1 // SPDX-License-Identifier: GPL-2.0
2 /* Marvell RVU Ethernet driver
3 *
4 * Copyright (C) 2020 Marvell.
5 *
6 */
7
8 #include <linux/interrupt.h>
9 #include <linux/pci.h>
10 #include <net/tso.h>
11
12 #include "otx2_reg.h"
13 #include "otx2_common.h"
14 #include "otx2_struct.h"
15 #include "cn10k.h"
16
otx2_nix_rq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)17 static void otx2_nix_rq_op_stats(struct queue_stats *stats,
18 struct otx2_nic *pfvf, int qidx)
19 {
20 u64 incr = (u64)qidx << 32;
21 u64 *ptr;
22
23 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_OCTS);
24 stats->bytes = otx2_atomic64_add(incr, ptr);
25
26 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_RQ_OP_PKTS);
27 stats->pkts = otx2_atomic64_add(incr, ptr);
28 }
29
otx2_nix_sq_op_stats(struct queue_stats * stats,struct otx2_nic * pfvf,int qidx)30 static void otx2_nix_sq_op_stats(struct queue_stats *stats,
31 struct otx2_nic *pfvf, int qidx)
32 {
33 u64 incr = (u64)qidx << 32;
34 u64 *ptr;
35
36 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_OCTS);
37 stats->bytes = otx2_atomic64_add(incr, ptr);
38
39 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_PKTS);
40 stats->pkts = otx2_atomic64_add(incr, ptr);
41 }
42
otx2_update_lmac_stats(struct otx2_nic * pfvf)43 void otx2_update_lmac_stats(struct otx2_nic *pfvf)
44 {
45 struct msg_req *req;
46
47 if (!netif_running(pfvf->netdev))
48 return;
49
50 mutex_lock(&pfvf->mbox.lock);
51 req = otx2_mbox_alloc_msg_cgx_stats(&pfvf->mbox);
52 if (!req) {
53 mutex_unlock(&pfvf->mbox.lock);
54 return;
55 }
56
57 otx2_sync_mbox_msg(&pfvf->mbox);
58 mutex_unlock(&pfvf->mbox.lock);
59 }
60
otx2_update_lmac_fec_stats(struct otx2_nic * pfvf)61 void otx2_update_lmac_fec_stats(struct otx2_nic *pfvf)
62 {
63 struct msg_req *req;
64
65 if (!netif_running(pfvf->netdev))
66 return;
67 mutex_lock(&pfvf->mbox.lock);
68 req = otx2_mbox_alloc_msg_cgx_fec_stats(&pfvf->mbox);
69 if (req)
70 otx2_sync_mbox_msg(&pfvf->mbox);
71 mutex_unlock(&pfvf->mbox.lock);
72 }
73
otx2_update_rq_stats(struct otx2_nic * pfvf,int qidx)74 int otx2_update_rq_stats(struct otx2_nic *pfvf, int qidx)
75 {
76 struct otx2_rcv_queue *rq = &pfvf->qset.rq[qidx];
77
78 if (!pfvf->qset.rq)
79 return 0;
80
81 otx2_nix_rq_op_stats(&rq->stats, pfvf, qidx);
82 return 1;
83 }
84
otx2_update_sq_stats(struct otx2_nic * pfvf,int qidx)85 int otx2_update_sq_stats(struct otx2_nic *pfvf, int qidx)
86 {
87 struct otx2_snd_queue *sq = &pfvf->qset.sq[qidx];
88
89 if (!pfvf->qset.sq)
90 return 0;
91
92 otx2_nix_sq_op_stats(&sq->stats, pfvf, qidx);
93 return 1;
94 }
95
otx2_get_dev_stats(struct otx2_nic * pfvf)96 void otx2_get_dev_stats(struct otx2_nic *pfvf)
97 {
98 struct otx2_dev_stats *dev_stats = &pfvf->hw.dev_stats;
99
100 #define OTX2_GET_RX_STATS(reg) \
101 otx2_read64(pfvf, NIX_LF_RX_STATX(reg))
102 #define OTX2_GET_TX_STATS(reg) \
103 otx2_read64(pfvf, NIX_LF_TX_STATX(reg))
104
105 dev_stats->rx_bytes = OTX2_GET_RX_STATS(RX_OCTS);
106 dev_stats->rx_drops = OTX2_GET_RX_STATS(RX_DROP);
107 dev_stats->rx_bcast_frames = OTX2_GET_RX_STATS(RX_BCAST);
108 dev_stats->rx_mcast_frames = OTX2_GET_RX_STATS(RX_MCAST);
109 dev_stats->rx_ucast_frames = OTX2_GET_RX_STATS(RX_UCAST);
110 dev_stats->rx_frames = dev_stats->rx_bcast_frames +
111 dev_stats->rx_mcast_frames +
112 dev_stats->rx_ucast_frames;
113
114 dev_stats->tx_bytes = OTX2_GET_TX_STATS(TX_OCTS);
115 dev_stats->tx_drops = OTX2_GET_TX_STATS(TX_DROP);
116 dev_stats->tx_bcast_frames = OTX2_GET_TX_STATS(TX_BCAST);
117 dev_stats->tx_mcast_frames = OTX2_GET_TX_STATS(TX_MCAST);
118 dev_stats->tx_ucast_frames = OTX2_GET_TX_STATS(TX_UCAST);
119 dev_stats->tx_frames = dev_stats->tx_bcast_frames +
120 dev_stats->tx_mcast_frames +
121 dev_stats->tx_ucast_frames;
122 }
123
otx2_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)124 void otx2_get_stats64(struct net_device *netdev,
125 struct rtnl_link_stats64 *stats)
126 {
127 struct otx2_nic *pfvf = netdev_priv(netdev);
128 struct otx2_dev_stats *dev_stats;
129
130 otx2_get_dev_stats(pfvf);
131
132 dev_stats = &pfvf->hw.dev_stats;
133 stats->rx_bytes = dev_stats->rx_bytes;
134 stats->rx_packets = dev_stats->rx_frames;
135 stats->rx_dropped = dev_stats->rx_drops;
136 stats->multicast = dev_stats->rx_mcast_frames;
137
138 stats->tx_bytes = dev_stats->tx_bytes;
139 stats->tx_packets = dev_stats->tx_frames;
140 stats->tx_dropped = dev_stats->tx_drops;
141 }
142 EXPORT_SYMBOL(otx2_get_stats64);
143
144 /* Sync MAC address with RVU AF */
otx2_hw_set_mac_addr(struct otx2_nic * pfvf,u8 * mac)145 static int otx2_hw_set_mac_addr(struct otx2_nic *pfvf, u8 *mac)
146 {
147 struct nix_set_mac_addr *req;
148 int err;
149
150 mutex_lock(&pfvf->mbox.lock);
151 req = otx2_mbox_alloc_msg_nix_set_mac_addr(&pfvf->mbox);
152 if (!req) {
153 mutex_unlock(&pfvf->mbox.lock);
154 return -ENOMEM;
155 }
156
157 ether_addr_copy(req->mac_addr, mac);
158
159 err = otx2_sync_mbox_msg(&pfvf->mbox);
160 mutex_unlock(&pfvf->mbox.lock);
161 return err;
162 }
163
otx2_hw_get_mac_addr(struct otx2_nic * pfvf,struct net_device * netdev)164 static int otx2_hw_get_mac_addr(struct otx2_nic *pfvf,
165 struct net_device *netdev)
166 {
167 struct nix_get_mac_addr_rsp *rsp;
168 struct mbox_msghdr *msghdr;
169 struct msg_req *req;
170 int err;
171
172 mutex_lock(&pfvf->mbox.lock);
173 req = otx2_mbox_alloc_msg_nix_get_mac_addr(&pfvf->mbox);
174 if (!req) {
175 mutex_unlock(&pfvf->mbox.lock);
176 return -ENOMEM;
177 }
178
179 err = otx2_sync_mbox_msg(&pfvf->mbox);
180 if (err) {
181 mutex_unlock(&pfvf->mbox.lock);
182 return err;
183 }
184
185 msghdr = otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
186 if (IS_ERR(msghdr)) {
187 mutex_unlock(&pfvf->mbox.lock);
188 return PTR_ERR(msghdr);
189 }
190 rsp = (struct nix_get_mac_addr_rsp *)msghdr;
191 eth_hw_addr_set(netdev, rsp->mac_addr);
192 mutex_unlock(&pfvf->mbox.lock);
193
194 return 0;
195 }
196
otx2_set_mac_address(struct net_device * netdev,void * p)197 int otx2_set_mac_address(struct net_device *netdev, void *p)
198 {
199 struct otx2_nic *pfvf = netdev_priv(netdev);
200 struct sockaddr *addr = p;
201
202 if (!is_valid_ether_addr(addr->sa_data))
203 return -EADDRNOTAVAIL;
204
205 if (!otx2_hw_set_mac_addr(pfvf, addr->sa_data)) {
206 eth_hw_addr_set(netdev, addr->sa_data);
207 /* update dmac field in vlan offload rule */
208 if (netif_running(netdev) &&
209 pfvf->flags & OTX2_FLAG_RX_VLAN_SUPPORT)
210 otx2_install_rxvlan_offload_flow(pfvf);
211 /* update dmac address in ntuple and DMAC filter list */
212 if (pfvf->flags & OTX2_FLAG_DMACFLTR_SUPPORT)
213 otx2_dmacflt_update_pfmac_flow(pfvf);
214 } else {
215 return -EPERM;
216 }
217
218 return 0;
219 }
220 EXPORT_SYMBOL(otx2_set_mac_address);
221
otx2_hw_set_mtu(struct otx2_nic * pfvf,int mtu)222 int otx2_hw_set_mtu(struct otx2_nic *pfvf, int mtu)
223 {
224 struct nix_frs_cfg *req;
225 int err;
226
227 mutex_lock(&pfvf->mbox.lock);
228 req = otx2_mbox_alloc_msg_nix_set_hw_frs(&pfvf->mbox);
229 if (!req) {
230 mutex_unlock(&pfvf->mbox.lock);
231 return -ENOMEM;
232 }
233
234 req->maxlen = pfvf->netdev->mtu + OTX2_ETH_HLEN + OTX2_HW_TIMESTAMP_LEN;
235
236 err = otx2_sync_mbox_msg(&pfvf->mbox);
237 mutex_unlock(&pfvf->mbox.lock);
238 return err;
239 }
240
otx2_config_pause_frm(struct otx2_nic * pfvf)241 int otx2_config_pause_frm(struct otx2_nic *pfvf)
242 {
243 struct cgx_pause_frm_cfg *req;
244 int err;
245
246 if (is_otx2_lbkvf(pfvf->pdev))
247 return 0;
248
249 mutex_lock(&pfvf->mbox.lock);
250 req = otx2_mbox_alloc_msg_cgx_cfg_pause_frm(&pfvf->mbox);
251 if (!req) {
252 err = -ENOMEM;
253 goto unlock;
254 }
255
