1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
4 *
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 * Heiko Carstens <heiko.carstens@de.ibm.com>,
9 *
10 * based on other smp stuff by
11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
12 * (c) 1998 Ingo Molnar
13 *
14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
15 * the translation of logical to physical cpu ids. All new code that
16 * operates on physical cpu numbers needs to go into smp.c.
17 */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/memblock.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/delay.h>
31 #include <linux/interrupt.h>
32 #include <linux/irqflags.h>
33 #include <linux/irq_work.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/kprobes.h>
40 #include <asm/asm-offsets.h>
41 #include <asm/diag.h>
42 #include <asm/switch_to.h>
43 #include <asm/facility.h>
44 #include <asm/ipl.h>
45 #include <asm/setup.h>
46 #include <asm/irq.h>
47 #include <asm/tlbflush.h>
48 #include <asm/vtimer.h>
49 #include <asm/lowcore.h>
50 #include <asm/sclp.h>
51 #include <asm/debug.h>
52 #include <asm/os_info.h>
53 #include <asm/sigp.h>
54 #include <asm/idle.h>
55 #include <asm/nmi.h>
56 #include <asm/stacktrace.h>
57 #include <asm/topology.h>
58 #include <asm/vdso.h>
59 #include "entry.h"
60
61 enum {
62 ec_schedule = 0,
63 ec_call_function_single,
64 ec_stop_cpu,
65 ec_mcck_pending,
66 ec_irq_work,
67 };
68
69 enum {
70 CPU_STATE_STANDBY,
71 CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77 unsigned long ec_mask; /* bit mask for ec_xxx functions */
78 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
79 signed char state; /* physical cpu state */
80 signed char polarization; /* physical polarization */
81 u16 address; /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98 cpumask_t cpu_setup_mask;
99
early_nosmt(char * s)100 static int __init early_nosmt(char *s)
101 {
102 smp_max_threads = 1;
103 return 0;
104 }
105 early_param("nosmt", early_nosmt);
106
early_smt(char * s)107 static int __init early_smt(char *s)
108 {
109 get_option(&s, &smp_max_threads);
110 return 0;
111 }
112 early_param("smt", early_smt);
113
114 /*
115 * The smp_cpu_state_mutex must be held when changing the state or polarization
116 * member of a pcpu data structure within the pcpu_devices arreay.
117 */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119
120 /*
121 * Signal processor helper functions.
122 */
__pcpu_sigp_relax(u16 addr,u8 order,unsigned long parm)123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125 int cc;
126
127 while (1) {
128 cc = __pcpu_sigp(addr, order, parm, NULL);
129 if (cc != SIGP_CC_BUSY)
130 return cc;
131 cpu_relax();
132 }
133 }
134
pcpu_sigp_retry(struct pcpu * pcpu,u8 order,u32 parm)135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137 int cc, retry;
138
139 for (retry = 0; ; retry++) {
140 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141 if (cc != SIGP_CC_BUSY)
142 break;
143 if (retry >= 3)
144 udelay(10);
145 }
146 return cc;
147 }
148
pcpu_stopped(struct pcpu * pcpu)149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151 u32 status;
152
153 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154 0, &status) != SIGP_CC_STATUS_STORED)
155 return 0;
156 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158
pcpu_running(struct pcpu * pcpu)159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162 0, NULL) != SIGP_CC_STATUS_STORED)
163 return 1;
164 /* Status stored condition code is equivalent to cpu not running. */
165 return 0;
166 }
167
168 /*
169 * Find struct pcpu by cpu address.
170 */
pcpu_find_address(const struct cpumask * mask,u16 address)171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173 int cpu;
174
175 for_each_cpu(cpu, mask)
176 if (pcpu_devices[cpu].address == address)
177 return pcpu_devices + cpu;
178 return NULL;
179 }
180
pcpu_ec_call(struct pcpu * pcpu,int ec_bit)181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183 int order;
184
185 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186 return;
187 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188 pcpu->ec_clk = get_tod_clock_fast();
189 pcpu_sigp_retry(pcpu, order, 0);
190 }
191
pcpu_alloc_lowcore(struct pcpu * pcpu,int cpu)192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194 unsigned long async_stack, nodat_stack, mcck_stack;
195 struct lowcore *lc;
196
197 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199 async_stack = stack_alloc();
200 mcck_stack = stack_alloc();
201 if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202 goto out;
203 memcpy(lc, &S390_lowcore, 512);
204 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205 lc->async_stack = async_stack + STACK_INIT_OFFSET;
206 lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207 lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208 lc->cpu_nr = cpu;
209 lc->spinlock_lockval = arch_spin_lockval(cpu);
210 lc->spinlock_index = 0;
211 lc->br_r1_trampoline = 0x07f1; /* br %r1 */
212 lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
213 lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
214 lc->preempt_count = PREEMPT_DISABLED;
215 if (nmi_alloc_per_cpu(lc))
216 goto out;
217 lowcore_ptr[cpu] = lc;
