1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
4 * and other Tigon based cards.
5 *
6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
7 *
8 * Thanks to Alteon and 3Com for providing hardware and documentation
9 * enabling me to write this driver.
10 *
11 * A mailing list for discussing the use of this driver has been
12 * setup, please subscribe to the lists if you have any questions
13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
14 * see how to subscribe.
15 *
16 * Additional credits:
17 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
18 * dump support. The trace dump support has not been
19 * integrated yet however.
20 * Troy Benjegerdes: Big Endian (PPC) patches.
21 * Nate Stahl: Better out of memory handling and stats support.
22 * Aman Singla: Nasty race between interrupt handler and tx code dealing
23 * with 'testing the tx_ret_csm and setting tx_full'
24 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
25 * infrastructure and Sparc support
26 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
27 * driver under Linux/Sparc64
28 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
29 * ETHTOOL_GDRVINFO support
30 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
31 * handler and close() cleanup.
32 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
33 * memory mapped IO is enabled to
34 * make the driver work on RS/6000.
35 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
36 * where the driver would disable
37 * bus master mode if it had to disable
38 * write and invalidate.
39 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
40 * endian systems.
41 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and
42 * rx producer index when
43 * flushing the Jumbo ring.
44 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the
45 * driver init path.
46 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
47 */
48
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/types.h>
52 #include <linux/errno.h>
53 #include <linux/ioport.h>
54 #include <linux/pci.h>
55 #include <linux/dma-mapping.h>
56 #include <linux/kernel.h>
57 #include <linux/netdevice.h>
58 #include <linux/etherdevice.h>
59 #include <linux/skbuff.h>
60 #include <linux/delay.h>
61 #include <linux/mm.h>
62 #include <linux/highmem.h>
63 #include <linux/sockios.h>
64 #include <linux/firmware.h>
65 #include <linux/slab.h>
66 #include <linux/prefetch.h>
67 #include <linux/if_vlan.h>
68
69 #ifdef SIOCETHTOOL
70 #include <linux/ethtool.h>
71 #endif
72
73 #include <net/sock.h>
74 #include <net/ip.h>
75
76 #include <asm/io.h>
77 #include <asm/irq.h>
78 #include <asm/byteorder.h>
79 #include <linux/uaccess.h>
80
81
82 #define DRV_NAME "acenic"
83
84 #undef INDEX_DEBUG
85
86 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
87 #define ACE_IS_TIGON_I(ap) 0
88 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES
89 #else
90 #define ACE_IS_TIGON_I(ap) (ap->version == 1)
91 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries
92 #endif
93
94 #ifndef PCI_VENDOR_ID_ALTEON
95 #define PCI_VENDOR_ID_ALTEON 0x12ae
96 #endif
97 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
98 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001
99 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
100 #endif
101 #ifndef PCI_DEVICE_ID_3COM_3C985
102 #define PCI_DEVICE_ID_3COM_3C985 0x0001
103 #endif
104 #ifndef PCI_VENDOR_ID_NETGEAR
105 #define PCI_VENDOR_ID_NETGEAR 0x1385
106 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a
107 #endif
108 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
109 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a
110 #endif
111
112
113 /*
114 * Farallon used the DEC vendor ID by mistake and they seem not
115 * to care - stinky!
116 */
117 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
118 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a
119 #endif
120 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
121 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa
122 #endif
123 #ifndef PCI_VENDOR_ID_SGI
124 #define PCI_VENDOR_ID_SGI 0x10a9
125 #endif
126 #ifndef PCI_DEVICE_ID_SGI_ACENIC
127 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009
128 #endif
129
130 static const struct pci_device_id acenic_pci_tbl[] = {
131 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
132 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
133 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
134 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
135 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
136 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
137 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
139 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 /*
142 * Farallon used the DEC vendor ID on their cards incorrectly,
143 * then later Alteon's ID.
144 */
145 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
147 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
148 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
149 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
150 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
151 { }
152 };
153 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
154
155 #define ace_sync_irq(irq) synchronize_irq(irq)
156
157 #ifndef offset_in_page
158 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK)
159 #endif
160
161 #define ACE_MAX_MOD_PARMS 8
162 #define BOARD_IDX_STATIC 0
163 #define BOARD_IDX_OVERFLOW -1
164
165 #include "acenic.h"
166
167 /*
168 * These must be defined before the firmware is included.
169 */
170 #define MAX_TEXT_LEN 96*1024
171 #define MAX_RODATA_LEN 8*1024
172 #define MAX_DATA_LEN 2*1024
173
174 #ifndef tigon2FwReleaseLocal
175 #define tigon2FwReleaseLocal 0
176 #endif
177
178 /*
179 * This driver currently supports Tigon I and Tigon II based cards
180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
181 * GA620. The driver should also work on the SGI, DEC and Farallon
182 * versions of the card, however I have not been able to test that
183 * myself.
184 *
185 * This card is really neat, it supports receive hardware checksumming
186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
187 * firmware. Also the programming interface is quite neat, except for
188 * the parts dealing with the i2c eeprom on the card ;-)
189 *
190 * Using jumbo frames:
191 *
192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
195 * interface number and <MTU> being the MTU value.
196 *
197 * Module parameters:
198 *
199 * When compiled as a loadable module, the driver allows for a number
200 * of module parameters to be specified. The driver supports the
201 * following module parameters:
202 *
203 * trace=<val> - Firmware trace level. This requires special traced
204 * firmware to replace the firmware supplied with
205 * the driver - for debugging purposes only.
206 *
207 * link=<val> - Link state. Normally you want to use the default link
208 * parameters set by the driver. This can be used to
209 * override these in case your switch doesn't negotiate
210 * the link properly. Valid values are:
211 * 0x0001 - Force half duplex link.
212 * 0x0002 - Do not negotiate line speed with the other end.
213 * 0x0010 - 10Mbit/sec link.
214 * 0x0020 - 100Mbit/sec link.
215 * 0x0040 - 1000Mbit/sec link.
216 * 0x0100 - Do not negotiate flow control.
217 * 0x0200 - Enable RX flow control Y
218 * 0x0400 - Enable TX flow control Y (Tigon II NICs only).
219 * Default value is 0x0270, ie. enable link+flow
220 * control negotiation. Negotiating the highest
221 * possible link speed with RX flow control enabled.
222 *
223 * When disabling link speed negotiation, only one link
224 * speed is allowed to be specified!
225 *
226 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
227 * to wait for more packets to arive before
228 * interrupting the host, from the time the first
229 * packet arrives.
230 *
231 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232 * to wait for more packets to arive in the transmit ring,
233 * before interrupting the host, after transmitting the
234 * first packet in the ring.
235 *
236 * max_tx_desc=<val> - maximum number of transmit descriptors
237 * (packets) transmitted before interrupting the host.
238 *
239 * max_rx_desc=<val> - maximum number of receive descriptors
240 * (packets) received before interrupting the host.
241 *
242 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
243 * increments of the NIC's on board memory to be used for
244 * transmit and receive buffers. For the 1MB NIC app. 800KB
245 * is available, on the 1/2MB NIC app. 300KB is available.
246 * 68KB will always be available as a minimum for both
247 * directions. The default value is a 50/50 split.
248 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
249 * operations, default (1) is to always disable this as
250 * that is what Alteon does on NT. I have not been able
251 * to measure any real performance differences with
252 * this on my systems. Set <val>=0 if you want to
253 * enable these operations.
254 *
255 * If you use more than one NIC, specify the parameters for the
256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
257 * run tracing on NIC #2 but not on NIC #1 and #3.
258 *
259 * TODO:
260 *
261 * - Proper multicast support.
262 * - NIC dump support.
263 * - More tuning parameters.
264 *
265 * The mini ring is not used under Linux and I am not sure it makes sense
266 * to actually use it.
267 *
268 * New interrupt handler strategy:
269 *
270 * The old interrupt handler worked using the traditional method of
271 * replacing an skbuff with a new one when a packet arrives. However
272 * the rx rings do not need to contain a static number of buffer
273 * descriptors, thus it makes sense to move the memory allocation out
274 * of the main interrupt handler and do it in a bottom half handler
275 * and only allocate new buffers when the number of buffers in the
276 * ring is below a certain threshold. In order to avoid starving the
277 * NIC under heavy load it is however necessary to force allocation
278 * when hitting a minimum threshold. The strategy for alloction is as
279 * follows:
280 *
281 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
282 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
283 * the buffers in the interrupt handler
284 * RX_RING_THRES - maximum number of buffers in the rx ring
285 * RX_MINI_THRES - maximum number of buffers in the mini ring
286 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring
287 *
288 * One advantagous side effect of this allocation approach is that the
289 * entire rx processing can be done without holding any spin lock
290 * since the rx rings and registers are totally independent of the tx
291 * ring and its registers. This of course includes the kmalloc's of
292 * new skb's. Thus start_xmit can run in parallel with rx processing
293 * and the memory allocation on SMP systems.
294 *
295 * Note that running the skb reallocation in a bottom half opens up
296 * another can of races which needs to be handled properly. In
297 * particular it can happen that the interrupt handler tries to run
298 * the reallocation while the bottom half is either running on another
299 * CPU or was interrupted on the same CPU. To get around this the
300 * driver uses bitops to prevent the reallocation routines from being
301 * reentered.
302 *
303 * TX handling can also be done without holding any spin lock, wheee
304 * this is fun! since tx_ret_csm is only written to by the interrupt
305 * handler. The case to be aware of is when shutting down the device
306 * and cleaning up where it is necessary to make sure that
307 * start_xmit() is not running while this is happening. Well DaveM
308 * informs me that this case is already protected against ... bye bye
309 * Mr. Spin Lock, it was nice to know you.
310 *
311 * TX interrupts are now partly disabled so the NIC will only generate
312 * TX interrupts for the number of coal ticks, not for the number of
313 * TX packets in the queue. This should reduce the number of TX only,
314 * ie. when no RX processing is done, interrupts seen.
315 */
316
317 /*
318 * Threshold values for RX buffer allocation - the low water marks for
319 * when to start refilling the rings are set to 75% of the ring
320 * sizes. It seems to make sense to refill the rings entirely from the
321 * intrrupt handler once it gets below the panic threshold, that way
322 * we don't risk that the refilling is moved to another CPU when the
323 * one running the interrupt handler just got the slab code hot in its
324 * cache.
325 */
326 #define RX_RING_SIZE 72
327 #define RX_MINI_SIZE 64
328 #define RX_JUMBO_SIZE 48
329
330 #define RX_PANIC_STD_THRES 16
331 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2
332 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4
333 #define RX_PANIC_MINI_THRES 12
334 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2
335 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4
336 #define RX_PANIC_JUMBO_THRES 6
337 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2
338 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4
339
340
341 /*
342 * Size of the mini ring entries, basically these just should be big
343 * enough to take TCP ACKs
344 */
345 #define ACE_MINI_SIZE 100
346
347 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE
348 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4)
349 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4)
350
351 /*
352 * There seems to be a magic difference in the effect between 995 and 996
353 * but little difference between 900 and 995 ... no idea why.
354 *
355 * There is now a default set of tuning parameters which is set, depending
356 * on whether or not the user enables Jumbo frames. It's assumed that if
357 * Jumbo frames are enabled, the user wants optimal tuning for that case.
358 */
359 #define DEF_TX_COAL 400 /* 996 */
360 #define DEF_TX_MAX_DESC 60 /* was 40 */
361 #define DEF_RX_COAL 120 /* 1000 */
362 #define DEF_RX_MAX_DESC 25
363 #define DEF_TX_RATIO 21 /* 24 */
364
365 #define DEF_JUMBO_TX_COAL 20
366 #define DEF_JUMBO_TX_MAX_DESC 60
367 #define DEF_JUMBO_RX_COAL 30
368 #define DEF_JUMBO_RX_MAX_DESC 6
369 #define DEF_JUMBO_TX_RATIO 21
370
371 #if tigon2FwReleaseLocal < 20001118
372 /*
373 * Standard firmware and early modifications duplicate
374 * IRQ load without this flag (coal timer is never reset).
375 * Note that with this flag tx_coal should be less than
376 * time to xmit full tx ring.
377 * 400usec is not so bad for tx ring size of 128.
378 */
379 #define TX_COAL_INTS_ONLY 1 /* worth it */
380 #else
381 /*
382 * With modified firmware, this is not necessary, but still useful.
