message digest
2500  */
mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context * ctx,int (* f_rng)(void *,unsigned char *,size_t),void * p_rng,int mode,mbedtls_md_type_t md_alg,unsigned int hashlen,const unsigned char * hash,const unsigned char * sig)2501 int mbedtls_rsa_pkcs1_verify( mbedtls_rsa_context *ctx,
2502                       int (*f_rng)(void *, unsigned char *, size_t),
2503                       void *p_rng,
2504                       int mode,
2505                       mbedtls_md_type_t md_alg,
2506                       unsigned int hashlen,
2507                       const unsigned char *hash,
2508                       const unsigned char *sig )
2509 {
2510     RSA_VALIDATE_RET( ctx != NULL );
2511     RSA_VALIDATE_RET( mode == MBEDTLS_RSA_PRIVATE ||
2512                       mode == MBEDTLS_RSA_PUBLIC );
2513     RSA_VALIDATE_RET( sig != NULL );
2514     RSA_VALIDATE_RET( ( md_alg  == MBEDTLS_MD_NONE &&
2515                         hashlen == 0 ) ||
2516                       hash != NULL );
2517 
2518     switch( ctx->padding )
2519     {
2520 #if defined(MBEDTLS_PKCS1_V15)
2521         case MBEDTLS_RSA_PKCS_V15:
2522             return mbedtls_rsa_rsassa_pkcs1_v15_verify( ctx, f_rng, p_rng, mode, md_alg,
2523                                                 hashlen, hash, sig );
2524 #endif
2525 
2526 #if defined(MBEDTLS_PKCS1_V21)
2527         case MBEDTLS_RSA_PKCS_V21:
2528             return mbedtls_rsa_rsassa_pss_verify( ctx, f_rng, p_rng, mode, md_alg,
2529                                           hashlen, hash, sig );
2530 #endif
2531 
2532         default:
2533             return( MBEDTLS_ERR_RSA_INVALID_PADDING );
2534     }
2535 }
2536 
2537 /*
2538  * Copy the components of an RSA key
2539  */
mbedtls_rsa_copy(mbedtls_rsa_context * dst,const mbedtls_rsa_context * src)2540 int mbedtls_rsa_copy( mbedtls_rsa_context *dst, const mbedtls_rsa_context *src )
2541 {
2542     int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
2543     RSA_VALIDATE_RET( dst != NULL );
2544     RSA_VALIDATE_RET( src != NULL );
2545 
2546     dst->len = src->len;
2547 
2548     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->N, &src->N ) );
2549     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->E, &src->E ) );
2550 
2551     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->D, &src->D ) );
2552     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->P, &src->P ) );
2553     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Q, &src->Q ) );
2554 
2555 #if !defined(MBEDTLS_RSA_NO_CRT)
2556     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DP, &src->DP ) );
2557     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->DQ, &src->DQ ) );
2558     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->QP, &src->QP ) );
2559     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RP, &src->RP ) );
2560     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RQ, &src->RQ ) );
2561 #endif
2562 
2563     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->RN, &src->RN ) );
2564 
2565     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vi, &src->Vi ) );
2566     MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &dst->Vf, &src->Vf ) );
2567 
2568     dst->padding = src->padding;
2569     dst->hash_id = src->hash_id;
2570 
2571 cleanup:
2572     if( ret != 0 )
2573         mbedtls_rsa_free( dst );
2574 
2575     return( ret );
2576 }
2577 
2578 /*
2579  * Free the components of an RSA key
2580  */
mbedtls_rsa_free(mbedtls_rsa_context * ctx)2581 void mbedtls_rsa_free( mbedtls_rsa_context *ctx )
2582 {
2583     if( ctx == NULL )
2584         return;
2585 
2586     mbedtls_mpi_free( &ctx->Vi );
2587     mbedtls_mpi_free( &ctx->Vf );
2588     mbedtls_mpi_free( &ctx->RN );
2589     mbedtls_mpi_free( &ctx->D  );
2590     mbedtls_mpi_free( &ctx->Q  );
2591     mbedtls_mpi_free( &ctx->P  );
2592     mbedtls_mpi_free( &ctx->E  );
2593     mbedtls_mpi_free( &ctx->N  );
