1 /*
2 * Copyright 2012-15 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 *
24 */
25
26
27 #include "reg_helper.h"
28 #include "dcn10_optc.h"
29 #include "dc.h"
30
31 #define REG(reg)\
32 optc1->tg_regs->reg
33
34 #define CTX \
35 optc1->base.ctx
36
37 #undef FN
38 #define FN(reg_name, field_name) \
39 optc1->tg_shift->field_name, optc1->tg_mask->field_name
40
41 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
42
43 /**
44 * apply_front_porch_workaround TODO FPGA still need?
45 *
46 * This is a workaround for a bug that has existed since R5xx and has not been
47 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
48 */
apply_front_porch_workaround(struct dc_crtc_timing * timing)49 static void apply_front_porch_workaround(struct dc_crtc_timing *timing)
50 {
51 if (timing->flags.INTERLACE == 1) {
52 if (timing->v_front_porch < 2)
53 timing->v_front_porch = 2;
54 } else {
55 if (timing->v_front_porch < 1)
56 timing->v_front_porch = 1;
57 }
58 }
59
optc1_program_global_sync(struct timing_generator * optc,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width)60 void optc1_program_global_sync(
61 struct timing_generator *optc,
62 int vready_offset,
63 int vstartup_start,
64 int vupdate_offset,
65 int vupdate_width)
66 {
67 struct optc *optc1 = DCN10TG_FROM_TG(optc);
68
69 optc1->vready_offset = vready_offset;
70 optc1->vstartup_start = vstartup_start;
71 optc1->vupdate_offset = vupdate_offset;
72 optc1->vupdate_width = vupdate_width;
73
74 if (optc1->vstartup_start == 0) {
75 BREAK_TO_DEBUGGER();
76 return;
77 }
78
79 REG_SET(OTG_VSTARTUP_PARAM, 0,
80 VSTARTUP_START, optc1->vstartup_start);
81
82 REG_SET_2(OTG_VUPDATE_PARAM, 0,
83 VUPDATE_OFFSET, optc1->vupdate_offset,
84 VUPDATE_WIDTH, optc1->vupdate_width);
85
86 REG_SET(OTG_VREADY_PARAM, 0,
87 VREADY_OFFSET, optc1->vready_offset);
88 }
89
optc1_disable_stereo(struct timing_generator * optc)90 static void optc1_disable_stereo(struct timing_generator *optc)
91 {
92 struct optc *optc1 = DCN10TG_FROM_TG(optc);
93
94 REG_SET(OTG_STEREO_CONTROL, 0,
95 OTG_STEREO_EN, 0);
96
97 REG_SET_2(OTG_3D_STRUCTURE_CONTROL, 0,
98 OTG_3D_STRUCTURE_EN, 0,
99 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
100 }
101
optc1_setup_vertical_interrupt0(struct timing_generator * optc,uint32_t start_line,uint32_t end_line)102 void optc1_setup_vertical_interrupt0(
103 struct timing_generator *optc,
104 uint32_t start_line,
105 uint32_t end_line)
106 {
107 struct optc *optc1 = DCN10TG_FROM_TG(optc);
108
109 REG_SET_2(OTG_VERTICAL_INTERRUPT0_POSITION, 0,
110 OTG_VERTICAL_INTERRUPT0_LINE_START, start_line,
111 OTG_VERTICAL_INTERRUPT0_LINE_END, end_line);
112 }
113
optc1_setup_vertical_interrupt1(struct timing_generator * optc,uint32_t start_line)114 void optc1_setup_vertical_interrupt1(
115 struct timing_generator *optc,
116 uint32_t start_line)
117 {
118 struct optc *optc1 = DCN10TG_FROM_TG(optc);
119
120 REG_SET(OTG_VERTICAL_INTERRUPT1_POSITION, 0,
121 OTG_VERTICAL_INTERRUPT1_LINE_START, start_line);
122 }
123
optc1_setup_vertical_interrupt2(struct timing_generator * optc,uint32_t start_line)124 void optc1_setup_vertical_interrupt2(
125 struct timing_generator *optc,
126 uint32_t start_line)
127 {
128 struct optc *optc1 = DCN10TG_FROM_TG(optc);
129
130 REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
131 OTG_VERTICAL_INTERRUPT2_LINE_START, start_line);
132 }
133
134 /**
135 * Vupdate keepout can be set to a window to block the update lock for that pipe from changing.
136 * Start offset begins with vstartup and goes for x number of clocks,
137 * end offset starts from end of vupdate to x number of clocks.
138 */
optc1_set_vupdate_keepout(struct timing_generator * optc,struct vupdate_keepout_params * params)139 void optc1_set_vupdate_keepout(struct timing_generator *optc,
140 struct vupdate_keepout_params *params)
141 {
142 struct optc *optc1 = DCN10TG_FROM_TG(optc);
143
144 REG_SET_3(OTG_VUPDATE_KEEPOUT, 0,
145 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_START_OFFSET, params->start_offset,
146 MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_END_OFFSET, params->end_offset,
147 OTG_MASTER_UPDATE_LOCK_VUPDATE_KEEPOUT_EN, params->enable);
148 }
149
150 /**
151 * program_timing_generator used by mode timing set
152 * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
153 * Including SYNC. Call BIOS command table to program Timings.
154 */
optc1_program_timing(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,int vready_offset,int vstartup_start,int vupdate_offset,int vupdate_width,const enum signal_type signal,bool use_vbios)155 void optc1_program_timing(
156 struct timing_generator *optc,
157 const struct dc_crtc_timing *dc_crtc_timing,
158 int vready_offset,
159 int vstartup_start,
160 int vupdate_offset,
161 int vupdate_width,
162 const enum signal_type signal,
163 bool use_vbios)
164 {
165 struct dc_crtc_timing patched_crtc_timing;
166 uint32_t asic_blank_end;
167 uint32_t asic_blank_start;
168 uint32_t v_total;
169 uint32_t v_sync_end;
170 uint32_t h_sync_polarity, v_sync_polarity;
171 uint32_t start_point = 0;
172 uint32_t field_num = 0;
173 enum h_timing_div_mode h_div = H_TIMING_NO_DIV;
174
175 struct optc *optc1 = DCN10TG_FROM_TG(optc);
176
177 optc1->signal = signal;
178 optc1->vready_offset = vready_offset;
179 optc1->vstartup_start = vstartup_start;
180 optc1->vupdate_offset = vupdate_offset;
181 optc1->vupdate_width = vupdate_width;
182 patched_crtc_timing = *dc_crtc_timing;
183 apply_front_porch_workaround(&patched_crtc_timing);
184
185 /* Load horizontal timing */
186
187 /* CRTC_H_TOTAL = vesa.h_total - 1 */
188 REG_SET(OTG_H_TOTAL, 0,
189 OTG_H_TOTAL, patched_crtc_timing.h_total - 1);
190
191 /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
192 REG_UPDATE_2(OTG_H_SYNC_A,
193 OTG_H_SYNC_A_START, 0,
194 OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
195
196 /* blank_start = line end - front porch */
197 asic_blank_start = patched_crtc_timing.h_total -
198 patched_crtc_timing.h_front_porch;
199
200 /* blank_end = blank_start - active */
201 asic_blank_end = asic_blank_start -
202 patched_crtc_timing.h_border_right -
203 patched_crtc_timing.h_addressable -
204 patched_crtc_timing.h_border_left;
205
206 REG_UPDATE_2(OTG_H_BLANK_START_END,
207 OTG_H_BLANK_START, asic_blank_start,
208 OTG_H_BLANK_END, asic_blank_end);
209
210 /* h_sync polarity */
211 h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
212 0 : 1;
213
214 REG_UPDATE(OTG_H_SYNC_A_CNTL,
215 OTG_H_SYNC_A_POL, h_sync_polarity);
216
217 v_total = patched_crtc_timing.v_total - 1;
218
219 REG_SET(OTG_V_TOTAL, 0,
220 OTG_V_TOTAL, v_total);
221
222 /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
223 * OTG_V_TOTAL_MIN are equal to V_TOTAL.