218 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
219 return 0;
220
221 out:
222 stack_free(mcck_stack);
223 stack_free(async_stack);
224 free_pages(nodat_stack, THREAD_SIZE_ORDER);
225 free_pages((unsigned long) lc, LC_ORDER);
226 return -ENOMEM;
227 }
228
pcpu_free_lowcore(struct pcpu * pcpu)229 static void pcpu_free_lowcore(struct pcpu *pcpu)
230 {
231 unsigned long async_stack, nodat_stack, mcck_stack;
232 struct lowcore *lc;
233 int cpu;
234
235 cpu = pcpu - pcpu_devices;
236 lc = lowcore_ptr[cpu];
237 nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
238 async_stack = lc->async_stack - STACK_INIT_OFFSET;
239 mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
240 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
241 lowcore_ptr[cpu] = NULL;
242 nmi_free_per_cpu(lc);
243 stack_free(async_stack);
244 stack_free(mcck_stack);
245 free_pages(nodat_stack, THREAD_SIZE_ORDER);
246 free_pages((unsigned long) lc, LC_ORDER);
247 }
248
pcpu_prepare_secondary(struct pcpu * pcpu,int cpu)249 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
250 {
251 struct lowcore *lc = lowcore_ptr[cpu];
252
253 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
254 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
255 lc->cpu_nr = cpu;
256 lc->restart_flags = RESTART_FLAG_CTLREGS;
257 lc->spinlock_lockval = arch_spin_lockval(cpu);
258 lc->spinlock_index = 0;
259 lc->percpu_offset = __per_cpu_offset[cpu];
260 lc->kernel_asce = S390_lowcore.kernel_asce;
261 lc->user_asce = s390_invalid_asce;
262 lc->machine_flags = S390_lowcore.machine_flags;
263 lc->user_timer = lc->system_timer =
264 lc->steal_timer = lc->avg_steal_timer = 0;
265 __ctl_store(lc->cregs_save_area, 0, 15);
266 lc->cregs_save_area[1] = lc->kernel_asce;
267 lc->cregs_save_area[7] = lc->user_asce;
268 save_access_regs((unsigned int *) lc->access_regs_save_area);
269 arch_spin_lock_setup(cpu);
270 }
271
pcpu_attach_task(struct pcpu * pcpu,struct task_struct * tsk)272 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
273 {
274 struct lowcore *lc;
275 int cpu;
276
277 cpu = pcpu - pcpu_devices;
278 lc = lowcore_ptr[cpu];
279 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
280 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
281 lc->current_task = (unsigned long) tsk;
282 lc->lpp = LPP_MAGIC;
283 lc->current_pid = tsk->pid;
284 lc->user_timer = tsk->thread.user_timer;
285 lc->guest_timer = tsk->thread.guest_timer;
286 lc->system_timer = tsk->thread.system_timer;
287 lc->hardirq_timer = tsk->thread.hardirq_timer;
288 lc->softirq_timer = tsk->thread.softirq_timer;
289 lc->steal_timer = 0;
290 }
291
pcpu_start_fn(struct pcpu * pcpu,void (* func)(void *),void * data)292 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
293 {
294 struct lowcore *lc;
295 int cpu;
296
297 cpu = pcpu - pcpu_devices;
298 lc = lowcore_ptr[cpu];
299 lc->restart_stack = lc->kernel_stack;
300 lc->restart_fn = (unsigned long) func;
301 lc->restart_data = (unsigned long) data;
302 lc->restart_source = -1U;
303 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
304 }
305
306 typedef void (pcpu_delegate_fn)(void *);
307
308 /*
309 * Call function via PSW restart on pcpu and stop the current cpu.
310 */
__pcpu_delegate(pcpu_delegate_fn * func,void * data)311 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
312 {
313 func(data); /* should not return */
314 }
315
pcpu_delegate(struct pcpu * pcpu,pcpu_delegate_fn * func,void * data,unsigned long stack)316 static void pcpu_delegate(struct pcpu *pcpu,
317 pcpu_delegate_fn *func,
318 void *data, unsigned long stack)
319 {
320 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
321 unsigned int source_cpu = stap();
322
323 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
324 if (pcpu->address == source_cpu) {
325 call_on_stack(2, stack, void, __pcpu_delegate,
326 pcpu_delegate_fn *, func, void *, data);
327 }
328 /* Stop target cpu (if func returns this stops the current cpu). */
329 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
330 /* Restart func on the target cpu and stop the current cpu. */
331 mem_assign_absolute(lc->restart_stack, stack);
332 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
333 mem_assign_absolute(lc->restart_data, (unsigned long) data);
334 mem_assign_absolute(lc->restart_source, source_cpu);
335 __bpon();
336 asm volatile(
337 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
338 " brc 2,0b # busy, try again\n"
339 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
340 " brc 2,1b # busy, try again\n"
341 : : "d" (pcpu->address), "d" (source_cpu),
342 "K" (SIGP_RESTART), "K" (SIGP_STOP)
343 : "0", "1", "cc");
344 for (;;) ;
345 }
346
347 /*
348 * Enable additional logical cpus for multi-threading.
349 */
pcpu_set_smt(unsigned int mtid)350 static int pcpu_set_smt(unsigned int mtid)
351 {
352 int cc;
353
354 if (smp_cpu_mtid == mtid)
355 return 0;
356 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
357 if (cc == 0) {
358 smp_cpu_mtid = mtid;
359 smp_cpu_mt_shift = 0;
360 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
361 smp_cpu_mt_shift++;
362 pcpu_devices[0].address = stap();
363 }
364 return cc;
365 }
366
367 /*
368 * Call function on an online CPU.