256 req->rx_pause = !!(pfvf->flags & OTX2_FLAG_RX_PAUSE_ENABLED);
257 req->tx_pause = !!(pfvf->flags & OTX2_FLAG_TX_PAUSE_ENABLED);
258 req->set = 1;
259
260 err = otx2_sync_mbox_msg(&pfvf->mbox);
261 unlock:
262 mutex_unlock(&pfvf->mbox.lock);
263 return err;
264 }
265
otx2_set_flowkey_cfg(struct otx2_nic * pfvf)266 int otx2_set_flowkey_cfg(struct otx2_nic *pfvf)
267 {
268 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
269 struct nix_rss_flowkey_cfg_rsp *rsp;
270 struct nix_rss_flowkey_cfg *req;
271 int err;
272
273 mutex_lock(&pfvf->mbox.lock);
274 req = otx2_mbox_alloc_msg_nix_rss_flowkey_cfg(&pfvf->mbox);
275 if (!req) {
276 mutex_unlock(&pfvf->mbox.lock);
277 return -ENOMEM;
278 }
279 req->mcam_index = -1; /* Default or reserved index */
280 req->flowkey_cfg = rss->flowkey_cfg;
281 req->group = DEFAULT_RSS_CONTEXT_GROUP;
282
283 err = otx2_sync_mbox_msg(&pfvf->mbox);
284 if (err)
285 goto fail;
286
287 rsp = (struct nix_rss_flowkey_cfg_rsp *)
288 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
289 if (IS_ERR(rsp)) {
290 err = PTR_ERR(rsp);
291 goto fail;
292 }
293
294 pfvf->hw.flowkey_alg_idx = rsp->alg_idx;
295 fail:
296 mutex_unlock(&pfvf->mbox.lock);
297 return err;
298 }
299
otx2_set_rss_table(struct otx2_nic * pfvf,int ctx_id)300 int otx2_set_rss_table(struct otx2_nic *pfvf, int ctx_id)
301 {
302 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
303 const int index = rss->rss_size * ctx_id;
304 struct mbox *mbox = &pfvf->mbox;
305 struct otx2_rss_ctx *rss_ctx;
306 struct nix_aq_enq_req *aq;
307 int idx, err;
308
309 mutex_lock(&mbox->lock);
310 rss_ctx = rss->rss_ctx[ctx_id];
311 /* Get memory to put this msg */
312 for (idx = 0; idx < rss->rss_size; idx++) {
313 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
314 if (!aq) {
315 /* The shared memory buffer can be full.
316 * Flush it and retry
317 */
318 err = otx2_sync_mbox_msg(mbox);
319 if (err) {
320 mutex_unlock(&mbox->lock);
321 return err;
322 }
323 aq = otx2_mbox_alloc_msg_nix_aq_enq(mbox);
324 if (!aq) {
325 mutex_unlock(&mbox->lock);
326 return -ENOMEM;
327 }
328 }
329
330 aq->rss.rq = rss_ctx->ind_tbl[idx];
331
332 /* Fill AQ info */
333 aq->qidx = index + idx;
334 aq->ctype = NIX_AQ_CTYPE_RSS;
335 aq->op = NIX_AQ_INSTOP_INIT;
336 }
337 err = otx2_sync_mbox_msg(mbox);
338 mutex_unlock(&mbox->lock);
339 return err;
340 }
341
otx2_set_rss_key(struct otx2_nic * pfvf)342 void otx2_set_rss_key(struct otx2_nic *pfvf)
343 {
344 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
345 u64 *key = (u64 *)&rss->key[4];
346 int idx;
347
348 /* 352bit or 44byte key needs to be configured as below
349 * NIX_LF_RX_SECRETX0 = key<351:288>
350 * NIX_LF_RX_SECRETX1 = key<287:224>
351 * NIX_LF_RX_SECRETX2 = key<223:160>
352 * NIX_LF_RX_SECRETX3 = key<159:96>
353 * NIX_LF_RX_SECRETX4 = key<95:32>
354 * NIX_LF_RX_SECRETX5<63:32> = key<31:0>
355 */
356 otx2_write64(pfvf, NIX_LF_RX_SECRETX(5),
357 (u64)(*((u32 *)&rss->key)) << 32);
358 idx = sizeof(rss->key) / sizeof(u64);
359 while (idx > 0) {
360 idx--;
361 otx2_write64(pfvf, NIX_LF_RX_SECRETX(idx), *key++);
362 }
363 }
364
otx2_rss_init(struct otx2_nic * pfvf)365 int otx2_rss_init(struct otx2_nic *pfvf)
366 {
367 struct otx2_rss_info *rss = &pfvf->hw.rss_info;
368 struct otx2_rss_ctx *rss_ctx;
369 int idx, ret = 0;
370
371 rss->rss_size = sizeof(*rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP]);
372
373 /* Init RSS key if it is not setup already */
374 if (!rss->enable)
375 netdev_rss_key_fill(rss->key, sizeof(rss->key));
376 otx2_set_rss_key(pfvf);
377
378 if (!netif_is_rxfh_configured(pfvf->netdev)) {
379 /* Set RSS group 0 as default indirection table */
380 rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP] = kzalloc(rss->rss_size,
381 GFP_KERNEL);
382 if (!rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP])
383 return -ENOMEM;
384
385 rss_ctx = rss->rss_ctx[DEFAULT_RSS_CONTEXT_GROUP];
386 for (idx = 0; idx < rss->rss_size; idx++)
387 rss_ctx->ind_tbl[idx] =
388 ethtool_rxfh_indir_default(idx,
389 pfvf->hw.rx_queues);
390 }
391 ret = otx2_set_rss_table(pfvf, DEFAULT_RSS_CONTEXT_GROUP);
392 if (ret)
393 return ret;
394
395 /* Flowkey or hash config to be used for generating flow tag */
396 rss->flowkey_cfg = rss->enable ? rss->flowkey_cfg :
397 NIX_FLOW_KEY_TYPE_IPV4 | NIX_FLOW_KEY_TYPE_IPV6 |
398 NIX_FLOW_KEY_TYPE_TCP | NIX_FLOW_KEY_TYPE_UDP |
399 NIX_FLOW_KEY_TYPE_SCTP | NIX_FLOW_KEY_TYPE_VLAN |
400 NIX_FLOW_KEY_TYPE_IPV4_PROTO;
401
402 ret = otx2_set_flowkey_cfg(pfvf);
403 if (ret)
404 return ret;
405
406 rss->enable = true;
407 return 0;
408 }
409
410 /* Setup UDP segmentation algorithm in HW */
otx2_setup_udp_segmentation(struct nix_lso_format_cfg * lso,bool v4)411 static void otx2_setup_udp_segmentation(struct nix_lso_format_cfg *lso, bool v4)
412 {
413 struct nix_lso_format *field;
414
415 field = (struct nix_lso_format *)&lso->fields[0];
416 lso->field_mask = GENMASK(18, 0);
417
418 /* IP's Length field */
419 field->layer = NIX_TXLAYER_OL3;
420 /* In ipv4, length field is at offset 2 bytes, for ipv6 it's 4 */
421 field->offset = v4 ? 2 : 4;
422 field->sizem1 = 1; /* i.e 2 bytes */
423 field->alg = NIX_LSOALG_ADD_PAYLEN;
424 field++;
425
426 /* No ID field in IPv6 header */
427 if (v4) {
428 /* Increment IPID */
429 field->layer = NIX_TXLAYER_OL3;
430 field->offset = 4;
431 field->sizem1 = 1; /* i.e 2 bytes */
432 field->alg = NIX_LSOALG_ADD_SEGNUM;
433 field++;
434 }
435
436 /* Update length in UDP header */
437 field->layer = NIX_TXLAYER_OL4;
438 field->offset = 4;
439 field->sizem1 = 1;
440 field->alg = NIX_LSOALG_ADD_PAYLEN;
441 }
442
443 /* Setup segmentation algorithms in HW and retrieve algorithm index */
otx2_setup_segmentation(struct otx2_nic * pfvf)444 void otx2_setup_segmentation(struct otx2_nic *pfvf)
445 {
446 struct nix_lso_format_cfg_rsp *rsp;
447 struct nix_lso_format_cfg *lso;
448 struct otx2_hw *hw = &pfvf->hw;
449 int err;
450
451 mutex_lock(&pfvf->mbox.lock);
452
453 /* UDPv4 segmentation */
454 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
455 if (!lso)
456 goto fail;
457
458 /* Setup UDP/IP header fields that HW should update per segment */
459 otx2_setup_udp_segmentation(lso, true);
460
461 err = otx2_sync_mbox_msg(&pfvf->mbox);
462 if (err)
463 goto fail;
464
465 rsp = (struct nix_lso_format_cfg_rsp *)
466 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
467 if (IS_ERR(rsp))
468 goto fail;
469
470 hw->lso_udpv4_idx = rsp->lso_format_idx;
471
472 /* UDPv6 segmentation */
473 lso = otx2_mbox_alloc_msg_nix_lso_format_cfg(&pfvf->mbox);
474 if (!lso)
475 goto fail;
476
477 /* Setup UDP/IP header fields that HW should update per segment */
478 otx2_setup_udp_segmentation(lso, false);
479
480 err = otx2_sync_mbox_msg(&pfvf->mbox);
481 if (err)
482 goto fail;
483
484 rsp = (struct nix_lso_format_cfg_rsp *)
485 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &lso->hdr);
486 if (IS_ERR(rsp))
487 goto fail;
488
489 hw->lso_udpv6_idx = rsp->lso_format_idx;
490 mutex_unlock(&pfvf->mbox.lock);
491 return;
492 fail:
493 mutex_unlock(&pfvf->mbox.lock);
494 netdev_info(pfvf->netdev,
495 "Failed to get LSO index for UDP GSO offload, disabling\n");
496 pfvf->netdev->hw_features &= ~NETIF_F_GSO_UDP_L4;
497 }
498
otx2_config_irq_coalescing(struct otx2_nic * pfvf,int qidx)499 void otx2_config_irq_coalescing(struct otx2_nic *pfvf, int qidx)
500 {
501 /* Configure CQE interrupt coalescing parameters
502 *
503 * HW triggers an irq when ECOUNT > cq_ecount_wait, hence
504 * set 1 less than cq_ecount_wait. And cq_time_wait is in
505 * usecs, convert that to 100ns count.