224 */
225 REG_SET(OTG_V_TOTAL_MAX, 0,
226 OTG_V_TOTAL_MAX, v_total);
227 REG_SET(OTG_V_TOTAL_MIN, 0,
228 OTG_V_TOTAL_MIN, v_total);
229
230 /* v_sync_start = 0, v_sync_end = v_sync_width */
231 v_sync_end = patched_crtc_timing.v_sync_width;
232
233 REG_UPDATE_2(OTG_V_SYNC_A,
234 OTG_V_SYNC_A_START, 0,
235 OTG_V_SYNC_A_END, v_sync_end);
236
237 /* blank_start = frame end - front porch */
238 asic_blank_start = patched_crtc_timing.v_total -
239 patched_crtc_timing.v_front_porch;
240
241 /* blank_end = blank_start - active */
242 asic_blank_end = asic_blank_start -
243 patched_crtc_timing.v_border_bottom -
244 patched_crtc_timing.v_addressable -
245 patched_crtc_timing.v_border_top;
246
247 REG_UPDATE_2(OTG_V_BLANK_START_END,
248 OTG_V_BLANK_START, asic_blank_start,
249 OTG_V_BLANK_END, asic_blank_end);
250
251 /* v_sync polarity */
252 v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
253 0 : 1;
254
255 REG_UPDATE(OTG_V_SYNC_A_CNTL,
256 OTG_V_SYNC_A_POL, v_sync_polarity);
257
258 if (optc1->signal == SIGNAL_TYPE_DISPLAY_PORT ||
259 optc1->signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
260 optc1->signal == SIGNAL_TYPE_EDP) {
261 start_point = 1;
262 if (patched_crtc_timing.flags.INTERLACE == 1)
263 field_num = 1;
264 }
265
266 /* Interlace */
267 if (REG(OTG_INTERLACE_CONTROL)) {
268 if (patched_crtc_timing.flags.INTERLACE == 1)
269 REG_UPDATE(OTG_INTERLACE_CONTROL,
270 OTG_INTERLACE_ENABLE, 1);
271 else
272 REG_UPDATE(OTG_INTERLACE_CONTROL,
273 OTG_INTERLACE_ENABLE, 0);
274 }
275
276 /* VTG enable set to 0 first VInit */
277 REG_UPDATE(CONTROL,
278 VTG0_ENABLE, 0);
279
280 /* original code is using VTG offset to address OTG reg, seems wrong */
281 REG_UPDATE_2(OTG_CONTROL,
282 OTG_START_POINT_CNTL, start_point,
283 OTG_FIELD_NUMBER_CNTL, field_num);
284
285 optc->funcs->program_global_sync(optc,
286 vready_offset,
287 vstartup_start,
288 vupdate_offset,
289 vupdate_width);
290
291 optc->funcs->set_vtg_params(optc, dc_crtc_timing, true);
292
293 /* TODO
294 * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
295 * program_horz_count_by_2
296 * for DVI 30bpp mode, 0 otherwise
297 * program_horz_count_by_2(optc, &patched_crtc_timing);
298 */
299
300 /* Enable stereo - only when we need to pack 3D frame. Other types
301 * of stereo handled in explicit call
302 */
303
304 if (optc1_is_two_pixels_per_containter(&patched_crtc_timing) || optc1->opp_count == 2)
305 h_div = H_TIMING_DIV_BY2;
306
307 if (REG(OPTC_DATA_FORMAT_CONTROL) && optc1->tg_mask->OPTC_DATA_FORMAT != 0) {
308 uint32_t data_fmt = 0;
309
310 if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
311 data_fmt = 1;
312 else if (patched_crtc_timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
313 data_fmt = 2;
314
315 REG_UPDATE(OPTC_DATA_FORMAT_CONTROL, OPTC_DATA_FORMAT, data_fmt);
316 }
317
318 if (optc1->tg_mask->OTG_H_TIMING_DIV_MODE != 0) {
319 if (optc1->opp_count == 4)
320 h_div = H_TIMING_DIV_BY4;
321
322 REG_UPDATE(OTG_H_TIMING_CNTL,
323 OTG_H_TIMING_DIV_MODE, h_div);
324 } else {
325 REG_UPDATE(OTG_H_TIMING_CNTL,
326 OTG_H_TIMING_DIV_BY2, h_div);
327 }
328 }
329
optc1_set_vtg_params(struct timing_generator * optc,const struct dc_crtc_timing * dc_crtc_timing,bool program_fp2)330 void optc1_set_vtg_params(struct timing_generator *optc,
331 const struct dc_crtc_timing *dc_crtc_timing, bool program_fp2)
332 {
333 struct dc_crtc_timing patched_crtc_timing;
334 uint32_t asic_blank_end;
335 uint32_t v_init;
336 uint32_t v_fp2 = 0;
337 int32_t vertical_line_start;
338
339 struct optc *optc1 = DCN10TG_FROM_TG(optc);
340
341 patched_crtc_timing = *dc_crtc_timing;
342 apply_front_porch_workaround(&patched_crtc_timing);
343
344 /* VCOUNT_INIT is the start of blank */
345 v_init = patched_crtc_timing.v_total - patched_crtc_timing.v_front_porch;
346
347 /* end of blank = v_init - active */
348 asic_blank_end = v_init -
349 patched_crtc_timing.v_border_bottom -
350 patched_crtc_timing.v_addressable -
351 patched_crtc_timing.v_border_top;
352
353 /* if VSTARTUP is before VSYNC, FP2 is the offset, otherwise 0 */
354 vertical_line_start = asic_blank_end - optc1->vstartup_start + 1;
355 if (vertical_line_start < 0)
356 v_fp2 = -vertical_line_start;
357
358 /* Interlace */
359 if (REG(OTG_INTERLACE_CONTROL)) {
360 if (patched_crtc_timing.flags.INTERLACE == 1) {
361 v_init = v_init / 2;
362 if ((optc1->vstartup_start/2)*2 > asic_blank_end)
363 v_fp2 = v_fp2 / 2;
364 }
365 }
366
367 if (program_fp2)
368 REG_UPDATE_2(CONTROL,
369 VTG0_FP2, v_fp2,
370 VTG0_VCOUNT_INIT, v_init);
371 else
372 REG_UPDATE(CONTROL, VTG0_VCOUNT_INIT, v_init);
373 }
374
optc1_set_blank_data_double_buffer(struct timing_generator * optc,bool enable)375 void optc1_set_blank_data_double_buffer(struct timing_generator *optc, bool enable)
376 {
377 struct optc *optc1 = DCN10TG_FROM_TG(optc);
378
379 uint32_t blank_data_double_buffer_enable = enable ? 1 : 0;
380
381 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
382 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, blank_data_double_buffer_enable);
383 }
384
385 /**
386 * optc1_set_timing_double_buffer() - DRR double buffering control
387 *
388 * Sets double buffer point for V_TOTAL, H_TOTAL, VTOTAL_MIN,
389 * VTOTAL_MAX, VTOTAL_MIN_SEL and VTOTAL_MAX_SEL registers.
390 *
391 * Options: any time, start of frame, dp start of frame (range timing)
392 */
optc1_set_timing_double_buffer(struct timing_generator * optc,bool enable)393 void optc1_set_timing_double_buffer(struct timing_generator *optc, bool enable)
394 {
395 struct optc *optc1 = DCN10TG_FROM_TG(optc);
396 uint32_t mode = enable ? 2 : 0;
397
398 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
399 OTG_RANGE_TIMING_DBUF_UPDATE_MODE, mode);
400 }
401
402 /**
403 * unblank_crtc
404 * Call ASIC Control Object to UnBlank CRTC.
