1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4 * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5 *
6 * Copyright (C) 2005, Intec Automation Inc.
7 * Copyright (C) 2014, Freescale Semiconductor, Inc.
8 */
9
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24
25 #include "core.h"
26
27 /* Define max times to check status register before we give up. */
28
29 /*
30 * For everything but full-chip erase; probably could be much smaller, but kept
31 * around for safety for now
32 */
33 #define DEFAULT_READY_WAIT_JIFFIES (40UL * HZ)
34
35 /*
36 * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
37 * for larger flash
38 */
39 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES (40UL * HZ)
40
41 #define SPI_NOR_MAX_ADDR_WIDTH 4
42
43 #define SPI_NOR_SRST_SLEEP_MIN 200
44 #define SPI_NOR_SRST_SLEEP_MAX 400
45
46 /**
47 * spi_nor_get_cmd_ext() - Get the command opcode extension based on the
48 * extension type.
49 * @nor: pointer to a 'struct spi_nor'
50 * @op: pointer to the 'struct spi_mem_op' whose properties
51 * need to be initialized.
52 *
53 * Right now, only "repeat" and "invert" are supported.
54 *
55 * Return: The opcode extension.
56 */
spi_nor_get_cmd_ext(const struct spi_nor * nor,const struct spi_mem_op * op)57 static u8 spi_nor_get_cmd_ext(const struct spi_nor *nor,
58 const struct spi_mem_op *op)
59 {
60 switch (nor->cmd_ext_type) {
61 case SPI_NOR_EXT_INVERT:
62 return ~op->cmd.opcode;
63
64 case SPI_NOR_EXT_REPEAT:
65 return op->cmd.opcode;
66
67 default:
68 dev_err(nor->dev, "Unknown command extension type\n");
69 return 0;
70 }
71 }
72
73 /**
74 * spi_nor_spimem_setup_op() - Set up common properties of a spi-mem op.
75 * @nor: pointer to a 'struct spi_nor'
76 * @op: pointer to the 'struct spi_mem_op' whose properties
77 * need to be initialized.
78 * @proto: the protocol from which the properties need to be set.
79 */
spi_nor_spimem_setup_op(const struct spi_nor * nor,struct spi_mem_op * op,const enum spi_nor_protocol proto)80 void spi_nor_spimem_setup_op(const struct spi_nor *nor,
81 struct spi_mem_op *op,
82 const enum spi_nor_protocol proto)
83 {
84 u8 ext;
85
86 op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(proto);
87
88 if (op->addr.nbytes)
89 op->addr.buswidth = spi_nor_get_protocol_addr_nbits(proto);
90
91 if (op->dummy.nbytes)
92 op->dummy.buswidth = spi_nor_get_protocol_addr_nbits(proto);
93
94 if (op->data.nbytes)
95 op->data.buswidth = spi_nor_get_protocol_data_nbits(proto);
96
97 if (spi_nor_protocol_is_dtr(proto)) {
98 /*
99 * SPIMEM supports mixed DTR modes, but right now we can only
100 * have all phases either DTR or STR. IOW, SPIMEM can have
101 * something like 4S-4D-4D, but SPI NOR can't. So, set all 4
102 * phases to either DTR or STR.
103 */
104 op->cmd.dtr = true;
105 op->addr.dtr = true;
106 op->dummy.dtr = true;
107 op->data.dtr = true;
108
109 /* 2 bytes per clock cycle in DTR mode. */
110 op->dummy.nbytes *= 2;
111
112 ext = spi_nor_get_cmd_ext(nor, op);
113 op->cmd.opcode = (op->cmd.opcode << 8) | ext;
114 op->cmd.nbytes = 2;
115 }
116 }
117
118 /**
119 * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
120 * transfer
121 * @nor: pointer to 'struct spi_nor'
122 * @op: pointer to 'struct spi_mem_op' template for transfer
123 *
124 * If we have to use the bounce buffer, the data field in @op will be updated.
125 *
126 * Return: true if the bounce buffer is needed, false if not
127 */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)128 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
129 {
130 /* op->data.buf.in occupies the same memory as op->data.buf.out */
131 if (object_is_on_stack(op->data.buf.in) ||
132 !virt_addr_valid(op->data.buf.in)) {
133 if (op->data.nbytes > nor->bouncebuf_size)
134 op->data.nbytes = nor->bouncebuf_size;
135 op->data.buf.in = nor->bouncebuf;
136 return true;
137 }
138
139 return false;
140 }
141
142 /**
143 * spi_nor_spimem_exec_op() - execute a memory operation
144 * @nor: pointer to 'struct spi_nor'
145 * @op: pointer to 'struct spi_mem_op' template for transfer
146 *
147 * Return: 0 on success, -error otherwise.
148 */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)149 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
150 {
151 int error;
152
153 error = spi_mem_adjust_op_size(nor->spimem, op);
154 if (error)
155 return error;
156
157 return spi_mem_exec_op(nor->spimem, op);
158 }
159
spi_nor_controller_ops_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,size_t len)160 static int spi_nor_controller_ops_read_reg(struct spi_nor *nor, u8 opcode,
161 u8 *buf, size_t len)
162 {
163 if (spi_nor_protocol_is_dtr(nor->reg_proto))
164 return -EOPNOTSUPP;
165
166 return nor->controller_ops->read_reg(nor, opcode, buf, len);
167 }
168
spi_nor_controller_ops_write_reg(struct spi_nor * nor,u8 opcode,const u8 * buf,size_t len)169 static int spi_nor_controller_ops_write_reg(struct spi_nor *nor, u8 opcode,
170 const u8 *buf, size_t len)
171 {
172 if (spi_nor_protocol_is_dtr(nor->reg_proto))
173 return -EOPNOTSUPP;
174
175 return nor->controller_ops->write_reg(nor, opcode, buf, len);
176 }
177
spi_nor_controller_ops_erase(struct spi_nor * nor,loff_t offs)178 static int spi_nor_controller_ops_erase(struct spi_nor *nor, loff_t offs)
179 {
180 if (spi_nor_protocol_is_dtr(nor->write_proto))
181 return -EOPNOTSUPP;
182
183 return nor->controller_ops->erase(nor, offs);
184 }
185
186 /**
187 * spi_nor_spimem_read_data() - read data from flash's memory region via
188 * spi-mem
189 * @nor: pointer to 'struct spi_nor'
190 * @from: offset to read from
191 * @len: number of bytes to read
192 * @buf: pointer to dst buffer
193 *
194 * Return: number of bytes read successfully, -errno otherwise
195 */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)196 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
197 size_t len, u8 *buf)
198 {
199 struct spi_mem_op op =
200 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
201 SPI_MEM_OP_ADDR(nor->addr_width, from, 0),
202 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
203 SPI_MEM_OP_DATA_IN(len, buf, 0));
204 bool usebouncebuf;
205 ssize_t nbytes;
206 int error;
207
208 spi_nor_spimem_setup_op(nor, &op, nor->read_proto);
209
210 /* convert the dummy cycles to the number of bytes */
211 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
212 if (spi_nor_protocol_is_dtr(nor->read_proto))
213 op.dummy.nbytes *= 2;
214
215 usebouncebuf = spi_nor_spimem_bounce(nor, &op);
216
217 if (nor->dirmap.rdesc) {
218 nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
219 op.data.nbytes, op.data.buf.in);
220 } else {
221 error = spi_nor_spimem_exec_op(nor, &op);
222 if (error)
223 return error;
224 nbytes = op.data.nbytes;
225 }
226
227 if (usebouncebuf && nbytes > 0)
228 memcpy(buf, op.data.buf.in, nbytes);
229
230 return nbytes;
231 }
232
233 /**
234 * spi_nor_read_data() - read data from flash memory
235 * @nor: pointer to 'struct spi_nor'
236 * @from: offset to read from
237 * @len: number of bytes to read
238 * @buf: pointer to dst buffer
239 *
240 * Return: number of bytes read successfully, -errno otherwise
241 */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)242 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
243 {
244 if (nor->spimem)