506 */
507 otx2_write64(pfvf, NIX_LF_CINTX_WAIT(qidx),
508 ((u64)(pfvf->hw.cq_time_wait * 10) << 48) |
509 ((u64)pfvf->hw.cq_qcount_wait << 32) |
510 (pfvf->hw.cq_ecount_wait - 1));
511 }
512
__otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)513 int __otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
514 dma_addr_t *dma)
515 {
516 u8 *buf;
517
518 buf = napi_alloc_frag_align(pool->rbsize, OTX2_ALIGN);
519 if (unlikely(!buf))
520 return -ENOMEM;
521
522 *dma = dma_map_single_attrs(pfvf->dev, buf, pool->rbsize,
523 DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC);
524 if (unlikely(dma_mapping_error(pfvf->dev, *dma))) {
525 page_frag_free(buf);
526 return -ENOMEM;
527 }
528
529 return 0;
530 }
531
otx2_alloc_rbuf(struct otx2_nic * pfvf,struct otx2_pool * pool,dma_addr_t * dma)532 static int otx2_alloc_rbuf(struct otx2_nic *pfvf, struct otx2_pool *pool,
533 dma_addr_t *dma)
534 {
535 int ret;
536
537 local_bh_disable();
538 ret = __otx2_alloc_rbuf(pfvf, pool, dma);
539 local_bh_enable();
540 return ret;
541 }
542
otx2_alloc_buffer(struct otx2_nic * pfvf,struct otx2_cq_queue * cq,dma_addr_t * dma)543 int otx2_alloc_buffer(struct otx2_nic *pfvf, struct otx2_cq_queue *cq,
544 dma_addr_t *dma)
545 {
546 if (unlikely(__otx2_alloc_rbuf(pfvf, cq->rbpool, dma))) {
547 struct refill_work *work;
548 struct delayed_work *dwork;
549
550 work = &pfvf->refill_wrk[cq->cq_idx];
551 dwork = &work->pool_refill_work;
552 /* Schedule a task if no other task is running */
553 if (!cq->refill_task_sched) {
554 cq->refill_task_sched = true;
555 schedule_delayed_work(dwork,
556 msecs_to_jiffies(100));
557 }
558 return -ENOMEM;
559 }
560 return 0;
561 }
562
otx2_tx_timeout(struct net_device * netdev,unsigned int txq)563 void otx2_tx_timeout(struct net_device *netdev, unsigned int txq)
564 {
565 struct otx2_nic *pfvf = netdev_priv(netdev);
566
567 schedule_work(&pfvf->reset_task);
568 }
569 EXPORT_SYMBOL(otx2_tx_timeout);
570
otx2_get_mac_from_af(struct net_device * netdev)571 void otx2_get_mac_from_af(struct net_device *netdev)
572 {
573 struct otx2_nic *pfvf = netdev_priv(netdev);
574 int err;
575
576 err = otx2_hw_get_mac_addr(pfvf, netdev);
577 if (err)
578 dev_warn(pfvf->dev, "Failed to read mac from hardware\n");
579
580 /* If AF doesn't provide a valid MAC, generate a random one */
581 if (!is_valid_ether_addr(netdev->dev_addr))
582 eth_hw_addr_random(netdev);
583 }
584 EXPORT_SYMBOL(otx2_get_mac_from_af);
585
otx2_txschq_config(struct otx2_nic * pfvf,int lvl)586 int otx2_txschq_config(struct otx2_nic *pfvf, int lvl)
587 {
588 struct otx2_hw *hw = &pfvf->hw;
589 struct nix_txschq_config *req;
590 u64 schq, parent;
591 u64 dwrr_val;
592
593 dwrr_val = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
594
595 req = otx2_mbox_alloc_msg_nix_txschq_cfg(&pfvf->mbox);
596 if (!req)
597 return -ENOMEM;
598
599 req->lvl = lvl;
600 req->num_regs = 1;
601
602 schq = hw->txschq_list[lvl][0];
603 /* Set topology e.t.c configuration */
604 if (lvl == NIX_TXSCH_LVL_SMQ) {
605 req->reg[0] = NIX_AF_SMQX_CFG(schq);
606 req->regval[0] = ((u64)pfvf->tx_max_pktlen << 8) | OTX2_MIN_MTU;
607 req->regval[0] |= (0x20ULL << 51) | (0x80ULL << 39) |
608 (0x2ULL << 36);
609 req->num_regs++;
610 /* MDQ config */
611 parent = hw->txschq_list[NIX_TXSCH_LVL_TL4][0];
612 req->reg[1] = NIX_AF_MDQX_PARENT(schq);
613 req->regval[1] = parent << 16;
614 req->num_regs++;
615 /* Set DWRR quantum */
616 req->reg[2] = NIX_AF_MDQX_SCHEDULE(schq);
617 req->regval[2] = dwrr_val;
618 } else if (lvl == NIX_TXSCH_LVL_TL4) {
619 parent = hw->txschq_list[NIX_TXSCH_LVL_TL3][0];
620 req->reg[0] = NIX_AF_TL4X_PARENT(schq);
621 req->regval[0] = parent << 16;
622 req->num_regs++;
623 req->reg[1] = NIX_AF_TL4X_SCHEDULE(schq);
624 req->regval[1] = dwrr_val;
625 } else if (lvl == NIX_TXSCH_LVL_TL3) {
626 parent = hw->txschq_list[NIX_TXSCH_LVL_TL2][0];
627 req->reg[0] = NIX_AF_TL3X_PARENT(schq);
628 req->regval[0] = parent << 16;
629 req->num_regs++;
630 req->reg[1] = NIX_AF_TL3X_SCHEDULE(schq);
631 req->regval[1] = dwrr_val;
632 } else if (lvl == NIX_TXSCH_LVL_TL2) {
633 parent = hw->txschq_list[NIX_TXSCH_LVL_TL1][0];
634 req->reg[0] = NIX_AF_TL2X_PARENT(schq);
635 req->regval[0] = parent << 16;
636
637 req->num_regs++;
638 req->reg[1] = NIX_AF_TL2X_SCHEDULE(schq);
639 req->regval[1] = TXSCH_TL1_DFLT_RR_PRIO << 24 | dwrr_val;
640
641 req->num_regs++;
642 req->reg[2] = NIX_AF_TL3_TL2X_LINKX_CFG(schq, hw->tx_link);
643 /* Enable this queue and backpressure */
644 req->regval[2] = BIT_ULL(13) | BIT_ULL(12);
645
646 } else if (lvl == NIX_TXSCH_LVL_TL1) {
647 /* Default config for TL1.
648 * For VF this is always ignored.
649 */
650
651 /* On CN10K, if RR_WEIGHT is greater than 16384, HW will
652 * clip it to 16384, so configuring a 24bit max value
653 * will work on both OTx2 and CN10K.