405 */
optc1_unblank_crtc(struct timing_generator * optc)406 static void optc1_unblank_crtc(struct timing_generator *optc)
407 {
408 struct optc *optc1 = DCN10TG_FROM_TG(optc);
409
410 REG_UPDATE_2(OTG_BLANK_CONTROL,
411 OTG_BLANK_DATA_EN, 0,
412 OTG_BLANK_DE_MODE, 0);
413
414 /* W/A for automated testing
415 * Automated testing will fail underflow test as there
416 * sporadic underflows which occur during the optc blank
417 * sequence. As a w/a, clear underflow on unblank.
418 * This prevents the failure, but will not mask actual
419 * underflow that affect real use cases.
420 */
421 optc1_clear_optc_underflow(optc);
422 }
423
424 /**
425 * blank_crtc
426 * Call ASIC Control Object to Blank CRTC.
427 */
428
optc1_blank_crtc(struct timing_generator * optc)429 static void optc1_blank_crtc(struct timing_generator *optc)
430 {
431 struct optc *optc1 = DCN10TG_FROM_TG(optc);
432
433 REG_UPDATE_2(OTG_BLANK_CONTROL,
434 OTG_BLANK_DATA_EN, 1,
435 OTG_BLANK_DE_MODE, 0);
436
437 optc1_set_blank_data_double_buffer(optc, false);
438 }
439
optc1_set_blank(struct timing_generator * optc,bool enable_blanking)440 void optc1_set_blank(struct timing_generator *optc,
441 bool enable_blanking)
442 {
443 if (enable_blanking)
444 optc1_blank_crtc(optc);
445 else
446 optc1_unblank_crtc(optc);
447 }
448
optc1_is_blanked(struct timing_generator * optc)449 bool optc1_is_blanked(struct timing_generator *optc)
450 {
451 struct optc *optc1 = DCN10TG_FROM_TG(optc);
452 uint32_t blank_en;
453 uint32_t blank_state;
454
455 REG_GET_2(OTG_BLANK_CONTROL,
456 OTG_BLANK_DATA_EN, &blank_en,
457 OTG_CURRENT_BLANK_STATE, &blank_state);
458
459 return blank_en && blank_state;
460 }
461
optc1_enable_optc_clock(struct timing_generator * optc,bool enable)462 void optc1_enable_optc_clock(struct timing_generator *optc, bool enable)
463 {
464 struct optc *optc1 = DCN10TG_FROM_TG(optc);
465
466 if (enable) {
467 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
468 OPTC_INPUT_CLK_EN, 1,
469 OPTC_INPUT_CLK_GATE_DIS, 1);
470
471 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
472 OPTC_INPUT_CLK_ON, 1,
473 1, 1000);
474
475 /* Enable clock */
476 REG_UPDATE_2(OTG_CLOCK_CONTROL,
477 OTG_CLOCK_EN, 1,
478 OTG_CLOCK_GATE_DIS, 1);
479 REG_WAIT(OTG_CLOCK_CONTROL,
480 OTG_CLOCK_ON, 1,
481 1, 1000);
482 } else {
483 REG_UPDATE_2(OTG_CLOCK_CONTROL,
484 OTG_CLOCK_GATE_DIS, 0,
485 OTG_CLOCK_EN, 0);
486
487 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
488 OPTC_INPUT_CLK_GATE_DIS, 0,
489 OPTC_INPUT_CLK_EN, 0);
490 }
491 }
492
493 /**
494 * Enable CRTC
495 * Enable CRTC - call ASIC Control Object to enable Timing generator.
496 */
optc1_enable_crtc(struct timing_generator * optc)497 static bool optc1_enable_crtc(struct timing_generator *optc)
498 {
499 /* TODO FPGA wait for answer
500 * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
501 * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
502 */
503 struct optc *optc1 = DCN10TG_FROM_TG(optc);
504
505 /* opp instance for OTG. For DCN1.0, ODM is remoed.
506 * OPP and OPTC should 1:1 mapping
507 */
508 REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
509 OPTC_SRC_SEL, optc->inst);
510
511 /* VTG enable first is for HW workaround */
512 REG_UPDATE(CONTROL,
513 VTG0_ENABLE, 1);
514
515 REG_SEQ_START();
516
517 /* Enable CRTC */
518 REG_UPDATE_2(OTG_CONTROL,
519 OTG_DISABLE_POINT_CNTL, 3,
520 OTG_MASTER_EN, 1);
521
522 REG_SEQ_SUBMIT();
523 REG_SEQ_WAIT_DONE();
524
525 return true;
526 }
527
528 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
optc1_disable_crtc(struct timing_generator * optc)529 bool optc1_disable_crtc(struct timing_generator *optc)
530 {
531 struct optc *optc1 = DCN10TG_FROM_TG(optc);
532
533 /* disable otg request until end of the first line
534 * in the vertical blank region
535 */
536 REG_UPDATE_2(OTG_CONTROL,
537 OTG_DISABLE_POINT_CNTL, 3,
538 OTG_MASTER_EN, 0);
539
540 REG_UPDATE(CONTROL,
541 VTG0_ENABLE, 0);
542
543 /* CRTC disabled, so disable clock. */
544 REG_WAIT(OTG_CLOCK_CONTROL,
545 OTG_BUSY, 0,
546 1, 100000);
547
548 return true;
549 }
550
551
optc1_program_blank_color(struct timing_generator * optc,const struct tg_color * black_color)552 void optc1_program_blank_color(
553 struct timing_generator *optc,
554 const struct tg_color *black_color)
555 {
556 struct optc *optc1 = DCN10TG_FROM_TG(optc);
557
558 REG_SET_3(OTG_BLACK_COLOR, 0,
559 OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
560 OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
561 OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
562 }
563
optc1_validate_timing(struct timing_generator * optc,const struct dc_crtc_timing * timing)564 bool optc1_validate_timing(
565 struct timing_generator *optc,
566 const struct dc_crtc_timing *timing)
567 {
568 uint32_t v_blank;
569 uint32_t h_blank;
570 uint32_t min_v_blank;
571 struct optc *optc1 = DCN10TG_FROM_TG(optc);
572
573 ASSERT(timing != NULL);
574
575 v_blank = (timing->v_total - timing->v_addressable -
576 timing->v_border_top - timing->v_border_bottom);
577
578 h_blank = (timing->h_total - timing->h_addressable -
579 timing->h_border_right -
580 timing->h_border_left);
581
582 if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
583 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
584 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
585 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
586 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
587 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
588 return false;
589
590 /* Temporarily blocking interlacing mode until it's supported */
591 if (timing->flags.INTERLACE == 1)
592 return false;
593
594 /* Check maximum number of pixels supported by Timing Generator
595 * (Currently will never fail, in order to fail needs display which
596 * needs more than 8192 horizontal and
597 * more than 8192 vertical total pixels)
598 */
599 if (timing->h_total > optc1->max_h_total ||
600 timing->v_total > optc1->max_v_total)
601 return false;
602
603
604 if (h_blank < optc1->min_h_blank)
605 return false;
606
607 if (timing->h_sync_width < optc1->min_h_sync_width ||
608 timing->v_sync_width < optc1->min_v_sync_width)
609 return false;
610
611 min_v_blank = timing->flags.INTERLACE?optc1->min_v_blank_interlace:optc1->min_v_blank;
612
613 if (v_blank < min_v_blank)
614 return false;
615
616 return true;
617
618 }
619
620 /*
621 * get_vblank_counter
622 *
623 * @brief
624 * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
625 * holds the counter of frames.