2594 
2595 #if !defined(MBEDTLS_RSA_NO_CRT)
2596     mbedtls_mpi_free( &ctx->RQ );
2597     mbedtls_mpi_free( &ctx->RP );
2598     mbedtls_mpi_free( &ctx->QP );
2599     mbedtls_mpi_free( &ctx->DQ );
2600     mbedtls_mpi_free( &ctx->DP );
2601 #endif /* MBEDTLS_RSA_NO_CRT */
2602 
2603 #if defined(MBEDTLS_THREADING_C)
2604     /* Free the mutex, but only if it hasn't been freed already. */
2605     if( ctx->ver != 0 )
2606     {
2607         mbedtls_mutex_free( &ctx->mutex );
2608         ctx->ver = 0;
2609     }
2610 #endif
2611 }
2612 
2613 #endif /* !MBEDTLS_RSA_ALT */
2614 
2615 #if defined(MBEDTLS_SELF_TEST)
2616 
2617 #include "mbedtls/sha1.h"
2618 
2619 /*
2620  * Example RSA-1024 keypair, for test purposes
2621  */
2622 #define KEY_LEN 128
2623 
2624 #define RSA_N   "9292758453063D803DD603D5E777D788" \
2625                 "8ED1D5BF35786190FA2F23EBC0848AEA" \
2626                 "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
2627                 "7130B9CED7ACDF54CFC7555AC14EEBAB" \
2628                 "93A89813FBF3C4F8066D2D800F7C38A8" \
2629                 "1AE31942917403FF4946B0A83D3D3E05" \
2630                 "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
2631                 "5E94BB77B07507233A0BC7BAC8F90F79"
2632 
2633 #define RSA_E   "10001"
2634 
2635 #define RSA_D   "24BF6185468786FDD303083D25E64EFC" \
2636                 "66CA472BC44D253102F8B4A9D3BFA750" \
2637                 "91386C0077937FE33FA3252D28855837" \
2638                 "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
2639                 "DF79C5CE07EE72C7F123142198164234" \
2640                 "CABB724CF78B8173B9F880FC86322407" \
2641                 "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
2642                 "071513A1E85B5DFA031F21ECAE91A34D"
2643 
2644 #define RSA_P   "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
2645                 "2C01CAD19EA484A87EA4377637E75500" \
2646                 "FCB2005C5C7DD6EC4AC023CDA285D796" \
2647                 "C3D9E75E1EFC42488BB4F1D13AC30A57"
2648 
2649 #define RSA_Q   "C000DF51A7C77AE8D7C7370C1FF55B69" \
2650                 "E211C2B9E5DB1ED0BF61D0D9899620F4" \
2651                 "910E4168387E3C30AA1E00C339A79508" \
2652                 "8452DD96A9A5EA5D9DCA68DA636032AF"
2653 
2654 #define PT_LEN  24
2655 #define RSA_PT  "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
2656                 "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
2657 
2658 #if defined(MBEDTLS_PKCS1_V15)
myrand(void * rng_state,unsigned char * output,size_t len)2659 static int myrand( void *rng_state, unsigned char *output, size_t len )
2660 {
2661 #if !defined(__OpenBSD__) && !defined(__NetBSD__)
2662     size_t i;
2663 
2664     if( rng_state != NULL )
2665         rng_state  = NULL;
2666 
2667     for( i = 0; i < len; ++i )
2668         output[i] = rand();
2669 #else
2670     if( rng_state != NULL )
2671         rng_state = NULL;
2672 
2673     arc4random_buf( output, len );
2674 #endif /* !OpenBSD && !NetBSD */
2675 
2676     return( 0 );
2677 }
2678 #endif /* MBEDTLS_PKCS1_V15 */
2679 
2680 /*
2681  * Checkup routine
2682  */
mbedtls_rsa_self_test(int verbose)2683 int mbedtls_rsa_self_test( int verbose )
2684 {
2685     int ret = 0;
2686 #if defined(MBEDTLS_PKCS1_V15)
2687     size_t len;
2688     mbedtls_rsa_context rsa;
2689     unsigned char rsa_plaintext[PT_LEN];
2690     unsigned char rsa_decrypted[PT_LEN];
2691     unsigned char rsa_ciphertext[KEY_LEN];
2692 #if defined(MBEDTLS_SHA1_C)
2693     unsigned char sha1sum[20];
2694 #endif
2695 
2696     mbedtls_mpi K;
2697 
2698     mbedtls_mpi_init( &K );
2699     mbedtls_rsa_init( &rsa, MBEDTLS_RSA_PKCS_V15, 0 );
2700 
2701     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_N  ) );
2702     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, &K, NULL, NULL, NULL, NULL ) );
2703     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_P  ) );