369 */
smp_call_online_cpu(void (* func)(void *),void * data)370 void smp_call_online_cpu(void (*func)(void *), void *data)
371 {
372 struct pcpu *pcpu;
373
374 /* Use the current cpu if it is online. */
375 pcpu = pcpu_find_address(cpu_online_mask, stap());
376 if (!pcpu)
377 /* Use the first online cpu. */
378 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
379 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
380 }
381
382 /*
383 * Call function on the ipl CPU.
384 */
smp_call_ipl_cpu(void (* func)(void *),void * data)385 void smp_call_ipl_cpu(void (*func)(void *), void *data)
386 {
387 struct lowcore *lc = lowcore_ptr[0];
388
389 if (pcpu_devices[0].address == stap())
390 lc = &S390_lowcore;
391
392 pcpu_delegate(&pcpu_devices[0], func, data,
393 lc->nodat_stack);
394 }
395
smp_find_processor_id(u16 address)396 int smp_find_processor_id(u16 address)
397 {
398 int cpu;
399
400 for_each_present_cpu(cpu)
401 if (pcpu_devices[cpu].address == address)
402 return cpu;
403 return -1;
404 }
405
schedule_mcck_handler(void)406 void schedule_mcck_handler(void)
407 {
408 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
409 }
410
arch_vcpu_is_preempted(int cpu)411 bool notrace arch_vcpu_is_preempted(int cpu)
412 {
413 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
414 return false;
415 if (pcpu_running(pcpu_devices + cpu))
416 return false;
417 return true;
418 }
419 EXPORT_SYMBOL(arch_vcpu_is_preempted);
420
smp_yield_cpu(int cpu)421 void notrace smp_yield_cpu(int cpu)
422 {
423 if (!MACHINE_HAS_DIAG9C)
424 return;
425 diag_stat_inc_norecursion(DIAG_STAT_X09C);
426 asm volatile("diag %0,0,0x9c"
427 : : "d" (pcpu_devices[cpu].address));
428 }
429 EXPORT_SYMBOL_GPL(smp_yield_cpu);
430
431 /*
432 * Send cpus emergency shutdown signal. This gives the cpus the
433 * opportunity to complete outstanding interrupts.
434 */
smp_emergency_stop(void)435 void notrace smp_emergency_stop(void)
436 {
437 static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
438 static cpumask_t cpumask;
439 u64 end;
440 int cpu;
441
442 arch_spin_lock(&lock);
443 cpumask_copy(&cpumask, cpu_online_mask);
444 cpumask_clear_cpu(smp_processor_id(), &cpumask);
445
446 end = get_tod_clock() + (1000000UL << 12);
447 for_each_cpu(cpu, &cpumask) {
448 struct pcpu *pcpu = pcpu_devices + cpu;
449 set_bit(ec_stop_cpu, &pcpu->ec_mask);
450 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
451 0, NULL) == SIGP_CC_BUSY &&
452 get_tod_clock() < end)
453 cpu_relax();
454 }
455 while (get_tod_clock() < end) {
456 for_each_cpu(cpu, &cpumask)
457 if (pcpu_stopped(pcpu_devices + cpu))
458 cpumask_clear_cpu(cpu, &cpumask);
459 if (cpumask_empty(&cpumask))
460 break;
461 cpu_relax();
462 }
463 arch_spin_unlock(&lock);
464 }
465 NOKPROBE_SYMBOL(smp_emergency_stop);
466
467 /*
468 * Stop all cpus but the current one.
469 */
smp_send_stop(void)470 void smp_send_stop(void)
471 {
472 int cpu;
473
474 /* Disable all interrupts/machine checks */
475 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
476 trace_hardirqs_off();
477
478 debug_set_critical();
479
480 if (oops_in_progress)
481 smp_emergency_stop();
482
483 /* stop all processors */
484 for_each_online_cpu(cpu) {
485 if (cpu == smp_processor_id())
486 continue;
487 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
488 while (!pcpu_stopped(pcpu_devices + cpu))
489 cpu_relax();
490 }
491 }
492
493 /*
494 * This is the main routine where commands issued by other
495 * cpus are handled.
496 */
smp_handle_ext_call(void)497 static void smp_handle_ext_call(void)
498 {
499 unsigned long bits;
500
501 /* handle bit signal external calls */
502 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
503 if (test_bit(ec_stop_cpu, &bits))
504 smp_stop_cpu();
505 if (test_bit(ec_schedule, &bits))
506 scheduler_ipi();
507 if (test_bit(ec_call_function_single, &bits))
508 generic_smp_call_function_single_interrupt();
509 if (test_bit(ec_mcck_pending, &bits))
510 __s390_handle_mcck();
511 if (test_bit(ec_irq_work, &bits))
512 irq_work_run();
513 }
514
do_ext_call_interrupt(struct ext_code ext_code,unsigned int param32,unsigned long param64)515 static void do_ext_call_interrupt(struct ext_code ext_code,
516 unsigned int param32, unsigned long param64)
517 {
518 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
519 smp_handle_ext_call();
520 }
521
arch_send_call_function_ipi_mask(const struct cpumask * mask)522 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
523 {
524 int cpu;
525
526 for_each_cpu(cpu, mask)
527 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
528 }
529
arch_send_call_function_single_ipi(int cpu)530 void arch_send_call_function_single_ipi(int cpu)
531 {
532 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
533 }
534
535 /*
536 * this function sends a 'reschedule' IPI to another CPU.