383 */
384 #define TX_COAL_INTS_ONLY 1
385 #endif
386
387 #define DEF_TRACE 0
388 #define DEF_STAT (2 * TICKS_PER_SEC)
389
390
391 static int link_state[ACE_MAX_MOD_PARMS];
392 static int trace[ACE_MAX_MOD_PARMS];
393 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
394 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
395 static int max_tx_desc[ACE_MAX_MOD_PARMS];
396 static int max_rx_desc[ACE_MAX_MOD_PARMS];
397 static int tx_ratio[ACE_MAX_MOD_PARMS];
398 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
399
400 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
401 MODULE_LICENSE("GPL");
402 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
403 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
404 MODULE_FIRMWARE("acenic/tg1.bin");
405 #endif
406 MODULE_FIRMWARE("acenic/tg2.bin");
407
408 module_param_array_named(link, link_state, int, NULL, 0);
409 module_param_array(trace, int, NULL, 0);
410 module_param_array(tx_coal_tick, int, NULL, 0);
411 module_param_array(max_tx_desc, int, NULL, 0);
412 module_param_array(rx_coal_tick, int, NULL, 0);
413 module_param_array(max_rx_desc, int, NULL, 0);
414 module_param_array(tx_ratio, int, NULL, 0);
415 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
416 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
417 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
418 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
419 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
420 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
421 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
422
423
424 static const char version[] =
425 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n"
426 " http://home.cern.ch/~jes/gige/acenic.html\n";
427
428 static int ace_get_link_ksettings(struct net_device *,
429 struct ethtool_link_ksettings *);
430 static int ace_set_link_ksettings(struct net_device *,
431 const struct ethtool_link_ksettings *);
432 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
433
434 static const struct ethtool_ops ace_ethtool_ops = {
435 .get_drvinfo = ace_get_drvinfo,
436 .get_link_ksettings = ace_get_link_ksettings,
437 .set_link_ksettings = ace_set_link_ksettings,
438 };
439
440 static void ace_watchdog(struct net_device *dev, unsigned int txqueue);
441
442 static const struct net_device_ops ace_netdev_ops = {
443 .ndo_open = ace_open,
444 .ndo_stop = ace_close,
445 .ndo_tx_timeout = ace_watchdog,
446 .ndo_get_stats = ace_get_stats,
447 .ndo_start_xmit = ace_start_xmit,
448 .ndo_set_rx_mode = ace_set_multicast_list,
449 .ndo_validate_addr = eth_validate_addr,
450 .ndo_set_mac_address = ace_set_mac_addr,
451 .ndo_change_mtu = ace_change_mtu,
452 };
453
acenic_probe_one(struct pci_dev * pdev,const struct pci_device_id * id)454 static int acenic_probe_one(struct pci_dev *pdev,
455 const struct pci_device_id *id)
456 {
457 struct net_device *dev;
458 struct ace_private *ap;
459 static int boards_found;
460
461 dev = alloc_etherdev(sizeof(struct ace_private));
462 if (dev == NULL)
463 return -ENOMEM;
464
465 SET_NETDEV_DEV(dev, &pdev->dev);
466
467 ap = netdev_priv(dev);
468 ap->ndev = dev;
469 ap->pdev = pdev;
470 ap->name = pci_name(pdev);
471
472 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
473 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
474
475 dev->watchdog_timeo = 5*HZ;
476 dev->min_mtu = 0;
477 dev->max_mtu = ACE_JUMBO_MTU;
478
479 dev->netdev_ops = &ace_netdev_ops;
480 dev->ethtool_ops = &ace_ethtool_ops;
481
482 /* we only display this string ONCE */
483 if (!boards_found)
484 printk(version);
485
486 if (pci_enable_device(pdev))
487 goto fail_free_netdev;
488
489 /*
490 * Enable master mode before we start playing with the
491 * pci_command word since pci_set_master() will modify
492 * it.
493 */
494 pci_set_master(pdev);
495
496 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
497
498 /* OpenFirmware on Mac's does not set this - DOH.. */
499 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
500 printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
501 "access - was not enabled by BIOS/Firmware\n",
502 ap->name);
503 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
504 pci_write_config_word(ap->pdev, PCI_COMMAND,
505 ap->pci_command);
506 wmb();
507 }
508
509 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
510 if (ap->pci_latency <= 0x40) {
511 ap->pci_latency = 0x40;
512 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
513 }
514
515 /*
516 * Remap the regs into kernel space - this is abuse of
517 * dev->base_addr since it was means for I/O port
518 * addresses but who gives a damn.
519 */
520 dev->base_addr = pci_resource_start(pdev, 0);
521 ap->regs = ioremap(dev->base_addr, 0x4000);
522 if (!ap->regs) {
523 printk(KERN_ERR "%s: Unable to map I/O register, "
524 "AceNIC %i will be disabled.\n",
525 ap->name, boards_found);
526 goto fail_free_netdev;
527 }
528
529 switch(pdev->vendor) {
530 case PCI_VENDOR_ID_ALTEON:
531 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
532 printk(KERN_INFO "%s: Farallon PN9100-T ",
533 ap->name);
534 } else {
535 printk(KERN_INFO "%s: Alteon AceNIC ",
536 ap->name);
537 }
538 break;
539 case PCI_VENDOR_ID_3COM:
540 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
541 break;
542 case PCI_VENDOR_ID_NETGEAR:
543 printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
544 break;
545 case PCI_VENDOR_ID_DEC:
546 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
547 printk(KERN_INFO "%s: Farallon PN9000-SX ",
548 ap->name);
549 break;
550 }
551 fallthrough;
552 case PCI_VENDOR_ID_SGI:
553 printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
554 break;
555 default:
556 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
557 break;
558 }
559
560 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
561 printk("irq %d\n", pdev->irq);
562
563 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
564 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
565 printk(KERN_ERR "%s: Driver compiled without Tigon I"
566 " support - NIC disabled\n", dev->name);
567 goto fail_uninit;
568 }
569 #endif
570
571 if (ace_allocate_descriptors(dev))
572 goto fail_free_netdev;
573
574 #ifdef MODULE
575 if (boards_found >= ACE_MAX_MOD_PARMS)
576 ap->board_idx = BOARD_IDX_OVERFLOW;
577 else
578 ap->board_idx = boards_found;
579 #else
580 ap->board_idx = BOARD_IDX_STATIC;
581 #endif
582
583 if (ace_init(dev))
584 goto fail_free_netdev;
585
586 if (register_netdev(dev)) {
587 printk(KERN_ERR "acenic: device registration failed\n");
588 goto fail_uninit;
589 }
590 ap->name = dev->name;
591
592 if (ap->pci_using_dac)
593 dev->features |= NETIF_F_HIGHDMA;
594
595 pci_set_drvdata(pdev, dev);
596
597 boards_found++;
598 return 0;
599
600 fail_uninit:
601 ace_init_cleanup(dev);
602 fail_free_netdev:
603 free_netdev(dev);
604 return -ENODEV;
605 }
606
acenic_remove_one(struct pci_dev * pdev)607 static void acenic_remove_one(struct pci_dev *pdev)
608 {
609 struct net_device *dev = pci_get_drvdata(pdev);
610 struct ace_private *ap = netdev_priv(dev);
611 struct ace_regs __iomem *regs = ap->regs;
612 short i;
613
614 unregister_netdev(dev);
615
616 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
617 if (ap->version >= 2)
618 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
619
620 /*
621 * This clears any pending interrupts
622 */
623 writel(1, ®s->Mb0Lo);
624 readl(®s->CpuCtrl); /* flush */
625
626 /*
627 * Make sure no other CPUs are processing interrupts
628 * on the card before the buffers are being released.
629 * Otherwise one might experience some `interesting'
630 * effects.
631 *
632 * Then release the RX buffers - jumbo buffers were
633 * already released in ace_close().
634 */
635 ace_sync_irq(dev->irq);
636
637 for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
638 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
639
640 if (skb) {
641 struct ring_info *ringp;
642 dma_addr_t mapping;
643
644 ringp = &ap->skb->rx_std_skbuff[i];
645 mapping = dma_unmap_addr(ringp, mapping);
646 dma_unmap_page(&ap->pdev->dev, mapping,
647 ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
648
649 ap->rx_std_ring[i].size = 0;
650 ap->skb->rx_std_skbuff[i].skb = NULL;
651 dev_kfree_skb(skb);
652 }
653 }
654
655 if (ap->version >= 2) {
656 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
657 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
658
659 if (skb) {
660 struct ring_info *ringp;
661 dma_addr_t mapping;
662
663 ringp = &ap->skb->rx_mini_skbuff[i];
664 mapping = dma_unmap_addr(ringp,mapping);
665 dma_unmap_page(&ap->pdev->dev, mapping,
666 ACE_MINI_BUFSIZE,
667 DMA_FROM_DEVICE);
668
669 ap->rx_mini_ring[i].size = 0;
670 ap->skb->rx_mini_skbuff[i].skb = NULL;
671 dev_kfree_skb(skb);
672 }
673 }
674 }
675
676 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
677 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
678 if (skb) {
679 struct ring_info *ringp;
680 dma_addr_t mapping;
681
682 ringp = &ap->skb->rx_jumbo_skbuff[i];
683 mapping = dma_unmap_addr(ringp, mapping);
684 dma_unmap_page(&ap->pdev->dev, mapping,
685 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
686
687 ap->rx_jumbo_ring[i].size = 0;
688 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
689 dev_kfree_skb(skb);
690 }
691 }
692
693 ace_init_cleanup(dev);
694 free_netdev(dev);
695 }
696
697 static struct pci_driver acenic_pci_driver = {
698 .name = "acenic",
699 .id_table = acenic_pci_tbl,
700 .probe = acenic_probe_one,
701 .remove = acenic_remove_one,
702 };
703
ace_free_descriptors(struct net_device * dev)704 static void ace_free_descriptors(struct net_device *dev)
705 {
706 struct ace_private *ap = netdev_priv(dev);
707 int size;
708
709 if (ap->rx_std_ring != NULL) {
710 size = (sizeof(struct rx_desc) *
711 (RX_STD_RING_ENTRIES +
712 RX_JUMBO_RING_ENTRIES +
713 RX_MINI_RING_ENTRIES +
714 RX_RETURN_RING_ENTRIES));
715 dma_free_coherent(&ap->pdev->dev, size, ap->rx_std_ring,
716 ap->rx_ring_base_dma);
717 ap->rx_std_ring = NULL;
718 ap->rx_jumbo_ring = NULL;
719 ap->rx_mini_ring = NULL;
720 ap->rx_return_ring = NULL;
721 }
722 if (ap->evt_ring != NULL) {
723 size = (sizeof(struct event) * EVT_RING_ENTRIES);
724 dma_free_coherent(&ap->pdev->dev, size, ap->evt_ring,
725 ap->evt_ring_dma);
726 ap->evt_ring = NULL;
727 }
728 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
729 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
730 dma_free_coherent(&ap->pdev->dev, size, ap->tx_ring,
731 ap->tx_ring_dma);
732 }
733 ap->tx_ring = NULL;
734
735 if (ap->evt_prd != NULL) {
736 dma_free_coherent(&ap->pdev->dev, sizeof(u32),
737 (void *)ap->evt_prd, ap->evt_prd_dma);
738 ap->evt_prd = NULL;
739 }
740 if (ap->rx_ret_prd != NULL) {
741 dma_free_coherent(&ap->pdev->dev, sizeof(u32),
742 (void *)ap->rx_ret_prd, ap->rx_ret_prd_dma);
743 ap->rx_ret_prd = NULL;
744 }
745 if (ap->tx_csm != NULL) {
746 dma_free_coherent(&ap->pdev->dev, sizeof(u32),
747 (void *)ap->tx_csm, ap->tx_csm_dma);
748 ap->tx_csm = NULL;
749 }
750 }
751
752
ace_allocate_descriptors(struct net_device * dev)753 static int ace_allocate_descriptors(struct net_device *dev)
754 {
755 struct ace_private *ap = netdev_priv(dev);
756 int size;
757
758 size = (sizeof(struct rx_desc) *
759 (RX_STD_RING_ENTRIES +
760 RX_JUMBO_RING_ENTRIES +
761 RX_MINI_RING_ENTRIES +
762 RX_RETURN_RING_ENTRIES));
763
764 ap->rx_std_ring = dma_alloc_coherent(&ap->pdev->dev, size,
765 &ap->rx_ring_base_dma, GFP_KERNEL);
766 if (ap->rx_std_ring == NULL)
767 goto fail;
768
769 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
770 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
771 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
772
773 size = (sizeof(struct event) * EVT_RING_ENTRIES);
774
775 ap->evt_ring = dma_alloc_coherent(&ap->pdev->dev, size,
776 &ap->evt_ring_dma, GFP_KERNEL);
777
778 if (ap->evt_ring == NULL)
779 goto fail;
780
781 /*
782 * Only allocate a host TX ring for the Tigon II, the Tigon I
783 * has to use PCI registers for this ;-(
784 */
785 if (!ACE_IS_TIGON_I(ap)) {
786 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
787
788 ap->tx_ring = dma_alloc_coherent(&ap->pdev->dev, size,
789 &ap->tx_ring_dma, GFP_KERNEL);
790
791 if (ap->tx_ring == NULL)
792 goto fail;
793 }
794
795 ap->evt_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
796 &ap->evt_prd_dma, GFP_KERNEL);
797 if (ap->evt_prd == NULL)
798 goto fail;
799
800 ap->rx_ret_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
801 &ap->rx_ret_prd_dma, GFP_KERNEL);
802 if (ap->rx_ret_prd == NULL)
803 goto fail;
804
805 ap->tx_csm = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32),
806 &ap->tx_csm_dma, GFP_KERNEL);
807 if (ap->tx_csm == NULL)
808 goto fail;
809
810 return 0;
811
812 fail:
813 /* Clean up. */
814 ace_init_cleanup(dev);
815 return 1;
816 }
817
818
819 /*
820 * Generic cleanup handling data allocated during init. Used when the
821 * module is unloaded or if an error occurs during initialization
822 */
ace_init_cleanup(struct net_device * dev)823 static void ace_init_cleanup(struct net_device *dev)
824 {
825 struct ace_private *ap;
826
827 ap = netdev_priv(dev);
828
829 ace_free_descriptors(dev);
830
831 if (ap->info)
832 dma_free_coherent(&ap->pdev->dev, sizeof(struct ace_info),
833 ap->info, ap->info_dma);
834 kfree(ap->skb);
835 kfree(ap->trace_buf);
836
837 if (dev->irq)
838 free_irq(dev->irq, dev);
839
840 iounmap(ap->regs);
841 }
842
843
844 /*
845 * Commands are considered to be slow.
