1 /* SPDX-License-Identifier: GPL-2.0
2  *
3  * Copyright 2016-2019 HabanaLabs, Ltd.
4  * All Rights Reserved.
5  *
6  */
7 
8 #ifndef HABANALABSP_H_
9 #define HABANALABSP_H_
10 
11 #include "../include/common/cpucp_if.h"
12 #include "../include/common/qman_if.h"
13 #include "../include/hw_ip/mmu/mmu_general.h"
14 #include <uapi/misc/habanalabs.h>
15 
16 #include <linux/cdev.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqreturn.h>
19 #include <linux/dma-direction.h>
20 #include <linux/scatterlist.h>
21 #include <linux/hashtable.h>
22 #include <linux/debugfs.h>
23 #include <linux/rwsem.h>
24 #include <linux/bitfield.h>
25 #include <linux/genalloc.h>
26 #include <linux/sched/signal.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/coresight.h>
29 #include <linux/dma-buf.h>
30 
31 #define HL_NAME				"habanalabs"
32 
33 /* Use upper bits of mmap offset to store habana driver specific information.
34  * bits[63:61] - Encode mmap type
35  * bits[45:0]  - mmap offset value
36  *
37  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
38  *  defines are w.r.t to PAGE_SIZE
39  */
40 #define HL_MMAP_TYPE_SHIFT		(61 - PAGE_SHIFT)
41 #define HL_MMAP_TYPE_MASK		(0x7ull << HL_MMAP_TYPE_SHIFT)
42 #define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
43 #define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
44 
45 #define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
46 #define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
47 
48 #define HL_PENDING_RESET_PER_SEC	10
49 #define HL_PENDING_RESET_MAX_TRIALS	60 /* 10 minutes */
50 #define HL_PENDING_RESET_LONG_SEC	60
51 
52 #define HL_HARD_RESET_MAX_TIMEOUT	120
53 #define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)
54 
55 #define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
56 
57 #define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
58 
59 #define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
60 
61 #define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
62 #define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
63 
64 #define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
65 
66 #define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */
67 
68 #define HL_COMMON_USER_INTERRUPT_ID	0xFFF
69 
70 #define HL_STATE_DUMP_HIST_LEN		5
71 
72 /* Default value for device reset trigger , an invalid value */
73 #define HL_RESET_TRIGGER_DEFAULT	0xFF
74 
75 #define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
76 #define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
77 
78 /* Memory */
79 #define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
80 
81 /* MMU */
82 #define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
83 
84 /**
85  * enum hl_mmu_page_table_locaion - mmu page table location
86  * @MMU_DR_PGT: page-table is located on device DRAM.
87  * @MMU_HR_PGT: page-table is located on host memory.
88  * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
89  */
90 enum hl_mmu_page_table_location {
91 	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
92 	MMU_HR_PGT,		/* host resident MMU PGT */
93 	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
94 };
95 
96 /*
97  * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
98  * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
99  */
100 #define HL_RSVD_SOBS			2
101 #define HL_RSVD_MONS			1
102 
103 /*
104  * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
105  */
106 #define HL_COLLECTIVE_RSVD_MSTR_MONS	2
107 
108 #define HL_MAX_SOB_VAL			(1 << 15)
109 
110 #define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
111 #define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
112 
113 #define HL_PCI_NUM_BARS			6
114 
115 #define HL_MAX_DCORES			4
116 
117 /*
118  * Reset Flags
119  *
120  * - HL_RESET_HARD
121  *       If set do hard reset to all engines. If not set reset just
122  *       compute/DMA engines.
123  *
124  * - HL_RESET_FROM_RESET_THREAD
125  *       Set if the caller is the hard-reset thread
126  *
127  * - HL_RESET_HEARTBEAT
128  *       Set if reset is due to heartbeat
129  *
130  * - HL_RESET_TDR
131  *       Set if reset is due to TDR
132  *
133  * - HL_RESET_DEVICE_RELEASE
134  *       Set if reset is due to device release
135  *
136  * - HL_RESET_FW
137  *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
138  *       only when running with secured f/w
139  *
140  * - HL_RESET_FW_FATAL_ERR
141  *       Set if reset is due to a fatal error from FW
142  */
143 
144 #define HL_RESET_HARD			(1 << 0)
145 #define HL_RESET_FROM_RESET_THREAD	(1 << 1)
146 #define HL_RESET_HEARTBEAT		(1 << 2)
147 #define HL_RESET_TDR			(1 << 3)
148 #define HL_RESET_DEVICE_RELEASE		(1 << 4)
149 #define HL_RESET_FW			(1 << 5)
150 #define HL_RESET_FW_FATAL_ERR		(1 << 6)
151 
152 #define HL_MAX_SOBS_PER_MONITOR	8
153 
154 /**
155  * struct hl_gen_wait_properties - properties for generating a wait CB
156  * @data: command buffer
157  * @q_idx: queue id is used to extract fence register address
158  * @size: offset in command buffer
159  * @sob_base: SOB base to use in this wait CB
160  * @sob_val: SOB value to wait for
161  * @mon_id: monitor to use in this wait CB
162  * @sob_mask: each bit represents a SOB offset from sob_base to be used
163  */
164 struct hl_gen_wait_properties {
165 	void	*data;
166 	u32	q_idx;
167 	u32	size;
168 	u16	sob_base;
169 	u16	sob_val;
170 	u16	mon_id;
171 	u8	sob_mask;
172 };
173 
174 /**
175  * struct pgt_info - MMU hop page info.
176  * @node: hash linked-list node for the pgts shadow hash of pgts.
177  * @phys_addr: physical address of the pgt.
178  * @shadow_addr: shadow hop in the host.
179  * @ctx: pointer to the owner ctx.
180  * @num_of_ptes: indicates how many ptes are used in the pgt.
181  *
182  * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
183  * is needed during mapping, a new page is allocated and this structure holds
184  * its essential information. During unmapping, if no valid PTEs remained in the
185  * page, it is freed with its pgt_info structure.
186  */
187 struct pgt_info {
188 	struct hlist_node	node;
189 	u64			phys_addr;
190 	u64			shadow_addr;
191 	struct hl_ctx		*ctx;
192 	int			num_of_ptes;
193 };
194 
195 struct hl_device;
196 struct hl_fpriv;
197 
198 /**
199  * enum hl_pci_match_mode - pci match mode per region
200  * @PCI_ADDRESS_MATCH_MODE: address match mode
201  * @PCI_BAR_MATCH_MODE: bar match mode
202  */
203 enum hl_pci_match_mode {
204 	PCI_ADDRESS_MATCH_MODE,
205 	PCI_BAR_MATCH_MODE
206 };
207 
208 /**
209  * enum hl_fw_component - F/W components to read version through registers.
210  * @FW_COMP_BOOT_FIT: boot fit.
211  * @FW_COMP_PREBOOT: preboot.
212  * @FW_COMP_LINUX: linux.
213  */
214 enum hl_fw_component {
215 	FW_COMP_BOOT_FIT,
216 	FW_COMP_PREBOOT,
217 	FW_COMP_LINUX,
218 };
219 
220 /**
221  * enum hl_fw_types - F/W types present in the system
222  * @FW_TYPE_LINUX: Linux image for device CPU
223  * @FW_TYPE_BOOT_CPU: Boot image for device CPU
224  * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
225  *                       (preboot, ppboot etc...)
226  * @FW_TYPE_ALL_TYPES: Mask for all types
227  */
228 enum hl_fw_types {
229 	FW_TYPE_LINUX = 0x1,
230 	FW_TYPE_BOOT_CPU = 0x2,
231 	FW_TYPE_PREBOOT_CPU = 0x4,
232 	FW_TYPE_ALL_TYPES =
233 		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
234 };
235 
236 /**
237  * enum hl_queue_type - Supported QUEUE types.
238  * @QUEUE_TYPE_NA: queue is not available.
239  * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
240  *                  host.
241  * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
242  *			memories and/or operates the compute engines.
243  * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
244  * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
245  *                 notifications are sent by H/W.
246  */
247 enum hl_queue_type {
248 	QUEUE_TYPE_NA,
249 	QUEUE_TYPE_EXT,
250 	QUEUE_TYPE_INT,
251 	QUEUE_TYPE_CPU,
252 	QUEUE_TYPE_HW
253 };
254 
255 enum hl_cs_type {
256 	CS_TYPE_DEFAULT,
257 	CS_TYPE_SIGNAL,
258 	CS_TYPE_WAIT,
259 	CS_TYPE_COLLECTIVE_WAIT,
260 	CS_RESERVE_SIGNALS,
261 	CS_UNRESERVE_SIGNALS
262 };
263 
264 /*
265  * struct hl_inbound_pci_region - inbound region descriptor
266  * @mode: pci match mode for this region
267  * @addr: region target address
268  * @size: region size in bytes
269  * @offset_in_bar: offset within bar (address match mode)
270  * @bar: bar id
271  */
272 struct hl_inbound_pci_region {
273 	enum hl_pci_match_mode	mode;
274 	u64			addr;
275 	u64			size;
276 	u64			offset_in_bar;
277 	u8			bar;
278 };
279 
280 /*
281  * struct hl_outbound_pci_region - outbound region descriptor
282  * @addr: region target address
283  * @size: region size in bytes
284  */
285 struct hl_outbound_pci_region {
286 	u64	addr;
287 	u64	size;
288 };
289 
290 /*
291  * enum queue_cb_alloc_flags - Indicates queue support for CBs that
292  * allocated by Kernel or by User
293  * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
294  * @CB_ALLOC_USER: support only CBs that allocated by User
295  */
296 enum queue_cb_alloc_flags {
297 	CB_ALLOC_KERNEL = 0x1,
298 	CB_ALLOC_USER   = 0x2
299 };
300 
301 /*
302  * struct hl_hw_sob - H/W SOB info.
303  * @hdev: habanalabs device structure.
304  * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
305  * @sob_id: id of this SOB.
306  * @sob_addr: the sob offset from the base address.
307  * @q_idx: the H/W queue that uses this SOB.
308  * @need_reset: reset indication set when switching to the other sob.
309  */
310 struct hl_hw_sob {
311 	struct hl_device	*hdev;
312 	struct kref		kref;
313 	u32			sob_id;
314 	u32			sob_addr;
315 	u32			q_idx;
316 	bool			need_reset;
317 };
318 
319 enum hl_collective_mode {
320 	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
321 	HL_COLLECTIVE_MASTER = 0x1,
322 	HL_COLLECTIVE_SLAVE = 0x2
323 };
324 
325 /**
326  * struct hw_queue_properties - queue information.
327  * @type: queue type.
328  * @queue_cb_alloc_flags: bitmap which indicates if the hw queue supports CB
329  *                        that allocated by the Kernel driver and therefore,
330  *                        a CB handle can be provided for jobs on this queue.
331  *                        Otherwise, a CB address must be provided.
332  * @collective_mode: collective mode of current queue
333  * @driver_only: true if only the driver is allowed to send a job to this queue,
334  *               false otherwise.
335  * @supports_sync_stream: True if queue supports sync stream
336  */
337 struct hw_queue_properties {
338 	enum hl_queue_type	type;
339 	enum queue_cb_alloc_flags cb_alloc_flags;
340 	enum hl_collective_mode	collective_mode;
341 	u8			driver_only;
342 	u8			supports_sync_stream;
343 };
344 
345 /**
346  * enum vm_type - virtual memory mapping request information.
347  * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
348  * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
349  */
350 enum vm_type {
351 	VM_TYPE_USERPTR = 0x1,
352 	VM_TYPE_PHYS_PACK = 0x2
353 };
354 
355 /**
356  * enum hl_device_hw_state - H/W device state. use this to understand whether
357  *                           to do reset before hw_init or not
358  * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
359  * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
360  *                            hw_init
361  */
362 enum hl_device_hw_state {
363 	HL_DEVICE_HW_STATE_CLEAN = 0,
364 	HL_DEVICE_HW_STATE_DIRTY
365 };
366 
367 #define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
368 
369 /**
370  * struct hl_mmu_properties - ASIC specific MMU address translation properties.
371  * @start_addr: virtual start address of the memory region.
372  * @end_addr: virtual end address of the memory region.
373  * @hop0_shift: shift of hop 0 mask.
374  * @hop1_shift: shift of hop 1 mask.
375  * @hop2_shift: shift of hop 2 mask.
376  * @hop3_shift: shift of hop 3 mask.
377  * @hop4_shift: shift of hop 4 mask.
378  * @hop5_shift: shift of hop 5 mask.
379  * @hop0_mask: mask to get the PTE address in hop 0.
380  * @hop1_mask: mask to get the PTE address in hop 1.
381  * @hop2_mask: mask to get the PTE address in hop 2.
382  * @hop3_mask: mask to get the PTE address in hop 3.
383  * @hop4_mask: mask to get the PTE address in hop 4.
384  * @hop5_mask: mask to get the PTE address in hop 5.
385  * @page_size: default page size used to allocate memory.
386  * @num_hops: The amount of hops supported by the translation table.
387  * @host_resident: Should the MMU page table reside in host memory or in the
388  *                 device DRAM.
389  */
390 struct hl_mmu_properties {
391 	u64	start_addr;
392 	u64	end_addr;
393 	u64	hop0_shift;
394 	u64	hop1_shift;
395 	u64	hop2_shift;
396 	u64	hop3_shift;
397 	u64	hop4_shift;
398 	u64	hop5_shift;
399 	u64	hop0_mask;
400 	u64	hop1_mask;
401 	u64	hop2_mask;
402 	u64	hop3_mask;
403 	u64	hop4_mask;
404 	u64	hop5_mask;
405 	u32	page_size;
406 	u32	num_hops;
407 	u8	host_resident;
408 };
409 
410 /**
411  * struct hl_hints_range - hint addresses reserved va range.
412  * @start_addr: start address of the va range.
413  * @end_addr: end address of the va range.
414  */
415 struct hl_hints_range {
416 	u64 start_addr;
417 	u64 end_addr;
418 };
419 
420 /**
421  * struct asic_fixed_properties - ASIC specific immutable properties.
422  * @hw_queues_props: H/W queues properties.
423  * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
424  *		available sensors.
425  * @uboot_ver: F/W U-boot version.
426  * @preboot_ver: F/W Preboot version.
427  * @dmmu: DRAM MMU address translation properties.
428  * @pmmu: PCI (host) MMU address translation properties.
429  * @pmmu_huge: PCI (host) MMU address translation properties for memory
430  *              allocated with huge pages.
431  * @hints_dram_reserved_va_range: dram hint addresses reserved range.
432  * @hints_host_reserved_va_range: host hint addresses reserved range.
433  * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
434  *                                      range.
435  * @sram_base_address: SRAM physical start address.
436  * @sram_end_address: SRAM physical end address.
437  * @sram_user_base_address - SRAM physical start address for user access.
438  * @dram_base_address: DRAM physical start address.
439  * @dram_end_address: DRAM physical end address.
440  * @dram_user_base_address: DRAM physical start address for user access.
441  * @dram_size: DRAM total size.
442  * @dram_pci_bar_size: size of PCI bar towards DRAM.
443  * @max_power_default: max power of the device after reset
444  * @dc_power_default: power consumed by the device in mode idle.
445  * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
446  *                                      fault.
447  * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
448  * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
449  * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
450  * @mmu_dram_default_page_addr: DRAM default page physical address.