537 * it goes straight through and wastes no time serializing
538 * anything. Worst case is that we lose a reschedule ...
539 */
smp_send_reschedule(int cpu)540 void smp_send_reschedule(int cpu)
541 {
542 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
543 }
544
545 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)546 void arch_irq_work_raise(void)
547 {
548 pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
549 }
550 #endif
551
552 /*
553 * parameter area for the set/clear control bit callbacks
554 */
555 struct ec_creg_mask_parms {
556 unsigned long orval;
557 unsigned long andval;
558 int cr;
559 };
560
561 /*
562 * callback for setting/clearing control bits
563 */
smp_ctl_bit_callback(void * info)564 static void smp_ctl_bit_callback(void *info)
565 {
566 struct ec_creg_mask_parms *pp = info;
567 unsigned long cregs[16];
568
569 __ctl_store(cregs, 0, 15);
570 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
571 __ctl_load(cregs, 0, 15);
572 }
573
574 static DEFINE_SPINLOCK(ctl_lock);
575 static unsigned long ctlreg;
576
577 /*
578 * Set a bit in a control register of all cpus
579 */
smp_ctl_set_bit(int cr,int bit)580 void smp_ctl_set_bit(int cr, int bit)
581 {
582 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
583
584 spin_lock(&ctl_lock);
585 memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
586 __set_bit(bit, &ctlreg);
587 memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
588 spin_unlock(&ctl_lock);
589 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
590 }
591 EXPORT_SYMBOL(smp_ctl_set_bit);
592
593 /*
594 * Clear a bit in a control register of all cpus
595 */
smp_ctl_clear_bit(int cr,int bit)596 void smp_ctl_clear_bit(int cr, int bit)
597 {
598 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
599
600 spin_lock(&ctl_lock);
601 memcpy_absolute(&ctlreg, &S390_lowcore.cregs_save_area[cr], sizeof(ctlreg));
602 __clear_bit(bit, &ctlreg);
603 memcpy_absolute(&S390_lowcore.cregs_save_area[cr], &ctlreg, sizeof(ctlreg));
604 spin_unlock(&ctl_lock);
605 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
606 }
607 EXPORT_SYMBOL(smp_ctl_clear_bit);
608
609 #ifdef CONFIG_CRASH_DUMP
610
smp_store_status(int cpu)611 int smp_store_status(int cpu)
612 {
613 struct lowcore *lc;
614 struct pcpu *pcpu;
615 unsigned long pa;
616
617 pcpu = pcpu_devices + cpu;
618 lc = lowcore_ptr[cpu];
619 pa = __pa(&lc->floating_pt_save_area);
620 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
621 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
622 return -EIO;
623 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
624 return 0;
625 pa = __pa(lc->mcesad & MCESA_ORIGIN_MASK);
626 if (MACHINE_HAS_GS)
627 pa |= lc->mcesad & MCESA_LC_MASK;
628 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
629 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
630 return -EIO;
631 return 0;
632 }
633
634 /*
635 * Collect CPU state of the previous, crashed system.
636 * There are four cases:
637 * 1) standard zfcp/nvme dump
638 * condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
639 * The state for all CPUs except the boot CPU needs to be collected
640 * with sigp stop-and-store-status. The boot CPU state is located in
641 * the absolute lowcore of the memory stored in the HSA. The zcore code
642 * will copy the boot CPU state from the HSA.
643 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
644 * condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
645 * The state for all CPUs except the boot CPU needs to be collected
646 * with sigp stop-and-store-status. The firmware or the boot-loader
647 * stored the registers of the boot CPU in the absolute lowcore in the
648 * memory of the old system.
649 * 3) kdump and the old kernel did not store the CPU state,
650 * or stand-alone kdump for DASD
651 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
652 * The state for all CPUs except the boot CPU needs to be collected
653 * with sigp stop-and-store-status. The kexec code or the boot-loader
654 * stored the registers of the boot CPU in the memory of the old system.
