1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/scatterlist.h>
16
17 #include <linux/mmc/host.h>
18 #include <linux/mmc/card.h>
19 #include <linux/mmc/mmc.h>
20 #include <linux/mmc/sd.h>
21
22 #include "core.h"
23 #include "card.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "sd.h"
28 #include "sd_ops.h"
29
30 static const unsigned int tran_exp[] = {
31 10000, 100000, 1000000, 10000000,
32 0, 0, 0, 0
33 };
34
35 static const unsigned char tran_mant[] = {
36 0, 10, 12, 13, 15, 20, 25, 30,
37 35, 40, 45, 50, 55, 60, 70, 80,
38 };
39
40 static const unsigned int taac_exp[] = {
41 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
42 };
43
44 static const unsigned int taac_mant[] = {
45 0, 10, 12, 13, 15, 20, 25, 30,
46 35, 40, 45, 50, 55, 60, 70, 80,
47 };
48
49 static const unsigned int sd_au_size[] = {
50 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
51 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
52 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
53 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
54 };
55
56 #define UNSTUFF_BITS(resp,start,size) \
57 ({ \
58 const int __size = size; \
59 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
60 const int __off = 3 - ((start) / 32); \
61 const int __shft = (start) & 31; \
62 u32 __res; \
63 \
64 __res = resp[__off] >> __shft; \
65 if (__size + __shft > 32) \
66 __res |= resp[__off-1] << ((32 - __shft) % 32); \
67 __res & __mask; \
68 })
69
70 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 2000
71 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
72
73 struct sd_busy_data {
74 struct mmc_card *card;
75 u8 *reg_buf;
76 };
77
78 /*
79 * Given the decoded CSD structure, decode the raw CID to our CID structure.
80 */
mmc_decode_cid(struct mmc_card * card)81 void mmc_decode_cid(struct mmc_card *card)
82 {
83 u32 *resp = card->raw_cid;
84
85 /*
86 * SD doesn't currently have a version field so we will
87 * have to assume we can parse this.
88 */
89 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
90 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
91 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
92 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
93 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
94 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
95 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
96 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
97 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
98 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
99 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
100 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
101
102 card->cid.year += 2000; /* SD cards year offset */
103 }
104
105 /*
106 * Given a 128-bit response, decode to our card CSD structure.
107 */
mmc_decode_csd(struct mmc_card * card)108 static int mmc_decode_csd(struct mmc_card *card)
109 {
110 struct mmc_csd *csd = &card->csd;
111 unsigned int e, m, csd_struct;
112 u32 *resp = card->raw_csd;
113
114 csd_struct = UNSTUFF_BITS(resp, 126, 2);
115
116 switch (csd_struct) {
117 case 0:
118 m = UNSTUFF_BITS(resp, 115, 4);
119 e = UNSTUFF_BITS(resp, 112, 3);
120 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
121 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
122
123 m = UNSTUFF_BITS(resp, 99, 4);
124 e = UNSTUFF_BITS(resp, 96, 3);
125 csd->max_dtr = tran_exp[e] * tran_mant[m];
126 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
127
128 e = UNSTUFF_BITS(resp, 47, 3);
129 m = UNSTUFF_BITS(resp, 62, 12);
130 csd->capacity = (1 + m) << (e + 2);
131
132 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
133 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
134 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
135 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
136 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
137 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
138 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
139 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
140
141 if (UNSTUFF_BITS(resp, 46, 1)) {
142 csd->erase_size = 1;
143 } else if (csd->write_blkbits >= 9) {
144 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
145 csd->erase_size <<= csd->write_blkbits - 9;
146 }
147
148 if (UNSTUFF_BITS(resp, 13, 1))
149 mmc_card_set_readonly(card);
150 break;
151 case 1:
152 /*
153 * This is a block-addressed SDHC or SDXC card. Most
154 * interesting fields are unused and have fixed
155 * values. To avoid getting tripped by buggy cards,
156 * we assume those fixed values ourselves.
157 */
158 mmc_card_set_blockaddr(card);
159
160 csd->taac_ns = 0; /* Unused */
161 csd->taac_clks = 0; /* Unused */
162
163 m = UNSTUFF_BITS(resp, 99, 4);
164 e = UNSTUFF_BITS(resp, 96, 3);
165 csd->max_dtr = tran_exp[e] * tran_mant[m];
166 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
167 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
168
169 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
170 if (csd->c_size >= 0xFFFF)
171 mmc_card_set_ext_capacity(card);
172
173 m = UNSTUFF_BITS(resp, 48, 22);
174 csd->capacity = (1 + m) << 10;
175
176 csd->read_blkbits = 9;
177 csd->read_partial = 0;
178 csd->write_misalign = 0;
179 csd->read_misalign = 0;
180 csd->r2w_factor = 4; /* Unused */
181 csd->write_blkbits = 9;
182 csd->write_partial = 0;
183 csd->erase_size = 1;
184
185 if (UNSTUFF_BITS(resp, 13, 1))
186 mmc_card_set_readonly(card);
187 break;
188 default:
189 pr_err("%s: unrecognised CSD structure version %d\n",
190 mmc_hostname(card->host), csd_struct);
191 return -EINVAL;
192 }
193
194 card->erase_size = csd->erase_size;
195
196 return 0;
197 }
198
199 /*
200 * Given a 64-bit response, decode to our card SCR structure.
201 */
mmc_decode_scr(struct mmc_card * card)202 static int mmc_decode_scr(struct mmc_card *card)
203 {
204 struct sd_scr *scr = &card->scr;
205 unsigned int scr_struct;
206 u32 resp[4];
207
208 resp[3] = card->raw_scr[1];
209 resp[2] = card->raw_scr[0];
210
211 scr_struct = UNSTUFF_BITS(resp, 60, 4);
212 if (scr_struct != 0) {
213 pr_err("%s: unrecognised SCR structure version %d\n",
214 mmc_hostname(card->host), scr_struct);
215 return -EINVAL;
216 }
217
218 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
219 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
220 if (scr->sda_vsn == SCR_SPEC_VER_2)
221 /* Check if Physical Layer Spec v3.0 is supported */
222 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
223
224 if (scr->sda_spec3) {
225 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
226 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
227 }
228
229 if (UNSTUFF_BITS(resp, 55, 1))
230 card->erased_byte = 0xFF;
231 else
232 card->erased_byte = 0x0;
233
234 if (scr->sda_spec4)
235 scr->cmds = UNSTUFF_BITS(resp, 32, 4);
236 else if (scr->sda_spec3)
237 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
238
239 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
240 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
241 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
242 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
243 return -EINVAL;
244 }
245
246 return 0;
247 }
248
249 /*
250 * Fetch and process SD Status register.