846 */
ace_issue_cmd(struct ace_regs __iomem * regs,struct cmd * cmd)847 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
848 {
849 u32 idx;
850
851 idx = readl(®s->CmdPrd);
852
853 writel(*(u32 *)(cmd), ®s->CmdRng[idx]);
854 idx = (idx + 1) % CMD_RING_ENTRIES;
855
856 writel(idx, ®s->CmdPrd);
857 }
858
859
ace_init(struct net_device * dev)860 static int ace_init(struct net_device *dev)
861 {
862 struct ace_private *ap;
863 struct ace_regs __iomem *regs;
864 struct ace_info *info = NULL;
865 struct pci_dev *pdev;
866 unsigned long myjif;
867 u64 tmp_ptr;
868 u32 tig_ver, mac1, mac2, tmp, pci_state;
869 int board_idx, ecode = 0;
870 short i;
871 unsigned char cache_size;
872 u8 addr[ETH_ALEN];
873
874 ap = netdev_priv(dev);
875 regs = ap->regs;
876
877 board_idx = ap->board_idx;
878
879 /*
880 * aman@sgi.com - its useful to do a NIC reset here to
881 * address the `Firmware not running' problem subsequent
882 * to any crashes involving the NIC
883 */
884 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl);
885 readl(®s->HostCtrl); /* PCI write posting */
886 udelay(5);
887
888 /*
889 * Don't access any other registers before this point!
890 */
891 #ifdef __BIG_ENDIAN
892 /*
893 * This will most likely need BYTE_SWAP once we switch
894 * to using __raw_writel()
895 */
896 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
897 ®s->HostCtrl);
898 #else
899 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
900 ®s->HostCtrl);
901 #endif
902 readl(®s->HostCtrl); /* PCI write posting */
903
904 /*
905 * Stop the NIC CPU and clear pending interrupts
906 */
907 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
908 readl(®s->CpuCtrl); /* PCI write posting */
909 writel(0, ®s->Mb0Lo);
910
911 tig_ver = readl(®s->HostCtrl) >> 28;
912
913 switch(tig_ver){
914 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
915 case 4:
916 case 5:
917 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ",
918 tig_ver, ap->firmware_major, ap->firmware_minor,
919 ap->firmware_fix);
920 writel(0, ®s->LocalCtrl);
921 ap->version = 1;
922 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
923 break;
924 #endif
925 case 6:
926 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
927 tig_ver, ap->firmware_major, ap->firmware_minor,
928 ap->firmware_fix);
929 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl);
930 readl(®s->CpuBCtrl); /* PCI write posting */
931 /*
932 * The SRAM bank size does _not_ indicate the amount
933 * of memory on the card, it controls the _bank_ size!
934 * Ie. a 1MB AceNIC will have two banks of 512KB.
935 */
936 writel(SRAM_BANK_512K, ®s->LocalCtrl);
937 writel(SYNC_SRAM_TIMING, ®s->MiscCfg);
938 ap->version = 2;
939 ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
940 break;
941 default:
942 printk(KERN_WARNING " Unsupported Tigon version detected "
943 "(%i)\n", tig_ver);
944 ecode = -ENODEV;
945 goto init_error;
946 }
947
948 /*
949 * ModeStat _must_ be set after the SRAM settings as this change
950 * seems to corrupt the ModeStat and possible other registers.
951 * The SRAM settings survive resets and setting it to the same
952 * value a second time works as well. This is what caused the
953 * `Firmware not running' problem on the Tigon II.
954 */
955 #ifdef __BIG_ENDIAN
956 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
957 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
958 #else
959 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
960 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat);
961 #endif
962 readl(®s->ModeStat); /* PCI write posting */
963
964 mac1 = 0;
965 for(i = 0; i < 4; i++) {
966 int t;
967
968 mac1 = mac1 << 8;
969 t = read_eeprom_byte(dev, 0x8c+i);
970 if (t < 0) {
971 ecode = -EIO;
972 goto init_error;
973 } else
974 mac1 |= (t & 0xff);
975 }
976 mac2 = 0;
977 for(i = 4; i < 8; i++) {
978 int t;
979
980 mac2 = mac2 << 8;
981 t = read_eeprom_byte(dev, 0x8c+i);
982 if (t < 0) {
983 ecode = -EIO;
984 goto init_error;
985 } else
986 mac2 |= (t & 0xff);
987 }
988
989 writel(mac1, ®s->MacAddrHi);
990 writel(mac2, ®s->MacAddrLo);
991
992 addr[0] = (mac1 >> 8) & 0xff;
993 addr[1] = mac1 & 0xff;
994 addr[2] = (mac2 >> 24) & 0xff;
995 addr[3] = (mac2 >> 16) & 0xff;
996 addr[4] = (mac2 >> 8) & 0xff;
997 addr[5] = mac2 & 0xff;
998 eth_hw_addr_set(dev, addr);
999
1000 printk("MAC: %pM\n", dev->dev_addr);
1001
1002 /*
1003 * Looks like this is necessary to deal with on all architectures,
1004 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1005 * Ie. having two NICs in the machine, one will have the cache
1006 * line set at boot time, the other will not.
1007 */
1008 pdev = ap->pdev;
1009 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1010 cache_size <<= 2;
1011 if (cache_size != SMP_CACHE_BYTES) {
1012 printk(KERN_INFO " PCI cache line size set incorrectly "
1013 "(%i bytes) by BIOS/FW, ", cache_size);
1014 if (cache_size > SMP_CACHE_BYTES)
1015 printk("expecting %i\n", SMP_CACHE_BYTES);
1016 else {
1017 printk("correcting to %i\n", SMP_CACHE_BYTES);
1018 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1019 SMP_CACHE_BYTES >> 2);
1020 }
1021 }
1022
1023 pci_state = readl(®s->PciState);
1024 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, "
1025 "latency: %i clks\n",
1026 (pci_state & PCI_32BIT) ? 32 : 64,
1027 (pci_state & PCI_66MHZ) ? 66 : 33,
1028 ap->pci_latency);
1029
1030 /*
1031 * Set the max DMA transfer size. Seems that for most systems
1032 * the performance is better when no MAX parameter is
1033 * set. However for systems enabling PCI write and invalidate,
1034 * DMA writes must be set to the L1 cache line size to get
1035 * optimal performance.
1036 *
1037 * The default is now to turn the PCI write and invalidate off
1038 * - that is what Alteon does for NT.
1039 */
1040 tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1041 if (ap->version >= 2) {
1042 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1043 /*
1044 * Tuning parameters only supported for 8 cards
1045 */
1046 if (board_idx == BOARD_IDX_OVERFLOW ||
1047 dis_pci_mem_inval[board_idx]) {
1048 if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1049 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1050 pci_write_config_word(pdev, PCI_COMMAND,
1051 ap->pci_command);
1052 printk(KERN_INFO " Disabling PCI memory "
1053 "write and invalidate\n");
1054 }
1055 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1056 printk(KERN_INFO " PCI memory write & invalidate "
1057 "enabled by BIOS, enabling counter measures\n");
1058
1059 switch(SMP_CACHE_BYTES) {
1060 case 16:
1061 tmp |= DMA_WRITE_MAX_16;
1062 break;
1063 case 32:
1064 tmp |= DMA_WRITE_MAX_32;
1065 break;
1066 case 64:
1067 tmp |= DMA_WRITE_MAX_64;
1068 break;
1069 case 128:
1070 tmp |= DMA_WRITE_MAX_128;
1071 break;
1072 default:
1073 printk(KERN_INFO " Cache line size %i not "
1074 "supported, PCI write and invalidate "
1075 "disabled\n", SMP_CACHE_BYTES);
1076 ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1077 pci_write_config_word(pdev, PCI_COMMAND,
1078 ap->pci_command);
1079 }
1080 }
1081 }
1082
1083 #ifdef __sparc__
1084 /*
1085 * On this platform, we know what the best dma settings
1086 * are. We use 64-byte maximum bursts, because if we
1087 * burst larger than the cache line size (or even cross
1088 * a 64byte boundary in a single burst) the UltraSparc
1089 * PCI controller will disconnect at 64-byte multiples.
1090 *
1091 * Read-multiple will be properly enabled above, and when
1092 * set will give the PCI controller proper hints about
1093 * prefetching.
1094 */
1095 tmp &= ~DMA_READ_WRITE_MASK;
1096 tmp |= DMA_READ_MAX_64;
1097 tmp |= DMA_WRITE_MAX_64;
1098 #endif
1099 #ifdef __alpha__
1100 tmp &= ~DMA_READ_WRITE_MASK;
1101 tmp |= DMA_READ_MAX_128;
1102 /*
1103 * All the docs say MUST NOT. Well, I did.
1104 * Nothing terrible happens, if we load wrong size.
1105 * Bit w&i still works better!
1106 */
1107 tmp |= DMA_WRITE_MAX_128;
1108 #endif
1109 writel(tmp, ®s->PciState);
1110
1111 #if 0
1112 /*
1113 * The Host PCI bus controller driver has to set FBB.
1114 * If all devices on that PCI bus support FBB, then the controller
1115 * can enable FBB support in the Host PCI Bus controller (or on
1116 * the PCI-PCI bridge if that applies).
1117 * -ggg
1118 */
1119 /*
1120 * I have received reports from people having problems when this
1121 * bit is enabled.
1122 */
1123 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1124 printk(KERN_INFO " Enabling PCI Fast Back to Back\n");
1125 ap->pci_command |= PCI_COMMAND_FAST_BACK;
1126 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1127 }
1128 #endif
1129
1130 /*
1131 * Configure DMA attributes.
1132 */
1133 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1134 ap->pci_using_dac = 1;
1135 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) {
1136 ap->pci_using_dac = 0;
1137 } else {
1138 ecode = -ENODEV;
1139 goto init_error;
1140 }
1141
1142 /*
1143 * Initialize the generic info block and the command+event rings
1144 * and the control blocks for the transmit and receive rings
1145 * as they need to be setup once and for all.
1146 */
1147 if (!(info = dma_alloc_coherent(&ap->pdev->dev, sizeof(struct ace_info),
1148 &ap->info_dma, GFP_KERNEL))) {
1149 ecode = -EAGAIN;
1150 goto init_error;
1151 }
1152 ap->info = info;
1153
1154 /*
1155 * Get the memory for the skb rings.