245 return spi_nor_spimem_read_data(nor, from, len, buf);
246
247 return nor->controller_ops->read(nor, from, len, buf);
248 }
249
250 /**
251 * spi_nor_spimem_write_data() - write data to flash memory via
252 * spi-mem
253 * @nor: pointer to 'struct spi_nor'
254 * @to: offset to write to
255 * @len: number of bytes to write
256 * @buf: pointer to src buffer
257 *
258 * Return: number of bytes written successfully, -errno otherwise
259 */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)260 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
261 size_t len, const u8 *buf)
262 {
263 struct spi_mem_op op =
264 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
265 SPI_MEM_OP_ADDR(nor->addr_width, to, 0),
266 SPI_MEM_OP_NO_DUMMY,
267 SPI_MEM_OP_DATA_OUT(len, buf, 0));
268 ssize_t nbytes;
269 int error;
270
271 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
272 op.addr.nbytes = 0;
273
274 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
275
276 if (spi_nor_spimem_bounce(nor, &op))
277 memcpy(nor->bouncebuf, buf, op.data.nbytes);
278
279 if (nor->dirmap.wdesc) {
280 nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
281 op.data.nbytes, op.data.buf.out);
282 } else {
283 error = spi_nor_spimem_exec_op(nor, &op);
284 if (error)
285 return error;
286 nbytes = op.data.nbytes;
287 }
288
289 return nbytes;
290 }
291
292 /**
293 * spi_nor_write_data() - write data to flash memory
294 * @nor: pointer to 'struct spi_nor'
295 * @to: offset to write to
296 * @len: number of bytes to write
297 * @buf: pointer to src buffer
298 *
299 * Return: number of bytes written successfully, -errno otherwise
300 */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)301 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
302 const u8 *buf)
303 {
304 if (nor->spimem)
305 return spi_nor_spimem_write_data(nor, to, len, buf);
306
307 return nor->controller_ops->write(nor, to, len, buf);
308 }
309
310 /**
311 * spi_nor_write_enable() - Set write enable latch with Write Enable command.
312 * @nor: pointer to 'struct spi_nor'.
313 *
314 * Return: 0 on success, -errno otherwise.
315 */
spi_nor_write_enable(struct spi_nor * nor)316 int spi_nor_write_enable(struct spi_nor *nor)
317 {
318 int ret;
319
320 if (nor->spimem) {
321 struct spi_mem_op op =
322 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 0),
323 SPI_MEM_OP_NO_ADDR,
324 SPI_MEM_OP_NO_DUMMY,
325 SPI_MEM_OP_NO_DATA);
326
327 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
328
329 ret = spi_mem_exec_op(nor->spimem, &op);
330 } else {
331 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREN,
332 NULL, 0);
333 }
334
335 if (ret)
336 dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
337
338 return ret;
339 }
340
341 /**
342 * spi_nor_write_disable() - Send Write Disable instruction to the chip.
343 * @nor: pointer to 'struct spi_nor'.
344 *
345 * Return: 0 on success, -errno otherwise.
346 */
spi_nor_write_disable(struct spi_nor * nor)347 int spi_nor_write_disable(struct spi_nor *nor)
348 {
349 int ret;
350
351 if (nor->spimem) {
352 struct spi_mem_op op =
353 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 0),
354 SPI_MEM_OP_NO_ADDR,
355 SPI_MEM_OP_NO_DUMMY,
356 SPI_MEM_OP_NO_DATA);
357
358 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
359
360 ret = spi_mem_exec_op(nor->spimem, &op);
361 } else {
362 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRDI,
363 NULL, 0);
364 }
365
366 if (ret)
367 dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
368
369 return ret;
370 }
371
372 /**
373 * spi_nor_read_sr() - Read the Status Register.
374 * @nor: pointer to 'struct spi_nor'.
375 * @sr: pointer to a DMA-able buffer where the value of the
376 * Status Register will be written. Should be at least 2 bytes.
377 *
378 * Return: 0 on success, -errno otherwise.
379 */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)380 int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
381 {
382 int ret;
383
384 if (nor->spimem) {
385 struct spi_mem_op op =
386 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 0),
387 SPI_MEM_OP_NO_ADDR,
388 SPI_MEM_OP_NO_DUMMY,
389 SPI_MEM_OP_DATA_IN(1, sr, 0));
390
391 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
392 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
393 op.dummy.nbytes = nor->params->rdsr_dummy;
394 /*
395 * We don't want to read only one byte in DTR mode. So,
396 * read 2 and then discard the second byte.
397 */
398 op.data.nbytes = 2;
399 }
400
401 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
402
403 ret = spi_mem_exec_op(nor->spimem, &op);
404 } else {
405 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR, sr,
406 1);
407 }
408
409 if (ret)
410 dev_dbg(nor->dev, "error %d reading SR\n", ret);
411
412 return ret;
413 }
414
415 /**
416 * spi_nor_read_fsr() - Read the Flag Status Register.
417 * @nor: pointer to 'struct spi_nor'
418 * @fsr: pointer to a DMA-able buffer where the value of the
419 * Flag Status Register will be written. Should be at least 2
420 * bytes.
421 *
422 * Return: 0 on success, -errno otherwise.
423 */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)424 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
425 {
426 int ret;
427
428 if (nor->spimem) {
429 struct spi_mem_op op =
430 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0),
431 SPI_MEM_OP_NO_ADDR,
432 SPI_MEM_OP_NO_DUMMY,
433 SPI_MEM_OP_DATA_IN(1, fsr, 0));
434
435 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
436 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
437 op.dummy.nbytes = nor->params->rdsr_dummy;
438 /*
439 * We don't want to read only one byte in DTR mode. So,
440 * read 2 and then discard the second byte.
441 */
442 op.data.nbytes = 2;
443 }
444
445 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
446
447 ret = spi_mem_exec_op(nor->spimem, &op);
448 } else {
449 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
450 1);
451 }
452
453 if (ret)
454 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
455
456 return ret;
457 }
458
459 /**
460 * spi_nor_read_cr() - Read the Configuration Register using the
461 * SPINOR_OP_RDCR (35h) command.
462 * @nor: pointer to 'struct spi_nor'
463 * @cr: pointer to a DMA-able buffer where the value of the
464 * Configuration Register will be written.
465 *
466 * Return: 0 on success, -errno otherwise.
467 */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)468 int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
469 {
470 int ret;
471
472 if (nor->spimem) {
473 struct spi_mem_op op =
474 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 0),
475 SPI_MEM_OP_NO_ADDR,
476 SPI_MEM_OP_NO_DUMMY,
477 SPI_MEM_OP_DATA_IN(1, cr, 0));
478
479 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
480
481 ret = spi_mem_exec_op(nor->spimem, &op);
482 } else {
483 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDCR, cr,
484 1);
485 }
486
487 if (ret)
488 dev_dbg(nor->dev, "error %d reading CR\n", ret);
489
490 return ret;
491 }
492
493 /**
494 * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
495 * @nor: pointer to 'struct spi_nor'.
496 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
497 * address mode.
498 *
499 * Return: 0 on success, -errno otherwise.