654 */
655 req->reg[0] = NIX_AF_TL1X_SCHEDULE(schq);
656 req->regval[0] = TXSCH_TL1_DFLT_RR_QTM;
657
658 req->num_regs++;
659 req->reg[1] = NIX_AF_TL1X_TOPOLOGY(schq);
660 req->regval[1] = (TXSCH_TL1_DFLT_RR_PRIO << 1);
661
662 req->num_regs++;
663 req->reg[2] = NIX_AF_TL1X_CIR(schq);
664 req->regval[2] = 0;
665 }
666
667 return otx2_sync_mbox_msg(&pfvf->mbox);
668 }
669
otx2_txsch_alloc(struct otx2_nic * pfvf)670 int otx2_txsch_alloc(struct otx2_nic *pfvf)
671 {
672 struct nix_txsch_alloc_req *req;
673 int lvl;
674
675 /* Get memory to put this msg */
676 req = otx2_mbox_alloc_msg_nix_txsch_alloc(&pfvf->mbox);
677 if (!req)
678 return -ENOMEM;
679
680 /* Request one schq per level */
681 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
682 req->schq[lvl] = 1;
683
684 return otx2_sync_mbox_msg(&pfvf->mbox);
685 }
686
otx2_txschq_stop(struct otx2_nic * pfvf)687 int otx2_txschq_stop(struct otx2_nic *pfvf)
688 {
689 struct nix_txsch_free_req *free_req;
690 int lvl, schq, err;
691
692 mutex_lock(&pfvf->mbox.lock);
693 /* Free the transmit schedulers */
694 free_req = otx2_mbox_alloc_msg_nix_txsch_free(&pfvf->mbox);
695 if (!free_req) {
696 mutex_unlock(&pfvf->mbox.lock);
697 return -ENOMEM;
698 }
699
700 free_req->flags = TXSCHQ_FREE_ALL;
701 err = otx2_sync_mbox_msg(&pfvf->mbox);
702 mutex_unlock(&pfvf->mbox.lock);
703
704 /* Clear the txschq list */
705 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++) {
706 for (schq = 0; schq < MAX_TXSCHQ_PER_FUNC; schq++)
707 pfvf->hw.txschq_list[lvl][schq] = 0;
708 }
709 return err;
710 }
711
otx2_sqb_flush(struct otx2_nic * pfvf)712 void otx2_sqb_flush(struct otx2_nic *pfvf)
713 {
714 int qidx, sqe_tail, sqe_head;
715 u64 incr, *ptr, val;
716 int timeout = 1000;
717
718 ptr = (u64 *)otx2_get_regaddr(pfvf, NIX_LF_SQ_OP_STATUS);
719 for (qidx = 0; qidx < pfvf->hw.tot_tx_queues; qidx++) {
720 incr = (u64)qidx << 32;
721 while (timeout) {
722 val = otx2_atomic64_add(incr, ptr);
723 sqe_head = (val >> 20) & 0x3F;
724 sqe_tail = (val >> 28) & 0x3F;
725 if (sqe_head == sqe_tail)
726 break;
727 usleep_range(1, 3);
728 timeout--;
729 }
730 }
731 }
732
733 /* RED and drop levels of CQ on packet reception.
734 * For CQ level is measure of emptiness ( 0x0 = full, 255 = empty).
735 */
736 #define RQ_PASS_LVL_CQ(skid, qsize) ((((skid) + 16) * 256) / (qsize))
737 #define RQ_DROP_LVL_CQ(skid, qsize) (((skid) * 256) / (qsize))
738
739 /* RED and drop levels of AURA for packet reception.
740 * For AURA level is measure of fullness (0x0 = empty, 255 = full).
741 * Eg: For RQ length 1K, for pass/drop level 204/230.
742 * RED accepts pkts if free pointers > 102 & <= 205.
743 * Drops pkts if free pointers < 102.
744 */
745 #define RQ_BP_LVL_AURA (255 - ((85 * 256) / 100)) /* BP when 85% is full */
746 #define RQ_PASS_LVL_AURA (255 - ((95 * 256) / 100)) /* RED when 95% is full */
747 #define RQ_DROP_LVL_AURA (255 - ((99 * 256) / 100)) /* Drop when 99% is full */
748
otx2_rq_init(struct otx2_nic * pfvf,u16 qidx,u16 lpb_aura)749 static int otx2_rq_init(struct otx2_nic *pfvf, u16 qidx, u16 lpb_aura)
750 {
751 struct otx2_qset *qset = &pfvf->qset;
752 struct nix_aq_enq_req *aq;
753
754 /* Get memory to put this msg */
755 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
756 if (!aq)
757 return -ENOMEM;
758
759 aq->rq.cq = qidx;
760 aq->rq.ena = 1;
761 aq->rq.pb_caching = 1;
762 aq->rq.lpb_aura = lpb_aura; /* Use large packet buffer aura */
763 aq->rq.lpb_sizem1 = (DMA_BUFFER_LEN(pfvf->rbsize) / 8) - 1;
764 aq->rq.xqe_imm_size = 0; /* Copying of packet to CQE not needed */
765 aq->rq.flow_tagw = 32; /* Copy full 32bit flow_tag to CQE header */
766 aq->rq.qint_idx = 0;
767 aq->rq.lpb_drop_ena = 1; /* Enable RED dropping for AURA */
768 aq->rq.xqe_drop_ena = 1; /* Enable RED dropping for CQ/SSO */
769 aq->rq.xqe_pass = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
770 aq->rq.xqe_drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
771 aq->rq.lpb_aura_pass = RQ_PASS_LVL_AURA;
772 aq->rq.lpb_aura_drop = RQ_DROP_LVL_AURA;
773
774 /* Fill AQ info */
775 aq->qidx = qidx;
776 aq->ctype = NIX_AQ_CTYPE_RQ;
777 aq->op = NIX_AQ_INSTOP_INIT;
778
779 return otx2_sync_mbox_msg(&pfvf->mbox);
780 }
781
otx2_sq_aq_init(void * dev,u16 qidx,u16 sqb_aura)782 int otx2_sq_aq_init(void *dev, u16 qidx, u16 sqb_aura)
783 {
784 struct otx2_nic *pfvf = dev;
785 struct otx2_snd_queue *sq;
786 struct nix_aq_enq_req *aq;
787
788 sq = &pfvf->qset.sq[qidx];
789 sq->lmt_addr = (__force u64 *)(pfvf->reg_base + LMT_LF_LMTLINEX(qidx));
790 /* Get memory to put this msg */
791 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
792 if (!aq)
793 return -ENOMEM;
794
795 aq->sq.cq = pfvf->hw.rx_queues + qidx;
796 aq->sq.max_sqe_size = NIX_MAXSQESZ_W16; /* 128 byte */
797 aq->sq.cq_ena = 1;
798 aq->sq.ena = 1;
799 /* Only one SMQ is allocated, map all SQ's to that SMQ */
800 aq->sq.smq = pfvf->hw.txschq_list[NIX_TXSCH_LVL_SMQ][0];
801 aq->sq.smq_rr_quantum = mtu_to_dwrr_weight(pfvf, pfvf->tx_max_pktlen);
802 aq->sq.default_chan = pfvf->hw.tx_chan_base;
803 aq->sq.sqe_stype = NIX_STYPE_STF; /* Cache SQB */
804 aq->sq.sqb_aura = sqb_aura;
805 aq->sq.sq_int_ena = NIX_SQINT_BITS;
806 aq->sq.qint_idx = 0;
807 /* Due pipelining impact minimum 2000 unused SQ CQE's
808 * need to maintain to avoid CQ overflow.
809 */
810 aq->sq.cq_limit = ((SEND_CQ_SKID * 256) / (pfvf->qset.sqe_cnt));
811
812 /* Fill AQ info */
813 aq->qidx = qidx;
814 aq->ctype = NIX_AQ_CTYPE_SQ;
815 aq->op = NIX_AQ_INSTOP_INIT;
816
817 return otx2_sync_mbox_msg(&pfvf->mbox);
818 }
819
otx2_sq_init(struct otx2_nic * pfvf,u16 qidx,u16 sqb_aura)820 static int otx2_sq_init(struct otx2_nic *pfvf, u16 qidx, u16 sqb_aura)
821 {
822 struct otx2_qset *qset = &pfvf->qset;
823 struct otx2_snd_queue *sq;
824 struct otx2_pool *pool;
825 int err;
826
827 pool = &pfvf->qset.pool[sqb_aura];
828 sq = &qset->sq[qidx];
829 sq->sqe_size = NIX_SQESZ_W16 ? 64 : 128;
830 sq->sqe_cnt = qset->sqe_cnt;
831
832 err = qmem_alloc(pfvf->dev, &sq->sqe, 1, sq->sqe_size);
833 if (err)
834 return err;
835
836 if (qidx < pfvf->hw.tx_queues) {
837 err = qmem_alloc(pfvf->dev, &sq->tso_hdrs, qset->sqe_cnt,
838 TSO_HEADER_SIZE);
839 if (err)
840 return err;
841 }
842
843 sq->sqe_base = sq->sqe->base;
844 sq->sg = kcalloc(qset->sqe_cnt, sizeof(struct sg_list), GFP_KERNEL);
845 if (!sq->sg)
846 return -ENOMEM;
847
848 if (pfvf->ptp && qidx < pfvf->hw.tx_queues) {
849 err = qmem_alloc(pfvf->dev, &sq->timestamps, qset->sqe_cnt,
850 sizeof(*sq->timestamps));
851 if (err)
852 return err;
853 }
854
855 sq->head = 0;
856 sq->sqe_per_sqb = (pfvf->hw.sqb_size / sq->sqe_size) - 1;
857 sq->num_sqbs = (qset->sqe_cnt + sq->sqe_per_sqb) / sq->sqe_per_sqb;
858 /* Set SQE threshold to 10% of total SQEs */
859 sq->sqe_thresh = ((sq->num_sqbs * sq->sqe_per_sqb) * 10) / 100;
860 sq->aura_id = sqb_aura;
861 sq->aura_fc_addr = pool->fc_addr->base;
862 sq->io_addr = (__force u64)otx2_get_regaddr(pfvf, NIX_LF_OP_SENDX(0));
863
864 sq->stats.bytes = 0;
865 sq->stats.pkts = 0;
866
867 return pfvf->hw_ops->sq_aq_init(pfvf, qidx, sqb_aura);
868
869 }
870
otx2_cq_init(struct otx2_nic * pfvf,u16 qidx)871 static int otx2_cq_init(struct otx2_nic *pfvf, u16 qidx)
872 {
873 struct otx2_qset *qset = &pfvf->qset;
874 int err, pool_id, non_xdp_queues;
875 struct nix_aq_enq_req *aq;
876 struct otx2_cq_queue *cq;
877
878 cq = &qset->cq[qidx];
879 cq->cq_idx = qidx;
880 non_xdp_queues = pfvf->hw.rx_queues + pfvf->hw.tx_queues;
881 if (qidx < pfvf->hw.rx_queues) {
882 cq->cq_type = CQ_RX;
883 cq->cint_idx = qidx;
884 cq->cqe_cnt = qset->rqe_cnt;
885 if (pfvf->xdp_prog)
886 xdp_rxq_info_reg(&cq->xdp_rxq, pfvf->netdev, qidx, 0);
887 } else if (qidx < non_xdp_queues) {
888 cq->cq_type = CQ_TX;
889 cq->cint_idx = qidx - pfvf->hw.rx_queues;
890 cq->cqe_cnt = qset->sqe_cnt;
891 } else {
892 cq->cq_type = CQ_XDP;
893 cq->cint_idx = qidx - non_xdp_queues;
894 cq->cqe_cnt = qset->sqe_cnt;
895 }
896 cq->cqe_size = pfvf->qset.xqe_size;
897
898 /* Allocate memory for CQEs */
899 err = qmem_alloc(pfvf->dev, &cq->cqe, cq->cqe_cnt, cq->cqe_size);
900 if (err)
901 return err;
902
903 /* Save CQE CPU base for faster reference */
904 cq->cqe_base = cq->cqe->base;
905 /* In case where all RQs auras point to single pool,
906 * all CQs receive buffer pool also point to same pool.