251 */
mmc_read_ssr(struct mmc_card * card)252 static int mmc_read_ssr(struct mmc_card *card)
253 {
254 unsigned int au, es, et, eo;
255 __be32 *raw_ssr;
256 u32 resp[4] = {};
257 u8 discard_support;
258 int i;
259
260 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
261 pr_warn("%s: card lacks mandatory SD Status function\n",
262 mmc_hostname(card->host));
263 return 0;
264 }
265
266 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
267 if (!raw_ssr)
268 return -ENOMEM;
269
270 if (mmc_app_sd_status(card, raw_ssr)) {
271 pr_warn("%s: problem reading SD Status register\n",
272 mmc_hostname(card->host));
273 kfree(raw_ssr);
274 return 0;
275 }
276
277 for (i = 0; i < 16; i++)
278 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
279
280 kfree(raw_ssr);
281
282 /*
283 * UNSTUFF_BITS only works with four u32s so we have to offset the
284 * bitfield positions accordingly.
285 */
286 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
287 if (au) {
288 if (au <= 9 || card->scr.sda_spec3) {
289 card->ssr.au = sd_au_size[au];
290 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
291 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
292 if (es && et) {
293 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
294 card->ssr.erase_timeout = (et * 1000) / es;
295 card->ssr.erase_offset = eo * 1000;
296 }
297 } else {
298 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
299 mmc_hostname(card->host));
300 }
301 }
302
303 /*
304 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
305 */
306 resp[3] = card->raw_ssr[6];
307 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
308 card->erase_arg = (card->scr.sda_specx && discard_support) ?
309 SD_DISCARD_ARG : SD_ERASE_ARG;
310
311 return 0;
312 }
313
314 /*
315 * Fetches and decodes switch information
316 */
mmc_read_switch(struct mmc_card * card)317 static int mmc_read_switch(struct mmc_card *card)
318 {
319 int err;
320 u8 *status;
321
322 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
323 return 0;
324
325 if (!(card->csd.cmdclass & CCC_SWITCH)) {
326 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
327 mmc_hostname(card->host));
328 return 0;
329 }
330
331 status = kmalloc(64, GFP_KERNEL);
332 if (!status)
333 return -ENOMEM;
334
335 /*
336 * Find out the card's support bits with a mode 0 operation.
337 * The argument does not matter, as the support bits do not
338 * change with the arguments.
339 */
340 err = mmc_sd_switch(card, 0, 0, 0, status);
341 if (err) {
342 /*
343 * If the host or the card can't do the switch,
344 * fail more gracefully.
345 */
346 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
347 goto out;
348
349 pr_warn("%s: problem reading Bus Speed modes\n",
350 mmc_hostname(card->host));
351 err = 0;
352
353 goto out;
354 }
355
356 if (status[13] & SD_MODE_HIGH_SPEED)
357 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
358
359 if (card->scr.sda_spec3) {
360 card->sw_caps.sd3_bus_mode = status[13];
361 /* Driver Strengths supported by the card */
362 card->sw_caps.sd3_drv_type = status[9];
363 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
364 }
365
366 out:
367 kfree(status);
368
369 return err;
370 }
371
372 /*
373 * Test if the card supports high-speed mode and, if so, switch to it.
374 */
mmc_sd_switch_hs(struct mmc_card * card)375 int mmc_sd_switch_hs(struct mmc_card *card)
376 {
377 int err;
378 u8 *status;
379
380 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
381 return 0;
382
383 if (!(card->csd.cmdclass & CCC_SWITCH))
384 return 0;
385
386 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
387 return 0;
388
389 if (card->sw_caps.hs_max_dtr == 0)
390 return 0;
391
392 status = kmalloc(64, GFP_KERNEL);
393 if (!status)
394 return -ENOMEM;
395
396 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
397 if (err)
398 goto out;
399
400 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
401 pr_warn("%s: Problem switching card into high-speed mode!\n",
402 mmc_hostname(card->host));
403 err = 0;
404 } else {
405 err = 1;
406 }
407
408 out:
409 kfree(status);
410
411 return err;
412 }
413
sd_select_driver_type(struct mmc_card * card,u8 * status)414 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
415 {
416 int card_drv_type, drive_strength, drv_type;
417 int err;
418
419 card->drive_strength = 0;
420
421 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
422
423 drive_strength = mmc_select_drive_strength(card,
424 card->sw_caps.uhs_max_dtr,
425 card_drv_type, &drv_type);
426
427 if (drive_strength) {
428 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
429 if (err)
430 return err;
431 if ((status[15] & 0xF) != drive_strength) {
432 pr_warn("%s: Problem setting drive strength!\n",
433 mmc_hostname(card->host));
434 return 0;
435 }
436 card->drive_strength = drive_strength;
437 }
438
439 if (drv_type)
440 mmc_set_driver_type(card->host, drv_type);
441
442 return 0;
443 }
444
sd_update_bus_speed_mode(struct mmc_card * card)445 static void sd_update_bus_speed_mode(struct mmc_card *card)
446 {
447 /*
448 * If the host doesn't support any of the UHS-I modes, fallback on
449 * default speed.
450 */
451 if (!mmc_host_uhs(card->host)) {
452 card->sd_bus_speed = 0;
453 return;
454 }
455
456 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
457 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
458 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
459 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
460 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
461 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
462 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
463 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
464 SD_MODE_UHS_SDR50)) {
465 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
466 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
467 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
468 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
469 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
470 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
471 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
472 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
473 SD_MODE_UHS_SDR12)) {
474 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
475 }
476 }
477
sd_set_bus_speed_mode(struct mmc_card * card,u8 * status)478 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
479 {
480 int err;
481 unsigned int timing = 0;
482
483 switch (card->sd_bus_speed) {
484 case UHS_SDR104_BUS_SPEED:
485 timing = MMC_TIMING_UHS_SDR104;
486 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
487 break;
488 case UHS_DDR50_BUS_SPEED:
489 timing = MMC_TIMING_UHS_DDR50;
490 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
491 break;
492 case UHS_SDR50_BUS_SPEED:
493 timing = MMC_TIMING_UHS_SDR50;
494 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
495 break;
496 case UHS_SDR25_BUS_SPEED:
497 timing = MMC_TIMING_UHS_SDR25;
498 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
499 break;
500 case UHS_SDR12_BUS_SPEED:
501 timing = MMC_TIMING_UHS_SDR12;
502 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
503 break;
504 default:
505 return 0;
506 }
507
508 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
509 if (err)
510 return err;
511
512 if ((status[16] & 0xF) != card->sd_bus_speed)
513 pr_warn("%s: Problem setting bus speed mode!\n",
514 mmc_hostname(card->host));
515 else {
516 mmc_set_timing(card->host, timing);
517 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
518 }
519
520 return 0;
521 }
522
523 /* Get host's max current setting at its current voltage */
sd_get_host_max_current(struct mmc_host * host)524 static u32 sd_get_host_max_current(struct mmc_host *host)
525 {
526 u32 voltage, max_current;
527
528 voltage = 1 << host->ios.vdd;
529 switch (voltage) {
530 case MMC_VDD_165_195:
531 max_current = host->max_current_180;
532 break;
533 case MMC_VDD_29_30:
534 case MMC_VDD_30_31:
535 max_current = host->max_current_300;
536 break;
537 case MMC_VDD_32_33:
538 case MMC_VDD_33_34:
539 max_current = host->max_current_330;
540 break;
541 default:
542 max_current = 0;
543 }
544
545 return max_current;
546 }
547
sd_set_current_limit(struct mmc_card * card,u8 * status)548 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
549 {
550 int current_limit = SD_SET_CURRENT_NO_CHANGE;
551 int err;
552 u32 max_current;
553
554 /*
555 * Current limit switch is only defined for SDR50, SDR104, and DDR50
556 * bus speed modes. For other bus speed modes, we do not change the
557 * current limit.