1156 */
1157 if (!(ap->skb = kzalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1158 ecode = -EAGAIN;
1159 goto init_error;
1160 }
1161
1162 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1163 DRV_NAME, dev);
1164 if (ecode) {
1165 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1166 DRV_NAME, pdev->irq);
1167 goto init_error;
1168 } else
1169 dev->irq = pdev->irq;
1170
1171 #ifdef INDEX_DEBUG
1172 spin_lock_init(&ap->debug_lock);
1173 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1174 ap->last_std_rx = 0;
1175 ap->last_mini_rx = 0;
1176 #endif
1177
1178 ecode = ace_load_firmware(dev);
1179 if (ecode)
1180 goto init_error;
1181
1182 ap->fw_running = 0;
1183
1184 tmp_ptr = ap->info_dma;
1185 writel(tmp_ptr >> 32, ®s->InfoPtrHi);
1186 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo);
1187
1188 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1189
1190 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1191 info->evt_ctrl.flags = 0;
1192
1193 *(ap->evt_prd) = 0;
1194 wmb();
1195 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1196 writel(0, ®s->EvtCsm);
1197
1198 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1199 info->cmd_ctrl.flags = 0;
1200 info->cmd_ctrl.max_len = 0;
1201
1202 for (i = 0; i < CMD_RING_ENTRIES; i++)
1203 writel(0, ®s->CmdRng[i]);
1204
1205 writel(0, ®s->CmdPrd);
1206 writel(0, ®s->CmdCsm);
1207
1208 tmp_ptr = ap->info_dma;
1209 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1210 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1211
1212 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1213 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1214 info->rx_std_ctrl.flags =
1215 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1216
1217 memset(ap->rx_std_ring, 0,
1218 RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1219
1220 for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1221 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1222
1223 ap->rx_std_skbprd = 0;
1224 atomic_set(&ap->cur_rx_bufs, 0);
1225
1226 set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1227 (ap->rx_ring_base_dma +
1228 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1229 info->rx_jumbo_ctrl.max_len = 0;
1230 info->rx_jumbo_ctrl.flags =
1231 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1232
1233 memset(ap->rx_jumbo_ring, 0,
1234 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1235
1236 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1237 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1238
1239 ap->rx_jumbo_skbprd = 0;
1240 atomic_set(&ap->cur_jumbo_bufs, 0);
1241
1242 memset(ap->rx_mini_ring, 0,
1243 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1244
1245 if (ap->version >= 2) {
1246 set_aceaddr(&info->rx_mini_ctrl.rngptr,
1247 (ap->rx_ring_base_dma +
1248 (sizeof(struct rx_desc) *
1249 (RX_STD_RING_ENTRIES +
1250 RX_JUMBO_RING_ENTRIES))));
1251 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1252 info->rx_mini_ctrl.flags =
1253 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1254
1255 for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1256 ap->rx_mini_ring[i].flags =
1257 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1258 } else {
1259 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1260 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1261 info->rx_mini_ctrl.max_len = 0;
1262 }
1263
1264 ap->rx_mini_skbprd = 0;
1265 atomic_set(&ap->cur_mini_bufs, 0);
1266
1267 set_aceaddr(&info->rx_return_ctrl.rngptr,
1268 (ap->rx_ring_base_dma +
1269 (sizeof(struct rx_desc) *
1270 (RX_STD_RING_ENTRIES +
1271 RX_JUMBO_RING_ENTRIES +
1272 RX_MINI_RING_ENTRIES))));
1273 info->rx_return_ctrl.flags = 0;
1274 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1275
1276 memset(ap->rx_return_ring, 0,
1277 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1278
1279 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1280 *(ap->rx_ret_prd) = 0;
1281
1282 writel(TX_RING_BASE, ®s->WinBase);
1283
1284 if (ACE_IS_TIGON_I(ap)) {
1285 ap->tx_ring = (__force struct tx_desc *) regs->Window;
1286 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1287 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1288 writel(0, (__force void __iomem *)ap->tx_ring + i * 4);
1289
1290 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1291 } else {
1292 memset(ap->tx_ring, 0,
1293 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1294
1295 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1296 }
1297
1298 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1299 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1300
1301 /*
1302 * The Tigon I does not like having the TX ring in host memory ;-(
1303 */
1304 if (!ACE_IS_TIGON_I(ap))
1305 tmp |= RCB_FLG_TX_HOST_RING;
1306 #if TX_COAL_INTS_ONLY
1307 tmp |= RCB_FLG_COAL_INT_ONLY;
1308 #endif
1309 info->tx_ctrl.flags = tmp;
1310
1311 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1312
1313 /*
1314 * Potential item for tuning parameter
1315 */
1316 #if 0 /* NO */
1317 writel(DMA_THRESH_16W, ®s->DmaReadCfg);
1318 writel(DMA_THRESH_16W, ®s->DmaWriteCfg);
1319 #else
1320 writel(DMA_THRESH_8W, ®s->DmaReadCfg);
1321 writel(DMA_THRESH_8W, ®s->DmaWriteCfg);
1322 #endif
1323
1324 writel(0, ®s->MaskInt);
1325 writel(1, ®s->IfIdx);
1326 #if 0
1327 /*
1328 * McKinley boxes do not like us fiddling with AssistState
1329 * this early
1330 */
1331 writel(1, ®s->AssistState);
1332 #endif
1333
1334 writel(DEF_STAT, ®s->TuneStatTicks);
1335 writel(DEF_TRACE, ®s->TuneTrace);
1336
1337 ace_set_rxtx_parms(dev, 0);
1338
1339 if (board_idx == BOARD_IDX_OVERFLOW) {
1340 printk(KERN_WARNING "%s: more than %i NICs detected, "
1341 "ignoring module parameters!\n",
1342 ap->name, ACE_MAX_MOD_PARMS);
1343 } else if (board_idx >= 0) {
1344 if (tx_coal_tick[board_idx])
1345 writel(tx_coal_tick[board_idx],
1346 ®s->TuneTxCoalTicks);
1347 if (max_tx_desc[board_idx])
1348 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc);
1349
1350 if (rx_coal_tick[board_idx])
1351 writel(rx_coal_tick[board_idx],
1352 ®s->TuneRxCoalTicks);
1353 if (max_rx_desc[board_idx])
1354 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc);
1355
1356 if (trace[board_idx])
1357 writel(trace[board_idx], ®s->TuneTrace);
1358
1359 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1360 writel(tx_ratio[board_idx], ®s->TxBufRat);
1361 }
1362
1363 /*
1364 * Default link parameters
1365 */
1366 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1367 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1368 if(ap->version >= 2)
1369 tmp |= LNK_TX_FLOW_CTL_Y;
1370
1371 /*
1372 * Override link default parameters
1373 */
1374 if ((board_idx >= 0) && link_state[board_idx]) {
1375 int option = link_state[board_idx];
1376
1377 tmp = LNK_ENABLE;
1378
1379 if (option & 0x01) {
1380 printk(KERN_INFO "%s: Setting half duplex link\n",
1381 ap->name);
1382 tmp &= ~LNK_FULL_DUPLEX;
1383 }
1384 if (option & 0x02)
1385 tmp &= ~LNK_NEGOTIATE;
1386 if (option & 0x10)
1387 tmp |= LNK_10MB;
1388 if (option & 0x20)
1389 tmp |= LNK_100MB;
1390 if (option & 0x40)
1391 tmp |= LNK_1000MB;
1392 if ((option & 0x70) == 0) {
1393 printk(KERN_WARNING "%s: No media speed specified, "
1394 "forcing auto negotiation\n", ap->name);
1395 tmp |= LNK_NEGOTIATE | LNK_1000MB |
1396 LNK_100MB | LNK_10MB;
1397 }
1398 if ((option & 0x100) == 0)
1399 tmp |= LNK_NEG_FCTL;
1400 else
1401 printk(KERN_INFO "%s: Disabling flow control "
1402 "negotiation\n", ap->name);
1403 if (option & 0x200)
1404 tmp |= LNK_RX_FLOW_CTL_Y;
1405 if ((option & 0x400) && (ap->version >= 2)) {
1406 printk(KERN_INFO "%s: Enabling TX flow control\n",
1407 ap->name);
1408 tmp |= LNK_TX_FLOW_CTL_Y;
1409 }
1410 }
1411
1412 ap->link = tmp;
1413 writel(tmp, ®s->TuneLink);
1414 if (ap->version >= 2)
1415 writel(tmp, ®s->TuneFastLink);
1416
1417 writel(ap->firmware_start, ®s->Pc);
1418
1419 writel(0, ®s->Mb0Lo);
1420
1421 /*
1422 * Set tx_csm before we start receiving interrupts, otherwise
1423 * the interrupt handler might think it is supposed to process
1424 * tx ints before we are up and running, which may cause a null
1425 * pointer access in the int handler.
1426 */
1427 ap->cur_rx = 0;
1428 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1429
1430 wmb();
1431 ace_set_txprd(regs, ap, 0);
1432 writel(0, ®s->RxRetCsm);
1433
1434 /*
1435 * Enable DMA engine now.
1436 * If we do this sooner, Mckinley box pukes.
1437 * I assume it's because Tigon II DMA engine wants to check
1438 * *something* even before the CPU is started.
1439 */
1440 writel(1, ®s->AssistState); /* enable DMA */
1441
1442 /*
1443 * Start the NIC CPU
1444 */
1445 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl);
1446 readl(®s->CpuCtrl);
1447
1448 /*
1449 * Wait for the firmware to spin up - max 3 seconds.
1450 */
1451 myjif = jiffies + 3 * HZ;
1452 while (time_before(jiffies, myjif) && !ap->fw_running)
1453 cpu_relax();
1454
1455 if (!ap->fw_running) {
1456 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1457
1458 ace_dump_trace(ap);
1459 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl);
1460 readl(®s->CpuCtrl);
1461
1462 /* aman@sgi.com - account for badly behaving firmware/NIC:
1463 * - have observed that the NIC may continue to generate
1464 * interrupts for some reason; attempt to stop it - halt
1465 * second CPU for Tigon II cards, and also clear Mb0
1466 * - if we're a module, we'll fail to load if this was
1467 * the only GbE card in the system => if the kernel does
1468 * see an interrupt from the NIC, code to handle it is
1469 * gone and OOps! - so free_irq also
1470 */
1471 if (ap->version >= 2)
1472 writel(readl(®s->CpuBCtrl) | CPU_HALT,
1473 ®s->CpuBCtrl);
1474 writel(0, ®s->Mb0Lo);
1475 readl(®s->Mb0Lo);
1476
1477 ecode = -EBUSY;
1478 goto init_error;
1479 }
1480
1481 /*
1482 * We load the ring here as there seem to be no way to tell the
1483 * firmware to wipe the ring without re-initializing it.
1484 */
1485 if (!test_and_set_bit(0, &ap->std_refill_busy))
1486 ace_load_std_rx_ring(dev, RX_RING_SIZE);
1487 else
1488 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1489 ap->name);
1490 if (ap->version >= 2) {
1491 if (!test_and_set_bit(0, &ap->mini_refill_busy))
1492 ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1493 else
1494 printk(KERN_ERR "%s: Someone is busy refilling "
1495 "the RX mini ring\n", ap->name);
1496 }
1497 return 0;
1498
1499 init_error:
1500 ace_init_cleanup(dev);
1501 return ecode;
1502 }
1503
1504
ace_set_rxtx_parms(struct net_device * dev,int jumbo)1505 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1506 {
1507 struct ace_private *ap = netdev_priv(dev);
1508 struct ace_regs __iomem *regs = ap->regs;
1509 int board_idx = ap->board_idx;
1510
1511 if (board_idx >= 0) {
1512 if (!jumbo) {
1513 if (!tx_coal_tick[board_idx])
1514 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks);
1515 if (!max_tx_desc[board_idx])
1516 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc);
1517 if (!rx_coal_tick[board_idx])
1518 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks);
1519 if (!max_rx_desc[board_idx])
1520 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc);
1521 if (!tx_ratio[board_idx])
1522 writel(DEF_TX_RATIO, ®s->TxBufRat);
1523 } else {
1524 if (!tx_coal_tick[board_idx])
1525 writel(DEF_JUMBO_TX_COAL,
1526 ®s->TuneTxCoalTicks);
1527 if (!max_tx_desc[board_idx])
1528 writel(DEF_JUMBO_TX_MAX_DESC,
1529 ®s->TuneMaxTxDesc);
1530 if (!rx_coal_tick[board_idx])
1531 writel(DEF_JUMBO_RX_COAL,
1532 ®s->TuneRxCoalTicks);
1533 if (!max_rx_desc[board_idx])
1534 writel(DEF_JUMBO_RX_MAX_DESC,
1535 ®s->TuneMaxRxDesc);
1536 if (!tx_ratio[board_idx])
1537 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat);
1538 }
1539 }
1540 }
1541
1542
ace_watchdog(struct net_device * data,unsigned int txqueue)1543 static void ace_watchdog(struct net_device *data, unsigned int txqueue)
1544 {
1545 struct net_device *dev = data;
1546 struct ace_private *ap = netdev_priv(dev);
1547 struct ace_regs __iomem *regs = ap->regs;
1548
1549 /*
1550 * We haven't received a stats update event for more than 2.5
1551 * seconds and there is data in the transmit queue, thus we
1552 * assume the card is stuck.
1553 */
1554 if (*ap->tx_csm != ap->tx_ret_csm) {
1555 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1556 dev->name, (unsigned int)readl(®s->HostCtrl));
1557 /* This can happen due to ieee flow control. */
1558 } else {
1559 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1560 dev->name);
1561 #if 0
1562 netif_wake_queue(dev);
1563 #endif
1564 }
1565 }
1566
1567
ace_tasklet(struct tasklet_struct * t)1568 static void ace_tasklet(struct tasklet_struct *t)
1569 {
1570 struct ace_private *ap = from_tasklet(ap, t, ace_tasklet);
1571 struct net_device *dev = ap->ndev;
1572 int cur_size;
1573
1574 cur_size = atomic_read(&ap->cur_rx_bufs);
1575 if ((cur_size < RX_LOW_STD_THRES) &&
1576 !test_and_set_bit(0, &ap->std_refill_busy)) {
1577 #ifdef DEBUG
1578 printk("refilling buffers (current %i)\n", cur_size);
1579 #endif
1580 ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1581 }
1582
1583 if (ap->version >= 2) {
1584 cur_size = atomic_read(&ap->cur_mini_bufs);
1585 if ((cur_size < RX_LOW_MINI_THRES) &&
1586 !test_and_set_bit(0, &ap->mini_refill_busy)) {
1587 #ifdef DEBUG
1588 printk("refilling mini buffers (current %i)\n",
1589 cur_size);
1590 #endif
1591 ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1592 }
1593 }
1594
1595 cur_size = atomic_read(&ap->cur_jumbo_bufs);
1596 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1597 !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1598 #ifdef DEBUG
1599 printk("refilling jumbo buffers (current %i)\n", cur_size);
1600 #endif
1601 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1602 }
1603 ap->tasklet_pending = 0;
1604 }
1605
1606
1607 /*
1608 * Copy the contents of the NIC's trace buffer to kernel memory.
1609 */
ace_dump_trace(struct ace_private * ap)1610 static void ace_dump_trace(struct ace_private *ap)
1611 {
1612 #if 0
1613 if (!ap->trace_buf)
1614 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1615 return;
1616 #endif
1617 }
1618
1619
1620 /*
1621 * Load the standard rx ring.
1622 *
1623 * Loading rings is safe without holding the spin lock since this is
1624 * done only before the device is enabled, thus no interrupts are
1625 * generated and by the interrupt handler/tasklet handler.