500 */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)501 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
502 {
503 int ret;
504
505 if (nor->spimem) {
506 struct spi_mem_op op =
507 SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
508 SPINOR_OP_EN4B :
509 SPINOR_OP_EX4B,
510 0),
511 SPI_MEM_OP_NO_ADDR,
512 SPI_MEM_OP_NO_DUMMY,
513 SPI_MEM_OP_NO_DATA);
514
515 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
516
517 ret = spi_mem_exec_op(nor->spimem, &op);
518 } else {
519 ret = spi_nor_controller_ops_write_reg(nor,
520 enable ? SPINOR_OP_EN4B :
521 SPINOR_OP_EX4B,
522 NULL, 0);
523 }
524
525 if (ret)
526 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
527
528 return ret;
529 }
530
531 /**
532 * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
533 * flashes.
534 * @nor: pointer to 'struct spi_nor'.
535 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
536 * address mode.
537 *
538 * Return: 0 on success, -errno otherwise.
539 */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)540 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
541 {
542 int ret;
543
544 nor->bouncebuf[0] = enable << 7;
545
546 if (nor->spimem) {
547 struct spi_mem_op op =
548 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 0),
549 SPI_MEM_OP_NO_ADDR,
550 SPI_MEM_OP_NO_DUMMY,
551 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
552
553 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
554
555 ret = spi_mem_exec_op(nor->spimem, &op);
556 } else {
557 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_BRWR,
558 nor->bouncebuf, 1);
559 }
560
561 if (ret)
562 dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
563
564 return ret;
565 }
566
567 /**
568 * spi_nor_write_ear() - Write Extended Address Register.
569 * @nor: pointer to 'struct spi_nor'.
570 * @ear: value to write to the Extended Address Register.
571 *
572 * Return: 0 on success, -errno otherwise.
573 */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)574 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
575 {
576 int ret;
577
578 nor->bouncebuf[0] = ear;
579
580 if (nor->spimem) {
581 struct spi_mem_op op =
582 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 0),
583 SPI_MEM_OP_NO_ADDR,
584 SPI_MEM_OP_NO_DUMMY,
585 SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 0));
586
587 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
588
589 ret = spi_mem_exec_op(nor->spimem, &op);
590 } else {
591 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WREAR,
592 nor->bouncebuf, 1);
593 }
594
595 if (ret)
596 dev_dbg(nor->dev, "error %d writing EAR\n", ret);
597
598 return ret;
599 }
600
601 /**
602 * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
603 * @nor: pointer to 'struct spi_nor'.
604 * @sr: pointer to a DMA-able buffer where the value of the
605 * Status Register will be written.
606 *
607 * Return: 0 on success, -errno otherwise.
608 */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)609 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
610 {
611 int ret;
612
613 if (nor->spimem) {
614 struct spi_mem_op op =
615 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 0),
616 SPI_MEM_OP_NO_ADDR,
617 SPI_MEM_OP_NO_DUMMY,
618 SPI_MEM_OP_DATA_IN(1, sr, 0));
619
620 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
621
622 ret = spi_mem_exec_op(nor->spimem, &op);
623 } else {
624 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_XRDSR, sr,
625 1);
626 }
627
628 if (ret)
629 dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
630
631 return ret;
632 }
633
634 /**
635 * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
636 * the flash is ready for new commands.
637 * @nor: pointer to 'struct spi_nor'.
638 *
639 * Return: 1 if ready, 0 if not ready, -errno on errors.
640 */
spi_nor_xsr_ready(struct spi_nor * nor)641 static int spi_nor_xsr_ready(struct spi_nor *nor)
642 {
643 int ret;
644
645 ret = spi_nor_xread_sr(nor, nor->bouncebuf);
646 if (ret)
647 return ret;
648
649 return !!(nor->bouncebuf[0] & XSR_RDY);
650 }
651
652 /**
653 * spi_nor_clear_sr() - Clear the Status Register.
654 * @nor: pointer to 'struct spi_nor'.
655 */
spi_nor_clear_sr(struct spi_nor * nor)656 static void spi_nor_clear_sr(struct spi_nor *nor)
657 {
658 int ret;
659
660 if (nor->spimem) {
661 struct spi_mem_op op =
662 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 0),
663 SPI_MEM_OP_NO_ADDR,
664 SPI_MEM_OP_NO_DUMMY,
665 SPI_MEM_OP_NO_DATA);
666
667 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
668
669 ret = spi_mem_exec_op(nor->spimem, &op);
670 } else {
671 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLSR,
672 NULL, 0);
673 }
674
675 if (ret)
676 dev_dbg(nor->dev, "error %d clearing SR\n", ret);
677 }
678
679 /**
680 * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
681 * for new commands.
682 * @nor: pointer to 'struct spi_nor'.
683 *
684 * Return: 1 if ready, 0 if not ready, -errno on errors.
685 */
spi_nor_sr_ready(struct spi_nor * nor)686 static int spi_nor_sr_ready(struct spi_nor *nor)
687 {
688 int ret = spi_nor_read_sr(nor, nor->bouncebuf);
689
690 if (ret)
691 return ret;
692
693 if (nor->flags & SNOR_F_USE_CLSR &&
694 nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
695 if (nor->bouncebuf[0] & SR_E_ERR)
696 dev_err(nor->dev, "Erase Error occurred\n");
697 else
698 dev_err(nor->dev, "Programming Error occurred\n");
699
700 spi_nor_clear_sr(nor);
701
702 /*
703 * WEL bit remains set to one when an erase or page program
704 * error occurs. Issue a Write Disable command to protect
705 * against inadvertent writes that can possibly corrupt the
706 * contents of the memory.
707 */
708 ret = spi_nor_write_disable(nor);
709 if (ret)
710 return ret;
711
712 return -EIO;
713 }
714
715 return !(nor->bouncebuf[0] & SR_WIP);
716 }
717
718 /**
719 * spi_nor_clear_fsr() - Clear the Flag Status Register.
720 * @nor: pointer to 'struct spi_nor'.
721 */
spi_nor_clear_fsr(struct spi_nor * nor)722 static void spi_nor_clear_fsr(struct spi_nor *nor)
723 {
724 int ret;
725
726 if (nor->spimem) {
727 struct spi_mem_op op =
728 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0),
729 SPI_MEM_OP_NO_ADDR,
730 SPI_MEM_OP_NO_DUMMY,
731 SPI_MEM_OP_NO_DATA);
732
733 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
734
735 ret = spi_mem_exec_op(nor->spimem, &op);
736 } else {
737 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
738 NULL, 0);
739 }
740
741 if (ret)
742 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
743 }
744
745 /**
746 * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
747 * ready for new commands.
748 * @nor: pointer to 'struct spi_nor'.
749 *
750 * Return: 1 if ready, 0 if not ready, -errno on errors.
751 */
spi_nor_fsr_ready(struct spi_nor * nor)752 static int spi_nor_fsr_ready(struct spi_nor *nor)
753 {
754 int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
755
756 if (ret)
757 return ret;
758
759 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
760 if (nor->bouncebuf[0] & FSR_E_ERR)
761 dev_err(nor->dev, "Erase operation failed.\n");
762 else
763 dev_err(nor->dev, "Program operation failed.\n");
764
765 if (nor->bouncebuf[0] & FSR_PT_ERR)
766 dev_err(nor->dev,
767 "Attempted to modify a protected sector.\n");
768
769 spi_nor_clear_fsr(nor);
770
771 /*
772 * WEL bit remains set to one when an erase or page program
773 * error occurs. Issue a Write Disable command to protect
774 * against inadvertent writes that can possibly corrupt the
775 * contents of the memory.
776 */
777 ret = spi_nor_write_disable(nor);
778 if (ret)
779 return ret;
780
781 return -EIO;
782 }
783
784 return !!(nor->bouncebuf[0] & FSR_READY);
785 }
786
787 /**
788 * spi_nor_ready() - Query the flash to see if it is ready for new commands.