451  * @cb_va_start_addr: virtual start address of command buffers which are mapped
452  *                    to the device's MMU.
453  * @cb_va_end_addr: virtual end address of command buffers which are mapped to
454  *                  the device's MMU.
455  * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
456  *                  for hints validity check.
457  * device_dma_offset_for_host_access: the offset to add to host DMA addresses
458  *                                    to enable the device to access them.
459  * @max_freq_value: current max clk frequency.
460  * @clk_pll_index: clock PLL index that specify which PLL determines the clock
461  *                 we display to the user
462  * @mmu_pgt_size: MMU page tables total size.
463  * @mmu_pte_size: PTE size in MMU page tables.
464  * @mmu_hop_table_size: MMU hop table size.
465  * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
466  * @dram_page_size: page size for MMU DRAM allocation.
467  * @cfg_size: configuration space size on SRAM.
468  * @sram_size: total size of SRAM.
469  * @max_asid: maximum number of open contexts (ASIDs).
470  * @num_of_events: number of possible internal H/W IRQs.
471  * @psoc_pci_pll_nr: PCI PLL NR value.
472  * @psoc_pci_pll_nf: PCI PLL NF value.
473  * @psoc_pci_pll_od: PCI PLL OD value.
474  * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
475  * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
476  * @high_pll: high PLL frequency used by the device.
477  * @cb_pool_cb_cnt: number of CBs in the CB pool.
478  * @cb_pool_cb_size: size of each CB in the CB pool.
479  * @max_pending_cs: maximum of concurrent pending command submissions
480  * @max_queues: maximum amount of queues in the system
481  * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
482  *                                capabilities reported by FW, bit description
483  *                                can be found in CPU_BOOT_DEV_STS0
484  * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
485  *                                capabilities reported by FW, bit description
486  *                                can be found in CPU_BOOT_DEV_STS1
487  * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
488  *                                status reported by FW, bit description can be
489  *                                found in CPU_BOOT_DEV_STS0
490  * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
491  *                                status reported by FW, bit description can be
492  *                                found in CPU_BOOT_DEV_STS1
493  * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
494  *                            status reported by FW, bit description can be
495  *                            found in CPU_BOOT_DEV_STS0
496  * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
497  *                            status reported by FW, bit description can be
498  *                            found in CPU_BOOT_DEV_STS1
499  * @collective_first_sob: first sync object available for collective use
500  * @collective_first_mon: first monitor available for collective use
501  * @sync_stream_first_sob: first sync object available for sync stream use
502  * @sync_stream_first_mon: first monitor available for sync stream use
503  * @first_available_user_sob: first sob available for the user
504  * @first_available_user_mon: first monitor available for the user
505  * @first_available_user_msix_interrupt: first available msix interrupt
506  *                                       reserved for the user
507  * @first_available_cq: first available CQ for the user.
508  * @user_interrupt_count: number of user interrupts.
509  * @server_type: Server type that the ASIC is currently installed in.
510  *               The value is according to enum hl_server_type in uapi file.
511  * @tpc_enabled_mask: which TPCs are enabled.
512  * @completion_queues_count: number of completion queues.
513  * @fw_security_enabled: true if security measures are enabled in firmware,
514  *                       false otherwise
515  * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
516  *                              BOOT_DEV_STS0
517  * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
518  *                              BOOT_DEV_STS1
519  * @dram_supports_virtual_memory: is there an MMU towards the DRAM
520  * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
521  * @num_functional_hbms: number of functional HBMs in each DCORE.
522  * @hints_range_reservation: device support hint addresses range reservation.
523  * @iatu_done_by_fw: true if iATU configuration is being done by FW.
524  * @dynamic_fw_load: is dynamic FW load is supported.
525  * @gic_interrupts_enable: true if FW is not blocking GIC controller,
526  *                         false otherwise.
527  */
528 struct asic_fixed_properties {
529 	struct hw_queue_properties	*hw_queues_props;
530 	struct cpucp_info		cpucp_info;
531 	char				uboot_ver[VERSION_MAX_LEN];
532 	char				preboot_ver[VERSION_MAX_LEN];
533 	struct hl_mmu_properties	dmmu;
534 	struct hl_mmu_properties	pmmu;
535 	struct hl_mmu_properties	pmmu_huge;
536 	struct hl_hints_range		hints_dram_reserved_va_range;
537 	struct hl_hints_range		hints_host_reserved_va_range;
538 	struct hl_hints_range		hints_host_hpage_reserved_va_range;
539 	u64				sram_base_address;
540 	u64				sram_end_address;
541 	u64				sram_user_base_address;
542 	u64				dram_base_address;
543 	u64				dram_end_address;
544 	u64				dram_user_base_address;
545 	u64				dram_size;
546 	u64				dram_pci_bar_size;
547 	u64				max_power_default;
548 	u64				dc_power_default;
549 	u64				dram_size_for_default_page_mapping;
550 	u64				pcie_dbi_base_address;
551 	u64				pcie_aux_dbi_reg_addr;
552 	u64				mmu_pgt_addr;
553 	u64				mmu_dram_default_page_addr;
554 	u64				cb_va_start_addr;
555 	u64				cb_va_end_addr;
556 	u64				dram_hints_align_mask;
557 	u64				device_dma_offset_for_host_access;
558 	u64				max_freq_value;
559 	u32				clk_pll_index;
560 	u32				mmu_pgt_size;
561 	u32				mmu_pte_size;
562 	u32				mmu_hop_table_size;
563 	u32				mmu_hop0_tables_total_size;
564 	u32				dram_page_size;
565 	u32				cfg_size;
566 	u32				sram_size;
567 	u32				max_asid;
568 	u32				num_of_events;
569 	u32				psoc_pci_pll_nr;
570 	u32				psoc_pci_pll_nf;
571 	u32				psoc_pci_pll_od;
572 	u32				psoc_pci_pll_div_factor;
573 	u32				psoc_timestamp_frequency;
574 	u32				high_pll;
575 	u32				cb_pool_cb_cnt;
576 	u32				cb_pool_cb_size;
577 	u32				max_pending_cs;
578 	u32				max_queues;
579 	u32				fw_preboot_cpu_boot_dev_sts0;
580 	u32				fw_preboot_cpu_boot_dev_sts1;
581 	u32				fw_bootfit_cpu_boot_dev_sts0;
582 	u32				fw_bootfit_cpu_boot_dev_sts1;
583 	u32				fw_app_cpu_boot_dev_sts0;
584 	u32				fw_app_cpu_boot_dev_sts1;
585 	u16				collective_first_sob;
586 	u16				collective_first_mon;
587 	u16				sync_stream_first_sob;
588 	u16				sync_stream_first_mon;
589 	u16				first_available_user_sob[HL_MAX_DCORES];
590 	u16				first_available_user_mon[HL_MAX_DCORES];
591 	u16				first_available_user_msix_interrupt;
592 	u16				first_available_cq[HL_MAX_DCORES];
593 	u16				user_interrupt_count;
594 	u16				server_type;
595 	u8				tpc_enabled_mask;
596 	u8				completion_queues_count;
597 	u8				fw_security_enabled;
598 	u8				fw_cpu_boot_dev_sts0_valid;
599 	u8				fw_cpu_boot_dev_sts1_valid;
600 	u8				dram_supports_virtual_memory;
601 	u8				hard_reset_done_by_fw;
602 	u8				num_functional_hbms;
603 	u8				hints_range_reservation;
604 	u8				iatu_done_by_fw;
605 	u8				dynamic_fw_load;
606 	u8				gic_interrupts_enable;
607 };
608 
609 /**
610  * struct hl_fence - software synchronization primitive
611  * @completion: fence is implemented using completion
612  * @refcount: refcount for this fence
613  * @cs_sequence: sequence of the corresponding command submission
614  * @stream_master_qid_map: streams masters QID bitmap to represent all streams
615  *                         masters QIDs that multi cs is waiting on
616  * @error: mark this fence with error
617  * @timestamp: timestamp upon completion
618  * @mcs_handling_done: indicates that corresponding command submission has
619  *                     finished msc handling, this does not mean it was part
620  *                     of the mcs
621  */
622 struct hl_fence {
623 	struct completion	completion;
624 	struct kref		refcount;
625 	u64			cs_sequence;
626 	u32			stream_master_qid_map;
627 	int			error;
628 	ktime_t			timestamp;
629 	u8			mcs_handling_done;
630 };
631 
632 /**
633  * struct hl_cs_compl - command submission completion object.
634  * @base_fence: hl fence object.
635  * @lock: spinlock to protect fence.
636  * @hdev: habanalabs device structure.
637  * @hw_sob: the H/W SOB used in this signal/wait CS.
638  * @encaps_sig_hdl: encaps signals hanlder.
639  * @cs_seq: command submission sequence number.
640  * @type: type of the CS - signal/wait.
641  * @sob_val: the SOB value that is used in this signal/wait CS.
642  * @sob_group: the SOB group that is used in this collective wait CS.
643  * @encaps_signals: indication whether it's a completion object of cs with
644  * encaps signals or not.
645  */
646 struct hl_cs_compl {
647 	struct hl_fence		base_fence;
648 	spinlock_t		lock;
649 	struct hl_device	*hdev;
650 	struct hl_hw_sob	*hw_sob;
651 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
652 	u64			cs_seq;
653 	enum hl_cs_type		type;
654 	u16			sob_val;
655 	u16			sob_group;
656 	bool			encaps_signals;
657 };
658 
659 /*
660  * Command Buffers
661  */
662 
663 /**
664  * struct hl_cb_mgr - describes a Command Buffer Manager.
665  * @cb_lock: protects cb_handles.
666  * @cb_handles: an idr to hold all command buffer handles.
667  */
668 struct hl_cb_mgr {
669 	spinlock_t		cb_lock;
670 	struct idr		cb_handles; /* protected by cb_lock */
671 };
672 
673 /**
674  * struct hl_cb - describes a Command Buffer.
675  * @refcount: reference counter for usage of the CB.
676  * @hdev: pointer to device this CB belongs to.
677  * @ctx: pointer to the CB owner's context.
678  * @lock: spinlock to protect mmap flows.
679  * @debugfs_list: node in debugfs list of command buffers.
680  * @pool_list: node in pool list of command buffers.
681  * @va_block_list: list of virtual addresses blocks of the CB if it is mapped to
682  *                 the device's MMU.
683  * @id: the CB's ID.
684  * @kernel_address: Holds the CB's kernel virtual address.
685  * @bus_address: Holds the CB's DMA address.
686  * @mmap_size: Holds the CB's size that was mmaped.
687  * @size: holds the CB's size.
688  * @cs_cnt: holds number of CS that this CB participates in.
689  * @mmap: true if the CB is currently mmaped to user.
690  * @is_pool: true if CB was acquired from the pool, false otherwise.
691  * @is_internal: internaly allocated
692  * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
693  */
694 struct hl_cb {
695 	struct kref		refcount;
696 	struct hl_device	*hdev;
697 	struct hl_ctx		*ctx;
698 	spinlock_t		lock;
699 	struct list_head	debugfs_list;
700 	struct list_head	pool_list;
701 	struct list_head	va_block_list;
702 	u64			id;
703 	void			*kernel_address;
704 	dma_addr_t		bus_address;
705 	u32			mmap_size;
706 	u32			size;
707 	atomic_t		cs_cnt;
708 	u8			mmap;
709 	u8			is_pool;
710 	u8			is_internal;
711 	u8			is_mmu_mapped;
712 };
713 
714 
715 /*
716  * QUEUES
717  */
718 
719 struct hl_cs;
720 struct hl_cs_job;
721 
722 /* Queue length of external and HW queues */
723 #define HL_QUEUE_LENGTH			4096
724 #define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
725 
726 #if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
727 #error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
728 #endif
729 
730 /* HL_CQ_LENGTH is in units of struct hl_cq_entry */
731 #define HL_CQ_LENGTH			HL_QUEUE_LENGTH
732 #define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
733 
734 /* Must be power of 2 */
735 #define HL_EQ_LENGTH			64
736 #define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
737 
738 /* Host <-> CPU-CP shared memory size */
739 #define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
740 
741 /**
742  * struct hl_sync_stream_properties -
743  *     describes a H/W queue sync stream properties
744  * @hw_sob: array of the used H/W SOBs by this H/W queue.
745  * @next_sob_val: the next value to use for the currently used SOB.
746  * @base_sob_id: the base SOB id of the SOBs used by this queue.
747  * @base_mon_id: the base MON id of the MONs used by this queue.
748  * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
749  *                          in order to sync with all slave queues.
750  * @collective_slave_mon_id: the MON id used by this slave queue in order to
751  *                           sync with its master queue.
752  * @collective_sob_id: current SOB id used by this collective slave queue
753  *                     to signal its collective master queue upon completion.
754  * @curr_sob_offset: the id offset to the currently used SOB from the
755  *                   HL_RSVD_SOBS that are being used by this queue.
756  */
757 struct hl_sync_stream_properties {
758 	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
759 	u16		next_sob_val;
760 	u16		base_sob_id;
761 	u16		base_mon_id;
762 	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
763 	u16		collective_slave_mon_id;
764 	u16		collective_sob_id;
765 	u8		curr_sob_offset;
766 };
767 
768 /**
769  * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
770  * handlers manager
771  * @lock: protects handles.
772  * @handles: an idr to hold all encapsulated signals handles.
773  */
774 struct hl_encaps_signals_mgr {
775 	spinlock_t		lock;
776 	struct idr		handles;
777 };
778 
779 /**
780  * struct hl_hw_queue - describes a H/W transport queue.
781  * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
782  * @sync_stream_prop: sync stream queue properties
783  * @queue_type: type of queue.
784  * @collective_mode: collective mode of current queue
785  * @kernel_address: holds the queue's kernel virtual address.
786  * @bus_address: holds the queue's DMA address.
787  * @pi: holds the queue's pi value.
788  * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
789  * @hw_queue_id: the id of the H/W queue.
790  * @cq_id: the id for the corresponding CQ for this H/W queue.
791  * @msi_vec: the IRQ number of the H/W queue.
792  * @int_queue_len: length of internal queue (number of entries).
793  * @valid: is the queue valid (we have array of 32 queues, not all of them
794  *         exist).