907 */
908 pool_id = ((cq->cq_type == CQ_RX) &&
909 (pfvf->hw.rqpool_cnt != pfvf->hw.rx_queues)) ? 0 : qidx;
910 cq->rbpool = &qset->pool[pool_id];
911 cq->refill_task_sched = false;
912
913 /* Get memory to put this msg */
914 aq = otx2_mbox_alloc_msg_nix_aq_enq(&pfvf->mbox);
915 if (!aq)
916 return -ENOMEM;
917
918 aq->cq.ena = 1;
919 aq->cq.qsize = Q_SIZE(cq->cqe_cnt, 4);
920 aq->cq.caching = 1;
921 aq->cq.base = cq->cqe->iova;
922 aq->cq.cint_idx = cq->cint_idx;
923 aq->cq.cq_err_int_ena = NIX_CQERRINT_BITS;
924 aq->cq.qint_idx = 0;
925 aq->cq.avg_level = 255;
926
927 if (qidx < pfvf->hw.rx_queues) {
928 aq->cq.drop = RQ_DROP_LVL_CQ(pfvf->hw.rq_skid, cq->cqe_cnt);
929 aq->cq.drop_ena = 1;
930
931 if (!is_otx2_lbkvf(pfvf->pdev)) {
932 /* Enable receive CQ backpressure */
933 aq->cq.bp_ena = 1;
934 aq->cq.bpid = pfvf->bpid[0];
935
936 /* Set backpressure level is same as cq pass level */
937 aq->cq.bp = RQ_PASS_LVL_CQ(pfvf->hw.rq_skid, qset->rqe_cnt);
938 }
939 }
940
941 /* Fill AQ info */
942 aq->qidx = qidx;
943 aq->ctype = NIX_AQ_CTYPE_CQ;
944 aq->op = NIX_AQ_INSTOP_INIT;
945
946 return otx2_sync_mbox_msg(&pfvf->mbox);
947 }
948
otx2_pool_refill_task(struct work_struct * work)949 static void otx2_pool_refill_task(struct work_struct *work)
950 {
951 struct otx2_cq_queue *cq;
952 struct otx2_pool *rbpool;
953 struct refill_work *wrk;
954 int qidx, free_ptrs = 0;
955 struct otx2_nic *pfvf;
956 dma_addr_t bufptr;
957
958 wrk = container_of(work, struct refill_work, pool_refill_work.work);
959 pfvf = wrk->pf;
960 qidx = wrk - pfvf->refill_wrk;
961 cq = &pfvf->qset.cq[qidx];
962 rbpool = cq->rbpool;
963 free_ptrs = cq->pool_ptrs;
964
965 while (cq->pool_ptrs) {
966 if (otx2_alloc_rbuf(pfvf, rbpool, &bufptr)) {
967 /* Schedule a WQ if we fails to free atleast half of the
968 * pointers else enable napi for this RQ.
969 */
970 if (!((free_ptrs - cq->pool_ptrs) > free_ptrs / 2)) {
971 struct delayed_work *dwork;
972
973 dwork = &wrk->pool_refill_work;
974 schedule_delayed_work(dwork,
975 msecs_to_jiffies(100));
976 } else {
977 cq->refill_task_sched = false;
978 }
979 return;
980 }
981 pfvf->hw_ops->aura_freeptr(pfvf, qidx, bufptr + OTX2_HEAD_ROOM);
982 cq->pool_ptrs--;
983 }
984 cq->refill_task_sched = false;
985 }
986
otx2_config_nix_queues(struct otx2_nic * pfvf)987 int otx2_config_nix_queues(struct otx2_nic *pfvf)
988 {
989 int qidx, err;
990
991 /* Initialize RX queues */
992 for (qidx = 0; qidx < pfvf->hw.rx_queues; qidx++) {
993 u16 lpb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, qidx);
994
995 err = otx2_rq_init(pfvf, qidx, lpb_aura);
996 if (err)
997 return err;
998 }
999
1000 /* Initialize TX queues */
1001 for (qidx = 0; qidx < pfvf->hw.tot_tx_queues; qidx++) {
1002 u16 sqb_aura = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1003
1004 err = otx2_sq_init(pfvf, qidx, sqb_aura);
1005 if (err)
1006 return err;
1007 }
1008
1009 /* Initialize completion queues */
1010 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1011 err = otx2_cq_init(pfvf, qidx);
1012 if (err)
1013 return err;
1014 }
1015
1016 pfvf->cq_op_addr = (__force u64 *)otx2_get_regaddr(pfvf,
1017 NIX_LF_CQ_OP_STATUS);
1018
1019 /* Initialize work queue for receive buffer refill */
1020 pfvf->refill_wrk = devm_kcalloc(pfvf->dev, pfvf->qset.cq_cnt,
1021 sizeof(struct refill_work), GFP_KERNEL);
1022 if (!pfvf->refill_wrk)
1023 return -ENOMEM;
1024
1025 for (qidx = 0; qidx < pfvf->qset.cq_cnt; qidx++) {
1026 pfvf->refill_wrk[qidx].pf = pfvf;
1027 INIT_DELAYED_WORK(&pfvf->refill_wrk[qidx].pool_refill_work,
1028 otx2_pool_refill_task);
1029 }
1030 return 0;
1031 }
1032
otx2_config_nix(struct otx2_nic * pfvf)1033 int otx2_config_nix(struct otx2_nic *pfvf)
1034 {
1035 struct nix_lf_alloc_req *nixlf;
1036 struct nix_lf_alloc_rsp *rsp;
1037 int err;
1038
1039 pfvf->qset.xqe_size = NIX_XQESZ_W16 ? 128 : 512;
1040
1041 /* Get memory to put this msg */
1042 nixlf = otx2_mbox_alloc_msg_nix_lf_alloc(&pfvf->mbox);
1043 if (!nixlf)
1044 return -ENOMEM;
1045
1046 /* Set RQ/SQ/CQ counts */
1047 nixlf->rq_cnt = pfvf->hw.rx_queues;
1048 nixlf->sq_cnt = pfvf->hw.tot_tx_queues;
1049 nixlf->cq_cnt = pfvf->qset.cq_cnt;
1050 nixlf->rss_sz = MAX_RSS_INDIR_TBL_SIZE;
1051 nixlf->rss_grps = MAX_RSS_GROUPS;
1052 nixlf->xqe_sz = NIX_XQESZ_W16;
1053 /* We don't know absolute NPA LF idx attached.
1054 * AF will replace 'RVU_DEFAULT_PF_FUNC' with
1055 * NPA LF attached to this RVU PF/VF.
1056 */
1057 nixlf->npa_func = RVU_DEFAULT_PF_FUNC;
1058 /* Disable alignment pad, enable L2 length check,
1059 * enable L4 TCP/UDP checksum verification.