655 * 4) kdump and the old kernel stored the CPU state
656 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
657 * This case does not exist for s390 anymore, setup_arch explicitly
658 * deactivates the elfcorehdr= kernel parameter
659 */
smp_save_cpu_vxrs(struct save_area * sa,u16 addr,bool is_boot_cpu,unsigned long page)660 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
661 bool is_boot_cpu, unsigned long page)
662 {
663 __vector128 *vxrs = (__vector128 *) page;
664
665 if (is_boot_cpu)
666 vxrs = boot_cpu_vector_save_area;
667 else
668 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
669 save_area_add_vxrs(sa, vxrs);
670 }
671
smp_save_cpu_regs(struct save_area * sa,u16 addr,bool is_boot_cpu,unsigned long page)672 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
673 bool is_boot_cpu, unsigned long page)
674 {
675 void *regs = (void *) page;
676
677 if (is_boot_cpu)
678 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
679 else
680 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
681 save_area_add_regs(sa, regs);
682 }
683
smp_save_dump_cpus(void)684 void __init smp_save_dump_cpus(void)
685 {
686 int addr, boot_cpu_addr, max_cpu_addr;
687 struct save_area *sa;
688 unsigned long page;
689 bool is_boot_cpu;
690
691 if (!(oldmem_data.start || is_ipl_type_dump()))
692 /* No previous system present, normal boot. */
693 return;
694 /* Allocate a page as dumping area for the store status sigps */
695 page = memblock_phys_alloc_range(PAGE_SIZE, PAGE_SIZE, 0, 1UL << 31);
696 if (!page)
697 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
698 PAGE_SIZE, 1UL << 31);
699
700 /* Set multi-threading state to the previous system. */
701 pcpu_set_smt(sclp.mtid_prev);
702 boot_cpu_addr = stap();
703 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
704 for (addr = 0; addr <= max_cpu_addr; addr++) {
705 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
706 SIGP_CC_NOT_OPERATIONAL)
707 continue;
708 is_boot_cpu = (addr == boot_cpu_addr);
709 /* Allocate save area */
710 sa = save_area_alloc(is_boot_cpu);
711 if (!sa)
712 panic("could not allocate memory for save area\n");
713 if (MACHINE_HAS_VX)
714 /* Get the vector registers */
715 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
716 /*
717 * For a zfcp/nvme dump OLDMEM_BASE == NULL and the registers
718 * of the boot CPU are stored in the HSA. To retrieve
719 * these registers an SCLP request is required which is
720 * done by drivers/s390/char/zcore.c:init_cpu_info()
721 */
722 if (!is_boot_cpu || oldmem_data.start)
723 /* Get the CPU registers */
724 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
725 }
726 memblock_phys_free(page, PAGE_SIZE);
727 diag_amode31_ops.diag308_reset();
728 pcpu_set_smt(0);
729 }
730 #endif /* CONFIG_CRASH_DUMP */
731
smp_cpu_set_polarization(int cpu,int val)732 void smp_cpu_set_polarization(int cpu, int val)
733 {
734 pcpu_devices[cpu].polarization = val;
735 }
736
smp_cpu_get_polarization(int cpu)737 int smp_cpu_get_polarization(int cpu)
738 {
739 return pcpu_devices[cpu].polarization;
740 }
741
smp_cpu_get_cpu_address(int cpu)742 int smp_cpu_get_cpu_address(int cpu)
743 {
744 return pcpu_devices[cpu].address;
745 }
746
smp_get_core_info(struct sclp_core_info * info,int early)747 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
748 {
749 static int use_sigp_detection;
750 int address;
751
752 if (use_sigp_detection || sclp_get_core_info(info, early)) {
753 use_sigp_detection = 1;
754 for (address = 0;
755 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
756 address += (1U << smp_cpu_mt_shift)) {
757 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
758 SIGP_CC_NOT_OPERATIONAL)
759 continue;
760 info->core[info->configured].core_id =
761 address >> smp_cpu_mt_shift;
762 info->configured++;
763 }
764 info->combined = info->configured;
765 }
766 }
767
768 static int smp_add_present_cpu(int cpu);
769
smp_add_core(struct sclp_core_entry * core,cpumask_t * avail,bool configured,bool early)770 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
771 bool configured, bool early)
772 {
773 struct pcpu *pcpu;
774 int cpu, nr, i;
775 u16 address;
776
777 nr = 0;
778 if (sclp.has_core_type && core->type != boot_core_type)
779 return nr;
780 cpu = cpumask_first(avail);
781 address = core->core_id << smp_cpu_mt_shift;
782 for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
783 if (pcpu_find_address(cpu_present_mask, address + i))
784 continue;
785 pcpu = pcpu_devices + cpu;
786 pcpu->address = address + i;
787 if (configured)
788 pcpu->state = CPU_STATE_CONFIGURED;
789 else
790 pcpu->state = CPU_STATE_STANDBY;
791 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
792 set_cpu_present(cpu, true);
793 if (!early && smp_add_present_cpu(cpu) != 0)
794 set_cpu_present(cpu, false);
795 else
796 nr++;
797 cpumask_clear_cpu(cpu, avail);
798 cpu = cpumask_next(cpu, avail);
799 }
800 return nr;
801 }
802
__smp_rescan_cpus(struct sclp_core_info * info,bool early)803 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
804 {
805 struct sclp_core_entry *core;
806 static cpumask_t avail;
807 bool configured;
808 u16 core_id;
809 int nr, i;
810
811 cpus_read_lock();
812 mutex_lock(&smp_cpu_state_mutex);
813 nr = 0;
814 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
815 /*
816 * Add IPL core first (which got logical CPU number 0) to make sure
817 * that all SMT threads get subsequent logical CPU numbers.