1626 */
ace_load_std_rx_ring(struct net_device * dev,int nr_bufs)1627 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1628 {
1629 struct ace_private *ap = netdev_priv(dev);
1630 struct ace_regs __iomem *regs = ap->regs;
1631 short i, idx;
1632
1633
1634 prefetchw(&ap->cur_rx_bufs);
1635
1636 idx = ap->rx_std_skbprd;
1637
1638 for (i = 0; i < nr_bufs; i++) {
1639 struct sk_buff *skb;
1640 struct rx_desc *rd;
1641 dma_addr_t mapping;
1642
1643 skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1644 if (!skb)
1645 break;
1646
1647 mapping = dma_map_page(&ap->pdev->dev,
1648 virt_to_page(skb->data),
1649 offset_in_page(skb->data),
1650 ACE_STD_BUFSIZE, DMA_FROM_DEVICE);
1651 ap->skb->rx_std_skbuff[idx].skb = skb;
1652 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1653 mapping, mapping);
1654
1655 rd = &ap->rx_std_ring[idx];
1656 set_aceaddr(&rd->addr, mapping);
1657 rd->size = ACE_STD_BUFSIZE;
1658 rd->idx = idx;
1659 idx = (idx + 1) % RX_STD_RING_ENTRIES;
1660 }
1661
1662 if (!i)
1663 goto error_out;
1664
1665 atomic_add(i, &ap->cur_rx_bufs);
1666 ap->rx_std_skbprd = idx;
1667
1668 if (ACE_IS_TIGON_I(ap)) {
1669 struct cmd cmd;
1670 cmd.evt = C_SET_RX_PRD_IDX;
1671 cmd.code = 0;
1672 cmd.idx = ap->rx_std_skbprd;
1673 ace_issue_cmd(regs, &cmd);
1674 } else {
1675 writel(idx, ®s->RxStdPrd);
1676 wmb();
1677 }
1678
1679 out:
1680 clear_bit(0, &ap->std_refill_busy);
1681 return;
1682
1683 error_out:
1684 printk(KERN_INFO "Out of memory when allocating "
1685 "standard receive buffers\n");
1686 goto out;
1687 }
1688
1689
ace_load_mini_rx_ring(struct net_device * dev,int nr_bufs)1690 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1691 {
1692 struct ace_private *ap = netdev_priv(dev);
1693 struct ace_regs __iomem *regs = ap->regs;
1694 short i, idx;
1695
1696 prefetchw(&ap->cur_mini_bufs);
1697
1698 idx = ap->rx_mini_skbprd;
1699 for (i = 0; i < nr_bufs; i++) {
1700 struct sk_buff *skb;
1701 struct rx_desc *rd;
1702 dma_addr_t mapping;
1703
1704 skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1705 if (!skb)
1706 break;
1707
1708 mapping = dma_map_page(&ap->pdev->dev,
1709 virt_to_page(skb->data),
1710 offset_in_page(skb->data),
1711 ACE_MINI_BUFSIZE, DMA_FROM_DEVICE);
1712 ap->skb->rx_mini_skbuff[idx].skb = skb;
1713 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1714 mapping, mapping);
1715
1716 rd = &ap->rx_mini_ring[idx];
1717 set_aceaddr(&rd->addr, mapping);
1718 rd->size = ACE_MINI_BUFSIZE;
1719 rd->idx = idx;
1720 idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1721 }
1722
1723 if (!i)
1724 goto error_out;
1725
1726 atomic_add(i, &ap->cur_mini_bufs);
1727
1728 ap->rx_mini_skbprd = idx;
1729
1730 writel(idx, ®s->RxMiniPrd);
1731 wmb();
1732
1733 out:
1734 clear_bit(0, &ap->mini_refill_busy);
1735 return;
1736 error_out:
1737 printk(KERN_INFO "Out of memory when allocating "
1738 "mini receive buffers\n");
1739 goto out;
1740 }
1741
1742
1743 /*
1744 * Load the jumbo rx ring, this may happen at any time if the MTU
1745 * is changed to a value > 1500.
1746 */
ace_load_jumbo_rx_ring(struct net_device * dev,int nr_bufs)1747 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1748 {
1749 struct ace_private *ap = netdev_priv(dev);
1750 struct ace_regs __iomem *regs = ap->regs;
1751 short i, idx;
1752
1753 idx = ap->rx_jumbo_skbprd;
1754
1755 for (i = 0; i < nr_bufs; i++) {
1756 struct sk_buff *skb;
1757 struct rx_desc *rd;
1758 dma_addr_t mapping;
1759
1760 skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1761 if (!skb)
1762 break;
1763
1764 mapping = dma_map_page(&ap->pdev->dev,
1765 virt_to_page(skb->data),
1766 offset_in_page(skb->data),
1767 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE);
1768 ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1769 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1770 mapping, mapping);
1771
1772 rd = &ap->rx_jumbo_ring[idx];
1773 set_aceaddr(&rd->addr, mapping);
1774 rd->size = ACE_JUMBO_BUFSIZE;
1775 rd->idx = idx;
1776 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1777 }
1778
1779 if (!i)
1780 goto error_out;
1781
1782 atomic_add(i, &ap->cur_jumbo_bufs);
1783 ap->rx_jumbo_skbprd = idx;
1784
1785 if (ACE_IS_TIGON_I(ap)) {
1786 struct cmd cmd;
1787 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1788 cmd.code = 0;
1789 cmd.idx = ap->rx_jumbo_skbprd;
1790 ace_issue_cmd(regs, &cmd);
1791 } else {
1792 writel(idx, ®s->RxJumboPrd);
1793 wmb();
1794 }
1795
1796 out:
1797 clear_bit(0, &ap->jumbo_refill_busy);
1798 return;
1799 error_out:
1800 if (net_ratelimit())
1801 printk(KERN_INFO "Out of memory when allocating "
1802 "jumbo receive buffers\n");
1803 goto out;
1804 }
1805
1806
1807 /*
1808 * All events are considered to be slow (RX/TX ints do not generate
1809 * events) and are handled here, outside the main interrupt handler,
1810 * to reduce the size of the handler.
1811 */
ace_handle_event(struct net_device * dev,u32 evtcsm,u32 evtprd)1812 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1813 {
1814 struct ace_private *ap;
1815
1816 ap = netdev_priv(dev);
1817
1818 while (evtcsm != evtprd) {
1819 switch (ap->evt_ring[evtcsm].evt) {
1820 case E_FW_RUNNING:
1821 printk(KERN_INFO "%s: Firmware up and running\n",
1822 ap->name);
1823 ap->fw_running = 1;
1824 wmb();
1825 break;
1826 case E_STATS_UPDATED:
1827 break;
1828 case E_LNK_STATE:
1829 {
1830 u16 code = ap->evt_ring[evtcsm].code;
1831 switch (code) {
1832 case E_C_LINK_UP:
1833 {
1834 u32 state = readl(&ap->regs->GigLnkState);
1835 printk(KERN_WARNING "%s: Optical link UP "
1836 "(%s Duplex, Flow Control: %s%s)\n",
1837 ap->name,
1838 state & LNK_FULL_DUPLEX ? "Full":"Half",
1839 state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1840 state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1841 break;
1842 }
1843 case E_C_LINK_DOWN:
1844 printk(KERN_WARNING "%s: Optical link DOWN\n",
1845 ap->name);
1846 break;
1847 case E_C_LINK_10_100:
1848 printk(KERN_WARNING "%s: 10/100BaseT link "
1849 "UP\n", ap->name);
1850 break;
1851 default:
1852 printk(KERN_ERR "%s: Unknown optical link "
1853 "state %02x\n", ap->name, code);
1854 }
1855 break;
1856 }
1857 case E_ERROR:
1858 switch(ap->evt_ring[evtcsm].code) {
1859 case E_C_ERR_INVAL_CMD:
1860 printk(KERN_ERR "%s: invalid command error\n",
1861 ap->name);
1862 break;
1863 case E_C_ERR_UNIMP_CMD:
1864 printk(KERN_ERR "%s: unimplemented command "
1865 "error\n", ap->name);
1866 break;
1867 case E_C_ERR_BAD_CFG:
1868 printk(KERN_ERR "%s: bad config error\n",
1869 ap->name);
1870 break;
1871 default:
1872 printk(KERN_ERR "%s: unknown error %02x\n",
1873 ap->name, ap->evt_ring[evtcsm].code);
1874 }
1875 break;
1876 case E_RESET_JUMBO_RNG:
1877 {
1878 int i;
1879 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1880 if (ap->skb->rx_jumbo_skbuff[i].skb) {
1881 ap->rx_jumbo_ring[i].size = 0;
1882 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1883 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1884 ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1885 }
1886 }
1887
1888 if (ACE_IS_TIGON_I(ap)) {
1889 struct cmd cmd;
1890 cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1891 cmd.code = 0;
1892 cmd.idx = 0;
1893 ace_issue_cmd(ap->regs, &cmd);
1894 } else {
1895 writel(0, &((ap->regs)->RxJumboPrd));
1896 wmb();
1897 }
1898
1899 ap->jumbo = 0;
1900 ap->rx_jumbo_skbprd = 0;
1901 printk(KERN_INFO "%s: Jumbo ring flushed\n",
1902 ap->name);
1903 clear_bit(0, &ap->jumbo_refill_busy);
1904 break;
1905 }
1906 default:
1907 printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1908 ap->name, ap->evt_ring[evtcsm].evt);
1909 }
1910 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1911 }
1912
1913 return evtcsm;
1914 }
1915
1916
ace_rx_int(struct net_device * dev,u32 rxretprd,u32 rxretcsm)1917 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1918 {
1919 struct ace_private *ap = netdev_priv(dev);
1920 u32 idx;
1921 int mini_count = 0, std_count = 0;
1922
1923 idx = rxretcsm;
1924
1925 prefetchw(&ap->cur_rx_bufs);
1926 prefetchw(&ap->cur_mini_bufs);
1927
1928 while (idx != rxretprd) {
1929 struct ring_info *rip;
1930 struct sk_buff *skb;
1931 struct rx_desc *retdesc;
1932 u32 skbidx;
1933 int bd_flags, desc_type, mapsize;
1934 u16 csum;
1935
1936
1937 /* make sure the rx descriptor isn't read before rxretprd */
1938 if (idx == rxretcsm)
1939 rmb();
1940
1941 retdesc = &ap->rx_return_ring[idx];
1942 skbidx = retdesc->idx;
1943 bd_flags = retdesc->flags;
1944 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1945
1946 switch(desc_type) {
1947 /*
1948 * Normal frames do not have any flags set
1949 *
1950 * Mini and normal frames arrive frequently,
1951 * so use a local counter to avoid doing
1952 * atomic operations for each packet arriving.
1953 */
1954 case 0:
1955 rip = &ap->skb->rx_std_skbuff[skbidx];
1956 mapsize = ACE_STD_BUFSIZE;
1957 std_count++;
1958 break;
1959 case BD_FLG_JUMBO:
1960 rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1961 mapsize = ACE_JUMBO_BUFSIZE;
1962 atomic_dec(&ap->cur_jumbo_bufs);
1963 break;
1964 case BD_FLG_MINI:
1965 rip = &ap->skb->rx_mini_skbuff[skbidx];
1966 mapsize = ACE_MINI_BUFSIZE;
1967 mini_count++;
1968 break;
1969 default:
1970 printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1971 "returned by NIC\n", dev->name,
1972 retdesc->flags);
1973 goto error;
1974 }
1975
1976 skb = rip->skb;
1977 rip->skb = NULL;
1978 dma_unmap_page(&ap->pdev->dev, dma_unmap_addr(rip, mapping),
1979 mapsize, DMA_FROM_DEVICE);
1980 skb_put(skb, retdesc->size);
1981
1982 /*
1983 * Fly baby, fly!
1984 */
1985 csum = retdesc->tcp_udp_csum;
1986
1987 skb->protocol = eth_type_trans(skb, dev);
1988
1989 /*
1990 * Instead of forcing the poor tigon mips cpu to calculate
1991 * pseudo hdr checksum, we do this ourselves.
1992 */
1993 if (bd_flags & BD_FLG_TCP_UDP_SUM) {
1994 skb->csum = htons(csum);
1995 skb->ip_summed = CHECKSUM_COMPLETE;
1996 } else {
1997 skb_checksum_none_assert(skb);
1998 }
1999
2000 /* send it up */
2001 if ((bd_flags & BD_FLG_VLAN_TAG))
2002 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2003 netif_rx(skb);
2004
2005 dev->stats.rx_packets++;
2006 dev->stats.rx_bytes += retdesc->size;
2007
2008 idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2009 }
2010
2011 atomic_sub(std_count, &ap->cur_rx_bufs);
2012 if (!ACE_IS_TIGON_I(ap))
2013 atomic_sub(mini_count, &ap->cur_mini_bufs);
2014
2015 out:
2016 /*
2017 * According to the documentation RxRetCsm is obsolete with
2018 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2019 */
2020 if (ACE_IS_TIGON_I(ap)) {
2021 writel(idx, &ap->regs->RxRetCsm);
2022 }
2023 ap->cur_rx = idx;
2024
2025 return;
2026 error:
2027 idx = rxretprd;
2028 goto out;
2029 }
2030
2031
ace_tx_int(struct net_device * dev,u32 txcsm,u32 idx)2032 static inline void ace_tx_int(struct net_device *dev,
2033 u32 txcsm, u32 idx)
2034 {
2035 struct ace_private *ap = netdev_priv(dev);
2036
2037 do {
2038 struct sk_buff *skb;
2039 struct tx_ring_info *info;
2040
2041 info = ap->skb->tx_skbuff + idx;
2042 skb = info->skb;
2043
2044 if (dma_unmap_len(info, maplen)) {
2045 dma_unmap_page(&ap->pdev->dev,
2046 dma_unmap_addr(info, mapping),
2047 dma_unmap_len(info, maplen),
2048 DMA_TO_DEVICE);
2049 dma_unmap_len_set(info, maplen, 0);
2050 }
2051
2052 if (skb) {
2053 dev->stats.tx_packets++;
2054 dev->stats.tx_bytes += skb->len;
2055 dev_consume_skb_irq(skb);
2056 info->skb = NULL;
2057 }
2058
2059 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2060 } while (idx != txcsm);
2061
2062 if (netif_queue_stopped(dev))
2063 netif_wake_queue(dev);
2064
2065 wmb();
2066 ap->tx_ret_csm = txcsm;
2067
2068 /* So... tx_ret_csm is advanced _after_ check for device wakeup.