558 */
559 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
560 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
561 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
562 return 0;
563
564 /*
565 * Host has different current capabilities when operating at
566 * different voltages, so find out its max current first.
567 */
568 max_current = sd_get_host_max_current(card->host);
569
570 /*
571 * We only check host's capability here, if we set a limit that is
572 * higher than the card's maximum current, the card will be using its
573 * maximum current, e.g. if the card's maximum current is 300ma, and
574 * when we set current limit to 200ma, the card will draw 200ma, and
575 * when we set current limit to 400/600/800ma, the card will draw its
576 * maximum 300ma from the host.
577 *
578 * The above is incorrect: if we try to set a current limit that is
579 * not supported by the card, the card can rightfully error out the
580 * attempt, and remain at the default current limit. This results
581 * in a 300mA card being limited to 200mA even though the host
582 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
583 * an iMX6 host. --rmk
584 */
585 if (max_current >= 800 &&
586 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
587 current_limit = SD_SET_CURRENT_LIMIT_800;
588 else if (max_current >= 600 &&
589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
590 current_limit = SD_SET_CURRENT_LIMIT_600;
591 else if (max_current >= 400 &&
592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
593 current_limit = SD_SET_CURRENT_LIMIT_400;
594 else if (max_current >= 200 &&
595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
596 current_limit = SD_SET_CURRENT_LIMIT_200;
597
598 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
599 err = mmc_sd_switch(card, 1, 3, current_limit, status);
600 if (err)
601 return err;
602
603 if (((status[15] >> 4) & 0x0F) != current_limit)
604 pr_warn("%s: Problem setting current limit!\n",
605 mmc_hostname(card->host));
606
607 }
608
609 return 0;
610 }
611
612 /*
613 * UHS-I specific initialization procedure
614 */
mmc_sd_init_uhs_card(struct mmc_card * card)615 static int mmc_sd_init_uhs_card(struct mmc_card *card)
616 {
617 int err;
618 u8 *status;
619
620 if (!(card->csd.cmdclass & CCC_SWITCH))
621 return 0;
622
623 status = kmalloc(64, GFP_KERNEL);
624 if (!status)
625 return -ENOMEM;
626
627 /* Set 4-bit bus width */
628 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
629 if (err)
630 goto out;
631
632 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
633
634 /*
635 * Select the bus speed mode depending on host
636 * and card capability.
637 */
638 sd_update_bus_speed_mode(card);
639
640 /* Set the driver strength for the card */
641 err = sd_select_driver_type(card, status);
642 if (err)
643 goto out;
644
645 /* Set current limit for the card */
646 err = sd_set_current_limit(card, status);
647 if (err)
648 goto out;
649
650 /* Set bus speed mode of the card */
651 err = sd_set_bus_speed_mode(card, status);
652 if (err)
653 goto out;
654
655 /*
656 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
657 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
658 */
659 if (!mmc_host_is_spi(card->host) &&
660 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
661 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
662 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
663 err = mmc_execute_tuning(card);
664
665 /*
666 * As SD Specifications Part1 Physical Layer Specification
667 * Version 3.01 says, CMD19 tuning is available for unlocked
668 * cards in transfer state of 1.8V signaling mode. The small
669 * difference between v3.00 and 3.01 spec means that CMD19
670 * tuning is also available for DDR50 mode.
671 */
672 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
673 pr_warn("%s: ddr50 tuning failed\n",
674 mmc_hostname(card->host));
675 err = 0;
676 }
677 }
678
679 out:
680 kfree(status);
681
682 return err;
683 }
684
685 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
686 card->raw_cid[2], card->raw_cid[3]);
687 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
688 card->raw_csd[2], card->raw_csd[3]);
689 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
690 MMC_DEV_ATTR(ssr,
691 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
692 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
693 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
694 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
695 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
696 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
697 card->raw_ssr[15]);
698 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
699 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
700 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
701 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
702 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
703 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
704 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
705 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
706 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
707 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
708 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
709
710
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)711 static ssize_t mmc_dsr_show(struct device *dev,
712 struct device_attribute *attr,
713 char *buf)
714 {
715 struct mmc_card *card = mmc_dev_to_card(dev);
716 struct mmc_host *host = card->host;
717
718 if (card->csd.dsr_imp && host->dsr_req)
719 return sprintf(buf, "0x%x\n", host->dsr);
720 else
721 /* return default DSR value */
722 return sprintf(buf, "0x%x\n", 0x404);
723 }
724
725 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
726
727 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
728 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
729 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
730
731 #define sdio_info_attr(num) \
732 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
733 { \
734 struct mmc_card *card = mmc_dev_to_card(dev); \
735 \
736 if (num > card->num_info) \
737 return -ENODATA; \
738 if (!card->info[num-1][0]) \
739 return 0; \
740 return sprintf(buf, "%s\n", card->info[num-1]); \
741 } \
742 static DEVICE_ATTR_RO(info##num)
743
744 sdio_info_attr(1);
745 sdio_info_attr(2);
746 sdio_info_attr(3);
747 sdio_info_attr(4);
748
749 static struct attribute *sd_std_attrs[] = {
750 &dev_attr_vendor.attr,
751 &dev_attr_device.attr,
752 &dev_attr_revision.attr,
753 &dev_attr_info1.attr,
754 &dev_attr_info2.attr,
755 &dev_attr_info3.attr,
756 &dev_attr_info4.attr,
757 &dev_attr_cid.attr,
758 &dev_attr_csd.attr,
759 &dev_attr_scr.attr,
760 &dev_attr_ssr.attr,
761 &dev_attr_date.attr,
762 &dev_attr_erase_size.attr,
763 &dev_attr_preferred_erase_size.attr,
764 &dev_attr_fwrev.attr,
765 &dev_attr_hwrev.attr,
766 &dev_attr_manfid.attr,
767 &dev_attr_name.attr,
768 &dev_attr_oemid.attr,
769 &dev_attr_serial.attr,
770 &dev_attr_ocr.attr,
771 &dev_attr_rca.attr,
772 &dev_attr_dsr.attr,
773 NULL,
774 };
775
sd_std_is_visible(struct kobject * kobj,struct attribute * attr,int index)776 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
777 int index)
778 {
779 struct device *dev = kobj_to_dev(kobj);
780 struct mmc_card *card = mmc_dev_to_card(dev);
781
782 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
783 if ((attr == &dev_attr_vendor.attr ||
784 attr == &dev_attr_device.attr ||
785 attr == &dev_attr_revision.attr ||
786 attr == &dev_attr_info1.attr ||
787 attr == &dev_attr_info2.attr ||
788 attr == &dev_attr_info3.attr ||
789 attr == &dev_attr_info4.attr
790 ) && card->type != MMC_TYPE_SD_COMBO)
791 return 0;
792
793 return attr->mode;
794 }
795
796 static const struct attribute_group sd_std_group = {
797 .attrs = sd_std_attrs,
798 .is_visible = sd_std_is_visible,
799 };
800 __ATTRIBUTE_GROUPS(sd_std);
801
802 struct device_type sd_type = {
803 .groups = sd_std_groups,
804 };
805
806 /*
807 * Fetch CID from card.