818 */
819 if (early) {
820 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
821 for (i = 0; i < info->configured; i++) {
822 core = &info->core[i];
823 if (core->core_id == core_id) {
824 nr += smp_add_core(core, &avail, true, early);
825 break;
826 }
827 }
828 }
829 for (i = 0; i < info->combined; i++) {
830 configured = i < info->configured;
831 nr += smp_add_core(&info->core[i], &avail, configured, early);
832 }
833 mutex_unlock(&smp_cpu_state_mutex);
834 cpus_read_unlock();
835 return nr;
836 }
837
smp_detect_cpus(void)838 void __init smp_detect_cpus(void)
839 {
840 unsigned int cpu, mtid, c_cpus, s_cpus;
841 struct sclp_core_info *info;
842 u16 address;
843
844 /* Get CPU information */
845 info = memblock_alloc(sizeof(*info), 8);
846 if (!info)
847 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
848 __func__, sizeof(*info), 8);
849 smp_get_core_info(info, 1);
850 /* Find boot CPU type */
851 if (sclp.has_core_type) {
852 address = stap();
853 for (cpu = 0; cpu < info->combined; cpu++)
854 if (info->core[cpu].core_id == address) {
855 /* The boot cpu dictates the cpu type. */
856 boot_core_type = info->core[cpu].type;
857 break;
858 }
859 if (cpu >= info->combined)
860 panic("Could not find boot CPU type");
861 }
862
863 /* Set multi-threading state for the current system */
864 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
865 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
866 pcpu_set_smt(mtid);
867
868 /* Print number of CPUs */
869 c_cpus = s_cpus = 0;
870 for (cpu = 0; cpu < info->combined; cpu++) {
871 if (sclp.has_core_type &&
872 info->core[cpu].type != boot_core_type)
873 continue;
874 if (cpu < info->configured)
875 c_cpus += smp_cpu_mtid + 1;
876 else
877 s_cpus += smp_cpu_mtid + 1;
878 }
879 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
880
881 /* Add CPUs present at boot */
882 __smp_rescan_cpus(info, true);
883 memblock_phys_free((unsigned long)info, sizeof(*info));
884 }
885
886 /*
887 * Activate a secondary processor.
888 */
smp_start_secondary(void * cpuvoid)889 static void smp_start_secondary(void *cpuvoid)
890 {
891 int cpu = raw_smp_processor_id();
892
893 S390_lowcore.last_update_clock = get_tod_clock();
894 S390_lowcore.restart_stack = (unsigned long)restart_stack;
895 S390_lowcore.restart_fn = (unsigned long)do_restart;
896 S390_lowcore.restart_data = 0;
897 S390_lowcore.restart_source = -1U;
898 S390_lowcore.restart_flags = 0;
899 restore_access_regs(S390_lowcore.access_regs_save_area);
900 cpu_init();
901 rcu_cpu_starting(cpu);
902 init_cpu_timer();
903 vtime_init();
904 vdso_getcpu_init();
905 pfault_init();
906 cpumask_set_cpu(cpu, &cpu_setup_mask);
907 update_cpu_masks();
908 notify_cpu_starting(cpu);
909 if (topology_cpu_dedicated(cpu))
910 set_cpu_flag(CIF_DEDICATED_CPU);
911 else
912 clear_cpu_flag(CIF_DEDICATED_CPU);
913 set_cpu_online(cpu, true);
914 inc_irq_stat(CPU_RST);
915 local_irq_enable();
916 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
917 }
918
919 /* Upping and downing of CPUs */
__cpu_up(unsigned int cpu,struct task_struct * tidle)920 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
921 {
922 struct pcpu *pcpu = pcpu_devices + cpu;
923 int rc;
924
925 if (pcpu->state != CPU_STATE_CONFIGURED)
926 return -EIO;
927 if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
928 SIGP_CC_ORDER_CODE_ACCEPTED)
929 return -EIO;
930
931 rc = pcpu_alloc_lowcore(pcpu, cpu);
932 if (rc)
933 return rc;
934 pcpu_prepare_secondary(pcpu, cpu);
935 pcpu_attach_task(pcpu, tidle);
936 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
937 /* Wait until cpu puts itself in the online & active maps */
938 while (!cpu_online(cpu))
939 cpu_relax();
940 return 0;
941 }
942
943 static unsigned int setup_possible_cpus __initdata;
944
_setup_possible_cpus(char * s)945 static int __init _setup_possible_cpus(char *s)
946 {
947 get_option(&s, &setup_possible_cpus);
948 return 0;
949 }
950 early_param("possible_cpus", _setup_possible_cpus);
951
__cpu_disable(void)952 int __cpu_disable(void)
953 {
954 unsigned long cregs[16];
955 int cpu;
956
957 /* Handle possible pending IPIs */
958 smp_handle_ext_call();
959 cpu = smp_processor_id();
960 set_cpu_online(cpu, false);
961 cpumask_clear_cpu(cpu, &cpu_setup_mask);
962 update_cpu_masks();
963 /* Disable pseudo page faults on this cpu. */
964 pfault_fini();
965 /* Disable interrupt sources via control register. */
966 __ctl_store(cregs, 0, 15);
967 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
968 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
969 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
970 __ctl_load(cregs, 0, 15);
971 clear_cpu_flag(CIF_NOHZ_DELAY);
972 return 0;
973 }
974
__cpu_die(unsigned int cpu)975 void __cpu_die(unsigned int cpu)
976 {