789 * @nor: pointer to 'struct spi_nor'.
790 *
791 * Return: 1 if ready, 0 if not ready, -errno on errors.
792 */
spi_nor_ready(struct spi_nor * nor)793 static int spi_nor_ready(struct spi_nor *nor)
794 {
795 int sr, fsr;
796
797 if (nor->flags & SNOR_F_READY_XSR_RDY)
798 sr = spi_nor_xsr_ready(nor);
799 else
800 sr = spi_nor_sr_ready(nor);
801 if (sr < 0)
802 return sr;
803 fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
804 if (fsr < 0)
805 return fsr;
806 return sr && fsr;
807 }
808
809 /**
810 * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
811 * Status Register until ready, or timeout occurs.
812 * @nor: pointer to "struct spi_nor".
813 * @timeout_jiffies: jiffies to wait until timeout.
814 *
815 * Return: 0 on success, -errno otherwise.
816 */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)817 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
818 unsigned long timeout_jiffies)
819 {
820 unsigned long deadline;
821 int timeout = 0, ret;
822
823 deadline = jiffies + timeout_jiffies;
824
825 while (!timeout) {
826 if (time_after_eq(jiffies, deadline))
827 timeout = 1;
828
829 ret = spi_nor_ready(nor);
830 if (ret < 0)
831 return ret;
832 if (ret)
833 return 0;
834
835 cond_resched();
836 }
837
838 dev_dbg(nor->dev, "flash operation timed out\n");
839
840 return -ETIMEDOUT;
841 }
842
843 /**
844 * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
845 * flash to be ready, or timeout occurs.
846 * @nor: pointer to "struct spi_nor".
847 *
848 * Return: 0 on success, -errno otherwise.
849 */
spi_nor_wait_till_ready(struct spi_nor * nor)850 int spi_nor_wait_till_ready(struct spi_nor *nor)
851 {
852 return spi_nor_wait_till_ready_with_timeout(nor,
853 DEFAULT_READY_WAIT_JIFFIES);
854 }
855
856 /**
857 * spi_nor_global_block_unlock() - Unlock Global Block Protection.
858 * @nor: pointer to 'struct spi_nor'.
859 *
860 * Return: 0 on success, -errno otherwise.
861 */
spi_nor_global_block_unlock(struct spi_nor * nor)862 int spi_nor_global_block_unlock(struct spi_nor *nor)
863 {
864 int ret;
865
866 ret = spi_nor_write_enable(nor);
867 if (ret)
868 return ret;
869
870 if (nor->spimem) {
871 struct spi_mem_op op =
872 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_GBULK, 0),
873 SPI_MEM_OP_NO_ADDR,
874 SPI_MEM_OP_NO_DUMMY,
875 SPI_MEM_OP_NO_DATA);
876
877 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
878
879 ret = spi_mem_exec_op(nor->spimem, &op);
880 } else {
881 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_GBULK,
882 NULL, 0);
883 }
884
885 if (ret) {
886 dev_dbg(nor->dev, "error %d on Global Block Unlock\n", ret);
887 return ret;
888 }
889
890 return spi_nor_wait_till_ready(nor);
891 }
892
893 /**
894 * spi_nor_write_sr() - Write the Status Register.
895 * @nor: pointer to 'struct spi_nor'.
896 * @sr: pointer to DMA-able buffer to write to the Status Register.
897 * @len: number of bytes to write to the Status Register.
898 *
899 * Return: 0 on success, -errno otherwise.
900 */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)901 int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
902 {
903 int ret;
904
905 ret = spi_nor_write_enable(nor);
906 if (ret)
907 return ret;
908
909 if (nor->spimem) {
910 struct spi_mem_op op =
911 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 0),
912 SPI_MEM_OP_NO_ADDR,
913 SPI_MEM_OP_NO_DUMMY,
914 SPI_MEM_OP_DATA_OUT(len, sr, 0));
915
916 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
917
918 ret = spi_mem_exec_op(nor->spimem, &op);
919 } else {
920 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR, sr,
921 len);
922 }
923
924 if (ret) {
925 dev_dbg(nor->dev, "error %d writing SR\n", ret);
926 return ret;
927 }
928
929 return spi_nor_wait_till_ready(nor);
930 }
931
932 /**
933 * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
934 * ensure that the byte written match the received value.
935 * @nor: pointer to a 'struct spi_nor'.
936 * @sr1: byte value to be written to the Status Register.
937 *
938 * Return: 0 on success, -errno otherwise.
939 */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)940 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
941 {
942 int ret;
943
944 nor->bouncebuf[0] = sr1;
945
946 ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
947 if (ret)
948 return ret;
949
950 ret = spi_nor_read_sr(nor, nor->bouncebuf);
951 if (ret)
952 return ret;
953
954 if (nor->bouncebuf[0] != sr1) {
955 dev_dbg(nor->dev, "SR1: read back test failed\n");
956 return -EIO;
957 }
958
959 return 0;
960 }
961
962 /**
963 * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
964 * Status Register 2 in one shot. Ensure that the byte written in the Status
965 * Register 1 match the received value, and that the 16-bit Write did not
966 * affect what was already in the Status Register 2.
967 * @nor: pointer to a 'struct spi_nor'.
968 * @sr1: byte value to be written to the Status Register 1.
969 *
970 * Return: 0 on success, -errno otherwise.
971 */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)972 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
973 {
974 int ret;
975 u8 *sr_cr = nor->bouncebuf;
976 u8 cr_written;
977
978 /* Make sure we don't overwrite the contents of Status Register 2. */
979 if (!(nor->flags & SNOR_F_NO_READ_CR)) {
980 ret = spi_nor_read_cr(nor, &sr_cr[1]);
981 if (ret)
982 return ret;
983 } else if (nor->params->quad_enable) {
984 /*
985 * If the Status Register 2 Read command (35h) is not
986 * supported, we should at least be sure we don't
987 * change the value of the SR2 Quad Enable bit.
988 *
989 * We can safely assume that when the Quad Enable method is
990 * set, the value of the QE bit is one, as a consequence of the
991 * nor->params->quad_enable() call.
992 *
993 * We can safely assume that the Quad Enable bit is present in
994 * the Status Register 2 at BIT(1). According to the JESD216
995 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
996 * Write Status (01h) command is available just for the cases
997 * in which the QE bit is described in SR2 at BIT(1).
998 */
999 sr_cr[1] = SR2_QUAD_EN_BIT1;
1000 } else {
1001 sr_cr[1] = 0;
1002 }
1003
1004 sr_cr[0] = sr1;
1005
1006 ret = spi_nor_write_sr(nor, sr_cr, 2);
1007 if (ret)
1008 return ret;
1009
1010 if (nor->flags & SNOR_F_NO_READ_CR)
1011 return 0;
1012
1013 cr_written = sr_cr[1];
1014
1015 ret = spi_nor_read_cr(nor, &sr_cr[1]);
1016 if (ret)
1017 return ret;
1018
1019 if (cr_written != sr_cr[1]) {
1020 dev_dbg(nor->dev, "CR: read back test failed\n");
1021 return -EIO;
1022 }
1023
1024 return 0;
1025 }
1026
1027 /**
1028 * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
1029 * Configuration Register in one shot. Ensure that the byte written in the
1030 * Configuration Register match the received value, and that the 16-bit Write
1031 * did not affect what was already in the Status Register 1.
1032 * @nor: pointer to a 'struct spi_nor'.
1033 * @cr: byte value to be written to the Configuration Register.
1034 *
1035 * Return: 0 on success, -errno otherwise.