2704     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, &K, NULL, NULL, NULL ) );
2705     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_Q  ) );
2706     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, &K, NULL, NULL ) );
2707     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_D  ) );
2708     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, &K, NULL ) );
2709     MBEDTLS_MPI_CHK( mbedtls_mpi_read_string( &K, 16, RSA_E  ) );
2710     MBEDTLS_MPI_CHK( mbedtls_rsa_import( &rsa, NULL, NULL, NULL, NULL, &K ) );
2711 
2712     MBEDTLS_MPI_CHK( mbedtls_rsa_complete( &rsa ) );
2713 
2714     if( verbose != 0 )
2715         mbedtls_printf( "  RSA key validation: " );
2716 
2717     if( mbedtls_rsa_check_pubkey(  &rsa ) != 0 ||
2718         mbedtls_rsa_check_privkey( &rsa ) != 0 )
2719     {
2720         if( verbose != 0 )
2721             mbedtls_printf( "failed\n" );
2722 
2723         ret = 1;
2724         goto cleanup;
2725     }
2726 
2727     if( verbose != 0 )
2728         mbedtls_printf( "passed\n  PKCS#1 encryption : " );
2729 
2730     memcpy( rsa_plaintext, RSA_PT, PT_LEN );
2731 
2732     if( mbedtls_rsa_pkcs1_encrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PUBLIC,
2733                                    PT_LEN, rsa_plaintext,
2734                                    rsa_ciphertext ) != 0 )
2735     {
2736         if( verbose != 0 )
2737             mbedtls_printf( "failed\n" );
2738 
2739         ret = 1;
2740         goto cleanup;
2741     }
2742 
2743     if( verbose != 0 )
2744         mbedtls_printf( "passed\n  PKCS#1 decryption : " );
2745 
2746     if( mbedtls_rsa_pkcs1_decrypt( &rsa, myrand, NULL, MBEDTLS_RSA_PRIVATE,
2747                                    &len, rsa_ciphertext, rsa_decrypted,
2748                                    sizeof(rsa_decrypted) ) != 0 )
2749     {
2750         if( verbose != 0 )
2751             mbedtls_printf( "failed\n" );
2752 
2753         ret = 1;
2754         goto cleanup;
2755     }
2756 
2757     if( memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 )
2758     {
2759         if( verbose != 0 )
2760             mbedtls_printf( "failed\n" );
2761 
2762         ret = 1;
2763         goto cleanup;
2764     }
2765 
2766     if( verbose != 0 )
2767         mbedtls_printf( "passed\n" );
2768 
2769 #if defined(MBEDTLS_SHA1_C)
2770     if( verbose != 0 )
2771         mbedtls_printf( "  PKCS#1 data sign  : " );
2772 
2773     if( mbedtls_sha1_ret( rsa_plaintext, PT_LEN, sha1sum ) != 0 )
2774     {
2775         if( verbose != 0 )
2776             mbedtls_printf( "failed\n" );
2777 
2778         return( 1 );
2779     }
2780 
2781     if( mbedtls_rsa_pkcs1_sign( &rsa, myrand, NULL,
2782                                 MBEDTLS_RSA_PRIVATE, MBEDTLS_MD_SHA1, 0,
2783                                 sha1sum, rsa_ciphertext ) != 0 )
2784     {
2785         if( verbose != 0 )
2786             mbedtls_printf( "failed\n" );
2787 
2788         ret = 1;
2789         goto cleanup;
2790     }
2791 
2792     if( verbose != 0 )
2793         mbedtls_printf( "passed\n  PKCS#1 sig. verify: " );
2794 
2795     if( mbedtls_rsa_pkcs1_verify( &rsa, NULL, NULL,
2796                                   MBEDTLS_RSA_PUBLIC, MBEDTLS_MD_SHA1, 0,
2797                                   sha1sum, rsa_ciphertext ) != 0 )
2798     {
2799         if( verbose != 0 )
2800             mbedtls_printf( "failed\n" );
2801 
2802         ret = 1;
2803         goto cleanup;
2804     }
2805 
2806     if( verbose != 0 )
2807         mbedtls_printf( "passed\n" );
2808 #endif /* MBEDTLS_SHA1_C */
2809 
2810     if( verbose != 0 )
2811         mbedtls_printf( "\n" );
2812 
2813 cleanup:
2814     mbedtls_mpi_free( &K );
2815     mbedtls_rsa_free( &rsa );
2816 #else /* MBEDTLS_PKCS1_V15 */
2817     ((void) verbose);
2818 #endif /* MBEDTLS_PKCS1_V15 */
2819     return( ret );
2820 }
2821 
2822 #endif /* MBEDTLS_SELF_TEST */
2823 
2824 #endif /* MBEDTLS_RSA_C */
2825