795  * @supports_sync_stream: True if queue supports sync stream
796  */
797 struct hl_hw_queue {
798 	struct hl_cs_job			**shadow_queue;
799 	struct hl_sync_stream_properties	sync_stream_prop;
800 	enum hl_queue_type			queue_type;
801 	enum hl_collective_mode			collective_mode;
802 	void					*kernel_address;
803 	dma_addr_t				bus_address;
804 	u32					pi;
805 	atomic_t				ci;
806 	u32					hw_queue_id;
807 	u32					cq_id;
808 	u32					msi_vec;
809 	u16					int_queue_len;
810 	u8					valid;
811 	u8					supports_sync_stream;
812 };
813 
814 /**
815  * struct hl_cq - describes a completion queue
816  * @hdev: pointer to the device structure
817  * @kernel_address: holds the queue's kernel virtual address
818  * @bus_address: holds the queue's DMA address
819  * @cq_idx: completion queue index in array
820  * @hw_queue_id: the id of the matching H/W queue
821  * @ci: ci inside the queue
822  * @pi: pi inside the queue
823  * @free_slots_cnt: counter of free slots in queue
824  */
825 struct hl_cq {
826 	struct hl_device	*hdev;
827 	void			*kernel_address;
828 	dma_addr_t		bus_address;
829 	u32			cq_idx;
830 	u32			hw_queue_id;
831 	u32			ci;
832 	u32			pi;
833 	atomic_t		free_slots_cnt;
834 };
835 
836 /**
837  * struct hl_user_interrupt - holds user interrupt information
838  * @hdev: pointer to the device structure
839  * @wait_list_head: head to the list of user threads pending on this interrupt
840  * @wait_list_lock: protects wait_list_head
841  * @interrupt_id: msix interrupt id
842  */
843 struct hl_user_interrupt {
844 	struct hl_device	*hdev;
845 	struct list_head	wait_list_head;
846 	spinlock_t		wait_list_lock;
847 	u32			interrupt_id;
848 };
849 
850 /**
851  * struct hl_user_pending_interrupt - holds a context to a user thread
852  *                                    pending on an interrupt
853  * @wait_list_node: node in the list of user threads pending on an interrupt
854  * @fence: hl fence object for interrupt completion
855  */
856 struct hl_user_pending_interrupt {
857 	struct list_head	wait_list_node;
858 	struct hl_fence		fence;
859 };
860 
861 /**
862  * struct hl_eq - describes the event queue (single one per device)
863  * @hdev: pointer to the device structure
864  * @kernel_address: holds the queue's kernel virtual address
865  * @bus_address: holds the queue's DMA address
866  * @ci: ci inside the queue
867  * @prev_eqe_index: the index of the previous event queue entry. The index of
868  *                  the current entry's index must be +1 of the previous one.
869  * @check_eqe_index: do we need to check the index of the current entry vs. the
870  *                   previous one. This is for backward compatibility with older
871  *                   firmwares
872  */
873 struct hl_eq {
874 	struct hl_device	*hdev;
875 	void			*kernel_address;
876 	dma_addr_t		bus_address;
877 	u32			ci;
878 	u32			prev_eqe_index;
879 	bool			check_eqe_index;
880 };
881 
882 
883 /*
884  * ASICs
885  */
886 
887 /**
888  * enum hl_asic_type - supported ASIC types.
889  * @ASIC_INVALID: Invalid ASIC type.
890  * @ASIC_GOYA: Goya device.
891  * @ASIC_GAUDI: Gaudi device.
892  * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
893  */
894 enum hl_asic_type {
895 	ASIC_INVALID,
896 	ASIC_GOYA,
897 	ASIC_GAUDI,
898 	ASIC_GAUDI_SEC
899 };
900 
901 struct hl_cs_parser;
902 
903 /**
904  * enum hl_pm_mng_profile - power management profile.
905  * @PM_AUTO: internal clock is set by the Linux driver.
906  * @PM_MANUAL: internal clock is set by the user.
907  * @PM_LAST: last power management type.
908  */
909 enum hl_pm_mng_profile {
910 	PM_AUTO = 1,
911 	PM_MANUAL,
912 	PM_LAST
913 };
914 
915 /**
916  * enum hl_pll_frequency - PLL frequency.
917  * @PLL_HIGH: high frequency.
918  * @PLL_LOW: low frequency.
919  * @PLL_LAST: last frequency values that were configured by the user.
920  */
921 enum hl_pll_frequency {
922 	PLL_HIGH = 1,
923 	PLL_LOW,
924 	PLL_LAST
925 };
926 
927 #define PLL_REF_CLK 50
928 
929 enum div_select_defs {
930 	DIV_SEL_REF_CLK = 0,
931 	DIV_SEL_PLL_CLK = 1,
932 	DIV_SEL_DIVIDED_REF = 2,
933 	DIV_SEL_DIVIDED_PLL = 3,
934 };
935 
936 enum pci_region {
937 	PCI_REGION_CFG,
938 	PCI_REGION_SRAM,
939 	PCI_REGION_DRAM,
940 	PCI_REGION_SP_SRAM,
941 	PCI_REGION_NUMBER,
942 };
943 
944 /**
945  * struct pci_mem_region - describe memory region in a PCI bar
946  * @region_base: region base address
947  * @region_size: region size
948  * @bar_size: size of the BAR
949  * @offset_in_bar: region offset into the bar
950  * @bar_id: bar ID of the region
951  * @used: if used 1, otherwise 0
952  */
953 struct pci_mem_region {
954 	u64 region_base;
955 	u64 region_size;
956 	u64 bar_size;
957 	u64 offset_in_bar;
958 	u8 bar_id;
959 	u8 used;
960 };
961 
962 /**
963  * struct static_fw_load_mgr - static FW load manager
964  * @preboot_version_max_off: max offset to preboot version
965  * @boot_fit_version_max_off: max offset to boot fit version
966  * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
967  * @cpu_cmd_status_to_host_reg: register address for CPU command status response
968  * @cpu_boot_status_reg: boot status register
969  * @cpu_boot_dev_status0_reg: boot device status register 0
970  * @cpu_boot_dev_status1_reg: boot device status register 1
971  * @boot_err0_reg: boot error register 0
972  * @boot_err1_reg: boot error register 1
973  * @preboot_version_offset_reg: SRAM offset to preboot version register
974  * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
975  * @sram_offset_mask: mask for getting offset into the SRAM
976  * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
977  */
978 struct static_fw_load_mgr {
979 	u64 preboot_version_max_off;
980 	u64 boot_fit_version_max_off;
981 	u32 kmd_msg_to_cpu_reg;
982 	u32 cpu_cmd_status_to_host_reg;
983 	u32 cpu_boot_status_reg;
984 	u32 cpu_boot_dev_status0_reg;
985 	u32 cpu_boot_dev_status1_reg;
986 	u32 boot_err0_reg;
987 	u32 boot_err1_reg;
988 	u32 preboot_version_offset_reg;
989 	u32 boot_fit_version_offset_reg;
990 	u32 sram_offset_mask;
991 	u32 cpu_reset_wait_msec;
992 };
993 
994 /**
995  * struct fw_response - FW response to LKD command
996  * @ram_offset: descriptor offset into the RAM
997  * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
998  * @status: command status
999  */
1000 struct fw_response {
1001 	u32 ram_offset;
1002 	u8 ram_type;
1003 	u8 status;
1004 };
1005 
1006 /**
1007  * struct dynamic_fw_load_mgr - dynamic FW load manager
1008  * @response: FW to LKD response
1009  * @comm_desc: the communication descriptor with FW
1010  * @image_region: region to copy the FW image to
1011  * @fw_image_size: size of FW image to load
1012  * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1013  */
1014 struct dynamic_fw_load_mgr {
1015 	struct fw_response response;
1016 	struct lkd_fw_comms_desc comm_desc;
1017 	struct pci_mem_region *image_region;
1018 	size_t fw_image_size;
1019 	u32 wait_for_bl_timeout;
1020 };
1021 
1022 /**
1023  * struct fw_image_props - properties of FW image
1024  * @image_name: name of the image
1025  * @src_off: offset in src FW to copy from
1026  * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1027  */
1028 struct fw_image_props {
1029 	char *image_name;
1030 	u32 src_off;
1031 	u32 copy_size;
1032 };
1033 
1034 /**
1035  * struct fw_load_mgr - manager FW loading process
1036  * @dynamic_loader: specific structure for dynamic load
1037  * @static_loader: specific structure for static load
1038  * @boot_fit_img: boot fit image properties
1039  * @linux_img: linux image properties
1040  * @cpu_timeout: CPU response timeout in usec
1041  * @boot_fit_timeout: Boot fit load timeout in usec
1042  * @skip_bmc: should BMC be skipped
1043  * @sram_bar_id: SRAM bar ID
1044  * @dram_bar_id: DRAM bar ID
1045  * @linux_loaded: true if linux was loaded so far
1046  */
1047 struct fw_load_mgr {
1048 	union {
1049 		struct dynamic_fw_load_mgr dynamic_loader;
1050 		struct static_fw_load_mgr static_loader;
1051 	};
1052 	struct fw_image_props boot_fit_img;
1053 	struct fw_image_props linux_img;
1054 	u32 cpu_timeout;
1055 	u32 boot_fit_timeout;
1056 	u8 skip_bmc;
1057 	u8 sram_bar_id;
1058 	u8 dram_bar_id;
1059 	u8 linux_loaded;
1060 };
1061 
1062 /**
1063  * struct hl_asic_funcs - ASIC specific functions that are can be called from
1064  *                        common code.
1065  * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1066  * @early_fini: tears down what was done in early_init.
1067  * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1068  * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1069  * @sw_init: sets up driver state, does not configure H/W.
1070  * @sw_fini: tears down driver state, does not configure H/W.
1071  * @hw_init: sets up the H/W state.
1072  * @hw_fini: tears down the H/W state.
1073  * @halt_engines: halt engines, needed for reset sequence. This also disables
1074  *                interrupts from the device. Should be called before
1075  *                hw_fini and before CS rollback.
1076  * @suspend: handles IP specific H/W or SW changes for suspend.
1077  * @resume: handles IP specific H/W or SW changes for resume.
1078  * @mmap: maps a memory.
1079  * @ring_doorbell: increment PI on a given QMAN.
1080  * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1081  *             function because the PQs are located in different memory areas
1082  *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1083  *             writing the PQE must match the destination memory area
1084  *             properties.
1085  * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1086  *                           dma_alloc_coherent(). This is ASIC function because
1087  *                           its implementation is not trivial when the driver
1088  *                           is loaded in simulation mode (not upstreamed).
1089  * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1090  *                           dma_free_coherent(). This is ASIC function because
1091  *                           its implementation is not trivial when the driver
1092  *                           is loaded in simulation mode (not upstreamed).
1093  * @scrub_device_mem: Scrub device memory given an address and size
1094  * @get_int_queue_base: get the internal queue base address.
1095  * @test_queues: run simple test on all queues for sanity check.
1096  * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1097  *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1098  * @asic_dma_pool_free: free small DMA allocation from pool.
1099  * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1100  * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1101  * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
1102  * @cs_parser: parse Command Submission.
1103  * @asic_dma_map_sg: DMA map scatter-gather list.
1104  * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
1105  * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1106  * @update_eq_ci: update event queue CI.
1107  * @context_switch: called upon ASID context switch.
1108  * @restore_phase_topology: clear all SOBs amd MONs.
1109  * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM/Host memory.
1110  * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM/Host memory.
1111  * @debugfs_read64: debug interface for reading u64 from DRAM/SRAM/Host memory.
1112  * @debugfs_write64: debug interface for writing u64 to DRAM/SRAM/Host memory.
1113  * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1114  *                    internal memory via DMA engine.
1115  * @add_device_attr: add ASIC specific device attributes.
1116  * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1117  * @set_pll_profile: change PLL profile (manual/automatic).
1118  * @get_events_stat: retrieve event queue entries histogram.
1119  * @read_pte: read MMU page table entry from DRAM.
1120  * @write_pte: write MMU page table entry to DRAM.
1121  * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1122  *                        (L1 only) or hard (L0 & L1) flush.
1123  * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
1124  *                              ASID-VA-size mask.
1125  * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1126  * @set_clock_gating: enable/disable clock gating per engine according to
1127  *                    clock gating mask in hdev
1128  * @disable_clock_gating: disable clock gating completely
1129  * @debug_coresight: perform certain actions on Coresight for debugging.
1130  * @is_device_idle: return true if device is idle, false otherwise.
1131  * @soft_reset_late_init: perform certain actions needed after soft reset.
1132  * @hw_queues_lock: acquire H/W queues lock.
1133  * @hw_queues_unlock: release H/W queues lock.
1134  * @get_pci_id: retrieve PCI ID.
1135  * @get_eeprom_data: retrieve EEPROM data from F/W.
1136  * @send_cpu_message: send message to F/W. If the message is timedout, the
1137  *                    driver will eventually reset the device. The timeout can
1138  *                    be determined by the calling function or it can be 0 and
1139  *                    then the timeout is the default timeout for the specific
1140  *                    ASIC
1141  * @get_hw_state: retrieve the H/W state
1142  * @pci_bars_map: Map PCI BARs.
1143  * @init_iatu: Initialize the iATU unit inside the PCI controller.
1144  * @rreg: Read a register. Needed for simulator support.
1145  * @wreg: Write a register. Needed for simulator support.
1146  * @halt_coresight: stop the ETF and ETR traces.
1147  * @ctx_init: context dependent initialization.
1148  * @ctx_fini: context dependent cleanup.
1149  * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
1150  * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1151  * @load_firmware_to_device: load the firmware to the device's memory
1152  * @load_boot_fit_to_device: load boot fit to device's memory
1153  * @get_signal_cb_size: Get signal CB size.
1154  * @get_wait_cb_size: Get wait CB size.
1155  * @gen_signal_cb: Generate a signal CB.
1156  * @gen_wait_cb: Generate a wait CB.
1157  * @reset_sob: Reset a SOB.
1158  * @reset_sob_group: Reset SOB group
1159  * @set_dma_mask_from_fw: set the DMA mask in the driver according to the
1160  *                        firmware configuration
1161  * @get_device_time: Get the device time.
1162  * @collective_wait_init_cs: Generate collective master/slave packets
1163  *                           and place them in the relevant cs jobs
1164  * @collective_wait_create_jobs: allocate collective wait cs jobs
1165  * @scramble_addr: Routine to scramble the address prior of mapping it
1166  *                 in the MMU.
1167  * @descramble_addr: Routine to de-scramble the address prior of
1168  *                   showing it to users.
1169  * @ack_protection_bits_errors: ack and dump all security violations
1170  * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1171  *                   also returns the size of the block if caller supplies
1172  *                   a valid pointer for it
1173  * @hw_block_mmap: mmap a HW block with a given id.
1174  * @enable_events_from_fw: send interrupt to firmware to notify them the
1175  *                         driver is ready to receive asynchronous events. This
1176  *                         function should be called during the first init and
1177  *                         after every hard-reset of the device
1178  * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1179  * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1180  *                         generic f/w compatible PLL Indexes
1181  * @init_firmware_loader: initialize data for FW loader.
1182  * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1183  * @state_dump_init: initialize constants required for state dump
1184  * @get_sob_addr: get SOB base address offset.