808 */
mmc_sd_get_cid(struct mmc_host * host,u32 ocr,u32 * cid,u32 * rocr)809 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
810 {
811 int err;
812 u32 max_current;
813 int retries = 10;
814 u32 pocr = ocr;
815
816 try_again:
817 if (!retries) {
818 ocr &= ~SD_OCR_S18R;
819 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
820 }
821
822 /*
823 * Since we're changing the OCR value, we seem to
824 * need to tell some cards to go back to the idle
825 * state. We wait 1ms to give cards time to
826 * respond.
827 */
828 mmc_go_idle(host);
829
830 /*
831 * If SD_SEND_IF_COND indicates an SD 2.0
832 * compliant card and we should set bit 30
833 * of the ocr to indicate that we can handle
834 * block-addressed SDHC cards.
835 */
836 err = mmc_send_if_cond(host, ocr);
837 if (!err)
838 ocr |= SD_OCR_CCS;
839
840 /*
841 * If the host supports one of UHS-I modes, request the card
842 * to switch to 1.8V signaling level. If the card has failed
843 * repeatedly to switch however, skip this.
844 */
845 if (retries && mmc_host_uhs(host))
846 ocr |= SD_OCR_S18R;
847
848 /*
849 * If the host can supply more than 150mA at current voltage,
850 * XPC should be set to 1.
851 */
852 max_current = sd_get_host_max_current(host);
853 if (max_current > 150)
854 ocr |= SD_OCR_XPC;
855
856 err = mmc_send_app_op_cond(host, ocr, rocr);
857 if (err)
858 return err;
859
860 /*
861 * In case the S18A bit is set in the response, let's start the signal
862 * voltage switch procedure. SPI mode doesn't support CMD11.
863 * Note that, according to the spec, the S18A bit is not valid unless
864 * the CCS bit is set as well. We deliberately deviate from the spec in
865 * regards to this, which allows UHS-I to be supported for SDSC cards.
866 */
867 if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) {
868 err = mmc_set_uhs_voltage(host, pocr);
869 if (err == -EAGAIN) {
870 retries--;
871 goto try_again;
872 } else if (err) {
873 retries = 0;
874 goto try_again;
875 }
876 }
877
878 err = mmc_send_cid(host, cid);
879 return err;
880 }
881
mmc_sd_get_csd(struct mmc_card * card)882 int mmc_sd_get_csd(struct mmc_card *card)
883 {
884 int err;
885
886 /*
887 * Fetch CSD from card.
888 */
889 err = mmc_send_csd(card, card->raw_csd);
890 if (err)
891 return err;
892
893 err = mmc_decode_csd(card);
894 if (err)
895 return err;
896
897 return 0;
898 }
899
mmc_sd_get_ro(struct mmc_host * host)900 static int mmc_sd_get_ro(struct mmc_host *host)
901 {
902 int ro;
903
904 /*
905 * Some systems don't feature a write-protect pin and don't need one.
906 * E.g. because they only have micro-SD card slot. For those systems
907 * assume that the SD card is always read-write.
908 */
909 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
910 return 0;
911
912 if (!host->ops->get_ro)
913 return -1;
914
915 ro = host->ops->get_ro(host);
916
917 return ro;
918 }
919
mmc_sd_setup_card(struct mmc_host * host,struct mmc_card * card,bool reinit)920 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
921 bool reinit)
922 {
923 int err;
924
925 if (!reinit) {
926 /*
927 * Fetch SCR from card.
928 */
929 err = mmc_app_send_scr(card);
930 if (err)
931 return err;
932
933 err = mmc_decode_scr(card);
934 if (err)
935 return err;
936
937 /*
938 * Fetch and process SD Status register.
939 */
940 err = mmc_read_ssr(card);
941 if (err)
942 return err;
943
944 /* Erase init depends on CSD and SSR */
945 mmc_init_erase(card);
946
947 /*
948 * Fetch switch information from card.
949 */
950 err = mmc_read_switch(card);
951 if (err)
952 return err;
953 }
954
955 /*
956 * For SPI, enable CRC as appropriate.
957 * This CRC enable is located AFTER the reading of the
958 * card registers because some SDHC cards are not able
959 * to provide valid CRCs for non-512-byte blocks.
960 */
961 if (mmc_host_is_spi(host)) {
962 err = mmc_spi_set_crc(host, use_spi_crc);
963 if (err)
964 return err;
965 }
966
967 /*
968 * Check if read-only switch is active.