626 *
627 * @param
628 * struct timing_generator *optc - [in] timing generator which controls the
629 * desired CRTC
630 *
631 * @return
632 * Counter of frames, which should equal to number of vblanks.
633 */
optc1_get_vblank_counter(struct timing_generator * optc)634 uint32_t optc1_get_vblank_counter(struct timing_generator *optc)
635 {
636 struct optc *optc1 = DCN10TG_FROM_TG(optc);
637 uint32_t frame_count;
638
639 REG_GET(OTG_STATUS_FRAME_COUNT,
640 OTG_FRAME_COUNT, &frame_count);
641
642 return frame_count;
643 }
644
optc1_lock(struct timing_generator * optc)645 void optc1_lock(struct timing_generator *optc)
646 {
647 struct optc *optc1 = DCN10TG_FROM_TG(optc);
648 uint32_t regval = 0;
649
650 regval = REG_READ(OTG_CONTROL);
651
652 /* otg is not running, do not need to be locked */
653 if ((regval & 0x1) == 0x0)
654 return;
655
656 REG_SET(OTG_GLOBAL_CONTROL0, 0,
657 OTG_MASTER_UPDATE_LOCK_SEL, optc->inst);
658 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
659 OTG_MASTER_UPDATE_LOCK, 1);
660
661 /* Should be fast, status does not update on maximus */
662 if (optc->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS) {
663
664 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
665 UPDATE_LOCK_STATUS, 1,
666 1, 10);
667 }
668 }
669
optc1_unlock(struct timing_generator * optc)670 void optc1_unlock(struct timing_generator *optc)
671 {
672 struct optc *optc1 = DCN10TG_FROM_TG(optc);
673
674 REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
675 OTG_MASTER_UPDATE_LOCK, 0);
676 }
677
optc1_is_locked(struct timing_generator * optc)678 bool optc1_is_locked(struct timing_generator *optc)
679 {
680 struct optc *optc1 = DCN10TG_FROM_TG(optc);
681 uint32_t locked;
682
683 REG_GET(OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, &locked);
684
685 return (locked == 1);
686 }
687
optc1_get_position(struct timing_generator * optc,struct crtc_position * position)688 void optc1_get_position(struct timing_generator *optc,
689 struct crtc_position *position)
690 {
691 struct optc *optc1 = DCN10TG_FROM_TG(optc);
692
693 REG_GET_2(OTG_STATUS_POSITION,
694 OTG_HORZ_COUNT, &position->horizontal_count,
695 OTG_VERT_COUNT, &position->vertical_count);
696
697 REG_GET(OTG_NOM_VERT_POSITION,
698 OTG_VERT_COUNT_NOM, &position->nominal_vcount);
699 }
700
optc1_is_counter_moving(struct timing_generator * optc)701 bool optc1_is_counter_moving(struct timing_generator *optc)
702 {
703 struct crtc_position position1, position2;
704
705 optc->funcs->get_position(optc, &position1);
706 optc->funcs->get_position(optc, &position2);
707
708 if (position1.horizontal_count == position2.horizontal_count &&
709 position1.vertical_count == position2.vertical_count)
710 return false;
711 else
712 return true;
713 }
714
optc1_did_triggered_reset_occur(struct timing_generator * optc)715 bool optc1_did_triggered_reset_occur(
716 struct timing_generator *optc)
717 {
718 struct optc *optc1 = DCN10TG_FROM_TG(optc);
719 uint32_t occurred_force, occurred_vsync;
720
721 REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
722 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred_force);
723
724 REG_GET(OTG_VERT_SYNC_CONTROL,
725 OTG_FORCE_VSYNC_NEXT_LINE_OCCURRED, &occurred_vsync);
726
727 return occurred_vsync != 0 || occurred_force != 0;
728 }
729
optc1_disable_reset_trigger(struct timing_generator * optc)730 void optc1_disable_reset_trigger(struct timing_generator *optc)
731 {
732 struct optc *optc1 = DCN10TG_FROM_TG(optc);
733
734 REG_WRITE(OTG_TRIGA_CNTL, 0);
735
736 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
737 OTG_FORCE_COUNT_NOW_CLEAR, 1);
738
739 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
740 OTG_FORCE_VSYNC_NEXT_LINE_CLEAR, 1);
741 }
742
optc1_enable_reset_trigger(struct timing_generator * optc,int source_tg_inst)743 void optc1_enable_reset_trigger(struct timing_generator *optc, int source_tg_inst)
744 {
745 struct optc *optc1 = DCN10TG_FROM_TG(optc);
746 uint32_t falling_edge;
747
748 REG_GET(OTG_V_SYNC_A_CNTL,
749 OTG_V_SYNC_A_POL, &falling_edge);
750
751 if (falling_edge)
752 REG_SET_3(OTG_TRIGA_CNTL, 0,
753 /* vsync signal from selected OTG pipe based
754 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
755 */
756 OTG_TRIGA_SOURCE_SELECT, 20,
757 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
758 /* always detect falling edge */
759 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
760 else
761 REG_SET_3(OTG_TRIGA_CNTL, 0,
762 /* vsync signal from selected OTG pipe based
763 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
764 */
765 OTG_TRIGA_SOURCE_SELECT, 20,
766 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
767 /* always detect rising edge */
768 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
769
770 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
771 /* force H count to H_TOTAL and V count to V_TOTAL in
772 * progressive mode and V_TOTAL-1 in interlaced mode
773 */
774 OTG_FORCE_COUNT_NOW_MODE, 2);
775 }
776
optc1_enable_crtc_reset(struct timing_generator * optc,int source_tg_inst,struct crtc_trigger_info * crtc_tp)777 void optc1_enable_crtc_reset(
778 struct timing_generator *optc,
779 int source_tg_inst,
780 struct crtc_trigger_info *crtc_tp)
781 {
782 struct optc *optc1 = DCN10TG_FROM_TG(optc);
783 uint32_t falling_edge = 0;
784 uint32_t rising_edge = 0;
785
786 switch (crtc_tp->event) {
787
788 case CRTC_EVENT_VSYNC_RISING:
789 rising_edge = 1;
790 break;
791
792 case CRTC_EVENT_VSYNC_FALLING:
793 falling_edge = 1;
794 break;
795 }
796
797 REG_SET_4(OTG_TRIGA_CNTL, 0,
798 /* vsync signal from selected OTG pipe based
799 * on OTG_TRIG_SOURCE_PIPE_SELECT setting
800 */
801 OTG_TRIGA_SOURCE_SELECT, 20,
802 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
803 /* always detect falling edge */
804 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, rising_edge,
805 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, falling_edge);
806
807 switch (crtc_tp->delay) {
808 case TRIGGER_DELAY_NEXT_LINE:
809 REG_SET(OTG_VERT_SYNC_CONTROL, 0,