1036 */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)1037 int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
1038 {
1039 int ret;
1040 u8 *sr_cr = nor->bouncebuf;
1041 u8 sr_written;
1042
1043 /* Keep the current value of the Status Register 1. */
1044 ret = spi_nor_read_sr(nor, sr_cr);
1045 if (ret)
1046 return ret;
1047
1048 sr_cr[1] = cr;
1049
1050 ret = spi_nor_write_sr(nor, sr_cr, 2);
1051 if (ret)
1052 return ret;
1053
1054 sr_written = sr_cr[0];
1055
1056 ret = spi_nor_read_sr(nor, sr_cr);
1057 if (ret)
1058 return ret;
1059
1060 if (sr_written != sr_cr[0]) {
1061 dev_dbg(nor->dev, "SR: Read back test failed\n");
1062 return -EIO;
1063 }
1064
1065 if (nor->flags & SNOR_F_NO_READ_CR)
1066 return 0;
1067
1068 ret = spi_nor_read_cr(nor, &sr_cr[1]);
1069 if (ret)
1070 return ret;
1071
1072 if (cr != sr_cr[1]) {
1073 dev_dbg(nor->dev, "CR: read back test failed\n");
1074 return -EIO;
1075 }
1076
1077 return 0;
1078 }
1079
1080 /**
1081 * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
1082 * the byte written match the received value without affecting other bits in the
1083 * Status Register 1 and 2.
1084 * @nor: pointer to a 'struct spi_nor'.
1085 * @sr1: byte value to be written to the Status Register.
1086 *
1087 * Return: 0 on success, -errno otherwise.
1088 */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)1089 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
1090 {
1091 if (nor->flags & SNOR_F_HAS_16BIT_SR)
1092 return spi_nor_write_16bit_sr_and_check(nor, sr1);
1093
1094 return spi_nor_write_sr1_and_check(nor, sr1);
1095 }
1096
1097 /**
1098 * spi_nor_write_sr2() - Write the Status Register 2 using the
1099 * SPINOR_OP_WRSR2 (3eh) command.
1100 * @nor: pointer to 'struct spi_nor'.
1101 * @sr2: pointer to DMA-able buffer to write to the Status Register 2.
1102 *
1103 * Return: 0 on success, -errno otherwise.
1104 */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)1105 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1106 {
1107 int ret;
1108
1109 ret = spi_nor_write_enable(nor);
1110 if (ret)
1111 return ret;
1112
1113 if (nor->spimem) {
1114 struct spi_mem_op op =
1115 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 0),
1116 SPI_MEM_OP_NO_ADDR,
1117 SPI_MEM_OP_NO_DUMMY,
1118 SPI_MEM_OP_DATA_OUT(1, sr2, 0));
1119
1120 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1121
1122 ret = spi_mem_exec_op(nor->spimem, &op);
1123 } else {
1124 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_WRSR2,
1125 sr2, 1);
1126 }
1127
1128 if (ret) {
1129 dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1130 return ret;
1131 }
1132
1133 return spi_nor_wait_till_ready(nor);
1134 }
1135
1136 /**
1137 * spi_nor_read_sr2() - Read the Status Register 2 using the
1138 * SPINOR_OP_RDSR2 (3fh) command.
1139 * @nor: pointer to 'struct spi_nor'.
1140 * @sr2: pointer to DMA-able buffer where the value of the
1141 * Status Register 2 will be written.
1142 *
1143 * Return: 0 on success, -errno otherwise.
1144 */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)1145 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1146 {
1147 int ret;
1148
1149 if (nor->spimem) {
1150 struct spi_mem_op op =
1151 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 0),
1152 SPI_MEM_OP_NO_ADDR,
1153 SPI_MEM_OP_NO_DUMMY,
1154 SPI_MEM_OP_DATA_IN(1, sr2, 0));
1155
1156 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
1157
1158 ret = spi_mem_exec_op(nor->spimem, &op);
1159 } else {
1160 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDSR2, sr2,
1161 1);
1162 }
1163
1164 if (ret)
1165 dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1166
1167 return ret;
1168 }
1169
1170 /**
1171 * spi_nor_erase_chip() - Erase the entire flash memory.
1172 * @nor: pointer to 'struct spi_nor'.
1173 *
1174 * Return: 0 on success, -errno otherwise.
1175 */
spi_nor_erase_chip(struct spi_nor * nor)1176 static int spi_nor_erase_chip(struct spi_nor *nor)
1177 {
1178 int ret;
1179
1180 dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1181
1182 if (nor->spimem) {
1183 struct spi_mem_op op =
1184 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 0),
1185 SPI_MEM_OP_NO_ADDR,
1186 SPI_MEM_OP_NO_DUMMY,
1187 SPI_MEM_OP_NO_DATA);
1188
1189 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
1190
1191 ret = spi_mem_exec_op(nor->spimem, &op);
1192 } else {
1193 ret = spi_nor_controller_ops_write_reg(nor,
1194 SPINOR_OP_CHIP_ERASE,
1195 NULL, 0);
1196 }
1197
1198 if (ret)
1199 dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1200
1201 return ret;
1202 }
1203
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1204 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1205 {
1206 size_t i;
1207
1208 for (i = 0; i < size; i++)
1209 if (table[i][0] == opcode)
1210 return table[i][1];
1211
1212 /* No conversion found, keep input op code. */
1213 return opcode;
1214 }
1215
spi_nor_convert_3to4_read(u8 opcode)1216 u8 spi_nor_convert_3to4_read(u8 opcode)
1217 {
1218 static const u8 spi_nor_3to4_read[][2] = {
1219 { SPINOR_OP_READ, SPINOR_OP_READ_4B },
1220 { SPINOR_OP_READ_FAST, SPINOR_OP_READ_FAST_4B },
1221 { SPINOR_OP_READ_1_1_2, SPINOR_OP_READ_1_1_2_4B },
1222 { SPINOR_OP_READ_1_2_2, SPINOR_OP_READ_1_2_2_4B },
1223 { SPINOR_OP_READ_1_1_4, SPINOR_OP_READ_1_1_4_4B },
1224 { SPINOR_OP_READ_1_4_4, SPINOR_OP_READ_1_4_4_4B },
1225 { SPINOR_OP_READ_1_1_8, SPINOR_OP_READ_1_1_8_4B },
1226 { SPINOR_OP_READ_1_8_8, SPINOR_OP_READ_1_8_8_4B },
1227
1228 { SPINOR_OP_READ_1_1_1_DTR, SPINOR_OP_READ_1_1_1_DTR_4B },
1229 { SPINOR_OP_READ_1_2_2_DTR, SPINOR_OP_READ_1_2_2_DTR_4B },
1230 { SPINOR_OP_READ_1_4_4_DTR, SPINOR_OP_READ_1_4_4_DTR_4B },
1231 };
1232
1233 return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1234 ARRAY_SIZE(spi_nor_3to4_read));
1235 }
1236
spi_nor_convert_3to4_program(u8 opcode)1237 static u8 spi_nor_convert_3to4_program(u8 opcode)
1238 {
1239 static const u8 spi_nor_3to4_program[][2] = {
1240 { SPINOR_OP_PP, SPINOR_OP_PP_4B },
1241 { SPINOR_OP_PP_1_1_4, SPINOR_OP_PP_1_1_4_4B },
1242 { SPINOR_OP_PP_1_4_4, SPINOR_OP_PP_1_4_4_4B },
1243 { SPINOR_OP_PP_1_1_8, SPINOR_OP_PP_1_1_8_4B },
1244 { SPINOR_OP_PP_1_8_8, SPINOR_OP_PP_1_8_8_4B },
1245 };
1246
1247 return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1248 ARRAY_SIZE(spi_nor_3to4_program));
1249 }
1250
spi_nor_convert_3to4_erase(u8 opcode)1251 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1252 {
1253 static const u8 spi_nor_3to4_erase[][2] = {
1254 { SPINOR_OP_BE_4K, SPINOR_OP_BE_4K_4B },
1255 { SPINOR_OP_BE_32K, SPINOR_OP_BE_32K_4B },
1256 { SPINOR_OP_SE, SPINOR_OP_SE_4B },
1257 };
1258
1259 return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1260 ARRAY_SIZE(spi_nor_3to4_erase));
1261 }
1262
spi_nor_has_uniform_erase(const struct spi_nor * nor)1263 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1264 {