2069 *
2070 * We could try to make it before. In this case we would get
2071 * the following race condition: hard_start_xmit on other cpu
2072 * enters after we advanced tx_ret_csm and fills space,
2073 * which we have just freed, so that we make illegal device wakeup.
2074 * There is no good way to workaround this (at entry
2075 * to ace_start_xmit detects this condition and prevents
2076 * ring corruption, but it is not a good workaround.)
2077 *
2078 * When tx_ret_csm is advanced after, we wake up device _only_
2079 * if we really have some space in ring (though the core doing
2080 * hard_start_xmit can see full ring for some period and has to
2081 * synchronize.) Superb.
2082 * BUT! We get another subtle race condition. hard_start_xmit
2083 * may think that ring is full between wakeup and advancing
2084 * tx_ret_csm and will stop device instantly! It is not so bad.
2085 * We are guaranteed that there is something in ring, so that
2086 * the next irq will resume transmission. To speedup this we could
2087 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2088 * (see ace_start_xmit).
2089 *
2090 * Well, this dilemma exists in all lock-free devices.
2091 * We, following scheme used in drivers by Donald Becker,
2092 * select the least dangerous.
2093 * --ANK
2094 */
2095 }
2096
2097
ace_interrupt(int irq,void * dev_id)2098 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2099 {
2100 struct net_device *dev = (struct net_device *)dev_id;
2101 struct ace_private *ap = netdev_priv(dev);
2102 struct ace_regs __iomem *regs = ap->regs;
2103 u32 idx;
2104 u32 txcsm, rxretcsm, rxretprd;
2105 u32 evtcsm, evtprd;
2106
2107 /*
2108 * In case of PCI shared interrupts or spurious interrupts,
2109 * we want to make sure it is actually our interrupt before
2110 * spending any time in here.
2111 */
2112 if (!(readl(®s->HostCtrl) & IN_INT))
2113 return IRQ_NONE;
2114
2115 /*
2116 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2117 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2118 * writel(0, ®s->Mb0Lo).
2119 *
2120 * "IRQ avoidance" recommended in docs applies to IRQs served
2121 * threads and it is wrong even for that case.
2122 */
2123 writel(0, ®s->Mb0Lo);
2124 readl(®s->Mb0Lo);
2125
2126 /*
2127 * There is no conflict between transmit handling in
2128 * start_xmit and receive processing, thus there is no reason
2129 * to take a spin lock for RX handling. Wait until we start
2130 * working on the other stuff - hey we don't need a spin lock
2131 * anymore.
2132 */
2133 rxretprd = *ap->rx_ret_prd;
2134 rxretcsm = ap->cur_rx;
2135
2136 if (rxretprd != rxretcsm)
2137 ace_rx_int(dev, rxretprd, rxretcsm);
2138
2139 txcsm = *ap->tx_csm;
2140 idx = ap->tx_ret_csm;
2141
2142 if (txcsm != idx) {
2143 /*
2144 * If each skb takes only one descriptor this check degenerates
2145 * to identity, because new space has just been opened.
2146 * But if skbs are fragmented we must check that this index
2147 * update releases enough of space, otherwise we just
2148 * wait for device to make more work.
2149 */
2150 if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2151 ace_tx_int(dev, txcsm, idx);
2152 }
2153
2154 evtcsm = readl(®s->EvtCsm);
2155 evtprd = *ap->evt_prd;
2156
2157 if (evtcsm != evtprd) {
2158 evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2159 writel(evtcsm, ®s->EvtCsm);
2160 }
2161
2162 /*
2163 * This has to go last in the interrupt handler and run with
2164 * the spin lock released ... what lock?
2165 */
2166 if (netif_running(dev)) {
2167 int cur_size;
2168 int run_tasklet = 0;
2169
2170 cur_size = atomic_read(&ap->cur_rx_bufs);
2171 if (cur_size < RX_LOW_STD_THRES) {
2172 if ((cur_size < RX_PANIC_STD_THRES) &&
2173 !test_and_set_bit(0, &ap->std_refill_busy)) {
2174 #ifdef DEBUG
2175 printk("low on std buffers %i\n", cur_size);
2176 #endif
2177 ace_load_std_rx_ring(dev,
2178 RX_RING_SIZE - cur_size);
2179 } else
2180 run_tasklet = 1;
2181 }
2182
2183 if (!ACE_IS_TIGON_I(ap)) {
2184 cur_size = atomic_read(&ap->cur_mini_bufs);
2185 if (cur_size < RX_LOW_MINI_THRES) {
2186 if ((cur_size < RX_PANIC_MINI_THRES) &&
2187 !test_and_set_bit(0,
2188 &ap->mini_refill_busy)) {
2189 #ifdef DEBUG
2190 printk("low on mini buffers %i\n",
2191 cur_size);
2192 #endif
2193 ace_load_mini_rx_ring(dev,
2194 RX_MINI_SIZE - cur_size);
2195 } else
2196 run_tasklet = 1;
2197 }
2198 }
2199
2200 if (ap->jumbo) {
2201 cur_size = atomic_read(&ap->cur_jumbo_bufs);
2202 if (cur_size < RX_LOW_JUMBO_THRES) {
2203 if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2204 !test_and_set_bit(0,
2205 &ap->jumbo_refill_busy)){
2206 #ifdef DEBUG
2207 printk("low on jumbo buffers %i\n",
2208 cur_size);
2209 #endif
2210 ace_load_jumbo_rx_ring(dev,
2211 RX_JUMBO_SIZE - cur_size);
2212 } else
2213 run_tasklet = 1;
2214 }
2215 }
2216 if (run_tasklet && !ap->tasklet_pending) {
2217 ap->tasklet_pending = 1;
2218 tasklet_schedule(&ap->ace_tasklet);
2219 }
2220 }
2221
2222 return IRQ_HANDLED;
2223 }
2224
ace_open(struct net_device * dev)2225 static int ace_open(struct net_device *dev)
2226 {
2227 struct ace_private *ap = netdev_priv(dev);
2228 struct ace_regs __iomem *regs = ap->regs;
2229 struct cmd cmd;
2230
2231 if (!(ap->fw_running)) {
2232 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2233 return -EBUSY;
2234 }
2235
2236 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu);
2237
2238 cmd.evt = C_CLEAR_STATS;
2239 cmd.code = 0;
2240 cmd.idx = 0;
2241 ace_issue_cmd(regs, &cmd);
2242
2243 cmd.evt = C_HOST_STATE;
2244 cmd.code = C_C_STACK_UP;
2245 cmd.idx = 0;
2246 ace_issue_cmd(regs, &cmd);
2247
2248 if (ap->jumbo &&
2249 !test_and_set_bit(0, &ap->jumbo_refill_busy))
2250 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2251
2252 if (dev->flags & IFF_PROMISC) {
2253 cmd.evt = C_SET_PROMISC_MODE;
2254 cmd.code = C_C_PROMISC_ENABLE;
2255 cmd.idx = 0;
2256 ace_issue_cmd(regs, &cmd);
2257
2258 ap->promisc = 1;
2259 }else
2260 ap->promisc = 0;
2261 ap->mcast_all = 0;
2262
2263 #if 0
2264 cmd.evt = C_LNK_NEGOTIATION;
2265 cmd.code = 0;
2266 cmd.idx = 0;
2267 ace_issue_cmd(regs, &cmd);
2268 #endif
2269
2270 netif_start_queue(dev);
2271
2272 /*
2273 * Setup the bottom half rx ring refill handler
2274 */
2275 tasklet_setup(&ap->ace_tasklet, ace_tasklet);
2276 return 0;
2277 }
2278
2279
ace_close(struct net_device * dev)2280 static int ace_close(struct net_device *dev)
2281 {
2282 struct ace_private *ap = netdev_priv(dev);
2283 struct ace_regs __iomem *regs = ap->regs;
2284 struct cmd cmd;
2285 unsigned long flags;
2286 short i;
2287
2288 /*
2289 * Without (or before) releasing irq and stopping hardware, this
2290 * is an absolute non-sense, by the way. It will be reset instantly
2291 * by the first irq.
2292 */
2293 netif_stop_queue(dev);
2294
2295
2296 if (ap->promisc) {
2297 cmd.evt = C_SET_PROMISC_MODE;
2298 cmd.code = C_C_PROMISC_DISABLE;
2299 cmd.idx = 0;
2300 ace_issue_cmd(regs, &cmd);
2301 ap->promisc = 0;
2302 }
2303
2304 cmd.evt = C_HOST_STATE;
2305 cmd.code = C_C_STACK_DOWN;
2306 cmd.idx = 0;
2307 ace_issue_cmd(regs, &cmd);
2308
2309 tasklet_kill(&ap->ace_tasklet);
2310
2311 /*
2312 * Make sure one CPU is not processing packets while
2313 * buffers are being released by another.
2314 */
2315
2316 local_irq_save(flags);
2317 ace_mask_irq(dev);
2318
2319 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2320 struct sk_buff *skb;
2321 struct tx_ring_info *info;
2322
2323 info = ap->skb->tx_skbuff + i;
2324 skb = info->skb;
2325
2326 if (dma_unmap_len(info, maplen)) {
2327 if (ACE_IS_TIGON_I(ap)) {
2328 /* NB: TIGON_1 is special, tx_ring is in io space */
2329 struct tx_desc __iomem *tx;
2330 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2331 writel(0, &tx->addr.addrhi);
2332 writel(0, &tx->addr.addrlo);
2333 writel(0, &tx->flagsize);
2334 } else
2335 memset(ap->tx_ring + i, 0,
2336 sizeof(struct tx_desc));
2337 dma_unmap_page(&ap->pdev->dev,
2338 dma_unmap_addr(info, mapping),
2339 dma_unmap_len(info, maplen),
2340 DMA_TO_DEVICE);
2341 dma_unmap_len_set(info, maplen, 0);
2342 }
2343 if (skb) {
2344 dev_kfree_skb(skb);
2345 info->skb = NULL;
2346 }
2347 }
2348
2349 if (ap->jumbo) {
2350 cmd.evt = C_RESET_JUMBO_RNG;
2351 cmd.code = 0;
2352 cmd.idx = 0;
2353 ace_issue_cmd(regs, &cmd);
2354 }
2355
2356 ace_unmask_irq(dev);
2357 local_irq_restore(flags);
2358
2359 return 0;
2360 }
2361
2362
2363 static inline dma_addr_t
ace_map_tx_skb(struct ace_private * ap,struct sk_buff * skb,struct sk_buff * tail,u32 idx)2364 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2365 struct sk_buff *tail, u32 idx)
2366 {
2367 dma_addr_t mapping;
2368 struct tx_ring_info *info;
2369
2370 mapping = dma_map_page(&ap->pdev->dev, virt_to_page(skb->data),
2371 offset_in_page(skb->data), skb->len,
2372 DMA_TO_DEVICE);
2373
2374 info = ap->skb->tx_skbuff + idx;
2375 info->skb = tail;
2376 dma_unmap_addr_set(info, mapping, mapping);
2377 dma_unmap_len_set(info, maplen, skb->len);
2378 return mapping;
2379 }
2380
2381
2382 static inline void
ace_load_tx_bd(struct ace_private * ap,struct tx_desc * desc,u64 addr,u32 flagsize,u32 vlan_tag)2383 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2384 u32 flagsize, u32 vlan_tag)
2385 {
2386 #if !USE_TX_COAL_NOW
2387 flagsize &= ~BD_FLG_COAL_NOW;
2388 #endif
2389
2390 if (ACE_IS_TIGON_I(ap)) {
2391 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2392 writel(addr >> 32, &io->addr.addrhi);
2393 writel(addr & 0xffffffff, &io->addr.addrlo);
2394 writel(flagsize, &io->flagsize);
2395 writel(vlan_tag, &io->vlanres);
2396 } else {
2397 desc->addr.addrhi = addr >> 32;
2398 desc->addr.addrlo = addr;
2399 desc->flagsize = flagsize;
2400 desc->vlanres = vlan_tag;
2401 }
2402 }
2403
2404
ace_start_xmit(struct sk_buff * skb,struct net_device * dev)2405 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2406 struct net_device *dev)
2407 {
2408 struct ace_private *ap = netdev_priv(dev);
2409 struct ace_regs __iomem *regs = ap->regs;
2410 struct tx_desc *desc;
2411 u32 idx, flagsize;
2412 unsigned long maxjiff = jiffies + 3*HZ;
2413
2414 restart:
2415 idx = ap->tx_prd;
2416
2417 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2418 goto overflow;
2419
2420 if (!skb_shinfo(skb)->nr_frags) {
2421 dma_addr_t mapping;
2422 u32 vlan_tag = 0;
2423
2424 mapping = ace_map_tx_skb(ap, skb, skb, idx);
2425 flagsize = (skb->len << 16) | (BD_FLG_END);
2426 if (skb->ip_summed == CHECKSUM_PARTIAL)
2427 flagsize |= BD_FLG_TCP_UDP_SUM;
2428 if (skb_vlan_tag_present(skb)) {
2429 flagsize |= BD_FLG_VLAN_TAG;
2430 vlan_tag = skb_vlan_tag_get(skb);
2431 }
2432 desc = ap->tx_ring + idx;
2433 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2434
2435 /* Look at ace_tx_int for explanations. */
2436 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2437 flagsize |= BD_FLG_COAL_NOW;
2438
2439 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2440 } else {
2441 dma_addr_t mapping;
2442 u32 vlan_tag = 0;
2443 int i, len = 0;
2444
2445 mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2446 flagsize = (skb_headlen(skb) << 16);
2447 if (skb->ip_summed == CHECKSUM_PARTIAL)
2448 flagsize |= BD_FLG_TCP_UDP_SUM;
2449 if (skb_vlan_tag_present(skb)) {
2450 flagsize |= BD_FLG_VLAN_TAG;
2451 vlan_tag = skb_vlan_tag_get(skb);
2452 }
2453
2454 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2455
2456 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2457
2458 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2459 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2460 struct tx_ring_info *info;
2461
2462 len += skb_frag_size(frag);
2463 info = ap->skb->tx_skbuff + idx;
2464 desc = ap->tx_ring + idx;
2465
2466 mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2467 skb_frag_size(frag),
2468 DMA_TO_DEVICE);
2469
2470 flagsize = skb_frag_size(frag) << 16;
2471 if (skb->ip_summed == CHECKSUM_PARTIAL)
2472 flagsize |= BD_FLG_TCP_UDP_SUM;
2473 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2474
2475 if (i == skb_shinfo(skb)->nr_frags - 1) {
2476 flagsize |= BD_FLG_END;
2477 if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2478 flagsize |= BD_FLG_COAL_NOW;
2479
2480 /*
2481 * Only the last fragment frees
2482 * the skb!