1185  * @set_pci_memory_regions: setting properties of PCI memory regions
1186  * @get_stream_master_qid_arr: get pointer to stream masters QID array
1187  */
1188 struct hl_asic_funcs {
1189 	int (*early_init)(struct hl_device *hdev);
1190 	int (*early_fini)(struct hl_device *hdev);
1191 	int (*late_init)(struct hl_device *hdev);
1192 	void (*late_fini)(struct hl_device *hdev);
1193 	int (*sw_init)(struct hl_device *hdev);
1194 	int (*sw_fini)(struct hl_device *hdev);
1195 	int (*hw_init)(struct hl_device *hdev);
1196 	void (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1197 	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1198 	int (*suspend)(struct hl_device *hdev);
1199 	int (*resume)(struct hl_device *hdev);
1200 	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1201 			void *cpu_addr, dma_addr_t dma_addr, size_t size);
1202 	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1203 	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1204 			struct hl_bd *bd);
1205 	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1206 					dma_addr_t *dma_handle, gfp_t flag);
1207 	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1208 					void *cpu_addr, dma_addr_t dma_handle);
1209 	int (*scrub_device_mem)(struct hl_device *hdev, u64 addr, u64 size);
1210 	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1211 				dma_addr_t *dma_handle, u16 *queue_len);
1212 	int (*test_queues)(struct hl_device *hdev);
1213 	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1214 				gfp_t mem_flags, dma_addr_t *dma_handle);
1215 	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1216 				dma_addr_t dma_addr);
1217 	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1218 				size_t size, dma_addr_t *dma_handle);
1219 	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1220 				size_t size, void *vaddr);
1221 	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
1222 				struct scatterlist *sgl, int nents,
1223 				enum dma_data_direction dir);
1224 	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1225 	int (*asic_dma_map_sg)(struct hl_device *hdev,
1226 				struct scatterlist *sgl, int nents,
1227 				enum dma_data_direction dir);
1228 	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
1229 					struct sg_table *sgt);
1230 	void (*add_end_of_cb_packets)(struct hl_device *hdev,
1231 					void *kernel_address, u32 len,
1232 					u64 cq_addr, u32 cq_val, u32 msix_num,
1233 					bool eb);
1234 	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1235 	int (*context_switch)(struct hl_device *hdev, u32 asid);
1236 	void (*restore_phase_topology)(struct hl_device *hdev);
1237 	int (*debugfs_read32)(struct hl_device *hdev, u64 addr,
1238 				bool user_address, u32 *val);
1239 	int (*debugfs_write32)(struct hl_device *hdev, u64 addr,
1240 				bool user_address, u32 val);
1241 	int (*debugfs_read64)(struct hl_device *hdev, u64 addr,
1242 				bool user_address, u64 *val);
1243 	int (*debugfs_write64)(struct hl_device *hdev, u64 addr,
1244 				bool user_address, u64 val);
1245 	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1246 				void *blob_addr);
1247 	void (*add_device_attr)(struct hl_device *hdev,
1248 				struct attribute_group *dev_attr_grp);
1249 	void (*handle_eqe)(struct hl_device *hdev,
1250 				struct hl_eq_entry *eq_entry);
1251 	void (*set_pll_profile)(struct hl_device *hdev,
1252 			enum hl_pll_frequency freq);
1253 	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1254 				u32 *size);
1255 	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1256 	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1257 	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1258 					u32 flags);
1259 	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1260 				u32 flags, u32 asid, u64 va, u64 size);
1261 	int (*send_heartbeat)(struct hl_device *hdev);
1262 	void (*set_clock_gating)(struct hl_device *hdev);
1263 	void (*disable_clock_gating)(struct hl_device *hdev);
1264 	int (*debug_coresight)(struct hl_device *hdev, void *data);
1265 	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr,
1266 					u8 mask_len, struct seq_file *s);
1267 	int (*soft_reset_late_init)(struct hl_device *hdev);
1268 	void (*hw_queues_lock)(struct hl_device *hdev);
1269 	void (*hw_queues_unlock)(struct hl_device *hdev);
1270 	u32 (*get_pci_id)(struct hl_device *hdev);
1271 	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
1272 				size_t max_size);
1273 	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1274 				u16 len, u32 timeout, u64 *result);
1275 	int (*pci_bars_map)(struct hl_device *hdev);
1276 	int (*init_iatu)(struct hl_device *hdev);
1277 	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1278 	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1279 	void (*halt_coresight)(struct hl_device *hdev);
1280 	int (*ctx_init)(struct hl_ctx *ctx);
1281 	void (*ctx_fini)(struct hl_ctx *ctx);
1282 	int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
1283 	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1284 	int (*load_firmware_to_device)(struct hl_device *hdev);
1285 	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1286 	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1287 	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1288 	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1289 			u32 size, bool eb);
1290 	u32 (*gen_wait_cb)(struct hl_device *hdev,
1291 			struct hl_gen_wait_properties *prop);
1292 	void (*reset_sob)(struct hl_device *hdev, void *data);
1293 	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1294 	void (*set_dma_mask_from_fw)(struct hl_device *hdev);
1295 	u64 (*get_device_time)(struct hl_device *hdev);
1296 	int (*collective_wait_init_cs)(struct hl_cs *cs);
1297 	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1298 			struct hl_ctx *ctx, struct hl_cs *cs,
1299 			u32 wait_queue_id, u32 collective_engine_id,
1300 			u32 encaps_signal_offset);
1301 	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1302 	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1303 	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1304 	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1305 				u32 *block_size, u32 *block_id);
1306 	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1307 			u32 block_id, u32 block_size);
1308 	void (*enable_events_from_fw)(struct hl_device *hdev);
1309 	void (*get_msi_info)(__le32 *table);
1310 	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1311 	void (*init_firmware_loader)(struct hl_device *hdev);
1312 	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1313 	void (*state_dump_init)(struct hl_device *hdev);
1314 	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1315 	void (*set_pci_memory_regions)(struct hl_device *hdev);
1316 	u32* (*get_stream_master_qid_arr)(void);
1317 };
1318 
1319 
1320 /*
1321  * CONTEXTS
1322  */
1323 
1324 #define HL_KERNEL_ASID_ID	0
1325 
1326 /**
1327  * enum hl_va_range_type - virtual address range type.
1328  * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1329  * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1330  * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1331  */
1332 enum hl_va_range_type {
1333 	HL_VA_RANGE_TYPE_HOST,
1334 	HL_VA_RANGE_TYPE_HOST_HUGE,
1335 	HL_VA_RANGE_TYPE_DRAM,
1336 	HL_VA_RANGE_TYPE_MAX
1337 };
1338 
1339 /**
1340  * struct hl_va_range - virtual addresses range.
1341  * @lock: protects the virtual addresses list.
1342  * @list: list of virtual addresses blocks available for mappings.
1343  * @start_addr: range start address.
1344  * @end_addr: range end address.
1345  * @page_size: page size of this va range.
1346  */
1347 struct hl_va_range {
1348 	struct mutex		lock;
1349 	struct list_head	list;
1350 	u64			start_addr;
1351 	u64			end_addr;
1352 	u32			page_size;
1353 };
1354 
1355 /**
1356  * struct hl_cs_counters_atomic - command submission counters
1357  * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1358  * @parsing_drop_cnt: dropped due to error in packet parsing
1359  * @queue_full_drop_cnt: dropped due to queue full
1360  * @device_in_reset_drop_cnt: dropped due to device in reset
1361  * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1362  * @validation_drop_cnt: dropped due to error in validation
1363  */
1364 struct hl_cs_counters_atomic {
1365 	atomic64_t out_of_mem_drop_cnt;
1366 	atomic64_t parsing_drop_cnt;
1367 	atomic64_t queue_full_drop_cnt;
1368 	atomic64_t device_in_reset_drop_cnt;
1369 	atomic64_t max_cs_in_flight_drop_cnt;
1370 	atomic64_t validation_drop_cnt;
1371 };
1372 
1373 /**
1374  * struct hl_dmabuf_priv - a dma-buf private object.
1375  * @dmabuf: pointer to dma-buf object.
1376  * @ctx: pointer to the dma-buf owner's context.
1377  * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported for
1378  *                memory allocation handle.
1379  * @device_address: physical address of the device's memory. Relevant only
1380  *                  if phys_pg_pack is NULL (dma-buf was exported from address).
1381  *                  The total size can be taken from the dmabuf object.
1382  */
1383 struct hl_dmabuf_priv {
1384 	struct dma_buf			*dmabuf;
1385 	struct hl_ctx			*ctx;
1386 	struct hl_vm_phys_pg_pack	*phys_pg_pack;
1387 	uint64_t			device_address;
1388 };
1389 
1390 /**
1391  * struct hl_ctx - user/kernel context.
1392  * @mem_hash: holds mapping from virtual address to virtual memory area
1393  *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1394  * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1395  * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1396  * @hdev: pointer to the device structure.
1397  * @refcount: reference counter for the context. Context is released only when
1398  *		this hits 0l. It is incremented on CS and CS_WAIT.
1399  * @cs_pending: array of hl fence objects representing pending CS.
1400  * @va_range: holds available virtual addresses for host and dram mappings.
1401  * @mem_hash_lock: protects the mem_hash.
1402  * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
1403  *            MMU hash or walking the PGT requires talking this lock.
1404  * @hw_block_list_lock: protects the HW block memory list.
1405  * @debugfs_list: node in debugfs list of contexts.
1406  * @hw_block_mem_list: list of HW block virtual mapped addresses.
1407  * @cs_counters: context command submission counters.
1408  * @cb_va_pool: device VA pool for command buffers which are mapped to the
1409  *              device's MMU.
1410  * @sig_mgr: encaps signals handle manager.
1411  * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1412  *			to user so user could inquire about CS. It is used as
1413  *			index to cs_pending array.
1414  * @dram_default_hops: array that holds all hops addresses needed for default
1415  *                     DRAM mapping.
1416  * @cs_lock: spinlock to protect cs_sequence.
1417  * @dram_phys_mem: amount of used physical DRAM memory by this context.
1418  * @thread_ctx_switch_token: token to prevent multiple threads of the same
1419  *				context	from running the context switch phase.
1420  *				Only a single thread should run it.
1421  * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1422  *				the context switch phase from moving to their
1423  *				execution phase before the context switch phase
1424  *				has finished.
1425  * @asid: context's unique address space ID in the device's MMU.
1426  * @handle: context's opaque handle for user
1427  */
1428 struct hl_ctx {
1429 	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1430 	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1431 	struct hl_fpriv			*hpriv;
1432 	struct hl_device		*hdev;
1433 	struct kref			refcount;
1434 	struct hl_fence			**cs_pending;
1435 	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1436 	struct mutex			mem_hash_lock;
1437 	struct mutex			mmu_lock;
1438 	struct mutex			hw_block_list_lock;
1439 	struct list_head		debugfs_list;
1440 	struct list_head		hw_block_mem_list;
1441 	struct hl_cs_counters_atomic	cs_counters;
1442 	struct gen_pool			*cb_va_pool;
1443 	struct hl_encaps_signals_mgr	sig_mgr;
1444 	u64				cs_sequence;
1445 	u64				*dram_default_hops;
1446 	spinlock_t			cs_lock;
1447 	atomic64_t			dram_phys_mem;
1448 	atomic_t			thread_ctx_switch_token;
1449 	u32				thread_ctx_switch_wait_token;
1450 	u32				asid;
1451 	u32				handle;
1452 };
1453 
1454 /**
1455  * struct hl_ctx_mgr - for handling multiple contexts.
1456  * @ctx_lock: protects ctx_handles.
1457  * @ctx_handles: idr to hold all ctx handles.
1458  */
1459 struct hl_ctx_mgr {
1460 	struct mutex		ctx_lock;
1461 	struct idr		ctx_handles;
1462 };
1463 
1464 
1465 
1466 /*
1467  * COMMAND SUBMISSIONS
1468  */
1469 
1470 /**
1471  * struct hl_userptr - memory mapping chunk information
1472  * @vm_type: type of the VM.
1473  * @job_node: linked-list node for hanging the object on the Job's list.
1474  * @pages: pointer to struct page array
1475  * @npages: size of @pages array
1476  * @sgt: pointer to the scatter-gather table that holds the pages.
1477  * @dir: for DMA unmapping, the direction must be supplied, so save it.
1478  * @debugfs_list: node in debugfs list of command submissions.
1479  * @pid: the pid of the user process owning the memory
1480  * @addr: user-space virtual address of the start of the memory area.
1481  * @size: size of the memory area to pin & map.
1482  * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1483  */
1484 struct hl_userptr {
1485 	enum vm_type		vm_type; /* must be first */
1486 	struct list_head	job_node;
1487 	struct page		**pages;
1488 	unsigned int		npages;
1489 	struct sg_table		*sgt;
1490 	enum dma_data_direction dir;
1491 	struct list_head	debugfs_list;
1492 	pid_t			pid;
1493 	u64			addr;
1494 	u64			size;
1495 	u8			dma_mapped;
1496 };
1497 
1498 /**
1499  * struct hl_cs - command submission.
1500  * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1501  * @ctx: the context this CS belongs to.
1502  * @job_list: list of the CS's jobs in the various queues.
1503  * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1504  * @refcount: reference counter for usage of the CS.
1505  * @fence: pointer to the fence object of this CS.
1506  * @signal_fence: pointer to the fence object of the signal CS (used by wait
1507  *                CS only).
1508  * @finish_work: workqueue object to run when CS is completed by H/W.
1509  * @work_tdr: delayed work node for TDR.
1510  * @mirror_node : node in device mirror list of command submissions.
1511  * @staged_cs_node: node in the staged cs list.
1512  * @debugfs_list: node in debugfs list of command submissions.
1513  * @encaps_sig_hdl: holds the encaps signals handle.
1514  * @sequence: the sequence number of this CS.
1515  * @staged_sequence: the sequence of the staged submission this CS is part of,
1516  *                   relevant only if staged_cs is set.
1517  * @timeout_jiffies: cs timeout in jiffies.
1518  * @submission_time_jiffies: submission time of the cs
1519  * @type: CS_TYPE_*.
1520  * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1521  * @submitted: true if CS was submitted to H/W.
1522  * @completed: true if CS was completed by device.
1523  * @timedout : true if CS was timedout.
1524  * @tdr_active: true if TDR was activated for this CS (to prevent
1525  *		double TDR activation).
1526  * @aborted: true if CS was aborted due to some device error.
1527  * @timestamp: true if a timestmap must be captured upon completion.
1528  * @staged_last: true if this is the last staged CS and needs completion.
1529  * @staged_first: true if this is the first staged CS and we need to receive
1530  *                timeout for this CS.
1531  * @staged_cs: true if this CS is part of a staged submission.
1532  * @skip_reset_on_timeout: true if we shall not reset the device in case
1533  *                         timeout occurs (debug scenario).
1534  * @encaps_signals: true if this CS has encaps reserved signals.
1535  */
1536 struct hl_cs {
1537 	u16			*jobs_in_queue_cnt;
1538 	struct hl_ctx		*ctx;
1539 	struct list_head	job_list;
1540 	spinlock_t		job_lock;
1541 	struct kref		refcount;
1542 	struct hl_fence		*fence;
1543 	struct hl_fence		*signal_fence;
1544 	struct work_struct	finish_work;
1545 	struct delayed_work	work_tdr;
1546 	struct list_head	mirror_node;
1547 	struct list_head	staged_cs_node;
1548 	struct list_head	debugfs_list;
1549 	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1550 	u64			sequence;
1551 	u64			staged_sequence;
1552 	u64			timeout_jiffies;
1553 	u64			submission_time_jiffies;
1554 	enum hl_cs_type		type;
1555 	u32			encaps_sig_hdl_id;
1556 	u8			submitted;
1557 	u8			completed;
1558 	u8			timedout;
1559 	u8			tdr_active;
1560 	u8			aborted;
1561 	u8			timestamp;
1562 	u8			staged_last;
1563 	u8			staged_first;
1564 	u8			staged_cs;
1565 	u8			skip_reset_on_timeout;
1566 	u8			encaps_signals;
1567 };
1568 
1569 /**
1570  * struct hl_cs_job - command submission job.
1571  * @cs_node: the node to hang on the CS jobs list.
1572  * @cs: the CS this job belongs to.
1573  * @user_cb: the CB we got from the user.
1574  * @patched_cb: in case of patching, this is internal CB which is submitted on
1575  *		the queue instead of the CB we got from the IOCTL.
1576  * @finish_work: workqueue object to run when job is completed.
1577  * @userptr_list: linked-list of userptr mappings that belong to this job and
1578  *			wait for completion.
1579  * @debugfs_list: node in debugfs list of command submission jobs.