1060 */
1061 nixlf->rx_cfg = BIT_ULL(33) | BIT_ULL(35) | BIT_ULL(37);
1062
1063 err = otx2_sync_mbox_msg(&pfvf->mbox);
1064 if (err)
1065 return err;
1066
1067 rsp = (struct nix_lf_alloc_rsp *)otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0,
1068 &nixlf->hdr);
1069 if (IS_ERR(rsp))
1070 return PTR_ERR(rsp);
1071
1072 if (rsp->qints < 1)
1073 return -ENXIO;
1074
1075 return rsp->hdr.rc;
1076 }
1077
otx2_sq_free_sqbs(struct otx2_nic * pfvf)1078 void otx2_sq_free_sqbs(struct otx2_nic *pfvf)
1079 {
1080 struct otx2_qset *qset = &pfvf->qset;
1081 struct otx2_hw *hw = &pfvf->hw;
1082 struct otx2_snd_queue *sq;
1083 int sqb, qidx;
1084 u64 iova, pa;
1085
1086 for (qidx = 0; qidx < hw->tot_tx_queues; qidx++) {
1087 sq = &qset->sq[qidx];
1088 if (!sq->sqb_ptrs)
1089 continue;
1090 for (sqb = 0; sqb < sq->sqb_count; sqb++) {
1091 if (!sq->sqb_ptrs[sqb])
1092 continue;
1093 iova = sq->sqb_ptrs[sqb];
1094 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1095 dma_unmap_page_attrs(pfvf->dev, iova, hw->sqb_size,
1096 DMA_FROM_DEVICE,
1097 DMA_ATTR_SKIP_CPU_SYNC);
1098 put_page(virt_to_page(phys_to_virt(pa)));
1099 }
1100 sq->sqb_count = 0;
1101 }
1102 }
1103
otx2_free_aura_ptr(struct otx2_nic * pfvf,int type)1104 void otx2_free_aura_ptr(struct otx2_nic *pfvf, int type)
1105 {
1106 int pool_id, pool_start = 0, pool_end = 0, size = 0;
1107 u64 iova, pa;
1108
1109 if (type == AURA_NIX_SQ) {
1110 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1111 pool_end = pool_start + pfvf->hw.sqpool_cnt;
1112 size = pfvf->hw.sqb_size;
1113 }
1114 if (type == AURA_NIX_RQ) {
1115 pool_start = otx2_get_pool_idx(pfvf, type, 0);
1116 pool_end = pfvf->hw.rqpool_cnt;
1117 size = pfvf->rbsize;
1118 }
1119
1120 /* Free SQB and RQB pointers from the aura pool */
1121 for (pool_id = pool_start; pool_id < pool_end; pool_id++) {
1122 iova = otx2_aura_allocptr(pfvf, pool_id);
1123 while (iova) {
1124 if (type == AURA_NIX_RQ)
1125 iova -= OTX2_HEAD_ROOM;
1126
1127 pa = otx2_iova_to_phys(pfvf->iommu_domain, iova);
1128 dma_unmap_page_attrs(pfvf->dev, iova, size,
1129 DMA_FROM_DEVICE,
1130 DMA_ATTR_SKIP_CPU_SYNC);
1131 put_page(virt_to_page(phys_to_virt(pa)));
1132 iova = otx2_aura_allocptr(pfvf, pool_id);
1133 }
1134 }
1135 }
1136
otx2_aura_pool_free(struct otx2_nic * pfvf)1137 void otx2_aura_pool_free(struct otx2_nic *pfvf)
1138 {
1139 struct otx2_pool *pool;
1140 int pool_id;
1141
1142 if (!pfvf->qset.pool)
1143 return;
1144
1145 for (pool_id = 0; pool_id < pfvf->hw.pool_cnt; pool_id++) {
1146 pool = &pfvf->qset.pool[pool_id];
1147 qmem_free(pfvf->dev, pool->stack);
1148 qmem_free(pfvf->dev, pool->fc_addr);
1149 }
1150 devm_kfree(pfvf->dev, pfvf->qset.pool);
1151 pfvf->qset.pool = NULL;
1152 }
1153
otx2_aura_init(struct otx2_nic * pfvf,int aura_id,int pool_id,int numptrs)1154 static int otx2_aura_init(struct otx2_nic *pfvf, int aura_id,
1155 int pool_id, int numptrs)
1156 {
1157 struct npa_aq_enq_req *aq;
1158 struct otx2_pool *pool;
1159 int err;
1160
1161 pool = &pfvf->qset.pool[pool_id];
1162
1163 /* Allocate memory for HW to update Aura count.
1164 * Alloc one cache line, so that it fits all FC_STYPE modes.
1165 */
1166 if (!pool->fc_addr) {
1167 err = qmem_alloc(pfvf->dev, &pool->fc_addr, 1, OTX2_ALIGN);
1168 if (err)
1169 return err;
1170 }
1171
1172 /* Initialize this aura's context via AF */
1173 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1174 if (!aq) {
1175 /* Shared mbox memory buffer is full, flush it and retry */
1176 err = otx2_sync_mbox_msg(&pfvf->mbox);
1177 if (err)
1178 return err;
1179 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1180 if (!aq)
1181 return -ENOMEM;
1182 }
1183
1184 aq->aura_id = aura_id;
1185 /* Will be filled by AF with correct pool context address */
1186 aq->aura.pool_addr = pool_id;
1187 aq->aura.pool_caching = 1;
1188 aq->aura.shift = ilog2(numptrs) - 8;
1189 aq->aura.count = numptrs;
1190 aq->aura.limit = numptrs;
1191 aq->aura.avg_level = 255;
1192 aq->aura.ena = 1;
1193 aq->aura.fc_ena = 1;
1194 aq->aura.fc_addr = pool->fc_addr->iova;
1195 aq->aura.fc_hyst_bits = 0; /* Store count on all updates */
1196
1197 /* Enable backpressure for RQ aura */
1198 if (aura_id < pfvf->hw.rqpool_cnt && !is_otx2_lbkvf(pfvf->pdev)) {
1199 aq->aura.bp_ena = 0;
1200 /* If NIX1 LF is attached then specify NIX1_RX.
1201 *
1202 * Below NPA_AURA_S[BP_ENA] is set according to the
1203 * NPA_BPINTF_E enumeration given as:
1204 * 0x0 + a*0x1 where 'a' is 0 for NIX0_RX and 1 for NIX1_RX so
1205 * NIX0_RX is 0x0 + 0*0x1 = 0
1206 * NIX1_RX is 0x0 + 1*0x1 = 1
1207 * But in HRM it is given that
1208 * "NPA_AURA_S[BP_ENA](w1[33:32]) - Enable aura backpressure to
1209 * NIX-RX based on [BP] level. One bit per NIX-RX; index
1210 * enumerated by NPA_BPINTF_E."
1211 */
1212 if (pfvf->nix_blkaddr == BLKADDR_NIX1)
1213 aq->aura.bp_ena = 1;
1214 aq->aura.nix0_bpid = pfvf->bpid[0];
1215
1216 /* Set backpressure level for RQ's Aura */
1217 aq->aura.bp = RQ_BP_LVL_AURA;
1218 }
1219
1220 /* Fill AQ info */
1221 aq->ctype = NPA_AQ_CTYPE_AURA;
1222 aq->op = NPA_AQ_INSTOP_INIT;
1223
1224 return 0;
1225 }
1226
otx2_pool_init(struct otx2_nic * pfvf,u16 pool_id,int stack_pages,int numptrs,int buf_size)1227 static int otx2_pool_init(struct otx2_nic *pfvf, u16 pool_id,
1228 int stack_pages, int numptrs, int buf_size)
1229 {
1230 struct npa_aq_enq_req *aq;
1231 struct otx2_pool *pool;
1232 int err;
1233
1234 pool = &pfvf->qset.pool[pool_id];
1235 /* Alloc memory for stack which is used to store buffer pointers */
1236 err = qmem_alloc(pfvf->dev, &pool->stack,
1237 stack_pages, pfvf->hw.stack_pg_bytes);
1238 if (err)
1239 return err;
1240
1241 pool->rbsize = buf_size;
1242
1243 /* Initialize this pool's context via AF */
1244 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1245 if (!aq) {
1246 /* Shared mbox memory buffer is full, flush it and retry */
1247 err = otx2_sync_mbox_msg(&pfvf->mbox);
1248 if (err) {
1249 qmem_free(pfvf->dev, pool->stack);
1250 return err;
1251 }
1252 aq = otx2_mbox_alloc_msg_npa_aq_enq(&pfvf->mbox);
1253 if (!aq) {
1254 qmem_free(pfvf->dev, pool->stack);
1255 return -ENOMEM;
1256 }
1257 }
1258
1259 aq->aura_id = pool_id;
1260 aq->pool.stack_base = pool->stack->iova;
1261 aq->pool.stack_caching = 1;
1262 aq->pool.ena = 1;
1263 aq->pool.buf_size = buf_size / 128;
1264 aq->pool.stack_max_pages = stack_pages;
1265 aq->pool.shift = ilog2(numptrs) - 8;
1266 aq->pool.ptr_start = 0;
1267 aq->pool.ptr_end = ~0ULL;
1268
1269 /* Fill AQ info */
1270 aq->ctype = NPA_AQ_CTYPE_POOL;
1271 aq->op = NPA_AQ_INSTOP_INIT;
1272
1273 return 0;
1274 }
1275
otx2_sq_aura_pool_init(struct otx2_nic * pfvf)1276 int otx2_sq_aura_pool_init(struct otx2_nic *pfvf)
1277 {
1278 int qidx, pool_id, stack_pages, num_sqbs;
1279 struct otx2_qset *qset = &pfvf->qset;
1280 struct otx2_hw *hw = &pfvf->hw;
1281 struct otx2_snd_queue *sq;
1282 struct otx2_pool *pool;
1283 dma_addr_t bufptr;
1284 int err, ptr;
1285
1286 /* Calculate number of SQBs needed.
1287 *
1288 * For a 128byte SQE, and 4K size SQB, 31 SQEs will fit in one SQB.
1289 * Last SQE is used for pointing to next SQB.