2483 */
2484 info->skb = skb;
2485 } else {
2486 info->skb = NULL;
2487 }
2488 dma_unmap_addr_set(info, mapping, mapping);
2489 dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2490 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2491 }
2492 }
2493
2494 wmb();
2495 ap->tx_prd = idx;
2496 ace_set_txprd(regs, ap, idx);
2497
2498 if (flagsize & BD_FLG_COAL_NOW) {
2499 netif_stop_queue(dev);
2500
2501 /*
2502 * A TX-descriptor producer (an IRQ) might have gotten
2503 * between, making the ring free again. Since xmit is
2504 * serialized, this is the only situation we have to
2505 * re-test.
2506 */
2507 if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2508 netif_wake_queue(dev);
2509 }
2510
2511 return NETDEV_TX_OK;
2512
2513 overflow:
2514 /*
2515 * This race condition is unavoidable with lock-free drivers.
2516 * We wake up the queue _before_ tx_prd is advanced, so that we can
2517 * enter hard_start_xmit too early, while tx ring still looks closed.
2518 * This happens ~1-4 times per 100000 packets, so that we can allow
2519 * to loop syncing to other CPU. Probably, we need an additional
2520 * wmb() in ace_tx_intr as well.
2521 *
2522 * Note that this race is relieved by reserving one more entry
2523 * in tx ring than it is necessary (see original non-SG driver).
2524 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2525 * is already overkill.
2526 *
2527 * Alternative is to return with 1 not throttling queue. In this
2528 * case loop becomes longer, no more useful effects.
2529 */
2530 if (time_before(jiffies, maxjiff)) {
2531 barrier();
2532 cpu_relax();
2533 goto restart;
2534 }
2535
2536 /* The ring is stuck full. */
2537 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2538 return NETDEV_TX_BUSY;
2539 }
2540
2541
ace_change_mtu(struct net_device * dev,int new_mtu)2542 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2543 {
2544 struct ace_private *ap = netdev_priv(dev);
2545 struct ace_regs __iomem *regs = ap->regs;
2546
2547 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu);
2548 dev->mtu = new_mtu;
2549
2550 if (new_mtu > ACE_STD_MTU) {
2551 if (!(ap->jumbo)) {
2552 printk(KERN_INFO "%s: Enabling Jumbo frame "
2553 "support\n", dev->name);
2554 ap->jumbo = 1;
2555 if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2556 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2557 ace_set_rxtx_parms(dev, 1);
2558 }
2559 } else {
2560 while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2561 ace_sync_irq(dev->irq);
2562 ace_set_rxtx_parms(dev, 0);
2563 if (ap->jumbo) {
2564 struct cmd cmd;
2565
2566 cmd.evt = C_RESET_JUMBO_RNG;
2567 cmd.code = 0;
2568 cmd.idx = 0;
2569 ace_issue_cmd(regs, &cmd);
2570 }
2571 }
2572
2573 return 0;
2574 }
2575
ace_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)2576 static int ace_get_link_ksettings(struct net_device *dev,
2577 struct ethtool_link_ksettings *cmd)
2578 {
2579 struct ace_private *ap = netdev_priv(dev);
2580 struct ace_regs __iomem *regs = ap->regs;
2581 u32 link;
2582 u32 supported;
2583
2584 memset(cmd, 0, sizeof(struct ethtool_link_ksettings));
2585
2586 supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2587 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2588 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2589 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2590
2591 cmd->base.port = PORT_FIBRE;
2592
2593 link = readl(®s->GigLnkState);
2594 if (link & LNK_1000MB) {
2595 cmd->base.speed = SPEED_1000;
2596 } else {
2597 link = readl(®s->FastLnkState);
2598 if (link & LNK_100MB)
2599 cmd->base.speed = SPEED_100;
2600 else if (link & LNK_10MB)
2601 cmd->base.speed = SPEED_10;
2602 else
2603 cmd->base.speed = 0;
2604 }
2605 if (link & LNK_FULL_DUPLEX)
2606 cmd->base.duplex = DUPLEX_FULL;
2607 else
2608 cmd->base.duplex = DUPLEX_HALF;
2609
2610 if (link & LNK_NEGOTIATE)
2611 cmd->base.autoneg = AUTONEG_ENABLE;
2612 else
2613 cmd->base.autoneg = AUTONEG_DISABLE;
2614
2615 #if 0
2616 /*
2617 * Current struct ethtool_cmd is insufficient
2618 */
2619 ecmd->trace = readl(®s->TuneTrace);
2620
2621 ecmd->txcoal = readl(®s->TuneTxCoalTicks);
2622 ecmd->rxcoal = readl(®s->TuneRxCoalTicks);
2623 #endif
2624
2625 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2626 supported);
2627
2628 return 0;
2629 }
2630
ace_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)2631 static int ace_set_link_ksettings(struct net_device *dev,
2632 const struct ethtool_link_ksettings *cmd)
2633 {
2634 struct ace_private *ap = netdev_priv(dev);
2635 struct ace_regs __iomem *regs = ap->regs;
2636 u32 link, speed;
2637
2638 link = readl(®s->GigLnkState);
2639 if (link & LNK_1000MB)
2640 speed = SPEED_1000;
2641 else {
2642 link = readl(®s->FastLnkState);
2643 if (link & LNK_100MB)
2644 speed = SPEED_100;
2645 else if (link & LNK_10MB)
2646 speed = SPEED_10;
2647 else
2648 speed = SPEED_100;
2649 }
2650
2651 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2652 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2653 if (!ACE_IS_TIGON_I(ap))
2654 link |= LNK_TX_FLOW_CTL_Y;
2655 if (cmd->base.autoneg == AUTONEG_ENABLE)
2656 link |= LNK_NEGOTIATE;
2657 if (cmd->base.speed != speed) {
2658 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2659 switch (cmd->base.speed) {
2660 case SPEED_1000:
2661 link |= LNK_1000MB;
2662 break;
2663 case SPEED_100:
2664 link |= LNK_100MB;
2665 break;
2666 case SPEED_10:
2667 link |= LNK_10MB;
2668 break;
2669 }
2670 }
2671
2672 if (cmd->base.duplex == DUPLEX_FULL)
2673 link |= LNK_FULL_DUPLEX;
2674
2675 if (link != ap->link) {
2676 struct cmd cmd;
2677 printk(KERN_INFO "%s: Renegotiating link state\n",
2678 dev->name);
2679
2680 ap->link = link;
2681 writel(link, ®s->TuneLink);
2682 if (!ACE_IS_TIGON_I(ap))
2683 writel(link, ®s->TuneFastLink);
2684 wmb();
2685
2686 cmd.evt = C_LNK_NEGOTIATION;
2687 cmd.code = 0;
2688 cmd.idx = 0;
2689 ace_issue_cmd(regs, &cmd);
2690 }
2691 return 0;
2692 }
2693
ace_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)2694 static void ace_get_drvinfo(struct net_device *dev,
2695 struct ethtool_drvinfo *info)
2696 {
2697 struct ace_private *ap = netdev_priv(dev);
2698
2699 strlcpy(info->driver, "acenic", sizeof(info->driver));
2700 snprintf(info->fw_version, sizeof(info->version), "%i.%i.%i",
2701 ap->firmware_major, ap->firmware_minor, ap->firmware_fix);
2702
2703 if (ap->pdev)
2704 strlcpy(info->bus_info, pci_name(ap->pdev),
2705 sizeof(info->bus_info));
2706
2707 }
2708
2709 /*
2710 * Set the hardware MAC address.
2711 */
ace_set_mac_addr(struct net_device * dev,void * p)2712 static int ace_set_mac_addr(struct net_device *dev, void *p)
2713 {
2714 struct ace_private *ap = netdev_priv(dev);
2715 struct ace_regs __iomem *regs = ap->regs;
2716 struct sockaddr *addr=p;
2717 const u8 *da;
2718 struct cmd cmd;
2719
2720 if(netif_running(dev))
2721 return -EBUSY;
2722
2723 eth_hw_addr_set(dev, addr->sa_data);
2724
2725 da = (const u8 *)dev->dev_addr;
2726
2727 writel(da[0] << 8 | da[1], ®s->MacAddrHi);
2728 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2729 ®s->MacAddrLo);
2730
2731 cmd.evt = C_SET_MAC_ADDR;
2732 cmd.code = 0;
2733 cmd.idx = 0;
2734 ace_issue_cmd(regs, &cmd);
2735
2736 return 0;
2737 }
2738
2739
ace_set_multicast_list(struct net_device * dev)2740 static void ace_set_multicast_list(struct net_device *dev)
2741 {
2742 struct ace_private *ap = netdev_priv(dev);
2743 struct ace_regs __iomem *regs = ap->regs;
2744 struct cmd cmd;
2745
2746 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2747 cmd.evt = C_SET_MULTICAST_MODE;
2748 cmd.code = C_C_MCAST_ENABLE;
2749 cmd.idx = 0;
2750 ace_issue_cmd(regs, &cmd);
2751 ap->mcast_all = 1;
2752 } else if (ap->mcast_all) {
2753 cmd.evt = C_SET_MULTICAST_MODE;
2754 cmd.code = C_C_MCAST_DISABLE;
2755 cmd.idx = 0;
2756 ace_issue_cmd(regs, &cmd);
2757 ap->mcast_all = 0;
2758 }
2759
2760 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2761 cmd.evt = C_SET_PROMISC_MODE;
2762 cmd.code = C_C_PROMISC_ENABLE;
2763 cmd.idx = 0;
2764 ace_issue_cmd(regs, &cmd);
2765 ap->promisc = 1;
2766 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2767 cmd.evt = C_SET_PROMISC_MODE;
2768 cmd.code = C_C_PROMISC_DISABLE;
2769 cmd.idx = 0;
2770 ace_issue_cmd(regs, &cmd);
2771 ap->promisc = 0;
2772 }
2773
2774 /*
2775 * For the time being multicast relies on the upper layers
2776 * filtering it properly. The Firmware does not allow one to
2777 * set the entire multicast list at a time and keeping track of
2778 * it here is going to be messy.