1580  * @refcount: reference counter for usage of the CS job.
1581  * @queue_type: the type of the H/W queue this job is submitted to.
1582  * @id: the id of this job inside a CS.
1583  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1584  * @user_cb_size: the actual size of the CB we got from the user.
1585  * @job_cb_size: the actual size of the CB that we put on the queue.
1586  * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
1587  *                          to wait on part of the reserved signals.
1588  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1589  *                          handle to a kernel-allocated CB object, false
1590  *                          otherwise (SRAM/DRAM/host address).
1591  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1592  *                    info is needed later, when adding the 2xMSG_PROT at the
1593  *                    end of the JOB, to know which barriers to put in the
1594  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1595  *                    have streams so the engine can't be busy by another
1596  *                    stream.
1597  */
1598 struct hl_cs_job {
1599 	struct list_head	cs_node;
1600 	struct hl_cs		*cs;
1601 	struct hl_cb		*user_cb;
1602 	struct hl_cb		*patched_cb;
1603 	struct work_struct	finish_work;
1604 	struct list_head	userptr_list;
1605 	struct list_head	debugfs_list;
1606 	struct kref		refcount;
1607 	enum hl_queue_type	queue_type;
1608 	u32			id;
1609 	u32			hw_queue_id;
1610 	u32			user_cb_size;
1611 	u32			job_cb_size;
1612 	u32			encaps_sig_wait_offset;
1613 	u8			is_kernel_allocated_cb;
1614 	u8			contains_dma_pkt;
1615 };
1616 
1617 /**
1618  * struct hl_cs_parser - command submission parser properties.
1619  * @user_cb: the CB we got from the user.
1620  * @patched_cb: in case of patching, this is internal CB which is submitted on
1621  *		the queue instead of the CB we got from the IOCTL.
1622  * @job_userptr_list: linked-list of userptr mappings that belong to the related
1623  *			job and wait for completion.
1624  * @cs_sequence: the sequence number of the related CS.
1625  * @queue_type: the type of the H/W queue this job is submitted to.
1626  * @ctx_id: the ID of the context the related CS belongs to.
1627  * @hw_queue_id: the id of the H/W queue this job is submitted to.
1628  * @user_cb_size: the actual size of the CB we got from the user.
1629  * @patched_cb_size: the size of the CB after parsing.
1630  * @job_id: the id of the related job inside the related CS.
1631  * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
1632  *                          handle to a kernel-allocated CB object, false
1633  *                          otherwise (SRAM/DRAM/host address).
1634  * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
1635  *                    info is needed later, when adding the 2xMSG_PROT at the
1636  *                    end of the JOB, to know which barriers to put in the
1637  *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
1638  *                    have streams so the engine can't be busy by another
1639  *                    stream.
1640  * @completion: true if we need completion for this CS.
1641  */
1642 struct hl_cs_parser {
1643 	struct hl_cb		*user_cb;
1644 	struct hl_cb		*patched_cb;
1645 	struct list_head	*job_userptr_list;
1646 	u64			cs_sequence;
1647 	enum hl_queue_type	queue_type;
1648 	u32			ctx_id;
1649 	u32			hw_queue_id;
1650 	u32			user_cb_size;
1651 	u32			patched_cb_size;
1652 	u8			job_id;
1653 	u8			is_kernel_allocated_cb;
1654 	u8			contains_dma_pkt;
1655 	u8			completion;
1656 };
1657 
1658 /*
1659  * MEMORY STRUCTURE
1660  */
1661 
1662 /**
1663  * struct hl_vm_hash_node - hash element from virtual address to virtual
1664  *				memory area descriptor (hl_vm_phys_pg_list or
1665  *				hl_userptr).
1666  * @node: node to hang on the hash table in context object.
1667  * @vaddr: key virtual address.
1668  * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
1669  */
1670 struct hl_vm_hash_node {
1671 	struct hlist_node	node;
1672 	u64			vaddr;
1673 	void			*ptr;
1674 };
1675 
1676 /**
1677  * struct hl_vm_hw_block_list_node - list element from user virtual address to
1678  *				HW block id.
1679  * @node: node to hang on the list in context object.
1680  * @ctx: the context this node belongs to.
1681  * @vaddr: virtual address of the HW block.
1682  * @size: size of the block.
1683  * @id: HW block id (handle).
1684  */
1685 struct hl_vm_hw_block_list_node {
1686 	struct list_head	node;
1687 	struct hl_ctx		*ctx;
1688 	unsigned long		vaddr;
1689 	u32			size;
1690 	u32			id;
1691 };
1692 
1693 /**
1694  * struct hl_vm_phys_pg_pack - physical page pack.
1695  * @vm_type: describes the type of the virtual area descriptor.
1696  * @pages: the physical page array.
1697  * @npages: num physical pages in the pack.
1698  * @total_size: total size of all the pages in this list.
1699  * @mapping_cnt: number of shared mappings.
1700  * @exporting_cnt: number of dma-buf exporting.
1701  * @asid: the context related to this list.
1702  * @page_size: size of each page in the pack.
1703  * @flags: HL_MEM_* flags related to this list.
1704  * @handle: the provided handle related to this list.
1705  * @offset: offset from the first page.
1706  * @contiguous: is contiguous physical memory.
1707  * @created_from_userptr: is product of host virtual address.
1708  */
1709 struct hl_vm_phys_pg_pack {
1710 	enum vm_type		vm_type; /* must be first */
1711 	u64			*pages;
1712 	u64			npages;
1713 	u64			total_size;
1714 	atomic_t		mapping_cnt;
1715 	u32			exporting_cnt;
1716 	u32			asid;
1717 	u32			page_size;
1718 	u32			flags;
1719 	u32			handle;
1720 	u32			offset;
1721 	u8			contiguous;
1722 	u8			created_from_userptr;
1723 };
1724 
1725 /**
1726  * struct hl_vm_va_block - virtual range block information.
1727  * @node: node to hang on the virtual range list in context object.
1728  * @start: virtual range start address.
1729  * @end: virtual range end address.
1730  * @size: virtual range size.
1731  */
1732 struct hl_vm_va_block {
1733 	struct list_head	node;
1734 	u64			start;
1735 	u64			end;
1736 	u64			size;
1737 };
1738 
1739 /**
1740  * struct hl_vm - virtual memory manager for MMU.
1741  * @dram_pg_pool: pool for DRAM physical pages of 2MB.
1742  * @dram_pg_pool_refcount: reference counter for the pool usage.
1743  * @idr_lock: protects the phys_pg_list_handles.
1744  * @phys_pg_pack_handles: idr to hold all device allocations handles.
1745  * @init_done: whether initialization was done. We need this because VM
1746  *		initialization might be skipped during device initialization.
1747  */
1748 struct hl_vm {
1749 	struct gen_pool		*dram_pg_pool;
1750 	struct kref		dram_pg_pool_refcount;
1751 	spinlock_t		idr_lock;
1752 	struct idr		phys_pg_pack_handles;
1753 	u8			init_done;
1754 };
1755 
1756 
1757 /*
1758  * DEBUG, PROFILING STRUCTURE
1759  */
1760 
1761 /**
1762  * struct hl_debug_params - Coresight debug parameters.
1763  * @input: pointer to component specific input parameters.
1764  * @output: pointer to component specific output parameters.
1765  * @output_size: size of output buffer.
1766  * @reg_idx: relevant register ID.
1767  * @op: component operation to execute.
1768  * @enable: true if to enable component debugging, false otherwise.
1769  */
1770 struct hl_debug_params {
1771 	void *input;
1772 	void *output;
1773 	u32 output_size;
1774 	u32 reg_idx;
1775 	u32 op;
1776 	bool enable;
1777 };
1778 
1779 /*
1780  * FILE PRIVATE STRUCTURE
1781  */
1782 
1783 /**
1784  * struct hl_fpriv - process information stored in FD private data.
1785  * @hdev: habanalabs device structure.
1786  * @filp: pointer to the given file structure.
1787  * @taskpid: current process ID.
1788  * @ctx: current executing context. TODO: remove for multiple ctx per process
1789  * @ctx_mgr: context manager to handle multiple context for this FD.
1790  * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
1791  * @debugfs_list: list of relevant ASIC debugfs.
1792  * @dev_node: node in the device list of file private data
1793  * @refcount: number of related contexts.
1794  * @restore_phase_mutex: lock for context switch and restore phase.
1795  * @is_control: true for control device, false otherwise
1796  */
1797 struct hl_fpriv {
1798 	struct hl_device	*hdev;
1799 	struct file		*filp;
1800 	struct pid		*taskpid;
1801 	struct hl_ctx		*ctx;
1802 	struct hl_ctx_mgr	ctx_mgr;
1803 	struct hl_cb_mgr	cb_mgr;
1804 	struct list_head	debugfs_list;
1805 	struct list_head	dev_node;
1806 	struct kref		refcount;
1807 	struct mutex		restore_phase_mutex;
1808 	u8			is_control;
1809 };
1810 
1811 
1812 /*
1813  * DebugFS
1814  */
1815 
1816 /**
1817  * struct hl_info_list - debugfs file ops.
1818  * @name: file name.
1819  * @show: function to output information.
1820  * @write: function to write to the file.
1821  */
1822 struct hl_info_list {
1823 	const char	*name;
1824 	int		(*show)(struct seq_file *s, void *data);
1825 	ssize_t		(*write)(struct file *file, const char __user *buf,
1826 				size_t count, loff_t *f_pos);
1827 };
1828 
1829 /**
1830  * struct hl_debugfs_entry - debugfs dentry wrapper.
1831  * @info_ent: dentry realted ops.
1832  * @dev_entry: ASIC specific debugfs manager.
1833  */
1834 struct hl_debugfs_entry {
1835 	const struct hl_info_list	*info_ent;
1836 	struct hl_dbg_device_entry	*dev_entry;
1837 };
1838 
1839 /**
1840  * struct hl_dbg_device_entry - ASIC specific debugfs manager.
1841  * @root: root dentry.
1842  * @hdev: habanalabs device structure.
1843  * @entry_arr: array of available hl_debugfs_entry.
1844  * @file_list: list of available debugfs files.
1845  * @file_mutex: protects file_list.
1846  * @cb_list: list of available CBs.
1847  * @cb_spinlock: protects cb_list.
1848  * @cs_list: list of available CSs.
1849  * @cs_spinlock: protects cs_list.
1850  * @cs_job_list: list of available CB jobs.
1851  * @cs_job_spinlock: protects cs_job_list.
1852  * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
1853  * @userptr_spinlock: protects userptr_list.
1854  * @ctx_mem_hash_list: list of available contexts with MMU mappings.
1855  * @ctx_mem_hash_spinlock: protects cb_list.
1856  * @blob_desc: descriptor of blob
1857  * @state_dump: data of the system states in case of a bad cs.
1858  * @state_dump_sem: protects state_dump.
1859  * @addr: next address to read/write from/to in read/write32.
1860  * @mmu_addr: next virtual address to translate to physical address in mmu_show.
1861  * @userptr_lookup: the target user ptr to look up for on demand.
1862  * @mmu_asid: ASID to use while translating in mmu_show.
1863  * @state_dump_head: index of the latest state dump
1864  * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
1865  * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
1866  * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
1867  */
1868 struct hl_dbg_device_entry {
1869 	struct dentry			*root;
1870 	struct hl_device		*hdev;
1871 	struct hl_debugfs_entry		*entry_arr;
1872 	struct list_head		file_list;
1873 	struct mutex			file_mutex;
1874 	struct list_head		cb_list;
1875 	spinlock_t			cb_spinlock;
1876 	struct list_head		cs_list;
1877 	spinlock_t			cs_spinlock;
1878 	struct list_head		cs_job_list;
1879 	spinlock_t			cs_job_spinlock;
1880 	struct list_head		userptr_list;
1881 	spinlock_t			userptr_spinlock;
1882 	struct list_head		ctx_mem_hash_list;
1883 	spinlock_t			ctx_mem_hash_spinlock;
1884 	struct debugfs_blob_wrapper	blob_desc;
1885 	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
1886 	struct rw_semaphore		state_dump_sem;
1887 	u64				addr;
1888 	u64				mmu_addr;
1889 	u64				userptr_lookup;
1890 	u32				mmu_asid;
1891 	u32				state_dump_head;
1892 	u8				i2c_bus;
1893 	u8				i2c_addr;
1894 	u8				i2c_reg;
1895 };
1896 
1897 /**
1898  * struct hl_hw_obj_name_entry - single hw object name, member of
1899  * hl_state_dump_specs
1900  * @node: link to the containing hash table
1901  * @name: hw object name
1902  * @id: object identifier
1903  */
1904 struct hl_hw_obj_name_entry {
1905 	struct hlist_node	node;
1906 	const char		*name;
1907 	u32			id;
1908 };
1909 
1910 enum hl_state_dump_specs_props {
1911 	SP_SYNC_OBJ_BASE_ADDR,
1912 	SP_NEXT_SYNC_OBJ_ADDR,
1913 	SP_SYNC_OBJ_AMOUNT,
1914 	SP_MON_OBJ_WR_ADDR_LOW,
1915 	SP_MON_OBJ_WR_ADDR_HIGH,
1916 	SP_MON_OBJ_WR_DATA,
1917 	SP_MON_OBJ_ARM_DATA,
1918 	SP_MON_OBJ_STATUS,
1919 	SP_MONITORS_AMOUNT,
1920 	SP_TPC0_CMDQ,
1921 	SP_TPC0_CFG_SO,
1922 	SP_NEXT_TPC,
1923 	SP_MME_CMDQ,
1924 	SP_MME_CFG_SO,
1925 	SP_NEXT_MME,
1926 	SP_DMA_CMDQ,
1927 	SP_DMA_CFG_SO,
1928 	SP_DMA_QUEUES_OFFSET,
1929 	SP_NUM_OF_MME_ENGINES,
1930 	SP_SUB_MME_ENG_NUM,
1931 	SP_NUM_OF_DMA_ENGINES,
1932 	SP_NUM_OF_TPC_ENGINES,
1933 	SP_ENGINE_NUM_OF_QUEUES,
1934 	SP_ENGINE_NUM_OF_STREAMS,
1935 	SP_ENGINE_NUM_OF_FENCES,
1936 	SP_FENCE0_CNT_OFFSET,
1937 	SP_FENCE0_RDATA_OFFSET,
1938 	SP_CP_STS_OFFSET,
1939 	SP_NUM_CORES,
1940 
1941 	SP_MAX
1942 };
1943 
1944 enum hl_sync_engine_type {
1945 	ENGINE_TPC,
1946 	ENGINE_DMA,
1947 	ENGINE_MME,
1948 };
1949 
1950 /**
1951  * struct hl_mon_state_dump - represents a state dump of a single monitor
1952  * @id: monitor id
1953  * @wr_addr_low: address monitor will write to, low bits
1954  * @wr_addr_high: address monitor will write to, high bits
1955  * @wr_data: data monitor will write
1956  * @arm_data: register value containing monitor configuration
1957  * @status: monitor status
1958  */
1959 struct hl_mon_state_dump {
1960 	u32		id;
1961 	u32		wr_addr_low;
1962 	u32		wr_addr_high;
1963 	u32		wr_data;
1964 	u32		arm_data;
1965 	u32		status;
1966 };
1967 
1968 /**
1969  * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
1970  * @engine_type: type of the engine
1971  * @engine_id: id of the engine
1972  * @sync_id: id of the sync object
1973  */
1974 struct hl_sync_to_engine_map_entry {
1975 	struct hlist_node		node;
1976 	enum hl_sync_engine_type	engine_type;
1977 	u32				engine_id;
1978 	u32				sync_id;
1979 };
1980 
1981 /**
1982  * struct hl_sync_to_engine_map - maps sync object id to associated engine id
1983  * @tb: hash table containing the mapping, each element is of type
1984  *      struct hl_sync_to_engine_map_entry
1985  */
1986 struct hl_sync_to_engine_map {
1987 	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
1988 };
1989 
1990 /**
1991  * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
1992  * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
1993  * @print_single_monitor: format monitor data as string
1994  * @monitor_valid: return true if given monitor dump is valid
1995  * @print_fences_single_engine: format fences data as string
1996  */
1997 struct hl_state_dump_specs_funcs {
1998 	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
1999 				struct hl_sync_to_engine_map *map);
2000 	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2001 				    struct hl_device *hdev,
2002 				    struct hl_mon_state_dump *mon);
2003 	int (*monitor_valid)(struct hl_mon_state_dump *mon);
2004 	int (*print_fences_single_engine)(struct hl_device *hdev,
2005 					u64 base_offset,
2006 					u64 status_base_offset,
2007 					enum hl_sync_engine_type engine_type,
2008 					u32 engine_id, char **buf,
2009 					size_t *size, size_t *offset);
2010 };
2011 
2012 /**
2013  * struct hl_state_dump_specs - defines ASIC known hw objects names
2014  * @so_id_to_str_tb: sync objects names index table
2015  * @monitor_id_to_str_tb: monitors names index table
2016  * @funcs: virtual functions used for state dump
2017  * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2018  * @props: pointer to a per asic const props array required for state dump
2019  */
2020 struct hl_state_dump_specs {
2021 	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2022 	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2023 	struct hl_state_dump_specs_funcs	funcs;
2024 	const char * const			*sync_namager_names;
2025 	s64					*props;
2026 };
2027 
2028 
2029 /*
2030  * DEVICES
2031  */
2032 
2033 #define HL_STR_MAX	32
2034 
2035 #define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2036 
2037 /* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2038  * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2039  */
2040 #define HL_MAX_MINORS	256
2041 
2042 /*
2043  * Registers read & write functions.