810 OTG_AUTO_FORCE_VSYNC_MODE, 1);
811 break;
812 case TRIGGER_DELAY_NEXT_PIXEL:
813 REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
814 /* force H count to H_TOTAL and V count to V_TOTAL in
815 * progressive mode and V_TOTAL-1 in interlaced mode
816 */
817 OTG_FORCE_COUNT_NOW_MODE, 2);
818 break;
819 }
820 }
821
optc1_wait_for_state(struct timing_generator * optc,enum crtc_state state)822 void optc1_wait_for_state(struct timing_generator *optc,
823 enum crtc_state state)
824 {
825 struct optc *optc1 = DCN10TG_FROM_TG(optc);
826
827 switch (state) {
828 case CRTC_STATE_VBLANK:
829 REG_WAIT(OTG_STATUS,
830 OTG_V_BLANK, 1,
831 1, 100000); /* 1 vupdate at 10hz */
832 break;
833
834 case CRTC_STATE_VACTIVE:
835 REG_WAIT(OTG_STATUS,
836 OTG_V_ACTIVE_DISP, 1,
837 1, 100000); /* 1 vupdate at 10hz */
838 break;
839
840 default:
841 break;
842 }
843 }
844
optc1_set_early_control(struct timing_generator * optc,uint32_t early_cntl)845 void optc1_set_early_control(
846 struct timing_generator *optc,
847 uint32_t early_cntl)
848 {
849 /* asic design change, do not need this control
850 * empty for share caller logic
851 */
852 }
853
854
optc1_set_static_screen_control(struct timing_generator * optc,uint32_t event_triggers,uint32_t num_frames)855 void optc1_set_static_screen_control(
856 struct timing_generator *optc,
857 uint32_t event_triggers,
858 uint32_t num_frames)
859 {
860 struct optc *optc1 = DCN10TG_FROM_TG(optc);
861
862 // By register spec, it only takes 8 bit value
863 if (num_frames > 0xFF)
864 num_frames = 0xFF;
865
866 /* Bit 8 is no longer applicable in RV for PSR case,
867 * set bit 8 to 0 if given
868 */
869 if ((event_triggers & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
870 != 0)
871 event_triggers = event_triggers &
872 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
873
874 REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
875 OTG_STATIC_SCREEN_EVENT_MASK, event_triggers,
876 OTG_STATIC_SCREEN_FRAME_COUNT, num_frames);
877 }
878
optc1_setup_manual_trigger(struct timing_generator * optc)879 void optc1_setup_manual_trigger(struct timing_generator *optc)
880 {
881 struct optc *optc1 = DCN10TG_FROM_TG(optc);
882
883 REG_SET(OTG_GLOBAL_CONTROL2, 0,
884 MANUAL_FLOW_CONTROL_SEL, optc->inst);
885
886 REG_SET_8(OTG_TRIGA_CNTL, 0,
887 OTG_TRIGA_SOURCE_SELECT, 22,
888 OTG_TRIGA_SOURCE_PIPE_SELECT, optc->inst,
889 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1,
890 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 0,
891 OTG_TRIGA_POLARITY_SELECT, 0,
892 OTG_TRIGA_FREQUENCY_SELECT, 0,
893 OTG_TRIGA_DELAY, 0,
894 OTG_TRIGA_CLEAR, 1);
895 }
896
optc1_program_manual_trigger(struct timing_generator * optc)897 void optc1_program_manual_trigger(struct timing_generator *optc)
898 {
899 struct optc *optc1 = DCN10TG_FROM_TG(optc);
900
901 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
902 MANUAL_FLOW_CONTROL, 1);
903
904 REG_SET(OTG_MANUAL_FLOW_CONTROL, 0,
905 MANUAL_FLOW_CONTROL, 0);
906 }
907
908
909 /**
910 *****************************************************************************
911 * Function: set_drr
912 *
913 * @brief
914 * Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
915 *
916 *****************************************************************************
917 */
optc1_set_drr(struct timing_generator * optc,const struct drr_params * params)918 void optc1_set_drr(
919 struct timing_generator *optc,
920 const struct drr_params *params)
921 {
922 struct optc *optc1 = DCN10TG_FROM_TG(optc);
923
924 if (params != NULL &&
925 params->vertical_total_max > 0 &&
926 params->vertical_total_min > 0) {
927
928 if (params->vertical_total_mid != 0) {
929
930 REG_SET(OTG_V_TOTAL_MID, 0,
931 OTG_V_TOTAL_MID, params->vertical_total_mid - 1);
932
933 REG_UPDATE_2(OTG_V_TOTAL_CONTROL,
934 OTG_VTOTAL_MID_REPLACING_MAX_EN, 1,
935 OTG_VTOTAL_MID_FRAME_NUM,
936 (uint8_t)params->vertical_total_mid_frame_num);
937
938 }
939
940 REG_SET(OTG_V_TOTAL_MAX, 0,
941 OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
942
943 REG_SET(OTG_V_TOTAL_MIN, 0,
944 OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
945
946 REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
947 OTG_V_TOTAL_MIN_SEL, 1,
948 OTG_V_TOTAL_MAX_SEL, 1,
949 OTG_FORCE_LOCK_ON_EVENT, 0,
950 OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
951 OTG_SET_V_TOTAL_MIN_MASK, 0);
952
953 // Setup manual flow control for EOF via TRIG_A
954 optc->funcs->setup_manual_trigger(optc);
955
956 } else {
957 REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
958 OTG_SET_V_TOTAL_MIN_MASK, 0,
959 OTG_V_TOTAL_MIN_SEL, 0,
960 OTG_V_TOTAL_MAX_SEL, 0,
961 OTG_FORCE_LOCK_ON_EVENT, 0);
962
963 REG_SET(OTG_V_TOTAL_MIN, 0,
964 OTG_V_TOTAL_MIN, 0);
965
966 REG_SET(OTG_V_TOTAL_MAX, 0,
967 OTG_V_TOTAL_MAX, 0);
968 }
969 }
970
optc1_set_vtotal_min_max(struct timing_generator * optc,int vtotal_min,int vtotal_max)971 void optc1_set_vtotal_min_max(struct timing_generator *optc, int vtotal_min, int vtotal_max)
972 {
973 struct optc *optc1 = DCN10TG_FROM_TG(optc);
974
975 REG_SET(OTG_V_TOTAL_MAX, 0,
976 OTG_V_TOTAL_MAX, vtotal_max);
977
978 REG_SET(OTG_V_TOTAL_MIN, 0,
979 OTG_V_TOTAL_MIN, vtotal_min);
980 }
981
optc1_set_test_pattern(struct timing_generator * optc,enum controller_dp_test_pattern test_pattern,enum dc_color_depth color_depth)982 static void optc1_set_test_pattern(
983 struct timing_generator *optc,
984 /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
985 * because this is not DP-specific (which is probably somewhere in DP
986 * encoder) */
987 enum controller_dp_test_pattern test_pattern,
988 enum dc_color_depth color_depth)
989 {
990 struct optc *optc1 = DCN10TG_FROM_TG(optc);
991 enum test_pattern_color_format bit_depth;
992 enum test_pattern_dyn_range dyn_range;
993 enum test_pattern_mode mode;
994 uint32_t pattern_mask;
995 uint32_t pattern_data;
996 /* color ramp generator mixes 16-bits color */
997 uint32_t src_bpc = 16;
998 /* requested bpc */
999 uint32_t dst_bpc;
1000 uint32_t index;
1001 /* RGB values of the color bars.