969 */
970 if (!reinit) {
971 int ro = mmc_sd_get_ro(host);
972
973 if (ro < 0) {
974 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
975 mmc_hostname(host));
976 } else if (ro > 0) {
977 mmc_card_set_readonly(card);
978 }
979 }
980
981 return 0;
982 }
983
mmc_sd_get_max_clock(struct mmc_card * card)984 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
985 {
986 unsigned max_dtr = (unsigned int)-1;
987
988 if (mmc_card_hs(card)) {
989 if (max_dtr > card->sw_caps.hs_max_dtr)
990 max_dtr = card->sw_caps.hs_max_dtr;
991 } else if (max_dtr > card->csd.max_dtr) {
992 max_dtr = card->csd.max_dtr;
993 }
994
995 return max_dtr;
996 }
997
mmc_sd_card_using_v18(struct mmc_card * card)998 static bool mmc_sd_card_using_v18(struct mmc_card *card)
999 {
1000 /*
1001 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1002 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1003 * they can be used to determine if the card has already switched to
1004 * 1.8V signaling.
1005 */
1006 return card->sw_caps.sd3_bus_mode &
1007 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1008 }
1009
sd_write_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u8 reg_data)1010 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1011 u8 reg_data)
1012 {
1013 struct mmc_host *host = card->host;
1014 struct mmc_request mrq = {};
1015 struct mmc_command cmd = {};
1016 struct mmc_data data = {};
1017 struct scatterlist sg;
1018 u8 *reg_buf;
1019
1020 reg_buf = kzalloc(512, GFP_KERNEL);
1021 if (!reg_buf)
1022 return -ENOMEM;
1023
1024 mrq.cmd = &cmd;
1025 mrq.data = &data;
1026
1027 /*
1028 * Arguments of CMD49:
1029 * [31:31] MIO (0 = memory).
1030 * [30:27] FNO (function number).
1031 * [26:26] MW - mask write mode (0 = disable).
1032 * [25:18] page number.
1033 * [17:9] offset address.
1034 * [8:0] length (0 = 1 byte).
1035 */
1036 cmd.arg = fno << 27 | page << 18 | offset << 9;
1037
1038 /* The first byte in the buffer is the data to be written. */
1039 reg_buf[0] = reg_data;
1040
1041 data.flags = MMC_DATA_WRITE;
1042 data.blksz = 512;
1043 data.blocks = 1;
1044 data.sg = &sg;
1045 data.sg_len = 1;
1046 sg_init_one(&sg, reg_buf, 512);
1047
1048 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1049 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1050
1051 mmc_set_data_timeout(&data, card);
1052 mmc_wait_for_req(host, &mrq);
1053
1054 kfree(reg_buf);
1055
1056 /*
1057 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1058 * after the CMD49. Although, let's leave this to be managed by the
1059 * caller.
1060 */
1061
1062 if (cmd.error)
1063 return cmd.error;
1064 if (data.error)
1065 return data.error;
1066
1067 return 0;
1068 }
1069
sd_read_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u16 len,u8 * reg_buf)1070 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1071 u16 offset, u16 len, u8 *reg_buf)
1072 {
1073 u32 cmd_args;
1074
1075 /*
1076 * Command arguments of CMD48:
1077 * [31:31] MIO (0 = memory).
1078 * [30:27] FNO (function number).
1079 * [26:26] reserved (0).
1080 * [25:18] page number.
1081 * [17:9] offset address.
1082 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1083 */
1084 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1085
1086 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1087 cmd_args, reg_buf, 512);
1088 }
1089
sd_parse_ext_reg_power(struct mmc_card * card,u8 fno,u8 page,u16 offset)1090 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1091 u16 offset)
1092 {
1093 int err;
1094 u8 *reg_buf;
1095
1096 reg_buf = kzalloc(512, GFP_KERNEL);
1097 if (!reg_buf)
1098 return -ENOMEM;
1099
1100 /* Read the extension register for power management function. */
1101 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1102 if (err) {
1103 pr_warn("%s: error %d reading PM func of ext reg\n",
1104 mmc_hostname(card->host), err);
1105 goto out;
1106 }
1107
1108 /* PM revision consists of 4 bits. */
1109 card->ext_power.rev = reg_buf[0] & 0xf;
1110
1111 /* Power Off Notification support at bit 4. */
1112 if (reg_buf[1] & BIT(4))
1113 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1114
1115 /* Power Sustenance support at bit 5. */
1116 if (reg_buf[1] & BIT(5))
1117 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1118
1119 /* Power Down Mode support at bit 6. */
1120 if (reg_buf[1] & BIT(6))
1121 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1122
1123 card->ext_power.fno = fno;
1124 card->ext_power.page = page;
1125 card->ext_power.offset = offset;
1126
1127 out:
1128 kfree(reg_buf);
1129 return err;
1130 }
1131
sd_parse_ext_reg_perf(struct mmc_card * card,u8 fno,u8 page,u16 offset)1132 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1133 u16 offset)
1134 {
1135 int err;
1136 u8 *reg_buf;
1137
1138 reg_buf = kzalloc(512, GFP_KERNEL);
1139 if (!reg_buf)
1140 return -ENOMEM;
1141
1142 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1143 if (err) {
1144 pr_warn("%s: error %d reading PERF func of ext reg\n",
1145 mmc_hostname(card->host), err);
1146 goto out;
1147 }
1148
1149 /* PERF revision. */
1150 card->ext_perf.rev = reg_buf[0];
1151
1152 /* FX_EVENT support at bit 0. */
1153 if (reg_buf[1] & BIT(0))
1154 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1155
1156 /* Card initiated self-maintenance support at bit 0. */
1157 if (reg_buf[2] & BIT(0))
1158 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1159
1160 /* Host initiated self-maintenance support at bit 1. */
1161 if (reg_buf[2] & BIT(1))
1162 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1163
1164 /* Cache support at bit 0. */
1165 if (reg_buf[4] & BIT(0))
1166 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1167
1168 /* Command queue support indicated via queue depth bits (0 to 4). */
1169 if (reg_buf[6] & 0x1f)
1170 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1171
1172 card->ext_perf.fno = fno;
1173 card->ext_perf.page = page;
1174 card->ext_perf.offset = offset;
1175
1176 out:
1177 kfree(reg_buf);
1178 return err;
1179 }
1180
sd_parse_ext_reg(struct mmc_card * card,u8 * gen_info_buf,u16 * next_ext_addr)1181 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1182 u16 *next_ext_addr)
1183 {
1184 u8 num_regs, fno, page;
1185 u16 sfc, offset, ext = *next_ext_addr;
1186 u32 reg_addr;
1187
1188 /*
1189 * Parse only one register set per extension, as that is sufficient to
1190 * support the standard functions. This means another 48 bytes in the
1191 * buffer must be available.