977 struct pcpu *pcpu;
978
979 /* Wait until target cpu is down */
980 pcpu = pcpu_devices + cpu;
981 while (!pcpu_stopped(pcpu))
982 cpu_relax();
983 pcpu_free_lowcore(pcpu);
984 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
985 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
986 }
987
cpu_die(void)988 void __noreturn cpu_die(void)
989 {
990 idle_task_exit();
991 __bpon();
992 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
993 for (;;) ;
994 }
995
smp_fill_possible_mask(void)996 void __init smp_fill_possible_mask(void)
997 {
998 unsigned int possible, sclp_max, cpu;
999
1000 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1001 sclp_max = min(smp_max_threads, sclp_max);
1002 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1003 possible = setup_possible_cpus ?: nr_cpu_ids;
1004 possible = min(possible, sclp_max);
1005 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1006 set_cpu_possible(cpu, true);
1007 }
1008
smp_prepare_cpus(unsigned int max_cpus)1009 void __init smp_prepare_cpus(unsigned int max_cpus)
1010 {
1011 /* request the 0x1201 emergency signal external interrupt */
1012 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1013 panic("Couldn't request external interrupt 0x1201");
1014 /* request the 0x1202 external call external interrupt */
1015 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1016 panic("Couldn't request external interrupt 0x1202");
1017 }
1018
smp_prepare_boot_cpu(void)1019 void __init smp_prepare_boot_cpu(void)
1020 {
1021 struct pcpu *pcpu = pcpu_devices;
1022
1023 WARN_ON(!cpu_present(0) || !cpu_online(0));
1024 pcpu->state = CPU_STATE_CONFIGURED;
1025 S390_lowcore.percpu_offset = __per_cpu_offset[0];
1026 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1027 }
1028
smp_setup_processor_id(void)1029 void __init smp_setup_processor_id(void)
1030 {
1031 pcpu_devices[0].address = stap();
1032 S390_lowcore.cpu_nr = 0;
1033 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1034 S390_lowcore.spinlock_index = 0;
1035 }
1036
1037 /*
1038 * the frequency of the profiling timer can be changed
1039 * by writing a multiplier value into /proc/profile.
1040 *
1041 * usually you want to run this on all CPUs ;)
1042 */
setup_profiling_timer(unsigned int multiplier)1043 int setup_profiling_timer(unsigned int multiplier)
1044 {
1045 return 0;
1046 }
1047
cpu_configure_show(struct device * dev,struct device_attribute * attr,char * buf)1048 static ssize_t cpu_configure_show(struct device *dev,
1049 struct device_attribute *attr, char *buf)
1050 {
1051 ssize_t count;
1052
1053 mutex_lock(&smp_cpu_state_mutex);
1054 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1055 mutex_unlock(&smp_cpu_state_mutex);
1056 return count;
1057 }
1058
cpu_configure_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1059 static ssize_t cpu_configure_store(struct device *dev,
1060 struct device_attribute *attr,
1061 const char *buf, size_t count)
1062 {
1063 struct pcpu *pcpu;
1064 int cpu, val, rc, i;
1065 char delim;
1066
1067 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1068 return -EINVAL;
1069 if (val != 0 && val != 1)
1070 return -EINVAL;
1071 cpus_read_lock();
1072 mutex_lock(&smp_cpu_state_mutex);
1073 rc = -EBUSY;
1074 /* disallow configuration changes of online cpus and cpu 0 */
1075 cpu = dev->id;
1076 cpu = smp_get_base_cpu(cpu);
1077 if (cpu == 0)
1078 goto out;
1079 for (i = 0; i <= smp_cpu_mtid; i++)
1080 if (cpu_online(cpu + i))
1081 goto out;
1082 pcpu = pcpu_devices + cpu;
1083 rc = 0;
1084 switch (val) {
1085 case 0:
1086 if (pcpu->state != CPU_STATE_CONFIGURED)
1087 break;
1088 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1089 if (rc)
1090 break;
1091 for (i = 0; i <= smp_cpu_mtid; i++) {
1092 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1093 continue;
1094 pcpu[i].state = CPU_STATE_STANDBY;
1095 smp_cpu_set_polarization(cpu + i,
1096 POLARIZATION_UNKNOWN);
1097 }
1098 topology_expect_change();
1099 break;
1100 case 1:
1101 if (pcpu->state != CPU_STATE_STANDBY)
1102 break;
1103 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1104 if (rc)
1105 break;
1106 for (i = 0; i <= smp_cpu_mtid; i++) {
1107 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1108 continue;
1109 pcpu[i].state = CPU_STATE_CONFIGURED;
1110 smp_cpu_set_polarization(cpu + i,
1111 POLARIZATION_UNKNOWN);
1112 }
1113 topology_expect_change();
1114 break;
1115 default:
1116 break;
1117 }
1118 out:
1119 mutex_unlock(&smp_cpu_state_mutex);
1120 cpus_read_unlock();
1121 return rc ? rc : count;
1122 }
1123 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1124
show_cpu_address(struct device * dev,struct device_attribute * attr,char * buf)1125 static ssize_t show_cpu_address(struct device *dev,
1126 struct device_attribute *attr, char *buf)