2044  */
2045 
2046 u32 hl_rreg(struct hl_device *hdev, u32 reg);
2047 void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2048 
2049 #define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2050 #define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2051 #define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
2052 			hdev->asic_funcs->rreg(hdev, (reg)))
2053 
2054 #define WREG32_P(reg, val, mask)				\
2055 	do {							\
2056 		u32 tmp_ = RREG32(reg);				\
2057 		tmp_ &= (mask);					\
2058 		tmp_ |= ((val) & ~(mask));			\
2059 		WREG32(reg, tmp_);				\
2060 	} while (0)
2061 #define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2062 #define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2063 
2064 #define RMWREG32(reg, val, mask)				\
2065 	do {							\
2066 		u32 tmp_ = RREG32(reg);				\
2067 		tmp_ &= ~(mask);				\
2068 		tmp_ |= ((val) << __ffs(mask));			\
2069 		WREG32(reg, tmp_);				\
2070 	} while (0)
2071 
2072 #define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2073 
2074 #define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2075 #define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2076 #define WREG32_FIELD(reg, offset, field, val)	\
2077 	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2078 				~REG_FIELD_MASK(reg, field)) | \
2079 				(val) << REG_FIELD_SHIFT(reg, field))
2080 
2081 /* Timeout should be longer when working with simulator but cap the
2082  * increased timeout to some maximum
2083  */
2084 #define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2085 ({ \
2086 	ktime_t __timeout; \
2087 	if (hdev->pdev) \
2088 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2089 	else \
2090 		__timeout = ktime_add_us(ktime_get(),\
2091 				min((u64)(timeout_us * 10), \
2092 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2093 	might_sleep_if(sleep_us); \
2094 	for (;;) { \
2095 		(val) = RREG32(addr); \
2096 		if (cond) \
2097 			break; \
2098 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2099 			(val) = RREG32(addr); \
2100 			break; \
2101 		} \
2102 		if (sleep_us) \
2103 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2104 	} \
2105 	(cond) ? 0 : -ETIMEDOUT; \
2106 })
2107 
2108 /*
2109  * address in this macro points always to a memory location in the
2110  * host's (server's) memory. That location is updated asynchronously
2111  * either by the direct access of the device or by another core.
2112  *
2113  * To work both in LE and BE architectures, we need to distinguish between the
2114  * two states (device or another core updates the memory location). Therefore,
2115  * if mem_written_by_device is true, the host memory being polled will be
2116  * updated directly by the device. If false, the host memory being polled will
2117  * be updated by host CPU. Required so host knows whether or not the memory
2118  * might need to be byte-swapped before returning value to caller.
2119  */
2120 #define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2121 				mem_written_by_device) \
2122 ({ \
2123 	ktime_t __timeout; \
2124 	if (hdev->pdev) \
2125 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2126 	else \
2127 		__timeout = ktime_add_us(ktime_get(),\
2128 				min((u64)(timeout_us * 10), \
2129 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2130 	might_sleep_if(sleep_us); \
2131 	for (;;) { \
2132 		/* Verify we read updates done by other cores or by device */ \
2133 		mb(); \
2134 		(val) = *((u32 *)(addr)); \
2135 		if (mem_written_by_device) \
2136 			(val) = le32_to_cpu(*(__le32 *) &(val)); \
2137 		if (cond) \
2138 			break; \
2139 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2140 			(val) = *((u32 *)(addr)); \
2141 			if (mem_written_by_device) \
2142 				(val) = le32_to_cpu(*(__le32 *) &(val)); \
2143 			break; \
2144 		} \
2145 		if (sleep_us) \
2146 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2147 	} \
2148 	(cond) ? 0 : -ETIMEDOUT; \
2149 })
2150 
2151 #define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
2152 					timeout_us) \
2153 ({ \
2154 	ktime_t __timeout; \
2155 	if (hdev->pdev) \
2156 		__timeout = ktime_add_us(ktime_get(), timeout_us); \
2157 	else \
2158 		__timeout = ktime_add_us(ktime_get(),\
2159 				min((u64)(timeout_us * 10), \
2160 					(u64) HL_SIM_MAX_TIMEOUT_US)); \
2161 	might_sleep_if(sleep_us); \
2162 	for (;;) { \
2163 		(val) = readl(addr); \
2164 		if (cond) \
2165 			break; \
2166 		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2167 			(val) = readl(addr); \
2168 			break; \
2169 		} \
2170 		if (sleep_us) \
2171 			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2172 	} \
2173 	(cond) ? 0 : -ETIMEDOUT; \
2174 })
2175 
2176 struct hwmon_chip_info;
2177 
2178 /**
2179  * struct hl_device_reset_work - reset workqueue task wrapper.
2180  * @wq: work queue for device reset procedure.
2181  * @reset_work: reset work to be done.
2182  * @hdev: habanalabs device structure.
2183  * @fw_reset: whether f/w will do the reset without us sending them a message to do it.
2184  */
2185 struct hl_device_reset_work {
2186 	struct workqueue_struct		*wq;
2187 	struct delayed_work		reset_work;
2188 	struct hl_device		*hdev;
2189 	bool				fw_reset;
2190 };
2191 
2192 /**
2193  * struct hr_mmu_hop_addrs - used for holding per-device host-resident mmu hop
2194  * information.
2195  * @virt_addr: the virtual address of the hop.
2196  * @phys-addr: the physical address of the hop (used by the device-mmu).
2197  * @shadow_addr: The shadow of the hop used by the driver for walking the hops.
2198  */
2199 struct hr_mmu_hop_addrs {
2200 	u64 virt_addr;
2201 	u64 phys_addr;
2202 	u64 shadow_addr;
2203 };
2204 
2205 /**
2206  * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2207  * page-table internal information.
2208  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2209  * @mmu_shadow_hop0: shadow array of hop0 tables.
2210  */
2211 struct hl_mmu_hr_priv {
2212 	struct gen_pool *mmu_pgt_pool;
2213 	struct hr_mmu_hop_addrs *mmu_shadow_hop0;
2214 };
2215 
2216 /**
2217  * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2218  * page-table internal information.
2219  * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2220  * @mmu_shadow_hop0: shadow array of hop0 tables.
2221  */
2222 struct hl_mmu_dr_priv {
2223 	struct gen_pool *mmu_pgt_pool;
2224 	void *mmu_shadow_hop0;
2225 };
2226 
2227 /**
2228  * struct hl_mmu_priv - used for holding per-device mmu internal information.
2229  * @dr: information on the device-resident MMU, when exists.
2230  * @hr: information on the host-resident MMU, when exists.
2231  */
2232 struct hl_mmu_priv {
2233 	struct hl_mmu_dr_priv dr;
2234 	struct hl_mmu_hr_priv hr;
2235 };
2236 
2237 /**
2238  * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2239  *                that was created in order to translate a virtual address to a
2240  *                physical one.
2241  * @hop_addr: The address of the hop.
2242  * @hop_pte_addr: The address of the hop entry.
2243  * @hop_pte_val: The value in the hop entry.
2244  */
2245 struct hl_mmu_per_hop_info {
2246 	u64 hop_addr;
2247 	u64 hop_pte_addr;
2248 	u64 hop_pte_val;
2249 };
2250 
2251 /**
2252  * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2253  * hop-entries that were created in order to translate a virtual address to a
2254  * physical one.
2255  * @scrambled_vaddr: The value of the virtual address after scrambling. This
2256  *                   address replaces the original virtual-address when mapped
2257  *                   in the MMU tables.
2258  * @unscrambled_paddr: The un-scrambled physical address.
2259  * @hop_info: Array holding the per-hop information used for the translation.
2260  * @used_hops: The number of hops used for the translation.
2261  * @range_type: virtual address range type.
2262  */
2263 struct hl_mmu_hop_info {
2264 	u64 scrambled_vaddr;
2265 	u64 unscrambled_paddr;
2266 	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_5_HOPS];
2267 	u32 used_hops;
2268 	enum hl_va_range_type range_type;
2269 };
2270 
2271 /**
2272  * struct hl_mmu_funcs - Device related MMU functions.
2273  * @init: initialize the MMU module.
2274  * @fini: release the MMU module.
2275  * @ctx_init: Initialize a context for using the MMU module.
2276  * @ctx_fini: disable a ctx from using the mmu module.
2277  * @map: maps a virtual address to physical address for a context.
2278  * @unmap: unmap a virtual address of a context.
2279  * @flush: flush all writes from all cores to reach device MMU.
2280  * @swap_out: marks all mapping of the given context as swapped out.
2281  * @swap_in: marks all mapping of the given context as swapped in.
2282  * @get_tlb_info: returns the list of hops and hop-entries used that were
2283  *                created in order to translate the giver virtual address to a
2284  *                physical one.
2285  */
2286 struct hl_mmu_funcs {
2287 	int (*init)(struct hl_device *hdev);
2288 	void (*fini)(struct hl_device *hdev);
2289 	int (*ctx_init)(struct hl_ctx *ctx);
2290 	void (*ctx_fini)(struct hl_ctx *ctx);
2291 	int (*map)(struct hl_ctx *ctx,
2292 			u64 virt_addr, u64 phys_addr, u32 page_size,
2293 			bool is_dram_addr);
2294 	int (*unmap)(struct hl_ctx *ctx,
2295 			u64 virt_addr, bool is_dram_addr);
2296 	void (*flush)(struct hl_ctx *ctx);
2297 	void (*swap_out)(struct hl_ctx *ctx);
2298 	void (*swap_in)(struct hl_ctx *ctx);
2299 	int (*get_tlb_info)(struct hl_ctx *ctx,
2300 			u64 virt_addr, struct hl_mmu_hop_info *hops);
2301 };
2302 
2303 /**
2304  * number of user contexts allowed to call wait_for_multi_cs ioctl in
2305  * parallel
2306  */
2307 #define MULTI_CS_MAX_USER_CTX	2
2308 
2309 /**
2310  * struct multi_cs_completion - multi CS wait completion.
2311  * @completion: completion of any of the CS in the list
2312  * @lock: spinlock for the completion structure
2313  * @timestamp: timestamp for the multi-CS completion
2314  * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2315  *                        is waiting
2316  * @used: 1 if in use, otherwise 0
2317  */
2318 struct multi_cs_completion {
2319 	struct completion	completion;
2320 	spinlock_t		lock;
2321 	s64			timestamp;
2322 	u32			stream_master_qid_map;
2323 	u8			used;
2324 };
2325 
2326 /**
2327  * struct multi_cs_data - internal data for multi CS call
2328  * @ctx: pointer to the context structure
2329  * @fence_arr: array of fences of all CSs
2330  * @seq_arr: array of CS sequence numbers
2331  * @timeout_us: timeout in usec for waiting for CS to complete
2332  * @timestamp: timestamp of first completed CS
2333  * @wait_status: wait for CS status
2334  * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2335  * @stream_master_qid_map: bitmap of all stream master QIDs on which the
2336  *                         multi-CS is waiting
2337  * @arr_len: fence_arr and seq_arr array length
2338  * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2339  * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2340  */
2341 struct multi_cs_data {
2342 	struct hl_ctx	*ctx;
2343 	struct hl_fence	**fence_arr;
2344 	u64		*seq_arr;
2345 	s64		timeout_us;
2346 	s64		timestamp;
2347 	long		wait_status;
2348 	u32		completion_bitmap;
2349 	u32		stream_master_qid_map;
2350 	u8		arr_len;
2351 	u8		gone_cs;
2352 	u8		update_ts;
2353 };
2354 
2355 /**
2356  * struct hl_device - habanalabs device structure.
2357  * @pdev: pointer to PCI device, can be NULL in case of simulator device.
2358  * @pcie_bar_phys: array of available PCIe bars physical addresses.
2359  *		   (required only for PCI address match mode)
2360  * @pcie_bar: array of available PCIe bars virtual addresses.
2361  * @rmmio: configuration area address on SRAM.
2362  * @cdev: related char device.
2363  * @cdev_ctrl: char device for control operations only (INFO IOCTL)
2364  * @dev: related kernel basic device structure.
2365  * @dev_ctrl: related kernel device structure for the control device
2366  * @work_freq: delayed work to lower device frequency if possible.
2367  * @work_heartbeat: delayed work for CPU-CP is-alive check.
2368  * @device_reset_work: delayed work which performs hard reset
2369  * @asic_name: ASIC specific name.
2370  * @asic_type: ASIC specific type.
2371  * @completion_queue: array of hl_cq.
2372  * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
2373  *                  interrupt, driver will monitor the list of fences
2374  *                  registered to this interrupt.
2375  * @common_user_interrupt: common user interrupt for all user interrupts.
2376  *                         upon any user interrupt, driver will monitor the
2377  *                         list of fences registered to this common structure.
2378  * @cq_wq: work queues of completion queues for executing work in process
2379  *         context.
2380  * @eq_wq: work queue of event queue for executing work in process context.
2381  * @sob_reset_wq: work queue for sob reset executions.
2382  * @kernel_ctx: Kernel driver context structure.
2383  * @kernel_queues: array of hl_hw_queue.
2384  * @cs_mirror_list: CS mirror list for TDR.