1192 */
1193 if (ext + 48 > 512)
1194 return -EFAULT;
1195
1196 /* Standard Function Code */
1197 memcpy(&sfc, &gen_info_buf[ext], 2);
1198
1199 /* Address to the next extension. */
1200 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1201
1202 /* Number of registers for this extension. */
1203 num_regs = gen_info_buf[ext + 42];
1204
1205 /* We support only one register per extension. */
1206 if (num_regs != 1)
1207 return 0;
1208
1209 /* Extension register address. */
1210 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1211
1212 /* 9 bits (0 to 8) contains the offset address. */
1213 offset = reg_addr & 0x1ff;
1214
1215 /* 8 bits (9 to 16) contains the page number. */
1216 page = reg_addr >> 9 & 0xff ;
1217
1218 /* 4 bits (18 to 21) contains the function number. */
1219 fno = reg_addr >> 18 & 0xf;
1220
1221 /* Standard Function Code for power management. */
1222 if (sfc == 0x1)
1223 return sd_parse_ext_reg_power(card, fno, page, offset);
1224
1225 /* Standard Function Code for performance enhancement. */
1226 if (sfc == 0x2)
1227 return sd_parse_ext_reg_perf(card, fno, page, offset);
1228
1229 return 0;
1230 }
1231
sd_read_ext_regs(struct mmc_card * card)1232 static int sd_read_ext_regs(struct mmc_card *card)
1233 {
1234 int err, i;
1235 u8 num_ext, *gen_info_buf;
1236 u16 rev, len, next_ext_addr;
1237
1238 if (mmc_host_is_spi(card->host))
1239 return 0;
1240
1241 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1242 return 0;
1243
1244 gen_info_buf = kzalloc(512, GFP_KERNEL);
1245 if (!gen_info_buf)
1246 return -ENOMEM;
1247
1248 /*
1249 * Read 512 bytes of general info, which is found at function number 0,
1250 * at page 0 and with no offset.
1251 */
1252 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1253 if (err) {
1254 pr_warn("%s: error %d reading general info of SD ext reg\n",
1255 mmc_hostname(card->host), err);
1256 goto out;
1257 }
1258
1259 /* General info structure revision. */
1260 memcpy(&rev, &gen_info_buf[0], 2);
1261
1262 /* Length of general info in bytes. */
1263 memcpy(&len, &gen_info_buf[2], 2);
1264
1265 /* Number of extensions to be find. */
1266 num_ext = gen_info_buf[4];
1267
1268 /* We support revision 0, but limit it to 512 bytes for simplicity. */
1269 if (rev != 0 || len > 512) {
1270 pr_warn("%s: non-supported SD ext reg layout\n",
1271 mmc_hostname(card->host));
1272 goto out;
1273 }
1274
1275 /*
1276 * Parse the extension registers. The first extension should start
1277 * immediately after the general info header (16 bytes).
1278 */
1279 next_ext_addr = 16;
1280 for (i = 0; i < num_ext; i++) {
1281 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1282 if (err) {
1283 pr_warn("%s: error %d parsing SD ext reg\n",
1284 mmc_hostname(card->host), err);
1285 goto out;
1286 }
1287 }
1288
1289 out:
1290 kfree(gen_info_buf);
1291 return err;
1292 }
1293
sd_cache_enabled(struct mmc_host * host)1294 static bool sd_cache_enabled(struct mmc_host *host)
1295 {
1296 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1297 }
1298
sd_flush_cache(struct mmc_host * host)1299 static int sd_flush_cache(struct mmc_host *host)
1300 {
1301 struct mmc_card *card = host->card;
1302 u8 *reg_buf, fno, page;
1303 u16 offset;
1304 int err;
1305
1306 if (!sd_cache_enabled(host))
1307 return 0;
1308
1309 reg_buf = kzalloc(512, GFP_KERNEL);
1310 if (!reg_buf)
1311 return -ENOMEM;
1312
1313 /*
1314 * Set Flush Cache at bit 0 in the performance enhancement register at
1315 * 261 bytes offset.
1316 */
1317 fno = card->ext_perf.fno;
1318 page = card->ext_perf.page;
1319 offset = card->ext_perf.offset + 261;
1320
1321 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1322 if (err) {
1323 pr_warn("%s: error %d writing Cache Flush bit\n",
1324 mmc_hostname(host), err);
1325 goto out;
1326 }
1327
1328 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1329 MMC_BUSY_EXTR_SINGLE);
1330 if (err)
1331 goto out;
1332
1333 /*
1334 * Read the Flush Cache bit. The card shall reset it, to confirm that
1335 * it's has completed the flushing of the cache.
1336 */
1337 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1338 if (err) {
1339 pr_warn("%s: error %d reading Cache Flush bit\n",
1340 mmc_hostname(host), err);
1341 goto out;
1342 }
1343
1344 if (reg_buf[0] & BIT(0))
1345 err = -ETIMEDOUT;
1346 out:
1347 kfree(reg_buf);
1348 return err;
1349 }
1350
sd_enable_cache(struct mmc_card * card)1351 static int sd_enable_cache(struct mmc_card *card)
1352 {
1353 u8 *reg_buf;
1354 int err;
1355
1356 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1357
1358 reg_buf = kzalloc(512, GFP_KERNEL);
1359 if (!reg_buf)
1360 return -ENOMEM;
1361
1362 /*
1363 * Set Cache Enable at bit 0 in the performance enhancement register at
1364 * 260 bytes offset.
1365 */
1366 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1367 card->ext_perf.offset + 260, BIT(0));
1368 if (err) {
1369 pr_warn("%s: error %d writing Cache Enable bit\n",
1370 mmc_hostname(card->host), err);
1371 goto out;
1372 }
1373
1374 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1375 MMC_BUSY_EXTR_SINGLE);
1376 if (!err)
1377 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1378
1379 out:
1380 kfree(reg_buf);
1381 return err;
1382 }
1383
1384 /*
1385 * Handle the detection and initialisation of a card.
1386 *
1387 * In the case of a resume, "oldcard" will contain the card
1388 * we're trying to reinitialise.
1389 */
mmc_sd_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1390 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1391 struct mmc_card *oldcard)
1392 {
1393 struct mmc_card *card;
1394 int err;
1395 u32 cid[4];
1396 u32 rocr = 0;
1397 bool v18_fixup_failed = false;
1398
1399 WARN_ON(!host->claimed);
1400 retry:
1401 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1402 if (err)
1403 return err;
1404
1405 if (oldcard) {
1406 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1407 pr_debug("%s: Perhaps the card was replaced\n",
1408 mmc_hostname(host));
1409 return -ENOENT;
1410 }
1411
1412 card = oldcard;
1413 } else {
1414 /*
1415 * Allocate card structure.