1265 return !!nor->params->erase_map.uniform_erase_type;
1266 }
1267
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1268 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1269 {
1270 nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1271 nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1272 nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1273
1274 if (!spi_nor_has_uniform_erase(nor)) {
1275 struct spi_nor_erase_map *map = &nor->params->erase_map;
1276 struct spi_nor_erase_type *erase;
1277 int i;
1278
1279 for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1280 erase = &map->erase_type[i];
1281 erase->opcode =
1282 spi_nor_convert_3to4_erase(erase->opcode);
1283 }
1284 }
1285 }
1286
spi_nor_lock_and_prep(struct spi_nor * nor)1287 int spi_nor_lock_and_prep(struct spi_nor *nor)
1288 {
1289 int ret = 0;
1290
1291 mutex_lock(&nor->lock);
1292
1293 if (nor->controller_ops && nor->controller_ops->prepare) {
1294 ret = nor->controller_ops->prepare(nor);
1295 if (ret) {
1296 mutex_unlock(&nor->lock);
1297 return ret;
1298 }
1299 }
1300 return ret;
1301 }
1302
spi_nor_unlock_and_unprep(struct spi_nor * nor)1303 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1304 {
1305 if (nor->controller_ops && nor->controller_ops->unprepare)
1306 nor->controller_ops->unprepare(nor);
1307 mutex_unlock(&nor->lock);
1308 }
1309
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1310 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1311 {
1312 if (!nor->params->convert_addr)
1313 return addr;
1314
1315 return nor->params->convert_addr(nor, addr);
1316 }
1317
1318 /*
1319 * Initiate the erasure of a single sector
1320 */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1321 int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1322 {
1323 int i;
1324
1325 addr = spi_nor_convert_addr(nor, addr);
1326
1327 if (nor->spimem) {
1328 struct spi_mem_op op =
1329 SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 0),
1330 SPI_MEM_OP_ADDR(nor->addr_width, addr, 0),
1331 SPI_MEM_OP_NO_DUMMY,
1332 SPI_MEM_OP_NO_DATA);
1333
1334 spi_nor_spimem_setup_op(nor, &op, nor->write_proto);
1335
1336 return spi_mem_exec_op(nor->spimem, &op);
1337 } else if (nor->controller_ops->erase) {
1338 return spi_nor_controller_ops_erase(nor, addr);
1339 }
1340
1341 /*
1342 * Default implementation, if driver doesn't have a specialized HW
1343 * control
1344 */
1345 for (i = nor->addr_width - 1; i >= 0; i--) {
1346 nor->bouncebuf[i] = addr & 0xff;
1347 addr >>= 8;
1348 }
1349
1350 return spi_nor_controller_ops_write_reg(nor, nor->erase_opcode,
1351 nor->bouncebuf, nor->addr_width);
1352 }
1353
1354 /**
1355 * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1356 * @erase: pointer to a structure that describes a SPI NOR erase type
1357 * @dividend: dividend value
1358 * @remainder: pointer to u32 remainder (will be updated)
1359 *
1360 * Return: the result of the division
1361 */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1362 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1363 u64 dividend, u32 *remainder)
1364 {
1365 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1366 *remainder = (u32)dividend & erase->size_mask;
1367 return dividend >> erase->size_shift;
1368 }
1369
1370 /**
1371 * spi_nor_find_best_erase_type() - find the best erase type for the given
1372 * offset in the serial flash memory and the
1373 * number of bytes to erase. The region in
1374 * which the address fits is expected to be
1375 * provided.
1376 * @map: the erase map of the SPI NOR
1377 * @region: pointer to a structure that describes a SPI NOR erase region
1378 * @addr: offset in the serial flash memory
1379 * @len: number of bytes to erase
1380 *
1381 * Return: a pointer to the best fitted erase type, NULL otherwise.
1382 */
1383 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1384 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1385 const struct spi_nor_erase_region *region,
1386 u64 addr, u32 len)
1387 {
1388 const struct spi_nor_erase_type *erase;
1389 u32 rem;
1390 int i;
1391 u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1392
1393 /*
1394 * Erase types are ordered by size, with the smallest erase type at
1395 * index 0.
1396 */
1397 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1398 /* Does the erase region support the tested erase type? */
1399 if (!(erase_mask & BIT(i)))
1400 continue;
1401
1402 erase = &map->erase_type[i];
1403
1404 /* Alignment is not mandatory for overlaid regions */
1405 if (region->offset & SNOR_OVERLAID_REGION &&
1406 region->size <= len)
1407 return erase;
1408
1409 /* Don't erase more than what the user has asked for. */
1410 if (erase->size > len)
1411 continue;
1412
1413 spi_nor_div_by_erase_size(erase, addr, &rem);
1414 if (!rem)
1415 return erase;
1416 }
1417
1418 return NULL;
1419 }
1420
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1421 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1422 {
1423 return region->offset & SNOR_LAST_REGION;
1424 }
1425
spi_nor_region_end(const struct spi_nor_erase_region * region)1426 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1427 {
1428 return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1429 }
1430
1431 /**
1432 * spi_nor_region_next() - get the next spi nor region
1433 * @region: pointer to a structure that describes a SPI NOR erase region
1434 *
1435 * Return: the next spi nor region or NULL if last region.
1436 */
1437 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1438 spi_nor_region_next(struct spi_nor_erase_region *region)
1439 {
1440 if (spi_nor_region_is_last(region))
1441 return NULL;
1442 region++;
1443 return region;
1444 }
1445
1446 /**
1447 * spi_nor_find_erase_region() - find the region of the serial flash memory in
1448 * which the offset fits
1449 * @map: the erase map of the SPI NOR
1450 * @addr: offset in the serial flash memory
1451 *
1452 * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1453 * otherwise.
1454 */
1455 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1456 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1457 {
1458 struct spi_nor_erase_region *region = map->regions;
1459 u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1460 u64 region_end = region_start + region->size;
1461
1462 while (addr < region_start || addr >= region_end) {
1463 region = spi_nor_region_next(region);
1464 if (!region)
1465 return ERR_PTR(-EINVAL);
1466
1467 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1468 region_end = region_start + region->size;
1469 }
1470
1471 return region;
1472 }
1473
1474 /**
1475 * spi_nor_init_erase_cmd() - initialize an erase command
1476 * @region: pointer to a structure that describes a SPI NOR erase region
1477 * @erase: pointer to a structure that describes a SPI NOR erase type
1478 *
1479 * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1480 * otherwise.