1290 */
1291 num_sqbs = (hw->sqb_size / 128) - 1;
1292 num_sqbs = (qset->sqe_cnt + num_sqbs) / num_sqbs;
1293
1294 /* Get no of stack pages needed */
1295 stack_pages =
1296 (num_sqbs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1297
1298 for (qidx = 0; qidx < hw->tot_tx_queues; qidx++) {
1299 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1300 /* Initialize aura context */
1301 err = otx2_aura_init(pfvf, pool_id, pool_id, num_sqbs);
1302 if (err)
1303 goto fail;
1304
1305 /* Initialize pool context */
1306 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1307 num_sqbs, hw->sqb_size);
1308 if (err)
1309 goto fail;
1310 }
1311
1312 /* Flush accumulated messages */
1313 err = otx2_sync_mbox_msg(&pfvf->mbox);
1314 if (err)
1315 goto fail;
1316
1317 /* Allocate pointers and free them to aura/pool */
1318 for (qidx = 0; qidx < hw->tot_tx_queues; qidx++) {
1319 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_SQ, qidx);
1320 pool = &pfvf->qset.pool[pool_id];
1321
1322 sq = &qset->sq[qidx];
1323 sq->sqb_count = 0;
1324 sq->sqb_ptrs = kcalloc(num_sqbs, sizeof(*sq->sqb_ptrs), GFP_KERNEL);
1325 if (!sq->sqb_ptrs)
1326 return -ENOMEM;
1327
1328 for (ptr = 0; ptr < num_sqbs; ptr++) {
1329 if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1330 return -ENOMEM;
1331 pfvf->hw_ops->aura_freeptr(pfvf, pool_id, bufptr);
1332 sq->sqb_ptrs[sq->sqb_count++] = (u64)bufptr;
1333 }
1334 }
1335
1336 return 0;
1337 fail:
1338 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1339 otx2_aura_pool_free(pfvf);
1340 return err;
1341 }
1342
otx2_rq_aura_pool_init(struct otx2_nic * pfvf)1343 int otx2_rq_aura_pool_init(struct otx2_nic *pfvf)
1344 {
1345 struct otx2_hw *hw = &pfvf->hw;
1346 int stack_pages, pool_id, rq;
1347 struct otx2_pool *pool;
1348 int err, ptr, num_ptrs;
1349 dma_addr_t bufptr;
1350
1351 num_ptrs = pfvf->qset.rqe_cnt;
1352
1353 stack_pages =
1354 (num_ptrs + hw->stack_pg_ptrs - 1) / hw->stack_pg_ptrs;
1355
1356 for (rq = 0; rq < hw->rx_queues; rq++) {
1357 pool_id = otx2_get_pool_idx(pfvf, AURA_NIX_RQ, rq);
1358 /* Initialize aura context */
1359 err = otx2_aura_init(pfvf, pool_id, pool_id, num_ptrs);
1360 if (err)
1361 goto fail;
1362 }
1363 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1364 err = otx2_pool_init(pfvf, pool_id, stack_pages,
1365 num_ptrs, pfvf->rbsize);
1366 if (err)
1367 goto fail;
1368 }
1369
1370 /* Flush accumulated messages */
1371 err = otx2_sync_mbox_msg(&pfvf->mbox);
1372 if (err)
1373 goto fail;
1374
1375 /* Allocate pointers and free them to aura/pool */
1376 for (pool_id = 0; pool_id < hw->rqpool_cnt; pool_id++) {
1377 pool = &pfvf->qset.pool[pool_id];
1378 for (ptr = 0; ptr < num_ptrs; ptr++) {
1379 if (otx2_alloc_rbuf(pfvf, pool, &bufptr))
1380 return -ENOMEM;
1381 pfvf->hw_ops->aura_freeptr(pfvf, pool_id,
1382 bufptr + OTX2_HEAD_ROOM);
1383 }
1384 }
1385
1386 return 0;
1387 fail:
1388 otx2_mbox_reset(&pfvf->mbox.mbox, 0);
1389 otx2_aura_pool_free(pfvf);
1390 return err;
1391 }
1392
otx2_config_npa(struct otx2_nic * pfvf)1393 int otx2_config_npa(struct otx2_nic *pfvf)
1394 {
1395 struct otx2_qset *qset = &pfvf->qset;
1396 struct npa_lf_alloc_req *npalf;
1397 struct otx2_hw *hw = &pfvf->hw;
1398 int aura_cnt;
1399
1400 /* Pool - Stack of free buffer pointers
1401 * Aura - Alloc/frees pointers from/to pool for NIX DMA.
1402 */
1403
1404 if (!hw->pool_cnt)
1405 return -EINVAL;
1406
1407 qset->pool = devm_kcalloc(pfvf->dev, hw->pool_cnt,
1408 sizeof(struct otx2_pool), GFP_KERNEL);
1409 if (!qset->pool)
1410 return -ENOMEM;
1411
1412 /* Get memory to put this msg */
1413 npalf = otx2_mbox_alloc_msg_npa_lf_alloc(&pfvf->mbox);
1414 if (!npalf)
1415 return -ENOMEM;
1416
1417 /* Set aura and pool counts */
1418 npalf->nr_pools = hw->pool_cnt;
1419 aura_cnt = ilog2(roundup_pow_of_two(hw->pool_cnt));
1420 npalf->aura_sz = (aura_cnt >= ilog2(128)) ? (aura_cnt - 6) : 1;
1421
1422 return otx2_sync_mbox_msg(&pfvf->mbox);
1423 }
1424
otx2_detach_resources(struct mbox * mbox)1425 int otx2_detach_resources(struct mbox *mbox)
1426 {
1427 struct rsrc_detach *detach;
1428
1429 mutex_lock(&mbox->lock);
1430 detach = otx2_mbox_alloc_msg_detach_resources(mbox);
1431 if (!detach) {
1432 mutex_unlock(&mbox->lock);
1433 return -ENOMEM;
1434 }
1435
1436 /* detach all */
1437 detach->partial = false;
1438
1439 /* Send detach request to AF */
1440 otx2_mbox_msg_send(&mbox->mbox, 0);
1441 mutex_unlock(&mbox->lock);
1442 return 0;
1443 }
1444 EXPORT_SYMBOL(otx2_detach_resources);
1445
otx2_attach_npa_nix(struct otx2_nic * pfvf)1446 int otx2_attach_npa_nix(struct otx2_nic *pfvf)
1447 {
1448 struct rsrc_attach *attach;
1449 struct msg_req *msix;
1450 int err;
1451
1452 mutex_lock(&pfvf->mbox.lock);
1453 /* Get memory to put this msg */
1454 attach = otx2_mbox_alloc_msg_attach_resources(&pfvf->mbox);
1455 if (!attach) {
1456 mutex_unlock(&pfvf->mbox.lock);
1457 return -ENOMEM;
1458 }
1459
1460 attach->npalf = true;
1461 attach->nixlf = true;
1462
1463 /* Send attach request to AF */
1464 err = otx2_sync_mbox_msg(&pfvf->mbox);
1465 if (err) {
1466 mutex_unlock(&pfvf->mbox.lock);
1467 return err;
1468 }
1469
1470 pfvf->nix_blkaddr = BLKADDR_NIX0;
1471
1472 /* If the platform has two NIX blocks then LF may be
1473 * allocated from NIX1.