2779 */
2780 if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2781 cmd.evt = C_SET_MULTICAST_MODE;
2782 cmd.code = C_C_MCAST_ENABLE;
2783 cmd.idx = 0;
2784 ace_issue_cmd(regs, &cmd);
2785 }else if (!ap->mcast_all) {
2786 cmd.evt = C_SET_MULTICAST_MODE;
2787 cmd.code = C_C_MCAST_DISABLE;
2788 cmd.idx = 0;
2789 ace_issue_cmd(regs, &cmd);
2790 }
2791 }
2792
2793
ace_get_stats(struct net_device * dev)2794 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2795 {
2796 struct ace_private *ap = netdev_priv(dev);
2797 struct ace_mac_stats __iomem *mac_stats =
2798 (struct ace_mac_stats __iomem *)ap->regs->Stats;
2799
2800 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2801 dev->stats.multicast = readl(&mac_stats->kept_mc);
2802 dev->stats.collisions = readl(&mac_stats->coll);
2803
2804 return &dev->stats;
2805 }
2806
2807
ace_copy(struct ace_regs __iomem * regs,const __be32 * src,u32 dest,int size)2808 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2809 u32 dest, int size)
2810 {
2811 void __iomem *tdest;
2812 short tsize, i;
2813
2814 if (size <= 0)
2815 return;
2816
2817 while (size > 0) {
2818 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2819 min_t(u32, size, ACE_WINDOW_SIZE));
2820 tdest = (void __iomem *) ®s->Window +
2821 (dest & (ACE_WINDOW_SIZE - 1));
2822 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2823 for (i = 0; i < (tsize / 4); i++) {
2824 /* Firmware is big-endian */
2825 writel(be32_to_cpup(src), tdest);
2826 src++;
2827 tdest += 4;
2828 dest += 4;
2829 size -= 4;
2830 }
2831 }
2832 }
2833
2834
ace_clear(struct ace_regs __iomem * regs,u32 dest,int size)2835 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2836 {
2837 void __iomem *tdest;
2838 short tsize = 0, i;
2839
2840 if (size <= 0)
2841 return;
2842
2843 while (size > 0) {
2844 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2845 min_t(u32, size, ACE_WINDOW_SIZE));
2846 tdest = (void __iomem *) ®s->Window +
2847 (dest & (ACE_WINDOW_SIZE - 1));
2848 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase);
2849
2850 for (i = 0; i < (tsize / 4); i++) {
2851 writel(0, tdest + i*4);
2852 }
2853
2854 dest += tsize;
2855 size -= tsize;
2856 }
2857 }
2858
2859
2860 /*
2861 * Download the firmware into the SRAM on the NIC
2862 *
2863 * This operation requires the NIC to be halted and is performed with
2864 * interrupts disabled and with the spinlock hold.
2865 */
ace_load_firmware(struct net_device * dev)2866 static int ace_load_firmware(struct net_device *dev)
2867 {
2868 const struct firmware *fw;
2869 const char *fw_name = "acenic/tg2.bin";
2870 struct ace_private *ap = netdev_priv(dev);
2871 struct ace_regs __iomem *regs = ap->regs;
2872 const __be32 *fw_data;
2873 u32 load_addr;
2874 int ret;
2875
2876 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) {
2877 printk(KERN_ERR "%s: trying to download firmware while the "
2878 "CPU is running!\n", ap->name);
2879 return -EFAULT;
2880 }
2881
2882 if (ACE_IS_TIGON_I(ap))
2883 fw_name = "acenic/tg1.bin";
2884
2885 ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2886 if (ret) {
2887 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2888 ap->name, fw_name);
2889 return ret;
2890 }
2891
2892 fw_data = (void *)fw->data;
2893
2894 /* Firmware blob starts with version numbers, followed by
2895 load and start address. Remainder is the blob to be loaded
2896 contiguously from load address. We don't bother to represent
2897 the BSS/SBSS sections any more, since we were clearing the
2898 whole thing anyway. */
2899 ap->firmware_major = fw->data[0];
2900 ap->firmware_minor = fw->data[1];
2901 ap->firmware_fix = fw->data[2];
2902
2903 ap->firmware_start = be32_to_cpu(fw_data[1]);
2904 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2905 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2906 ap->name, ap->firmware_start, fw_name);
2907 ret = -EINVAL;
2908 goto out;
2909 }
2910
2911 load_addr = be32_to_cpu(fw_data[2]);
2912 if (load_addr < 0x4000 || load_addr >= 0x80000) {
2913 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2914 ap->name, load_addr, fw_name);
2915 ret = -EINVAL;
2916 goto out;
2917 }
2918
2919 /*
2920 * Do not try to clear more than 512KiB or we end up seeing
2921 * funny things on NICs with only 512KiB SRAM
2922 */
2923 ace_clear(regs, 0x2000, 0x80000-0x2000);
2924 ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2925 out:
2926 release_firmware(fw);
2927 return ret;
2928 }
2929
2930
2931 /*
2932 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2933 *
2934 * Accessing the EEPROM is `interesting' to say the least - don't read
2935 * this code right after dinner.
2936 *
2937 * This is all about black magic and bit-banging the device .... I
2938 * wonder in what hospital they have put the guy who designed the i2c
2939 * specs.
2940 *
2941 * Oh yes, this is only the beginning!
2942 *
2943 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2944 * code i2c readout code by beta testing all my hacks.
2945 */
eeprom_start(struct ace_regs __iomem * regs)2946 static void eeprom_start(struct ace_regs __iomem *regs)
2947 {
2948 u32 local;
2949
2950 readl(®s->LocalCtrl);
2951 udelay(ACE_SHORT_DELAY);
2952 local = readl(®s->LocalCtrl);
2953 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2954 writel(local, ®s->LocalCtrl);
2955 readl(®s->LocalCtrl);
2956 mb();
2957 udelay(ACE_SHORT_DELAY);
2958 local |= EEPROM_CLK_OUT;
2959 writel(local, ®s->LocalCtrl);
2960 readl(®s->LocalCtrl);
2961 mb();
2962 udelay(ACE_SHORT_DELAY);
2963 local &= ~EEPROM_DATA_OUT;
2964 writel(local, ®s->LocalCtrl);
2965 readl(®s->LocalCtrl);
2966 mb();
2967 udelay(ACE_SHORT_DELAY);
2968 local &= ~EEPROM_CLK_OUT;
2969 writel(local, ®s->LocalCtrl);
2970 readl(®s->LocalCtrl);
2971 mb();
2972 }
2973
2974
eeprom_prep(struct ace_regs __iomem * regs,u8 magic)2975 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2976 {
2977 short i;
2978 u32 local;
2979
2980 udelay(ACE_SHORT_DELAY);
2981 local = readl(®s->LocalCtrl);
2982 local &= ~EEPROM_DATA_OUT;
2983 local |= EEPROM_WRITE_ENABLE;
2984 writel(local, ®s->LocalCtrl);
2985 readl(®s->LocalCtrl);
2986 mb();
2987
2988 for (i = 0; i < 8; i++, magic <<= 1) {
2989 udelay(ACE_SHORT_DELAY);
2990 if (magic & 0x80)
2991 local |= EEPROM_DATA_OUT;
2992 else
2993 local &= ~EEPROM_DATA_OUT;
2994 writel(local, ®s->LocalCtrl);
2995 readl(®s->LocalCtrl);
2996 mb();
2997
2998 udelay(ACE_SHORT_DELAY);
2999 local |= EEPROM_CLK_OUT;
3000 writel(local, ®s->LocalCtrl);
3001 readl(®s->LocalCtrl);
3002 mb();
3003 udelay(ACE_SHORT_DELAY);
3004 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3005 writel(local, ®s->LocalCtrl);
3006 readl(®s->LocalCtrl);
3007 mb();
3008 }
3009 }
3010
3011
eeprom_check_ack(struct ace_regs __iomem * regs)3012 static int eeprom_check_ack(struct ace_regs __iomem *regs)
3013 {
3014 int state;
3015 u32 local;
3016
3017 local = readl(®s->LocalCtrl);
3018 local &= ~EEPROM_WRITE_ENABLE;
3019 writel(local, ®s->LocalCtrl);
3020 readl(®s->LocalCtrl);
3021 mb();
3022 udelay(ACE_LONG_DELAY);
3023 local |= EEPROM_CLK_OUT;
3024 writel(local, ®s->LocalCtrl);
3025 readl(®s->LocalCtrl);
3026 mb();
3027 udelay(ACE_SHORT_DELAY);
3028 /* sample data in middle of high clk */
3029 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0;
3030 udelay(ACE_SHORT_DELAY);
3031 mb();
3032 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3033 readl(®s->LocalCtrl);
3034 mb();
3035
3036 return state;
3037 }
3038
3039
eeprom_stop(struct ace_regs __iomem * regs)3040 static void eeprom_stop(struct ace_regs __iomem *regs)
3041 {
3042 u32 local;
3043
3044 udelay(ACE_SHORT_DELAY);
3045 local = readl(®s->LocalCtrl);
3046 local |= EEPROM_WRITE_ENABLE;
3047 writel(local, ®s->LocalCtrl);
3048 readl(®s->LocalCtrl);
3049 mb();
3050 udelay(ACE_SHORT_DELAY);
3051 local &= ~EEPROM_DATA_OUT;
3052 writel(local, ®s->LocalCtrl);
3053 readl(®s->LocalCtrl);
3054 mb();
3055 udelay(ACE_SHORT_DELAY);
3056 local |= EEPROM_CLK_OUT;
3057 writel(local, ®s->LocalCtrl);
3058 readl(®s->LocalCtrl);
3059 mb();
3060 udelay(ACE_SHORT_DELAY);
3061 local |= EEPROM_DATA_OUT;
3062 writel(local, ®s->LocalCtrl);
3063 readl(®s->LocalCtrl);
3064 mb();
3065 udelay(ACE_LONG_DELAY);
3066 local &= ~EEPROM_CLK_OUT;
3067 writel(local, ®s->LocalCtrl);
3068 mb();
3069 }
3070
3071
3072 /*
3073 * Read a whole byte from the EEPROM.
3074 */
read_eeprom_byte(struct net_device * dev,unsigned long offset)3075 static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3076 {
3077 struct ace_private *ap = netdev_priv(dev);
3078 struct ace_regs __iomem *regs = ap->regs;
3079 unsigned long flags;
3080 u32 local;
3081 int result = 0;
3082 short i;
3083
3084 /*
3085 * Don't take interrupts on this CPU will bit banging
3086 * the %#%#@$ I2C device
3087 */
3088 local_irq_save(flags);
3089
3090 eeprom_start(regs);
3091
3092 eeprom_prep(regs, EEPROM_WRITE_SELECT);
3093 if (eeprom_check_ack(regs)) {
3094 local_irq_restore(flags);
3095 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3096 result = -EIO;
3097 goto eeprom_read_error;
3098 }
3099
3100 eeprom_prep(regs, (offset >> 8) & 0xff);
3101 if (eeprom_check_ack(regs)) {
3102 local_irq_restore(flags);
3103 printk(KERN_ERR "%s: Unable to set address byte 0\n",
3104 ap->name);
3105 result = -EIO;
3106 goto eeprom_read_error;
3107 }
3108
3109 eeprom_prep(regs, offset & 0xff);
3110 if (eeprom_check_ack(regs)) {
3111 local_irq_restore(flags);
3112 printk(KERN_ERR "%s: Unable to set address byte 1\n",
3113 ap->name);
3114 result = -EIO;
3115 goto eeprom_read_error;
3116 }
3117
3118 eeprom_start(regs);
3119 eeprom_prep(regs, EEPROM_READ_SELECT);
3120 if (eeprom_check_ack(regs)) {
3121 local_irq_restore(flags);
3122 printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3123 ap->name);
3124 result = -EIO;
3125 goto eeprom_read_error;
3126 }
3127
3128 for (i = 0; i < 8; i++) {
3129 local = readl(®s->LocalCtrl);
3130 local &= ~EEPROM_WRITE_ENABLE;
3131 writel(local, ®s->LocalCtrl);
3132 readl(®s->LocalCtrl);
3133 udelay(ACE_LONG_DELAY);
3134 mb();
3135 local |= EEPROM_CLK_OUT;
3136 writel(local, ®s->LocalCtrl);
3137 readl(®s->LocalCtrl);
3138 mb();
3139 udelay(ACE_SHORT_DELAY);
3140 /* sample data mid high clk */
3141 result = (result << 1) |
3142 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0);
3143 udelay(ACE_SHORT_DELAY);
3144 mb();
3145 local = readl(®s->LocalCtrl);
3146 local &= ~EEPROM_CLK_OUT;
3147 writel(local, ®s->LocalCtrl);
3148 readl(®s->LocalCtrl);
3149 udelay(ACE_SHORT_DELAY);
3150 mb();
3151 if (i == 7) {
3152 local |= EEPROM_WRITE_ENABLE;
3153 writel(local, ®s->LocalCtrl);
3154 readl(®s->LocalCtrl);
3155 mb();
3156 udelay(ACE_SHORT_DELAY);
3157 }
3158 }
3159
3160 local |= EEPROM_DATA_OUT;
3161 writel(local, ®s->LocalCtrl);
3162 readl(®s->LocalCtrl);
3163 mb();
3164 udelay(ACE_SHORT_DELAY);
3165 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl);
3166 readl(®s->LocalCtrl);
3167 udelay(ACE_LONG_DELAY);
3168 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl);
3169 readl(®s->LocalCtrl);
3170 mb();
3171 udelay(ACE_SHORT_DELAY);
3172 eeprom_stop(regs);
3173
3174 local_irq_restore(flags);
3175 out:
3176 return result;
3177
3178 eeprom_read_error:
3179 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3180 ap->name, offset);
3181 goto out;
3182 }
3183
3184 module_pci_driver(acenic_pci_driver);
3185