1127 {
1128 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1129 }
1130 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1131
1132 static struct attribute *cpu_common_attrs[] = {
1133 &dev_attr_configure.attr,
1134 &dev_attr_address.attr,
1135 NULL,
1136 };
1137
1138 static struct attribute_group cpu_common_attr_group = {
1139 .attrs = cpu_common_attrs,
1140 };
1141
1142 static struct attribute *cpu_online_attrs[] = {
1143 &dev_attr_idle_count.attr,
1144 &dev_attr_idle_time_us.attr,
1145 NULL,
1146 };
1147
1148 static struct attribute_group cpu_online_attr_group = {
1149 .attrs = cpu_online_attrs,
1150 };
1151
smp_cpu_online(unsigned int cpu)1152 static int smp_cpu_online(unsigned int cpu)
1153 {
1154 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1155
1156 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1157 }
1158
smp_cpu_pre_down(unsigned int cpu)1159 static int smp_cpu_pre_down(unsigned int cpu)
1160 {
1161 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1162
1163 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1164 return 0;
1165 }
1166
smp_add_present_cpu(int cpu)1167 static int smp_add_present_cpu(int cpu)
1168 {
1169 struct device *s;
1170 struct cpu *c;
1171 int rc;
1172
1173 c = kzalloc(sizeof(*c), GFP_KERNEL);
1174 if (!c)
1175 return -ENOMEM;
1176 per_cpu(cpu_device, cpu) = c;
1177 s = &c->dev;
1178 c->hotpluggable = 1;
1179 rc = register_cpu(c, cpu);
1180 if (rc)
1181 goto out;
1182 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1183 if (rc)
1184 goto out_cpu;
1185 rc = topology_cpu_init(c);
1186 if (rc)
1187 goto out_topology;
1188 return 0;
1189
1190 out_topology:
1191 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1192 out_cpu:
1193 unregister_cpu(c);
1194 out:
1195 return rc;
1196 }
1197
smp_rescan_cpus(void)1198 int __ref smp_rescan_cpus(void)
1199 {
1200 struct sclp_core_info *info;
1201 int nr;
1202
1203 info = kzalloc(sizeof(*info), GFP_KERNEL);
1204 if (!info)
1205 return -ENOMEM;
1206 smp_get_core_info(info, 0);
1207 nr = __smp_rescan_cpus(info, false);
1208 kfree(info);
1209 if (nr)
1210 topology_schedule_update();
1211 return 0;
1212 }
1213
rescan_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1214 static ssize_t __ref rescan_store(struct device *dev,
1215 struct device_attribute *attr,
1216 const char *buf,
1217 size_t count)
1218 {
1219 int rc;
1220
1221 rc = lock_device_hotplug_sysfs();
1222 if (rc)
1223 return rc;
1224 rc = smp_rescan_cpus();
1225 unlock_device_hotplug();
1226 return rc ? rc : count;
1227 }
1228 static DEVICE_ATTR_WO(rescan);
1229
s390_smp_init(void)1230 static int __init s390_smp_init(void)
1231 {
1232 int cpu, rc = 0;
1233
1234 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1235 if (rc)
1236 return rc;
1237 for_each_present_cpu(cpu) {
1238 rc = smp_add_present_cpu(cpu);
1239 if (rc)
1240 goto out;
1241 }
1242
1243 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1244 smp_cpu_online, smp_cpu_pre_down);
1245 rc = rc <= 0 ? rc : 0;
1246 out:
1247 return rc;
1248 }
1249 subsys_initcall(s390_smp_init);
1250
set_new_lowcore(struct lowcore * lc)1251 static __always_inline void set_new_lowcore(struct lowcore *lc)
1252 {
1253 union register_pair dst, src;
1254 u32 pfx;
1255
1256 src.even = (unsigned long) &S390_lowcore;
1257 src.odd = sizeof(S390_lowcore);
1258 dst.even = (unsigned long) lc;
1259 dst.odd = sizeof(*lc);
1260 pfx = (unsigned long) lc;
1261
1262 asm volatile(
1263 " mvcl %[dst],%[src]\n"
1264 " spx %[pfx]\n"
1265 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1266 : [pfx] "Q" (pfx)
1267 : "memory", "cc");
1268 }
1269
smp_reinit_ipl_cpu(void)1270 static int __init smp_reinit_ipl_cpu(void)
1271 {
1272 unsigned long async_stack, nodat_stack, mcck_stack;
1273 struct lowcore *lc, *lc_ipl;
1274 unsigned long flags;
1275
1276 lc_ipl = lowcore_ptr[0];
1277 lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1278 nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1279 async_stack = stack_alloc();
1280 mcck_stack = stack_alloc();
1281 if (!lc || !nodat_stack || !async_stack || !mcck_stack)
1282 panic("Couldn't allocate memory");
1283
1284 local_irq_save(flags);
1285 local_mcck_disable();
1286 set_new_lowcore(lc);
1287 S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1288 S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1289 S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1290 lowcore_ptr[0] = lc;
1291 local_mcck_enable();
1292 local_irq_restore(flags);
1293
1294 free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1295 memblock_free_late(lc_ipl->mcck_stack - STACK_INIT_OFFSET, THREAD_SIZE);
1296 memblock_free_late((unsigned long) lc_ipl, sizeof(*lc_ipl));
1297
1298 return 0;
1299 }
1300 early_initcall(smp_reinit_ipl_cpu);
1301