1474 */
1475 if (otx2_read64(pfvf, RVU_PF_BLOCK_ADDRX_DISC(BLKADDR_NIX1)) & 0x1FFULL)
1476 pfvf->nix_blkaddr = BLKADDR_NIX1;
1477
1478 /* Get NPA and NIX MSIX vector offsets */
1479 msix = otx2_mbox_alloc_msg_msix_offset(&pfvf->mbox);
1480 if (!msix) {
1481 mutex_unlock(&pfvf->mbox.lock);
1482 return -ENOMEM;
1483 }
1484
1485 err = otx2_sync_mbox_msg(&pfvf->mbox);
1486 if (err) {
1487 mutex_unlock(&pfvf->mbox.lock);
1488 return err;
1489 }
1490 mutex_unlock(&pfvf->mbox.lock);
1491
1492 if (pfvf->hw.npa_msixoff == MSIX_VECTOR_INVALID ||
1493 pfvf->hw.nix_msixoff == MSIX_VECTOR_INVALID) {
1494 dev_err(pfvf->dev,
1495 "RVUPF: Invalid MSIX vector offset for NPA/NIX\n");
1496 return -EINVAL;
1497 }
1498
1499 return 0;
1500 }
1501 EXPORT_SYMBOL(otx2_attach_npa_nix);
1502
otx2_ctx_disable(struct mbox * mbox,int type,bool npa)1503 void otx2_ctx_disable(struct mbox *mbox, int type, bool npa)
1504 {
1505 struct hwctx_disable_req *req;
1506
1507 mutex_lock(&mbox->lock);
1508 /* Request AQ to disable this context */
1509 if (npa)
1510 req = otx2_mbox_alloc_msg_npa_hwctx_disable(mbox);
1511 else
1512 req = otx2_mbox_alloc_msg_nix_hwctx_disable(mbox);
1513
1514 if (!req) {
1515 mutex_unlock(&mbox->lock);
1516 return;
1517 }
1518
1519 req->ctype = type;
1520
1521 if (otx2_sync_mbox_msg(mbox))
1522 dev_err(mbox->pfvf->dev, "%s failed to disable context\n",
1523 __func__);
1524
1525 mutex_unlock(&mbox->lock);
1526 }
1527
otx2_nix_config_bp(struct otx2_nic * pfvf,bool enable)1528 int otx2_nix_config_bp(struct otx2_nic *pfvf, bool enable)
1529 {
1530 struct nix_bp_cfg_req *req;
1531
1532 if (enable)
1533 req = otx2_mbox_alloc_msg_nix_bp_enable(&pfvf->mbox);
1534 else
1535 req = otx2_mbox_alloc_msg_nix_bp_disable(&pfvf->mbox);
1536
1537 if (!req)
1538 return -ENOMEM;
1539
1540 req->chan_base = 0;
1541 req->chan_cnt = 1;
1542 req->bpid_per_chan = 0;
1543
1544 return otx2_sync_mbox_msg(&pfvf->mbox);
1545 }
1546
1547 /* Mbox message handlers */
mbox_handler_cgx_stats(struct otx2_nic * pfvf,struct cgx_stats_rsp * rsp)1548 void mbox_handler_cgx_stats(struct otx2_nic *pfvf,
1549 struct cgx_stats_rsp *rsp)
1550 {
1551 int id;
1552
1553 for (id = 0; id < CGX_RX_STATS_COUNT; id++)
1554 pfvf->hw.cgx_rx_stats[id] = rsp->rx_stats[id];
1555 for (id = 0; id < CGX_TX_STATS_COUNT; id++)
1556 pfvf->hw.cgx_tx_stats[id] = rsp->tx_stats[id];
1557 }
1558
mbox_handler_cgx_fec_stats(struct otx2_nic * pfvf,struct cgx_fec_stats_rsp * rsp)1559 void mbox_handler_cgx_fec_stats(struct otx2_nic *pfvf,
1560 struct cgx_fec_stats_rsp *rsp)
1561 {
1562 pfvf->hw.cgx_fec_corr_blks += rsp->fec_corr_blks;
1563 pfvf->hw.cgx_fec_uncorr_blks += rsp->fec_uncorr_blks;
1564 }
1565
mbox_handler_nix_txsch_alloc(struct otx2_nic * pf,struct nix_txsch_alloc_rsp * rsp)1566 void mbox_handler_nix_txsch_alloc(struct otx2_nic *pf,
1567 struct nix_txsch_alloc_rsp *rsp)
1568 {
1569 int lvl, schq;
1570
1571 /* Setup transmit scheduler list */
1572 for (lvl = 0; lvl < NIX_TXSCH_LVL_CNT; lvl++)
1573 for (schq = 0; schq < rsp->schq[lvl]; schq++)
1574 pf->hw.txschq_list[lvl][schq] =
1575 rsp->schq_list[lvl][schq];
1576 }
1577 EXPORT_SYMBOL(mbox_handler_nix_txsch_alloc);
1578
mbox_handler_npa_lf_alloc(struct otx2_nic * pfvf,struct npa_lf_alloc_rsp * rsp)1579 void mbox_handler_npa_lf_alloc(struct otx2_nic *pfvf,
1580 struct npa_lf_alloc_rsp *rsp)
1581 {
1582 pfvf->hw.stack_pg_ptrs = rsp->stack_pg_ptrs;
1583 pfvf->hw.stack_pg_bytes = rsp->stack_pg_bytes;
1584 }
1585 EXPORT_SYMBOL(mbox_handler_npa_lf_alloc);
1586
mbox_handler_nix_lf_alloc(struct otx2_nic * pfvf,struct nix_lf_alloc_rsp * rsp)1587 void mbox_handler_nix_lf_alloc(struct otx2_nic *pfvf,
1588 struct nix_lf_alloc_rsp *rsp)
1589 {
1590 pfvf->hw.sqb_size = rsp->sqb_size;
1591 pfvf->hw.rx_chan_base = rsp->rx_chan_base;
1592 pfvf->hw.tx_chan_base = rsp->tx_chan_base;
1593 pfvf->hw.lso_tsov4_idx = rsp->lso_tsov4_idx;
1594 pfvf->hw.lso_tsov6_idx = rsp->lso_tsov6_idx;
1595 pfvf->hw.cgx_links = rsp->cgx_links;
1596 pfvf->hw.lbk_links = rsp->lbk_links;
1597 pfvf->hw.tx_link = rsp->tx_link;
1598 }
1599 EXPORT_SYMBOL(mbox_handler_nix_lf_alloc);
1600
mbox_handler_msix_offset(struct otx2_nic * pfvf,struct msix_offset_rsp * rsp)1601 void mbox_handler_msix_offset(struct otx2_nic *pfvf,
1602 struct msix_offset_rsp *rsp)
1603 {
1604 pfvf->hw.npa_msixoff = rsp->npa_msixoff;
1605 pfvf->hw.nix_msixoff = rsp->nix_msixoff;
1606 }
1607 EXPORT_SYMBOL(mbox_handler_msix_offset);
1608
mbox_handler_nix_bp_enable(struct otx2_nic * pfvf,struct nix_bp_cfg_rsp * rsp)1609 void mbox_handler_nix_bp_enable(struct otx2_nic *pfvf,
1610 struct nix_bp_cfg_rsp *rsp)
1611 {
1612 int chan, chan_id;
1613
1614 for (chan = 0; chan < rsp->chan_cnt; chan++) {
1615 chan_id = ((rsp->chan_bpid[chan] >> 10) & 0x7F);
1616 pfvf->bpid[chan_id] = rsp->chan_bpid[chan] & 0x3FF;
1617 }
1618 }
1619 EXPORT_SYMBOL(mbox_handler_nix_bp_enable);
1620
otx2_free_cints(struct otx2_nic * pfvf,int n)1621 void otx2_free_cints(struct otx2_nic *pfvf, int n)
1622 {
1623 struct otx2_qset *qset = &pfvf->qset;
1624 struct otx2_hw *hw = &pfvf->hw;
1625 int irq, qidx;
1626
1627 for (qidx = 0, irq = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1628 qidx < n;
1629 qidx++, irq++) {
1630 int vector = pci_irq_vector(pfvf->pdev, irq);
1631
1632 irq_set_affinity_hint(vector, NULL);
1633 free_cpumask_var(hw->affinity_mask[irq]);
1634 free_irq(vector, &qset->napi[qidx]);
1635 }
1636 }
1637
otx2_set_cints_affinity(struct otx2_nic * pfvf)1638 void otx2_set_cints_affinity(struct otx2_nic *pfvf)
1639 {
1640 struct otx2_hw *hw = &pfvf->hw;
1641 int vec, cpu, irq, cint;
1642
1643 vec = hw->nix_msixoff + NIX_LF_CINT_VEC_START;
1644 cpu = cpumask_first(cpu_online_mask);
1645
1646 /* CQ interrupts */
1647 for (cint = 0; cint < pfvf->hw.cint_cnt; cint++, vec++) {
1648 if (!alloc_cpumask_var(&hw->affinity_mask[vec], GFP_KERNEL))
1649 return;
1650
1651 cpumask_set_cpu(cpu, hw->affinity_mask[vec]);
1652
1653 irq = pci_irq_vector(pfvf->pdev, vec);
1654 irq_set_affinity_hint(irq, hw->affinity_mask[vec]);
1655
1656 cpu = cpumask_next(cpu, cpu_online_mask);
1657 if (unlikely(cpu >= nr_cpu_ids))
1658 cpu = 0;
1659 }
1660 }
1661
otx2_get_max_mtu(struct otx2_nic * pfvf)1662 u16 otx2_get_max_mtu(struct otx2_nic *pfvf)
1663 {
1664 struct nix_hw_info *rsp;
1665 struct msg_req *req;
1666 u16 max_mtu;
1667 int rc;
1668
1669 mutex_lock(&pfvf->mbox.lock);
1670
1671 req = otx2_mbox_alloc_msg_nix_get_hw_info(&pfvf->mbox);
1672 if (!req) {
1673 rc = -ENOMEM;
1674 goto out;
1675 }
1676
1677 rc = otx2_sync_mbox_msg(&pfvf->mbox);
1678 if (!rc) {
1679 rsp = (struct nix_hw_info *)
1680 otx2_mbox_get_rsp(&pfvf->mbox.mbox, 0, &req->hdr);
1681
1682 /* HW counts VLAN insertion bytes (8 for double tag)
1683 * irrespective of whether SQE is requesting to insert VLAN
1684 * in the packet or not. Hence these 8 bytes have to be
1685 * discounted from max packet size otherwise HW will throw
1686 * SMQ errors
1687 */
1688 max_mtu = rsp->max_mtu - 8 - OTX2_ETH_HLEN;
1689
1690 /* Also save DWRR MTU, needed for DWRR weight calculation */
1691 pfvf->hw.dwrr_mtu = rsp->rpm_dwrr_mtu;
1692 if (!pfvf->hw.dwrr_mtu)
1693 pfvf->hw.dwrr_mtu = 1;
1694 }
1695
1696 out:
1697 mutex_unlock(&pfvf->mbox.lock);
1698 if (rc) {
1699 dev_warn(pfvf->dev,
1700 "Failed to get MTU from hardware setting default value(1500)\n");
1701 max_mtu = 1500;
1702 }
1703 return max_mtu;
1704 }
1705 EXPORT_SYMBOL(otx2_get_max_mtu);
1706
1707 #define M(_name, _id, _fn_name, _req_type, _rsp_type) \
1708 int __weak \
1709 otx2_mbox_up_handler_ ## _fn_name(struct otx2_nic *pfvf, \
1710 struct _req_type *req, \
1711 struct _rsp_type *rsp) \
1712 { \
1713 /* Nothing to do here */ \
1714 return 0; \
1715 } \
1716 EXPORT_SYMBOL(otx2_mbox_up_handler_ ## _fn_name);
1717 MBOX_UP_CGX_MESSAGES
1718 #undef M
1719