1416 */
1417 card = mmc_alloc_card(host, &sd_type);
1418 if (IS_ERR(card))
1419 return PTR_ERR(card);
1420
1421 card->ocr = ocr;
1422 card->type = MMC_TYPE_SD;
1423 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1424 }
1425
1426 /*
1427 * Call the optional HC's init_card function to handle quirks.
1428 */
1429 if (host->ops->init_card)
1430 host->ops->init_card(host, card);
1431
1432 /*
1433 * For native busses: get card RCA and quit open drain mode.
1434 */
1435 if (!mmc_host_is_spi(host)) {
1436 err = mmc_send_relative_addr(host, &card->rca);
1437 if (err)
1438 goto free_card;
1439 }
1440
1441 if (!oldcard) {
1442 err = mmc_sd_get_csd(card);
1443 if (err)
1444 goto free_card;
1445
1446 mmc_decode_cid(card);
1447 }
1448
1449 /*
1450 * handling only for cards supporting DSR and hosts requesting
1451 * DSR configuration
1452 */
1453 if (card->csd.dsr_imp && host->dsr_req)
1454 mmc_set_dsr(host);
1455
1456 /*
1457 * Select card, as all following commands rely on that.
1458 */
1459 if (!mmc_host_is_spi(host)) {
1460 err = mmc_select_card(card);
1461 if (err)
1462 goto free_card;
1463 }
1464
1465 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1466 if (err)
1467 goto free_card;
1468
1469 /*
1470 * If the card has not been power cycled, it may still be using 1.8V
1471 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1472 * transfer mode.
1473 */
1474 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1475 mmc_sd_card_using_v18(card) &&
1476 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1477 /*
1478 * Re-read switch information in case it has changed since
1479 * oldcard was initialized.
1480 */
1481 if (oldcard) {
1482 err = mmc_read_switch(card);
1483 if (err)
1484 goto free_card;
1485 }
1486 if (mmc_sd_card_using_v18(card)) {
1487 if (mmc_host_set_uhs_voltage(host) ||
1488 mmc_sd_init_uhs_card(card)) {
1489 v18_fixup_failed = true;
1490 mmc_power_cycle(host, ocr);
1491 if (!oldcard)
1492 mmc_remove_card(card);
1493 goto retry;
1494 }
1495 goto done;
1496 }
1497 }
1498
1499 /* Initialization sequence for UHS-I cards */
1500 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1501 err = mmc_sd_init_uhs_card(card);
1502 if (err)
1503 goto free_card;
1504 } else {
1505 /*
1506 * Attempt to change to high-speed (if supported)
1507 */
1508 err = mmc_sd_switch_hs(card);
1509 if (err > 0)
1510 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1511 else if (err)
1512 goto free_card;
1513
1514 /*
1515 * Set bus speed.
1516 */
1517 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1518
1519 /*
1520 * Switch to wider bus (if supported).
1521 */
1522 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1523 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1524 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1525 if (err)
1526 goto free_card;
1527
1528 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1529 }
1530 }
1531
1532 if (!oldcard) {
1533 /* Read/parse the extension registers. */
1534 err = sd_read_ext_regs(card);
1535 if (err)
1536 goto free_card;
1537 }
1538
1539 /* Enable internal SD cache if supported. */
1540 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1541 err = sd_enable_cache(card);
1542 if (err)
1543 goto free_card;
1544 }
1545
1546 if (host->cqe_ops && !host->cqe_enabled) {
1547 err = host->cqe_ops->cqe_enable(host, card);
1548 if (!err) {
1549 host->cqe_enabled = true;
1550 host->hsq_enabled = true;
1551 pr_info("%s: Host Software Queue enabled\n",
1552 mmc_hostname(host));
1553 }
1554 }
1555
1556 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1557 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1558 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1559 mmc_hostname(host));
1560 err = -EINVAL;
1561 goto free_card;
1562 }
1563 done:
1564 host->card = card;
1565 return 0;
1566
1567 free_card:
1568 if (!oldcard)
1569 mmc_remove_card(card);
1570
1571 return err;
1572 }
1573
1574 /*
1575 * Host is being removed. Free up the current card.
1576 */
mmc_sd_remove(struct mmc_host * host)1577 static void mmc_sd_remove(struct mmc_host *host)
1578 {
1579 mmc_remove_card(host->card);
1580 host->card = NULL;
1581 }
1582
1583 /*
1584 * Card detection - card is alive.
1585 */
mmc_sd_alive(struct mmc_host * host)1586 static int mmc_sd_alive(struct mmc_host *host)
1587 {
1588 return mmc_send_status(host->card, NULL);
1589 }
1590
1591 /*
1592 * Card detection callback from host.
1593 */
mmc_sd_detect(struct mmc_host * host)1594 static void mmc_sd_detect(struct mmc_host *host)
1595 {
1596 int err;
1597
1598 mmc_get_card(host->card, NULL);
1599
1600 /*
1601 * Just check if our card has been removed.
1602 */
1603 err = _mmc_detect_card_removed(host);
1604
1605 mmc_put_card(host->card, NULL);
1606
1607 if (err) {
1608 mmc_sd_remove(host);
1609
1610 mmc_claim_host(host);
1611 mmc_detach_bus(host);
1612 mmc_power_off(host);
1613 mmc_release_host(host);
1614 }
1615 }
1616
sd_can_poweroff_notify(struct mmc_card * card)1617 static int sd_can_poweroff_notify(struct mmc_card *card)
1618 {
1619 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1620 }
1621
sd_busy_poweroff_notify_cb(void * cb_data,bool * busy)1622 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1623 {
1624 struct sd_busy_data *data = cb_data;
1625 struct mmc_card *card = data->card;
1626 int err;
1627
1628 /*
1629 * Read the status register for the power management function. It's at
1630 * one byte offset and is one byte long. The Power Off Notification
1631 * Ready is bit 0.
1632 */
1633 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1634 card->ext_power.offset + 1, 1, data->reg_buf);
1635 if (err) {
1636 pr_warn("%s: error %d reading status reg of PM func\n",
1637 mmc_hostname(card->host), err);
1638 return err;
1639 }
1640
1641 *busy = !(data->reg_buf[0] & BIT(0));
1642 return 0;
1643 }
1644
sd_poweroff_notify(struct mmc_card * card)1645 static int sd_poweroff_notify(struct mmc_card *card)
1646 {
1647 struct sd_busy_data cb_data;
1648 u8 *reg_buf;
1649 int err;
1650
1651 reg_buf = kzalloc(512, GFP_KERNEL);
1652 if (!reg_buf)
1653 return -ENOMEM;
1654
1655 /*
1656 * Set the Power Off Notification bit in the power management settings
1657 * register at 2 bytes offset.