2385  * @cs_mirror_lock: protects cs_mirror_list.
2386  * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CBs.
2387  * @event_queue: event queue for IRQ from CPU-CP.
2388  * @dma_pool: DMA pool for small allocations.
2389  * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
2390  * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
2391  * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
2392  * @asid_bitmap: holds used/available ASIDs.
2393  * @asid_mutex: protects asid_bitmap.
2394  * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
2395  * @debug_lock: protects critical section of setting debug mode for device
2396  * @asic_prop: ASIC specific immutable properties.
2397  * @asic_funcs: ASIC specific functions.
2398  * @asic_specific: ASIC specific information to use only from ASIC files.
2399  * @vm: virtual memory manager for MMU.
2400  * @hwmon_dev: H/W monitor device.
2401  * @pm_mng_profile: current power management profile.
2402  * @hl_chip_info: ASIC's sensors information.
2403  * @device_status_description: device status description.
2404  * @hl_debugfs: device's debugfs manager.
2405  * @cb_pool: list of preallocated CBs.
2406  * @cb_pool_lock: protects the CB pool.
2407  * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
2408  * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
2409  * @internal_cb_pool: internal command buffer memory pool.
2410  * @internal_cb_va_base: internal cb pool mmu virtual address base
2411  * @fpriv_list: list of file private data structures. Each structure is created
2412  *              when a user opens the device
2413  * @fpriv_list_lock: protects the fpriv_list
2414  * @compute_ctx: current compute context executing.
2415  * @aggregated_cs_counters: aggregated cs counters among all contexts
2416  * @mmu_priv: device-specific MMU data.
2417  * @mmu_func: device-related MMU functions.
2418  * @fw_loader: FW loader manager.
2419  * @pci_mem_region: array of memory regions in the PCI
2420  * @state_dump_specs: constants and dictionaries needed to dump system state.
2421  * @multi_cs_completion: array of multi-CS completion.
2422  * @dram_used_mem: current DRAM memory consumption.
2423  * @timeout_jiffies: device CS timeout value.
2424  * @max_power: the max power of the device, as configured by the sysadmin. This
2425  *             value is saved so in case of hard-reset, the driver will restore
2426  *             this value and update the F/W after the re-initialization
2427  * @clock_gating_mask: is clock gating enabled. bitmask that represents the
2428  *                     different engines. See debugfs-driver-habanalabs for
2429  *                     details.
2430  * @boot_error_status_mask: contains a mask of the device boot error status.
2431  *                          Each bit represents a different error, according to
2432  *                          the defines in hl_boot_if.h. If the bit is cleared,
2433  *                          the error will be ignored by the driver during
2434  *                          device initialization. Mainly used to debug and
2435  *                          workaround firmware bugs
2436  * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
2437  * @last_successful_open_jif: timestamp (jiffies) of the last successful
2438  *                            device open.
2439  * @last_open_session_duration_jif: duration (jiffies) of the last device open
2440  *                                  session.
2441  * @open_counter: number of successful device open operations.
2442  * @in_reset: is device in reset flow.
2443  * @curr_pll_profile: current PLL profile.
2444  * @card_type: Various ASICs have several card types. This indicates the card
2445  *             type of the current device.
2446  * @major: habanalabs kernel driver major.
2447  * @high_pll: high PLL profile frequency.
2448  * @soft_reset_cnt: number of soft reset since the driver was loaded.
2449  * @hard_reset_cnt: number of hard reset since the driver was loaded.
2450  * @clk_throttling_reason: bitmask represents the current clk throttling reasons
2451  * @id: device minor.
2452  * @id_control: minor of the control device
2453  * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
2454  *                    addresses.
2455  * @disabled: is device disabled.
2456  * @late_init_done: is late init stage was done during initialization.
2457  * @hwmon_initialized: is H/W monitor sensors was initialized.
2458  * @hard_reset_pending: is there a hard reset work pending.
2459  * @heartbeat: is heartbeat sanity check towards CPU-CP enabled.
2460  * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
2461  *                   otherwise.
2462  * @dram_default_page_mapping: is DRAM default page mapping enabled.
2463  * @memory_scrub: true to perform device memory scrub in various locations,
2464  *                such as context-switch, context close, page free, etc.
2465  * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
2466  *                   huge pages.
2467  * @init_done: is the initialization of the device done.
2468  * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
2469  * @dma_mask: the dma mask that was set for this device
2470  * @in_debug: is device under debug. This, together with fpriv_list, enforces
2471  *            that only a single user is configuring the debug infrastructure.
2472  * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
2473  *                           only to POWER9 machines.
2474  * @cdev_sysfs_created: were char devices and sysfs nodes created.
2475  * @stop_on_err: true if engines should stop on error.
2476  * @supports_sync_stream: is sync stream supported.
2477  * @sync_stream_queue_idx: helper index for sync stream queues initialization.
2478  * @collective_mon_idx: helper index for collective initialization
2479  * @supports_coresight: is CoreSight supported.
2480  * @supports_soft_reset: is soft reset supported.
2481  * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
2482  *                              initiated by user or TDR. This is only true
2483  *                              in inference ASICs, as there is no real-world
2484  *                              use-case of doing soft-reset in training (due
2485  *                              to the fact that training runs on multiple
2486  *                              devices)
2487  * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
2488  * @needs_reset: true if reset_on_lockup is false and device should be reset
2489  *               due to lockup.
2490  * @process_kill_trial_cnt: number of trials reset thread tried killing
2491  *                          user processes
2492  * @device_fini_pending: true if device_fini was called and might be
2493  *                       waiting for the reset thread to finish
2494  * @supports_staged_submission: true if staged submissions are supported
2495  * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
2496  *                    triggered, and cleared after it is shared with preboot.
2497  * @prev_reset_trigger: saves the previous trigger which caused a reset, overidden
2498  *                      with a new value on next reset
2499  * @reset_trigger_repeated: set if device reset is triggered more than once with
2500  *                          same cause.
2501  * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
2502  *                         complete instead.
2503  * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
2504  *                        halted. We can't halt it again because the COMMS
2505  *                        protocol will throw an error. Relevant only for
2506  *                        cases where Linux was not loaded to device CPU
2507  * @supports_wait_for_multi_cs: true if wait for multi CS is supported
2508  */
2509 struct hl_device {
2510 	struct pci_dev			*pdev;
2511 	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
2512 	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
2513 	void __iomem			*rmmio;
2514 	struct cdev			cdev;
2515 	struct cdev			cdev_ctrl;
2516 	struct device			*dev;
2517 	struct device			*dev_ctrl;
2518 	struct delayed_work		work_freq;
2519 	struct delayed_work		work_heartbeat;
2520 	struct hl_device_reset_work	device_reset_work;
2521 	char				asic_name[HL_STR_MAX];
2522 	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
2523 	enum hl_asic_type		asic_type;
2524 	struct hl_cq			*completion_queue;
2525 	struct hl_user_interrupt	*user_interrupt;
2526 	struct hl_user_interrupt	common_user_interrupt;
2527 	struct workqueue_struct		**cq_wq;
2528 	struct workqueue_struct		*eq_wq;
2529 	struct workqueue_struct		*sob_reset_wq;
2530 	struct hl_ctx			*kernel_ctx;
2531 	struct hl_hw_queue		*kernel_queues;
2532 	struct list_head		cs_mirror_list;
2533 	spinlock_t			cs_mirror_lock;
2534 	struct hl_cb_mgr		kernel_cb_mgr;
2535 	struct hl_eq			event_queue;
2536 	struct dma_pool			*dma_pool;
2537 	void				*cpu_accessible_dma_mem;
2538 	dma_addr_t			cpu_accessible_dma_address;
2539 	struct gen_pool			*cpu_accessible_dma_pool;
2540 	unsigned long			*asid_bitmap;
2541 	struct mutex			asid_mutex;
2542 	struct mutex			send_cpu_message_lock;
2543 	struct mutex			debug_lock;
2544 	struct asic_fixed_properties	asic_prop;
2545 	const struct hl_asic_funcs	*asic_funcs;
2546 	void				*asic_specific;
2547 	struct hl_vm			vm;
2548 	struct device			*hwmon_dev;
2549 	enum hl_pm_mng_profile		pm_mng_profile;
2550 	struct hwmon_chip_info		*hl_chip_info;
2551 
2552 	struct hl_dbg_device_entry	hl_debugfs;
2553 
2554 	struct list_head		cb_pool;
2555 	spinlock_t			cb_pool_lock;
2556 
2557 	void				*internal_cb_pool_virt_addr;
2558 	dma_addr_t			internal_cb_pool_dma_addr;
2559 	struct gen_pool			*internal_cb_pool;
2560 	u64				internal_cb_va_base;
2561 
2562 	struct list_head		fpriv_list;
2563 	struct mutex			fpriv_list_lock;
2564 
2565 	struct hl_ctx			*compute_ctx;
2566 
2567 	struct hl_cs_counters_atomic	aggregated_cs_counters;
2568 
2569 	struct hl_mmu_priv		mmu_priv;
2570 	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
2571 
2572 	struct fw_load_mgr		fw_loader;
2573 
2574 	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];
2575 
2576 	struct hl_state_dump_specs	state_dump_specs;
2577 
2578 	struct multi_cs_completion	multi_cs_completion[
2579 							MULTI_CS_MAX_USER_CTX];
2580 	u32				*stream_master_qid_arr;
2581 	atomic64_t			dram_used_mem;
2582 	u64				timeout_jiffies;
2583 	u64				max_power;
2584 	u64				clock_gating_mask;
2585 	u64				boot_error_status_mask;
2586 	u64				dram_pci_bar_start;
2587 	u64				last_successful_open_jif;
2588 	u64				last_open_session_duration_jif;
2589 	u64				open_counter;
2590 	atomic_t			in_reset;
2591 	enum hl_pll_frequency		curr_pll_profile;
2592 	enum cpucp_card_types		card_type;
2593 	u32				major;
2594 	u32				high_pll;
2595 	u32				soft_reset_cnt;
2596 	u32				hard_reset_cnt;
2597 	u32				clk_throttling_reason;
2598 	u16				id;
2599 	u16				id_control;
2600 	u16				cpu_pci_msb_addr;
2601 	u8				disabled;
2602 	u8				late_init_done;
2603 	u8				hwmon_initialized;
2604 	u8				hard_reset_pending;
2605 	u8				heartbeat;
2606 	u8				reset_on_lockup;
2607 	u8				dram_default_page_mapping;
2608 	u8				memory_scrub;
2609 	u8				pmmu_huge_range;
2610 	u8				init_done;
2611 	u8				device_cpu_disabled;
2612 	u8				dma_mask;
2613 	u8				in_debug;
2614 	u8				power9_64bit_dma_enable;
2615 	u8				cdev_sysfs_created;
2616 	u8				stop_on_err;
2617 	u8				supports_sync_stream;
2618 	u8				sync_stream_queue_idx;
2619 	u8				collective_mon_idx;
2620 	u8				supports_coresight;
2621 	u8				supports_soft_reset;
2622 	u8				allow_inference_soft_reset;
2623 	u8				supports_cb_mapping;
2624 	u8				needs_reset;
2625 	u8				process_kill_trial_cnt;
2626 	u8				device_fini_pending;
2627 	u8				supports_staged_submission;
2628 	u8				curr_reset_cause;
2629 	u8				prev_reset_trigger;
2630 	u8				reset_trigger_repeated;
2631 	u8				skip_reset_on_timeout;
2632 	u8				device_cpu_is_halted;
2633 	u8				supports_wait_for_multi_cs;
2634 	u8				stream_master_qid_arr_size;
2635 
2636 	/* Parameters for bring-up */
2637 	u64				nic_ports_mask;
2638 	u64				fw_components;
2639 	u8				mmu_enable;
2640 	u8				mmu_huge_page_opt;
2641 	u8				reset_pcilink;
2642 	u8				cpu_queues_enable;
2643 	u8				pldm;
2644 	u8				axi_drain;
2645 	u8				sram_scrambler_enable;
2646 	u8				dram_scrambler_enable;
2647 	u8				hard_reset_on_fw_events;
2648 	u8				bmc_enable;
2649 	u8				rl_enable;
2650 	u8				reset_on_preboot_fail;
2651 	u8				reset_upon_device_release;
2652 	u8				reset_if_device_not_idle;
2653 };
2654 
2655 
2656 /**
2657  * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
2658  * @refcount: refcount used to protect removing this id when several
2659  *            wait cs are used to wait of the reserved encaps signals.
2660  * @hdev: pointer to habanalabs device structure.
2661  * @hw_sob: pointer to  H/W SOB used in the reservation.
2662  * @cs_seq: staged cs sequence which contains encapsulated signals
2663  * @id: idr handler id to be used to fetch the handler info
2664  * @q_idx: stream queue index
2665  * @pre_sob_val: current SOB value before reservation
2666  * @count: signals number
2667  */
2668 struct hl_cs_encaps_sig_handle {
2669 	struct kref refcount;
2670 	struct hl_device *hdev;
2671 	struct hl_hw_sob *hw_sob;
2672 	u64  cs_seq;
2673 	u32  id;
2674 	u32  q_idx;
2675 	u32  pre_sob_val;
2676 	u32  count;
2677 };
2678 
2679 /*
2680  * IOCTLs
2681  */
2682 
2683 /**
2684  * typedef hl_ioctl_t - typedef for ioctl function in the driver
2685  * @hpriv: pointer to the FD's private data, which contains state of
2686  *		user process
2687  * @data: pointer to the input/output arguments structure of the IOCTL
2688  *
2689  * Return: 0 for success, negative value for error
2690  */
2691 typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
2692 
2693 /**
2694  * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
2695  * @cmd: the IOCTL code as created by the kernel macros.
2696  * @func: pointer to the driver's function that should be called for this IOCTL.
2697  */
2698 struct hl_ioctl_desc {
2699 	unsigned int cmd;
2700 	hl_ioctl_t *func;
2701 };
2702 
2703 
2704 /*
2705  * Kernel module functions that can be accessed by entire module
2706  */
2707 
2708 /**
2709  * hl_get_sg_info() - get number of pages and the DMA address from SG list.
2710  * @sg: the SG list.
2711  * @dma_addr: pointer to DMA address to return.
2712  *
2713  * Calculate the number of consecutive pages described by the SG list. Take the
2714  * offset of the address in the first page, add to it the length and round it up
2715  * to the number of needed pages.
2716  */
hl_get_sg_info(struct scatterlist * sg,dma_addr_t * dma_addr)2717 static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
2718 {
2719 	*dma_addr = sg_dma_address(sg);
2720 
2721 	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
2722 			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
2723 }
2724 
2725 /**
2726  * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
2727  * @address: The start address of the area we want to validate.
2728  * @size: The size in bytes of the area we want to validate.
2729  * @range_start_address: The start address of the valid range.
2730  * @range_end_address: The end address of the valid range.
2731  *
2732  * Return: true if the area is inside the valid range, false otherwise.
2733  */
hl_mem_area_inside_range(u64 address,u64 size,u64 range_start_address,u64 range_end_address)2734 static inline bool hl_mem_area_inside_range(u64 address, u64 size,
2735 				u64 range_start_address, u64 range_end_address)
2736 {
2737 	u64 end_address = address + size;
2738 
2739 	if ((address >= range_start_address) &&
2740 			(end_address <= range_end_address) &&
2741 			(end_address > address))
2742 		return true;
2743 
2744 	return false;
2745 }
2746 
2747 /**
2748  * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
2749  * @address: The start address of the area we want to validate.