1481 */
1482 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1483 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1484 const struct spi_nor_erase_type *erase)
1485 {
1486 struct spi_nor_erase_command *cmd;
1487
1488 cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1489 if (!cmd)
1490 return ERR_PTR(-ENOMEM);
1491
1492 INIT_LIST_HEAD(&cmd->list);
1493 cmd->opcode = erase->opcode;
1494 cmd->count = 1;
1495
1496 if (region->offset & SNOR_OVERLAID_REGION)
1497 cmd->size = region->size;
1498 else
1499 cmd->size = erase->size;
1500
1501 return cmd;
1502 }
1503
1504 /**
1505 * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1506 * @erase_list: list of erase commands
1507 */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1508 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1509 {
1510 struct spi_nor_erase_command *cmd, *next;
1511
1512 list_for_each_entry_safe(cmd, next, erase_list, list) {
1513 list_del(&cmd->list);
1514 kfree(cmd);
1515 }
1516 }
1517
1518 /**
1519 * spi_nor_init_erase_cmd_list() - initialize erase command list
1520 * @nor: pointer to a 'struct spi_nor'
1521 * @erase_list: list of erase commands to be executed once we validate that the
1522 * erase can be performed
1523 * @addr: offset in the serial flash memory
1524 * @len: number of bytes to erase
1525 *
1526 * Builds the list of best fitted erase commands and verifies if the erase can
1527 * be performed.
1528 *
1529 * Return: 0 on success, -errno otherwise.
1530 */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1531 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1532 struct list_head *erase_list,
1533 u64 addr, u32 len)
1534 {
1535 const struct spi_nor_erase_map *map = &nor->params->erase_map;
1536 const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1537 struct spi_nor_erase_region *region;
1538 struct spi_nor_erase_command *cmd = NULL;
1539 u64 region_end;
1540 int ret = -EINVAL;
1541
1542 region = spi_nor_find_erase_region(map, addr);
1543 if (IS_ERR(region))
1544 return PTR_ERR(region);
1545
1546 region_end = spi_nor_region_end(region);
1547
1548 while (len) {
1549 erase = spi_nor_find_best_erase_type(map, region, addr, len);
1550 if (!erase)
1551 goto destroy_erase_cmd_list;
1552
1553 if (prev_erase != erase ||
1554 erase->size != cmd->size ||
1555 region->offset & SNOR_OVERLAID_REGION) {
1556 cmd = spi_nor_init_erase_cmd(region, erase);
1557 if (IS_ERR(cmd)) {
1558 ret = PTR_ERR(cmd);
1559 goto destroy_erase_cmd_list;
1560 }
1561
1562 list_add_tail(&cmd->list, erase_list);
1563 } else {
1564 cmd->count++;
1565 }
1566
1567 addr += cmd->size;
1568 len -= cmd->size;
1569
1570 if (len && addr >= region_end) {
1571 region = spi_nor_region_next(region);
1572 if (!region)
1573 goto destroy_erase_cmd_list;
1574 region_end = spi_nor_region_end(region);
1575 }
1576
1577 prev_erase = erase;
1578 }
1579
1580 return 0;
1581
1582 destroy_erase_cmd_list:
1583 spi_nor_destroy_erase_cmd_list(erase_list);
1584 return ret;
1585 }
1586
1587 /**
1588 * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1589 * @nor: pointer to a 'struct spi_nor'
1590 * @addr: offset in the serial flash memory
1591 * @len: number of bytes to erase
1592 *
1593 * Build a list of best fitted erase commands and execute it once we validate
1594 * that the erase can be performed.
1595 *
1596 * Return: 0 on success, -errno otherwise.
1597 */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1598 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1599 {
1600 LIST_HEAD(erase_list);
1601 struct spi_nor_erase_command *cmd, *next;
1602 int ret;
1603
1604 ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1605 if (ret)
1606 return ret;
1607
1608 list_for_each_entry_safe(cmd, next, &erase_list, list) {
1609 nor->erase_opcode = cmd->opcode;
1610 while (cmd->count) {
1611 dev_vdbg(nor->dev, "erase_cmd->size = 0x%08x, erase_cmd->opcode = 0x%02x, erase_cmd->count = %u\n",
1612 cmd->size, cmd->opcode, cmd->count);
1613
1614 ret = spi_nor_write_enable(nor);
1615 if (ret)
1616 goto destroy_erase_cmd_list;
1617
1618 ret = spi_nor_erase_sector(nor, addr);
1619 if (ret)
1620 goto destroy_erase_cmd_list;
1621
1622 ret = spi_nor_wait_till_ready(nor);
1623 if (ret)
1624 goto destroy_erase_cmd_list;
1625
1626 addr += cmd->size;
1627 cmd->count--;
1628 }
1629 list_del(&cmd->list);
1630 kfree(cmd);
1631 }
1632
1633 return 0;
1634
1635 destroy_erase_cmd_list:
1636 spi_nor_destroy_erase_cmd_list(&erase_list);
1637 return ret;
1638 }
1639
1640 /*
1641 * Erase an address range on the nor chip. The address range may extend
1642 * one or more erase sectors. Return an error if there is a problem erasing.
1643 */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1644 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1645 {
1646 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1647 u32 addr, len;
1648 uint32_t rem;
1649 int ret;
1650
1651 dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1652 (long long)instr->len);
1653
1654 if (spi_nor_has_uniform_erase(nor)) {
1655 div_u64_rem(instr->len, mtd->erasesize, &rem);
1656 if (rem)
1657 return -EINVAL;
1658 }
1659
1660 addr = instr->addr;
1661 len = instr->len;
1662
1663 ret = spi_nor_lock_and_prep(nor);
1664 if (ret)
1665 return ret;
1666
1667 /* whole-chip erase? */
1668 if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1669 unsigned long timeout;
1670
1671 ret = spi_nor_write_enable(nor);
1672 if (ret)
1673 goto erase_err;
1674
1675 ret = spi_nor_erase_chip(nor);
1676 if (ret)
1677 goto erase_err;
1678
1679 /*
1680 * Scale the timeout linearly with the size of the flash, with
1681 * a minimum calibrated to an old 2MB flash. We could try to
1682 * pull these from CFI/SFDP, but these values should be good
1683 * enough for now.
1684 */
1685 timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1686 CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1687 (unsigned long)(mtd->size / SZ_2M));
1688 ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1689 if (ret)
1690 goto erase_err;
1691
1692 /* REVISIT in some cases we could speed up erasing large regions
1693 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
1694 * to use "small sector erase", but that's not always optimal.
1695 */
1696
1697 /* "sector"-at-a-time erase */
1698 } else if (spi_nor_has_uniform_erase(nor)) {
1699 while (len) {
1700 ret = spi_nor_write_enable(nor);
1701 if (ret)
1702 goto erase_err;
1703
1704 ret = spi_nor_erase_sector(nor, addr);
1705 if (ret)
1706 goto erase_err;
1707
1708 ret = spi_nor_wait_till_ready(nor);
1709 if (ret)
1710 goto erase_err;
1711
1712 addr += mtd->erasesize;
1713 len -= mtd->erasesize;
1714 }
1715
1716 /* erase multiple sectors */
1717 } else {
1718 ret = spi_nor_erase_multi_sectors(nor, addr, len);
1719 if (ret)
1720 goto erase_err;
1721 }
1722
1723 ret = spi_nor_write_disable(nor);
1724
1725 erase_err:
1726 spi_nor_unlock_and_unprep(nor);
1727
1728 return ret;
1729 }
1730
1731 /**
1732 * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
1733 * Register 1.
1734 * @nor: pointer to a 'struct spi_nor'
1735 *
1736 * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
1737 *
1738 * Return: 0 on success, -errno otherwise.
1739 */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)1740 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
1741 {
1742 int ret;
1743
1744 ret = spi_nor_read_sr(nor, nor->bouncebuf);
1745 if (ret)
1746 return ret;
1747
1748 if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
1749 return 0;
1750
1751 nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
1752
1753 return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
1754 }
1755
1756 /**
1757 * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
1758 * Register 2.
1759 * @nor: pointer to a 'struct spi_nor'.
1760 *
1761 * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
1762 *
1763 * Return: 0 on success, -errno otherwise.