1658 */
1659 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1660 card->ext_power.offset + 2, BIT(0));
1661 if (err) {
1662 pr_warn("%s: error %d writing Power Off Notify bit\n",
1663 mmc_hostname(card->host), err);
1664 goto out;
1665 }
1666
1667 cb_data.card = card;
1668 cb_data.reg_buf = reg_buf;
1669 err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1670 &sd_busy_poweroff_notify_cb, &cb_data);
1671
1672 out:
1673 kfree(reg_buf);
1674 return err;
1675 }
1676
_mmc_sd_suspend(struct mmc_host * host)1677 static int _mmc_sd_suspend(struct mmc_host *host)
1678 {
1679 struct mmc_card *card = host->card;
1680 int err = 0;
1681
1682 mmc_claim_host(host);
1683
1684 if (mmc_card_suspended(card))
1685 goto out;
1686
1687 if (sd_can_poweroff_notify(card))
1688 err = sd_poweroff_notify(card);
1689 else if (!mmc_host_is_spi(host))
1690 err = mmc_deselect_cards(host);
1691
1692 if (!err) {
1693 mmc_power_off(host);
1694 mmc_card_set_suspended(card);
1695 }
1696
1697 out:
1698 mmc_release_host(host);
1699 return err;
1700 }
1701
1702 /*
1703 * Callback for suspend
1704 */
mmc_sd_suspend(struct mmc_host * host)1705 static int mmc_sd_suspend(struct mmc_host *host)
1706 {
1707 int err;
1708
1709 err = _mmc_sd_suspend(host);
1710 if (!err) {
1711 pm_runtime_disable(&host->card->dev);
1712 pm_runtime_set_suspended(&host->card->dev);
1713 }
1714
1715 return err;
1716 }
1717
1718 /*
1719 * This function tries to determine if the same card is still present
1720 * and, if so, restore all state to it.
1721 */
_mmc_sd_resume(struct mmc_host * host)1722 static int _mmc_sd_resume(struct mmc_host *host)
1723 {
1724 int err = 0;
1725
1726 mmc_claim_host(host);
1727
1728 if (!mmc_card_suspended(host->card))
1729 goto out;
1730
1731 mmc_power_up(host, host->card->ocr);
1732 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1733 mmc_card_clr_suspended(host->card);
1734
1735 out:
1736 mmc_release_host(host);
1737 return err;
1738 }
1739
1740 /*
1741 * Callback for resume
1742 */
mmc_sd_resume(struct mmc_host * host)1743 static int mmc_sd_resume(struct mmc_host *host)
1744 {
1745 pm_runtime_enable(&host->card->dev);
1746 return 0;
1747 }
1748
1749 /*
1750 * Callback for runtime_suspend.
1751 */
mmc_sd_runtime_suspend(struct mmc_host * host)1752 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1753 {
1754 int err;
1755
1756 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1757 return 0;
1758
1759 err = _mmc_sd_suspend(host);
1760 if (err)
1761 pr_err("%s: error %d doing aggressive suspend\n",
1762 mmc_hostname(host), err);
1763
1764 return err;
1765 }
1766
1767 /*
1768 * Callback for runtime_resume.
1769 */
mmc_sd_runtime_resume(struct mmc_host * host)1770 static int mmc_sd_runtime_resume(struct mmc_host *host)
1771 {
1772 int err;
1773
1774 err = _mmc_sd_resume(host);
1775 if (err && err != -ENOMEDIUM)
1776 pr_err("%s: error %d doing runtime resume\n",
1777 mmc_hostname(host), err);
1778
1779 return 0;
1780 }
1781
mmc_sd_hw_reset(struct mmc_host * host)1782 static int mmc_sd_hw_reset(struct mmc_host *host)
1783 {
1784 mmc_power_cycle(host, host->card->ocr);
1785 return mmc_sd_init_card(host, host->card->ocr, host->card);
1786 }
1787
1788 static const struct mmc_bus_ops mmc_sd_ops = {
1789 .remove = mmc_sd_remove,
1790 .detect = mmc_sd_detect,
1791 .runtime_suspend = mmc_sd_runtime_suspend,
1792 .runtime_resume = mmc_sd_runtime_resume,
1793 .suspend = mmc_sd_suspend,
1794 .resume = mmc_sd_resume,
1795 .alive = mmc_sd_alive,
1796 .shutdown = mmc_sd_suspend,
1797 .hw_reset = mmc_sd_hw_reset,
1798 .cache_enabled = sd_cache_enabled,
1799 .flush_cache = sd_flush_cache,
1800 };
1801
1802 /*
1803 * Starting point for SD card init.
1804 */
mmc_attach_sd(struct mmc_host * host)1805 int mmc_attach_sd(struct mmc_host *host)
1806 {
1807 int err;
1808 u32 ocr, rocr;
1809
1810 WARN_ON(!host->claimed);
1811
1812 err = mmc_send_app_op_cond(host, 0, &ocr);
1813 if (err)
1814 return err;
1815
1816 mmc_attach_bus(host, &mmc_sd_ops);
1817 if (host->ocr_avail_sd)
1818 host->ocr_avail = host->ocr_avail_sd;
1819
1820 /*
1821 * We need to get OCR a different way for SPI.
1822 */
1823 if (mmc_host_is_spi(host)) {
1824 mmc_go_idle(host);
1825
1826 err = mmc_spi_read_ocr(host, 0, &ocr);
1827 if (err)
1828 goto err;
1829 }
1830
1831 /*
1832 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1833 * these bits as being in-valid and especially also bit7.
1834 */
1835 ocr &= ~0x7FFF;
1836
1837 rocr = mmc_select_voltage(host, ocr);
1838
1839 /*
1840 * Can we support the voltage(s) of the card(s)?
1841 */
1842 if (!rocr) {
1843 err = -EINVAL;
1844 goto err;
1845 }
1846
1847 /*
1848 * Detect and init the card.
1849 */
1850 err = mmc_sd_init_card(host, rocr, NULL);
1851 if (err)
1852 goto err;
1853
1854 mmc_release_host(host);
1855 err = mmc_add_card(host->card);
1856 if (err)
1857 goto remove_card;
1858
1859 mmc_claim_host(host);
1860 return 0;
1861
1862 remove_card:
1863 mmc_remove_card(host->card);
1864 host->card = NULL;
1865 mmc_claim_host(host);
1866 err:
1867 mmc_detach_bus(host);
1868
1869 pr_err("%s: error %d whilst initialising SD card\n",
1870 mmc_hostname(host), err);
1871
1872 return err;
1873 }
1874