1002 * Produce two RGB colors: RGB0 - white (all Fs)
1003 * and RGB1 - black (all 0s)
1004 * (three RGB components for two colors)
1005 */
1006 uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
1007 0x0000, 0x0000};
1008 /* dest color (converted to the specified color format) */
1009 uint16_t dst_color[6];
1010 uint32_t inc_base;
1011
1012 /* translate to bit depth */
1013 switch (color_depth) {
1014 case COLOR_DEPTH_666:
1015 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
1016 break;
1017 case COLOR_DEPTH_888:
1018 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1019 break;
1020 case COLOR_DEPTH_101010:
1021 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
1022 break;
1023 case COLOR_DEPTH_121212:
1024 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
1025 break;
1026 default:
1027 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
1028 break;
1029 }
1030
1031 switch (test_pattern) {
1032 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
1033 case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
1034 {
1035 dyn_range = (test_pattern ==
1036 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
1037 TEST_PATTERN_DYN_RANGE_CEA :
1038 TEST_PATTERN_DYN_RANGE_VESA);
1039 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
1040
1041 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
1042 OTG_TEST_PATTERN_VRES, 6,
1043 OTG_TEST_PATTERN_HRES, 6);
1044
1045 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1046 OTG_TEST_PATTERN_EN, 1,
1047 OTG_TEST_PATTERN_MODE, mode,
1048 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
1049 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1050 }
1051 break;
1052
1053 case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
1054 case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
1055 {
1056 mode = (test_pattern ==
1057 CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
1058 TEST_PATTERN_MODE_VERTICALBARS :
1059 TEST_PATTERN_MODE_HORIZONTALBARS);
1060
1061 switch (bit_depth) {
1062 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1063 dst_bpc = 6;
1064 break;
1065 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1066 dst_bpc = 8;
1067 break;
1068 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1069 dst_bpc = 10;
1070 break;
1071 default:
1072 dst_bpc = 8;
1073 break;
1074 }
1075
1076 /* adjust color to the required colorFormat */
1077 for (index = 0; index < 6; index++) {
1078 /* dst = 2^dstBpc * src / 2^srcBpc = src >>
1079 * (srcBpc - dstBpc);
1080 */
1081 dst_color[index] =
1082 src_color[index] >> (src_bpc - dst_bpc);
1083 /* CRTC_TEST_PATTERN_DATA has 16 bits,
1084 * lowest 6 are hardwired to ZERO
1085 * color bits should be left aligned aligned to MSB
1086 * XXXXXXXXXX000000 for 10 bit,
1087 * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
1088 */
1089 dst_color[index] <<= (16 - dst_bpc);
1090 }
1091
1092 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1093
1094 /* We have to write the mask before data, similar to pipeline.
1095 * For example, for 8 bpc, if we want RGB0 to be magenta,
1096 * and RGB1 to be cyan,
1097 * we need to make 7 writes:
1098 * MASK DATA
1099 * 000001 00000000 00000000 set mask to R0
1100 * 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
1101 * 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
1102 * 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
1103 * 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
1104 * 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
1105 * 100000 11111111 00000000 B1 255, 0xFF00
1106 *
1107 * we will make a loop of 6 in which we prepare the mask,
1108 * then write, then prepare the color for next write.
1109 * first iteration will write mask only,
1110 * but each next iteration color prepared in
1111 * previous iteration will be written within new mask,
1112 * the last component will written separately,
1113 * mask is not changing between 6th and 7th write
1114 * and color will be prepared by last iteration
1115 */
1116
1117 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
1118 * is B1, G1, R1, B0, G0, R0
1119 */
1120 pattern_data = 0;
1121 for (index = 0; index < 6; index++) {
1122 /* prepare color mask, first write PATTERN_DATA
1123 * will have all zeros
1124 */
1125 pattern_mask = (1 << index);
1126
1127 /* write color component */
1128 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1129 OTG_TEST_PATTERN_MASK, pattern_mask,
1130 OTG_TEST_PATTERN_DATA, pattern_data);
1131
1132 /* prepare next color component,
1133 * will be written in the next iteration
1134 */
1135 pattern_data = dst_color[index];
1136 }
1137 /* write last color component,
1138 * it's been already prepared in the loop
1139 */
1140 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
1141 OTG_TEST_PATTERN_MASK, pattern_mask,
1142 OTG_TEST_PATTERN_DATA, pattern_data);
1143
1144 /* enable test pattern */
1145 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
1146 OTG_TEST_PATTERN_EN, 1,
1147 OTG_TEST_PATTERN_MODE, mode,
1148 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1149 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1150 }
1151 break;
1152
1153 case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
1154 {
1155 mode = (bit_depth ==
1156 TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
1157 TEST_PATTERN_MODE_DUALRAMP_RGB :
1158 TEST_PATTERN_MODE_SINGLERAMP_RGB);
1159
1160 switch (bit_depth) {
1161 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1162 dst_bpc = 6;
1163 break;
1164 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1165 dst_bpc = 8;
1166 break;
1167 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1168 dst_bpc = 10;
1169 break;
1170 default:
1171 dst_bpc = 8;
1172 break;
1173 }
1174
1175 /* increment for the first ramp for one color gradation
1176 * 1 gradation for 6-bit color is 2^10
1177 * gradations in 16-bit color
1178 */
1179 inc_base = (src_bpc - dst_bpc);
1180
1181 switch (bit_depth) {
1182 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
1183 {
1184 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1185 OTG_TEST_PATTERN_INC0, inc_base,
1186 OTG_TEST_PATTERN_INC1, 0,
1187 OTG_TEST_PATTERN_HRES, 6,
1188 OTG_TEST_PATTERN_VRES, 6,
1189 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1190 }
1191 break;
1192 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
1193 {
1194 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1195 OTG_TEST_PATTERN_INC0, inc_base,
1196 OTG_TEST_PATTERN_INC1, 0,
1197 OTG_TEST_PATTERN_HRES, 8,
1198 OTG_TEST_PATTERN_VRES, 6,
1199 OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
1200 }
1201 break;
1202 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
1203 {
1204 REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
1205 OTG_TEST_PATTERN_INC0, inc_base,
1206 OTG_TEST_PATTERN_INC1, inc_base + 2,
1207 OTG_TEST_PATTERN_HRES, 8,
1208 OTG_TEST_PATTERN_VRES, 5,
1209 OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
1210 }
1211 break;
1212 default:
1213 break;
1214 }
1215
1216 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1217
1218 /* enable test pattern */
1219 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1220