2750  * @size: The size in bytes of the area we want to validate.
2751  * @range_start_address: The start address of the valid range.
2752  * @range_end_address: The end address of the valid range.
2753  *
2754  * Return: true if the area overlaps part or all of the valid range,
2755  *		false otherwise.
2756  */
hl_mem_area_crosses_range(u64 address,u32 size,u64 range_start_address,u64 range_end_address)2757 static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
2758 				u64 range_start_address, u64 range_end_address)
2759 {
2760 	u64 end_address = address + size;
2761 
2762 	if ((address >= range_start_address) &&
2763 			(address < range_end_address))
2764 		return true;
2765 
2766 	if ((end_address >= range_start_address) &&
2767 			(end_address < range_end_address))
2768 		return true;
2769 
2770 	if ((address < range_start_address) &&
2771 			(end_address >= range_end_address))
2772 		return true;
2773 
2774 	return false;
2775 }
2776 
2777 int hl_device_open(struct inode *inode, struct file *filp);
2778 int hl_device_open_ctrl(struct inode *inode, struct file *filp);
2779 bool hl_device_operational(struct hl_device *hdev,
2780 		enum hl_device_status *status);
2781 enum hl_device_status hl_device_status(struct hl_device *hdev);
2782 int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
2783 int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
2784 		enum hl_asic_type asic_type, int minor);
2785 void destroy_hdev(struct hl_device *hdev);
2786 int hl_hw_queues_create(struct hl_device *hdev);
2787 void hl_hw_queues_destroy(struct hl_device *hdev);
2788 int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
2789 		u32 cb_size, u64 cb_ptr);
2790 void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
2791 		u32 ctl, u32 len, u64 ptr);
2792 int hl_hw_queue_schedule_cs(struct hl_cs *cs);
2793 u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
2794 void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
2795 void hl_hw_queue_update_ci(struct hl_cs *cs);
2796 void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
2797 
2798 #define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
2799 #define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
2800 
2801 int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
2802 void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
2803 int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
2804 void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
2805 void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
2806 void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
2807 irqreturn_t hl_irq_handler_cq(int irq, void *arg);
2808 irqreturn_t hl_irq_handler_eq(int irq, void *arg);
2809 irqreturn_t hl_irq_handler_user_cq(int irq, void *arg);
2810 irqreturn_t hl_irq_handler_default(int irq, void *arg);
2811 u32 hl_cq_inc_ptr(u32 ptr);
2812 
2813 int hl_asid_init(struct hl_device *hdev);
2814 void hl_asid_fini(struct hl_device *hdev);
2815 unsigned long hl_asid_alloc(struct hl_device *hdev);
2816 void hl_asid_free(struct hl_device *hdev, unsigned long asid);
2817 
2818 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
2819 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
2820 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
2821 void hl_ctx_do_release(struct kref *ref);
2822 void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
2823 int hl_ctx_put(struct hl_ctx *ctx);
2824 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
2825 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
2826 				struct hl_fence **fence, u32 arr_len);
2827 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
2828 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
2829 
2830 int hl_device_init(struct hl_device *hdev, struct class *hclass);
2831 void hl_device_fini(struct hl_device *hdev);
2832 int hl_device_suspend(struct hl_device *hdev);
2833 int hl_device_resume(struct hl_device *hdev);
2834 int hl_device_reset(struct hl_device *hdev, u32 flags);
2835 void hl_hpriv_get(struct hl_fpriv *hpriv);
2836 int hl_hpriv_put(struct hl_fpriv *hpriv);
2837 int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
2838 int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
2839 
2840 int hl_build_hwmon_channel_info(struct hl_device *hdev,
2841 		struct cpucp_sensor *sensors_arr);
2842 
2843 int hl_sysfs_init(struct hl_device *hdev);
2844 void hl_sysfs_fini(struct hl_device *hdev);
2845 
2846 int hl_hwmon_init(struct hl_device *hdev);
2847 void hl_hwmon_fini(struct hl_device *hdev);
2848 
2849 int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr,
2850 			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
2851 			bool map_cb, u64 *handle);
2852 int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
2853 int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2854 int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
2855 struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
2856 			u32 handle);
2857 void hl_cb_put(struct hl_cb *cb);
2858 void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
2859 void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
2860 struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
2861 					bool internal_cb);
2862 int hl_cb_pool_init(struct hl_device *hdev);
2863 int hl_cb_pool_fini(struct hl_device *hdev);
2864 int hl_cb_va_pool_init(struct hl_ctx *ctx);
2865 void hl_cb_va_pool_fini(struct hl_ctx *ctx);
2866 
2867 void hl_cs_rollback_all(struct hl_device *hdev);
2868 struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
2869 		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
2870 void hl_sob_reset_error(struct kref *ref);
2871 int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
2872 void hl_fence_put(struct hl_fence *fence);
2873 void hl_fences_put(struct hl_fence **fence, int len);
2874 void hl_fence_get(struct hl_fence *fence);
2875 void cs_get(struct hl_cs *cs);
2876 bool cs_needs_completion(struct hl_cs *cs);
2877 bool cs_needs_timeout(struct hl_cs *cs);
2878 bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
2879 struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
2880 void hl_multi_cs_completion_init(struct hl_device *hdev);
2881 
2882 void goya_set_asic_funcs(struct hl_device *hdev);
2883 void gaudi_set_asic_funcs(struct hl_device *hdev);
2884 
2885 int hl_vm_ctx_init(struct hl_ctx *ctx);
2886 void hl_vm_ctx_fini(struct hl_ctx *ctx);
2887 
2888 int hl_vm_init(struct hl_device *hdev);
2889 void hl_vm_fini(struct hl_device *hdev);
2890 
2891 void hl_hw_block_mem_init(struct hl_ctx *ctx);
2892 void hl_hw_block_mem_fini(struct hl_ctx *ctx);
2893 
2894 u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2895 		enum hl_va_range_type type, u32 size, u32 alignment);
2896 int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
2897 		u64 start_addr, u64 size);
2898 int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2899 			struct hl_userptr *userptr);
2900 void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
2901 void hl_userptr_delete_list(struct hl_device *hdev,
2902 				struct list_head *userptr_list);
2903 bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
2904 				struct list_head *userptr_list,
2905 				struct hl_userptr **userptr);
2906 
2907 int hl_mmu_init(struct hl_device *hdev);
2908 void hl_mmu_fini(struct hl_device *hdev);
2909 int hl_mmu_ctx_init(struct hl_ctx *ctx);
2910 void hl_mmu_ctx_fini(struct hl_ctx *ctx);
2911 int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
2912 		u32 page_size, bool flush_pte);
2913 int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
2914 		bool flush_pte);
2915 int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
2916 					u64 phys_addr, u32 size);
2917 int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
2918 void hl_mmu_swap_out(struct hl_ctx *ctx);
2919 void hl_mmu_swap_in(struct hl_ctx *ctx);
2920 int hl_mmu_if_set_funcs(struct hl_device *hdev);
2921 void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
2922 int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
2923 int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
2924 			struct hl_mmu_hop_info *hops);
2925 u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
2926 u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
2927 bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
2928 
2929 int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
2930 				void __iomem *dst, u32 src_offset, u32 size);
2931 int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
2932 int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
2933 				u16 len, u32 timeout, u64 *result);
2934 int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
2935 int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
2936 		size_t irq_arr_size);
2937 int hl_fw_test_cpu_queue(struct hl_device *hdev);
2938 void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
2939 						dma_addr_t *dma_handle);
2940 void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
2941 					void *vaddr);
2942 int hl_fw_send_heartbeat(struct hl_device *hdev);
2943 int hl_fw_cpucp_info_get(struct hl_device *hdev,
2944 				u32 sts_boot_dev_sts0_reg,
2945 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2946 				u32 boot_err1_reg);
2947 int hl_fw_cpucp_handshake(struct hl_device *hdev,
2948 				u32 sts_boot_dev_sts0_reg,
2949 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2950 				u32 boot_err1_reg);
2951 int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
2952 int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
2953 		struct hl_info_pci_counters *counters);
2954 int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
2955 			u64 *total_energy);
2956 int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
2957 						enum pll_index *pll_index);
2958 int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
2959 		u16 *pll_freq_arr);
2960 int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
2961 void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
2962 void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
2963 int hl_fw_init_cpu(struct hl_device *hdev);
2964 int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
2965 				u32 sts_boot_dev_sts0_reg,
2966 				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
2967 				u32 boot_err1_reg, u32 timeout);
2968 int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
2969 				struct fw_load_mgr *fw_loader,
2970 				enum comms_cmd cmd, unsigned int size,
2971 				bool wait_ok, u32 timeout);
2972 int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
2973 			bool is_wc[3]);
2974 int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
2975 int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
2976 int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
2977 		struct hl_inbound_pci_region *pci_region);
2978 int hl_pci_set_outbound_region(struct hl_device *hdev,
2979 		struct hl_outbound_pci_region *pci_region);
2980 enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
2981 int hl_pci_init(struct hl_device *hdev);
2982 void hl_pci_fini(struct hl_device *hdev);
2983 
2984 long hl_get_frequency(struct hl_device *hdev, u32 pll_index,
2985 								bool curr);
2986 void hl_set_frequency(struct hl_device *hdev, u32 pll_index,
2987 								u64 freq);
2988 int hl_get_temperature(struct hl_device *hdev,
2989 		       int sensor_index, u32 attr, long *value);
2990 int hl_set_temperature(struct hl_device *hdev,
2991 		       int sensor_index, u32 attr, long value);
2992 int hl_get_voltage(struct hl_device *hdev,
2993 		   int sensor_index, u32 attr, long *value);
2994 int hl_get_current(struct hl_device *hdev,
2995 		   int sensor_index, u32 attr, long *value);
2996 int hl_get_fan_speed(struct hl_device *hdev,
2997 		     int sensor_index, u32 attr, long *value);
2998 int hl_get_pwm_info(struct hl_device *hdev,
2999 		    int sensor_index, u32 attr, long *value);
3000 void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
3001 			long value);
3002 u64 hl_get_max_power(struct hl_device *hdev);
3003 void hl_set_max_power(struct hl_device *hdev);
3004 int hl_set_voltage(struct hl_device *hdev,
3005 			int sensor_index, u32 attr, long value);
3006 int hl_set_current(struct hl_device *hdev,
3007 			int sensor_index, u32 attr, long value);
3008 int hl_set_power(struct hl_device *hdev,
3009 			int sensor_index, u32 attr, long value);
3010 int hl_get_power(struct hl_device *hdev,
3011 			int sensor_index, u32 attr, long *value);
3012 int hl_get_clk_rate(struct hl_device *hdev,
3013 			u32 *cur_clk, u32 *max_clk);
3014 void hl_set_pll_profile(struct hl_device *hdev, enum hl_pll_frequency freq);
3015 void hl_add_device_attr(struct hl_device *hdev,
3016 			struct attribute_group *dev_attr_grp);
3017 void hw_sob_get(struct hl_hw_sob *hw_sob);
3018 void hw_sob_put(struct hl_hw_sob *hw_sob);
3019 void hl_encaps_handle_do_release(struct kref *ref);
3020 void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3021 			struct hl_cs *cs, struct hl_cs_job *job,
3022 			struct hl_cs_compl *cs_cmpl);
3023 void hl_release_pending_user_interrupts(struct hl_device *hdev);
3024 int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3025 			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3026 
3027 int hl_state_dump(struct hl_device *hdev);
3028 const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3029 const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3030 					struct hl_mon_state_dump *mon);
3031 void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3032 __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3033 					const char *format, ...);
3034 char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3035 const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3036 
3037 #ifdef CONFIG_DEBUG_FS
3038 
3039 void hl_debugfs_init(void);
3040 void hl_debugfs_fini(void);
3041 void hl_debugfs_add_device(struct hl_device *hdev);
3042 void hl_debugfs_remove_device(struct hl_device *hdev);
3043 void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3044 void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3045 void hl_debugfs_add_cb(struct hl_cb *cb);
3046 void hl_debugfs_remove_cb(struct hl_cb *cb);
3047 void hl_debugfs_add_cs(struct hl_cs *cs);
3048 void hl_debugfs_remove_cs(struct hl_cs *cs);
3049 void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3050 void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3051 void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3052 void hl_debugfs_remove_userptr(struct hl_device *hdev,
3053 				struct hl_userptr *userptr);
3054 void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3055 void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3056 void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3057 					unsigned long length);
3058 
3059 #else
3060 
hl_debugfs_init(void)3061 static inline void __init hl_debugfs_init(void)
3062 {
3063 }
3064 
hl_debugfs_fini(void)3065 static inline void hl_debugfs_fini(void)
3066 {
3067 }
3068 
hl_debugfs_add_device(struct hl_device * hdev)3069 static inline void hl_debugfs_add_device(struct hl_device *hdev)
3070 {
3071 }
3072 
hl_debugfs_remove_device(struct hl_device * hdev)3073 static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3074 {
3075 }
3076 
hl_debugfs_add_file(struct hl_fpriv * hpriv)3077 static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
3078 {
3079 }
3080 
hl_debugfs_remove_file(struct hl_fpriv * hpriv)3081 static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
3082 {
3083 }
3084 
hl_debugfs_add_cb(struct hl_cb * cb)3085 static inline void hl_debugfs_add_cb(struct hl_cb *cb)
3086 {
3087 }
3088 
hl_debugfs_remove_cb(struct hl_cb * cb)3089 static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
3090 {
3091 }
3092 
hl_debugfs_add_cs(struct hl_cs * cs)3093 static inline void hl_debugfs_add_cs(struct hl_cs *cs)
3094 {
3095 }
3096 
hl_debugfs_remove_cs(struct hl_cs * cs)3097 static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
3098 {
3099 }
3100 
hl_debugfs_add_job(struct hl_device * hdev,struct hl_cs_job * job)3101 static inline void hl_debugfs_add_job(struct hl_device *hdev,
3102 					struct hl_cs_job *job)
3103 {
3104 }
3105 
hl_debugfs_remove_job(struct hl_device * hdev,struct hl_cs_job * job)3106 static inline void hl_debugfs_remove_job(struct hl_device *hdev,
3107 					struct hl_cs_job *job)
3108 {
3109 }
3110 
hl_debugfs_add_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3111 static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
3112 					struct hl_userptr *userptr)
3113 {
3114 }
3115 
hl_debugfs_remove_userptr(struct hl_device * hdev,struct hl_userptr * userptr)3116 static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
3117 					struct hl_userptr *userptr)
3118 {
3119 }
3120 
hl_debugfs_add_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3121 static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
3122 					struct hl_ctx *ctx)
3123 {
3124 }
3125 
hl_debugfs_remove_ctx_mem_hash(struct hl_device * hdev,struct hl_ctx * ctx)3126 static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
3127 					struct hl_ctx *ctx)
3128 {
3129 }
3130 
hl_debugfs_set_state_dump(struct hl_device * hdev,char * data,unsigned long length)3131 static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
3132 					char *data, unsigned long length)
3133 {
3134 }
3135 
3136 #endif
3137 
3138 /* IOCTLs */
3139 long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
3140 long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
3141 int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
3142 int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
3143 int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
3144 int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
3145 
3146 #endif /* HABANALABSP_H_ */
3147