1221 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1222 OTG_TEST_PATTERN_EN, 1,
1223 OTG_TEST_PATTERN_MODE, mode,
1224 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1225 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1226 }
1227 break;
1228 case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1229 {
1230 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1231 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1232 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1233 }
1234 break;
1235 default:
1236 break;
1237
1238 }
1239 }
1240
optc1_get_crtc_scanoutpos(struct timing_generator * optc,uint32_t * v_blank_start,uint32_t * v_blank_end,uint32_t * h_position,uint32_t * v_position)1241 void optc1_get_crtc_scanoutpos(
1242 struct timing_generator *optc,
1243 uint32_t *v_blank_start,
1244 uint32_t *v_blank_end,
1245 uint32_t *h_position,
1246 uint32_t *v_position)
1247 {
1248 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1249 struct crtc_position position;
1250
1251 REG_GET_2(OTG_V_BLANK_START_END,
1252 OTG_V_BLANK_START, v_blank_start,
1253 OTG_V_BLANK_END, v_blank_end);
1254
1255 optc1_get_position(optc, &position);
1256
1257 *h_position = position.horizontal_count;
1258 *v_position = position.vertical_count;
1259 }
1260
optc1_enable_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1261 static void optc1_enable_stereo(struct timing_generator *optc,
1262 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1263 {
1264 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1265
1266 if (flags) {
1267 uint32_t stereo_en;
1268 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1269
1270 if (flags->PROGRAM_STEREO)
1271 REG_UPDATE_3(OTG_STEREO_CONTROL,
1272 OTG_STEREO_EN, stereo_en,
1273 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1274 OTG_STEREO_SYNC_OUTPUT_POLARITY, flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1275
1276 if (flags->PROGRAM_POLARITY)
1277 REG_UPDATE(OTG_STEREO_CONTROL,
1278 OTG_STEREO_EYE_FLAG_POLARITY,
1279 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1280
1281 if (flags->DISABLE_STEREO_DP_SYNC)
1282 REG_UPDATE(OTG_STEREO_CONTROL,
1283 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1284
1285 if (flags->PROGRAM_STEREO)
1286 REG_UPDATE_2(OTG_3D_STRUCTURE_CONTROL,
1287 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1288 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1289
1290 }
1291 }
1292
optc1_program_stereo(struct timing_generator * optc,const struct dc_crtc_timing * timing,struct crtc_stereo_flags * flags)1293 void optc1_program_stereo(struct timing_generator *optc,
1294 const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1295 {
1296 if (flags->PROGRAM_STEREO)
1297 optc1_enable_stereo(optc, timing, flags);
1298 else
1299 optc1_disable_stereo(optc);
1300 }
1301
1302
optc1_is_stereo_left_eye(struct timing_generator * optc)1303 bool optc1_is_stereo_left_eye(struct timing_generator *optc)
1304 {
1305 bool ret = false;
1306 uint32_t left_eye = 0;
1307 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1308
1309 REG_GET(OTG_STEREO_STATUS,
1310 OTG_STEREO_CURRENT_EYE, &left_eye);
1311 if (left_eye == 1)
1312 ret = true;
1313 else
1314 ret = false;
1315
1316 return ret;
1317 }
1318
optc1_get_hw_timing(struct timing_generator * tg,struct dc_crtc_timing * hw_crtc_timing)1319 bool optc1_get_hw_timing(struct timing_generator *tg,
1320 struct dc_crtc_timing *hw_crtc_timing)
1321 {
1322 struct dcn_otg_state s = {0};
1323
1324 if (tg == NULL || hw_crtc_timing == NULL)
1325 return false;
1326
1327 optc1_read_otg_state(DCN10TG_FROM_TG(tg), &s);
1328
1329 hw_crtc_timing->h_total = s.h_total + 1;
1330 hw_crtc_timing->h_addressable = s.h_total - ((s.h_total - s.h_blank_start) + s.h_blank_end);
1331 hw_crtc_timing->h_front_porch = s.h_total + 1 - s.h_blank_start;
1332 hw_crtc_timing->h_sync_width = s.h_sync_a_end - s.h_sync_a_start;
1333
1334 hw_crtc_timing->v_total = s.v_total + 1;
1335 hw_crtc_timing->v_addressable = s.v_total - ((s.v_total - s.v_blank_start) + s.v_blank_end);
1336 hw_crtc_timing->v_front_porch = s.v_total + 1 - s.v_blank_start;
1337 hw_crtc_timing->v_sync_width = s.v_sync_a_end - s.v_sync_a_start;
1338
1339 return true;
1340 }
1341
1342
optc1_read_otg_state(struct optc * optc1,struct dcn_otg_state * s)1343 void optc1_read_otg_state(struct optc *optc1,
1344 struct dcn_otg_state *s)
1345 {
1346 REG_GET(OTG_CONTROL,
1347 OTG_MASTER_EN, &s->otg_enabled);
1348
1349 REG_GET_2(OTG_V_BLANK_START_END,
1350 OTG_V_BLANK_START, &s->v_blank_start,
1351 OTG_V_BLANK_END, &s->v_blank_end);
1352
1353 REG_GET(OTG_V_SYNC_A_CNTL,
1354 OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1355
1356 REG_GET(OTG_V_TOTAL,
1357 OTG_V_TOTAL, &s->v_total);
1358
1359 REG_GET(OTG_V_TOTAL_MAX,
1360 OTG_V_TOTAL_MAX, &s->v_total_max);
1361
1362 REG_GET(OTG_V_TOTAL_MIN,
1363 OTG_V_TOTAL_MIN, &s->v_total_min);
1364
1365 REG_GET(OTG_V_TOTAL_CONTROL,
1366 OTG_V_TOTAL_MAX_SEL, &s->v_total_max_sel);
1367
1368 REG_GET(OTG_V_TOTAL_CONTROL,
1369 OTG_V_TOTAL_MIN_SEL, &s->v_total_min_sel);
1370
1371 REG_GET_2(OTG_V_SYNC_A,
1372 OTG_V_SYNC_A_START, &s->v_sync_a_start,
1373 OTG_V_SYNC_A_END, &s->v_sync_a_end);
1374
1375 REG_GET_2(OTG_H_BLANK_START_END,
1376 OTG_H_BLANK_START, &s->h_blank_start,
1377 OTG_H_BLANK_END, &s->h_blank_end);
1378
1379 REG_GET_2(OTG_H_SYNC_A,
1380 OTG_H_SYNC_A_START, &s->h_sync_a_start,
1381 OTG_H_SYNC_A_END, &s->h_sync_a_end);
1382
1383 REG_GET(OTG_H_SYNC_A_CNTL,
1384 OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1385
1386 REG_GET(OTG_H_TOTAL,
1387 OTG_H_TOTAL, &s->h_total);
1388
1389 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1390 OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1391
1392 REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
1393 OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &s->vertical_interrupt2_en);
1394
1395 REG_GET(OTG_VERTICAL_INTERRUPT2_POSITION,
1396 OTG_VERTICAL_INTERRUPT2_LINE_START, &s->vertical_interrupt2_line);
1397 }
1398
optc1_get_otg_active_size(struct timing_generator * optc,uint32_t * otg_active_width,uint32_t * otg_active_height)1399 bool optc1_get_otg_active_size(struct timing_generator *optc,
1400 uint32_t *otg_active_width,
1401 uint32_t *otg_active_height)
1402 {
1403 uint32_t otg_enabled;
1404 uint32_t v_blank_start;
1405 uint32_t v_blank_end;
1406 uint32_t h_blank_start;
1407 uint32_t h_blank_end;
1408 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1409
1410
1411 REG_GET(OTG_CONTROL,
1412 OTG_MASTER_EN, &otg_enabled);
1413
1414 if (otg_enabled == 0)
1415 return false;
1416
1417 REG_GET_2(OTG_V_BLANK_START_END,
1418 OTG_V_BLANK_START, &v_blank_start,
1419 OTG_V_BLANK_END, &v_blank_end);
1420
1421 REG_GET_2(OTG_H_BLANK_START_END,
1422 OTG_H_BLANK_START, &h_blank_start,
1423 OTG_H_BLANK_END, &h_blank_end);
1424
1425 *otg_active_width = v_blank_start - v_blank_end;
1426 *otg_active_height = h_blank_start - h_blank_end;
1427 return true;
1428 }
1429
optc1_clear_optc_underflow(struct timing_generator * optc)1430 void optc1_clear_optc_underflow(struct timing_generator *optc)
1431 {
1432 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1433
1434 REG_UPDATE(OPTC_INPUT_GLOBAL_CONTROL, OPTC_UNDERFLOW_CLEAR, 1);
1435 }
1436
optc1_tg_init(struct timing_generator * optc)1437 void optc1_tg_init(struct timing_generator *optc)
1438 {
1439 optc1_set_blank_data_double_buffer(optc, true);
1440 optc1_set_timing_double_buffer(optc, true);
1441 optc1_clear_optc_underflow(optc);
1442 }
1443
optc1_is_tg_enabled(struct timing_generator * optc)1444 bool optc1_is_tg_enabled(struct timing_generator *optc)
1445 {
1446 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1447 uint32_t otg_enabled = 0;
1448
1449 REG_GET(OTG_CONTROL, OTG_MASTER_EN, &otg_enabled);
1450
1451 return (otg_enabled != 0);
1452
1453 }
1454
optc1_is_optc_underflow_occurred(struct timing_generator * optc)1455 bool optc1_is_optc_underflow_occurred(struct timing_generator *optc)
1456 {
1457 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1458 uint32_t underflow_occurred = 0;
1459
1460 REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1461 OPTC_UNDERFLOW_OCCURRED_STATUS,
1462 &underflow_occurred);
1463
1464 return (underflow_occurred == 1);
1465 }
1466
optc1_configure_crc(struct timing_generator * optc,const struct crc_params * params)1467 bool optc1_configure_crc(struct timing_generator *optc,
1468 const struct crc_params *params)
1469 {
1470 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1471
1472 /* Cannot configure crc on a CRTC that is disabled */
1473 if (!optc1_is_tg_enabled(optc))
1474 return false;
1475
1476 REG_WRITE(OTG_CRC_CNTL, 0);
1477
1478 if (!params->enable)
1479 return true;
1480
1481 /* Program frame boundaries */
1482 /* Window A x axis start and end. */
1483 REG_UPDATE_2(OTG_CRC0_WINDOWA_X_CONTROL,
1484 OTG_CRC0_WINDOWA_X_START, params->windowa_x_start,
1485 OTG_CRC0_WINDOWA_X_END, params->windowa_x_end);
1486
1487 /* Window A y axis start and end. */
1488 REG_UPDATE_2(OTG_CRC0_WINDOWA_Y_CONTROL,
1489 OTG_CRC0_WINDOWA_Y_START, params->windowa_y_start,
1490 OTG_CRC0_WINDOWA_Y_END, params->windowa_y_end);
1491
1492 /* Window B x axis start and end. */
1493 REG_UPDATE_2(OTG_CRC0_WINDOWB_X_CONTROL,
1494 OTG_CRC0_WINDOWB_X_START, params->windowb_x_start,
1495 OTG_CRC0_WINDOWB_X_END, params->windowb_x_end);
1496
1497 /* Window B y axis start and end. */
1498 REG_UPDATE_2(OTG_CRC0_WINDOWB_Y_CONTROL,
1499 OTG_CRC0_WINDOWB_Y_START, params->windowb_y_start,
1500 OTG_CRC0_WINDOWB_Y_END, params->windowb_y_end);
1501
1502 /* Set crc mode and selection, and enable. Only using CRC0*/
1503 REG_UPDATE_3(OTG_CRC_CNTL,
1504 OTG_CRC_CONT_EN, params->continuous_mode ? 1 : 0,
1505 OTG_CRC0_SELECT, params->selection,
1506 OTG_CRC_EN, 1);
1507
1508 return true;
1509 }
1510
optc1_get_crc(struct timing_generator * optc,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)1511 bool optc1_get_crc(struct timing_generator *optc,
1512 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
1513 {
1514 uint32_t field = 0;
1515 struct optc *optc1 = DCN10TG_FROM_TG(optc);
1516
1517 REG_GET(OTG_CRC_CNTL, OTG_CRC_EN, &field);
1518
1519 /* Early return if CRC is not enabled for this CRTC */
1520 if (!field)
1521 return false;
1522
1523 REG_GET_2(OTG_CRC0_DATA_RG,
1524 CRC0_R_CR, r_cr,
1525 CRC0_G_Y, g_y);
1526
1527 REG_GET(OTG_CRC0_DATA_B,
1528 CRC0_B_CB, b_cb);
1529
1530 return true;
1531 }
1532
1533 static const struct timing_generator_funcs dcn10_tg_funcs = {
1534 .validate_timing = optc1_validate_timing,
1535 .program_timing = optc1_program_timing,
1536 .setup_vertical_interrupt0 = optc1_setup_vertical_interrupt0,
1537 .setup_vertical_interrupt1 = optc1_setup_vertical_interrupt1,
1538 .setup_vertical_interrupt2 = optc1_setup_vertical_interrupt2,
1539 .program_global_sync = optc1_program_global_sync,
1540 .enable_crtc = optc1_enable_crtc,
1541 .disable_crtc = optc1_disable_crtc,
1542 /* used by enable_timing_synchronization. Not need for FPGA */
1543 .is_counter_moving = optc1_is_counter_moving,
1544 .get_position = optc1_get_position,
1545 .get_frame_count = optc1_get_vblank_counter,
1546 .get_scanoutpos = optc1_get_crtc_scanoutpos,
1547 .get_otg_active_size = optc1_get_otg_active_size,
1548 .set_early_control = optc1_set_early_control,
1549 /* used by enable_timing_synchronization. Not need for FPGA */
1550 .wait_for_state = optc1_wait_for_state,
1551 .set_blank = optc1_set_blank,
1552 .is_blanked = optc1_is_blanked,
1553 .set_blank_color = optc1_program_blank_color,
1554 .did_triggered_reset_occur = optc1_did_triggered_reset_occur,
1555 .enable_reset_trigger = optc1_enable_reset_trigger,
1556 .enable_crtc_reset = optc1_enable_crtc_reset,
1557 .disable_reset_trigger = optc1_disable_reset_trigger,
1558 .lock = optc1_lock,
1559 .is_locked = optc1_is_locked,
1560 .unlock = optc1_unlock,
1561 .enable_optc_clock = optc1_enable_optc_clock,
1562 .set_drr = optc1_set_drr,
1563 .get_last_used_drr_vtotal = NULL,
1564 .set_static_screen_control = optc1_set_static_screen_control,
1565 .set_test_pattern = optc1_set_test_pattern,
1566 .program_stereo = optc1_program_stereo,
1567 .is_stereo_left_eye = optc1_is_stereo_left_eye,
1568 .set_blank_data_double_buffer = optc1_set_blank_data_double_buffer,
1569 .tg_init = optc1_tg_init,
1570 .is_tg_enabled = optc1_is_tg_enabled,
1571 .is_optc_underflow_occurred = optc1_is_optc_underflow_occurred,
1572 .clear_optc_underflow = optc1_clear_optc_underflow,
1573 .get_crc = optc1_get_crc,
1574 .configure_crc = optc1_configure_crc,
1575 .set_vtg_params = optc1_set_vtg_params,
1576 .program_manual_trigger = optc1_program_manual_trigger,
1577 .setup_manual_trigger = optc1_setup_manual_trigger,
1578 .get_hw_timing = optc1_get_hw_timing,
1579 };
1580
dcn10_timing_generator_init(struct optc * optc1)1581 void dcn10_timing_generator_init(struct optc *optc1)
1582 {
1583 optc1->base.funcs = &dcn10_tg_funcs;
1584
1585 optc1->max_h_total = optc1->tg_mask->OTG_H_TOTAL + 1;
1586 optc1->max_v_total = optc1->tg_mask->OTG_V_TOTAL + 1;
1587
1588 optc1->min_h_blank = 32;
1589 optc1->min_v_blank = 3;
1590 optc1->min_v_blank_interlace = 5;
1591 optc1->min_h_sync_width = 4;
1592 optc1->min_v_sync_width = 1;
1593 }
1594
1595 /* "Containter" vs. "pixel" is a concept within HW blocks, mostly those closer to the back-end. It works like this:
1596 *
1597 * - In most of the formats (RGB or YCbCr 4:4:4, 4:2:2 uncompressed and DSC 4:2:2 Simple) pixel rate is the same as
1598 * containter rate.
1599 *
1600 * - In 4:2:0 (DSC or uncompressed) there are two pixels per container, hence the target container rate has to be
1601 * halved to maintain the correct pixel rate.
1602 *
1603 * - Unlike 4:2:2 uncompressed, DSC 4:2:2 Native also has two pixels per container (this happens when DSC is applied
1604 * to it) and has to be treated the same as 4:2:0, i.e. target containter rate has to be halved in this case as well.
1605 *
1606 */
optc1_is_two_pixels_per_containter(const struct dc_crtc_timing * timing)1607 bool optc1_is_two_pixels_per_containter(const struct dc_crtc_timing *timing)
1608 {
1609 bool two_pix = timing->pixel_encoding == PIXEL_ENCODING_YCBCR420;
1610
1611 two_pix = two_pix || (timing->flags.DSC && timing->pixel_encoding == PIXEL_ENCODING_YCBCR422
1612 && !timing->dsc_cfg.ycbcr422_simple);
1613 return two_pix;
1614 }
1615
1616