1764 */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)1765 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
1766 {
1767 int ret;
1768
1769 if (nor->flags & SNOR_F_NO_READ_CR)
1770 return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
1771
1772 ret = spi_nor_read_cr(nor, nor->bouncebuf);
1773 if (ret)
1774 return ret;
1775
1776 if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
1777 return 0;
1778
1779 nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
1780
1781 return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
1782 }
1783
1784 /**
1785 * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
1786 * @nor: pointer to a 'struct spi_nor'
1787 *
1788 * Set the Quad Enable (QE) bit in the Status Register 2.
1789 *
1790 * This is one of the procedures to set the QE bit described in the SFDP
1791 * (JESD216 rev B) specification but no manufacturer using this procedure has
1792 * been identified yet, hence the name of the function.
1793 *
1794 * Return: 0 on success, -errno otherwise.
1795 */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)1796 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
1797 {
1798 u8 *sr2 = nor->bouncebuf;
1799 int ret;
1800 u8 sr2_written;
1801
1802 /* Check current Quad Enable bit value. */
1803 ret = spi_nor_read_sr2(nor, sr2);
1804 if (ret)
1805 return ret;
1806 if (*sr2 & SR2_QUAD_EN_BIT7)
1807 return 0;
1808
1809 /* Update the Quad Enable bit. */
1810 *sr2 |= SR2_QUAD_EN_BIT7;
1811
1812 ret = spi_nor_write_sr2(nor, sr2);
1813 if (ret)
1814 return ret;
1815
1816 sr2_written = *sr2;
1817
1818 /* Read back and check it. */
1819 ret = spi_nor_read_sr2(nor, sr2);
1820 if (ret)
1821 return ret;
1822
1823 if (*sr2 != sr2_written) {
1824 dev_dbg(nor->dev, "SR2: Read back test failed\n");
1825 return -EIO;
1826 }
1827
1828 return 0;
1829 }
1830
1831 static const struct spi_nor_manufacturer *manufacturers[] = {
1832 &spi_nor_atmel,
1833 &spi_nor_catalyst,
1834 &spi_nor_eon,
1835 &spi_nor_esmt,
1836 &spi_nor_everspin,
1837 &spi_nor_fujitsu,
1838 &spi_nor_gigadevice,
1839 &spi_nor_intel,
1840 &spi_nor_issi,
1841 &spi_nor_macronix,
1842 &spi_nor_micron,
1843 &spi_nor_st,
1844 &spi_nor_spansion,
1845 &spi_nor_sst,
1846 &spi_nor_winbond,
1847 &spi_nor_xilinx,
1848 &spi_nor_xmc,
1849 };
1850
1851 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)1852 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
1853 const u8 *id)
1854 {
1855 unsigned int i;
1856
1857 for (i = 0; i < nparts; i++) {
1858 if (parts[i].id_len &&
1859 !memcmp(parts[i].id, id, parts[i].id_len))
1860 return &parts[i];
1861 }
1862
1863 return NULL;
1864 }
1865
spi_nor_read_id(struct spi_nor * nor)1866 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
1867 {
1868 const struct flash_info *info;
1869 u8 *id = nor->bouncebuf;
1870 unsigned int i;
1871 int ret;
1872
1873 if (nor->spimem) {
1874 struct spi_mem_op op =
1875 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
1876 SPI_MEM_OP_NO_ADDR,
1877 SPI_MEM_OP_NO_DUMMY,
1878 SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
1879
1880 ret = spi_mem_exec_op(nor->spimem, &op);
1881 } else {
1882 ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
1883 SPI_NOR_MAX_ID_LEN);
1884 }
1885 if (ret) {
1886 dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
1887 return ERR_PTR(ret);
1888 }
1889
1890 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
1891 info = spi_nor_search_part_by_id(manufacturers[i]->parts,
1892 manufacturers[i]->nparts,
1893 id);
1894 if (info) {
1895 nor->manufacturer = manufacturers[i];
1896 return info;
1897 }
1898 }
1899
1900 dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
1901 SPI_NOR_MAX_ID_LEN, id);
1902 return ERR_PTR(-ENODEV);
1903 }
1904
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1905 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
1906 size_t *retlen, u_char *buf)
1907 {
1908 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1909 ssize_t ret;
1910
1911 dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
1912
1913 ret = spi_nor_lock_and_prep(nor);
1914 if (ret)
1915 return ret;
1916
1917 while (len) {
1918 loff_t addr = from;
1919
1920 addr = spi_nor_convert_addr(nor, addr);
1921
1922 ret = spi_nor_read_data(nor, addr, len, buf);
1923 if (ret == 0) {
1924 /* We shouldn't see 0-length reads */
1925 ret = -EIO;
1926 goto read_err;
1927 }
1928 if (ret < 0)
1929 goto read_err;
1930
1931 WARN_ON(ret > len);
1932 *retlen += ret;
1933 buf += ret;
1934 from += ret;
1935 len -= ret;
1936 }
1937 ret = 0;
1938
1939 read_err:
1940 spi_nor_unlock_and_unprep(nor);
1941 return ret;
1942 }
1943
1944 /*
1945 * Write an address range to the nor chip. Data must be written in
1946 * FLASH_PAGESIZE chunks. The address range may be any size provided
1947 * it is within the physical boundaries.
1948 */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1949 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
1950 size_t *retlen, const u_char *buf)
1951 {
1952 struct spi_nor *nor = mtd_to_spi_nor(mtd);
1953 size_t page_offset, page_remain, i;
1954 ssize_t ret;
1955
1956 dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
1957
1958 ret = spi_nor_lock_and_prep(nor);
1959 if (ret)
1960 return ret;
1961
1962 for (i = 0; i < len; ) {
1963 ssize_t written;
1964 loff_t addr = to + i;
1965
1966 /*
1967 * If page_size is a power of two, the offset can be quickly
1968 * calculated with an AND operation. On the other cases we
1969 * need to do a modulus operation (more expensive).
1970 */
1971 if (is_power_of_2(nor->page_size)) {
1972 page_offset = addr & (nor->page_size - 1);
1973 } else {
1974 uint64_t aux = addr;
1975
1976 page_offset = do_div(aux, nor->page_size);
1977 }
1978 /* the size of data remaining on the first page */
1979 page_remain = min_t(size_t,
1980 nor->page_size - page_offset, len - i);
1981
1982 addr = spi_nor_convert_addr(nor, addr);
1983
1984 ret = spi_nor_write_enable(nor);
1985 if (ret)
1986 goto write_err;
1987
1988 ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
1989 if (ret < 0)
1990 goto write_err;
1991 written = ret;
1992
1993 ret = spi_nor_wait_till_ready(nor);
1994 if (ret)
1995 goto write_err;
1996 *retlen += written;
1997 i += written;
1998 }
1999
2000 write_err:
2001 spi_nor_unlock_and_unprep(nor);
2002 return ret;
2003 }
2004
spi_nor_check(struct spi_nor * nor)2005 static int spi_nor_check(struct spi_nor *nor)
2006 {
2007 if (!nor->dev ||
2008 (!nor->spimem && !nor->controller_ops) ||
2009 (!nor->spimem && nor->controller_ops &&
2010 (!nor->controller_ops->read ||
2011 !nor->controller_ops->write ||
2012 !nor->controller_ops->read_reg ||
2013 !nor->controller_ops->write_reg))) {
2014 pr_err("spi-nor: please fill all the necessary fields!\n");
2015 return -EINVAL;
2016 }
2017
2018 if (nor->spimem && nor->controller_ops) {
2019 dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2020 return -EINVAL;
2021 }
2022
2023 return 0;
2024 }
2025
2026 void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2027 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2028 u8 num_mode_clocks,
2029 u8 num_wait_states,
2030 u8 opcode,
2031 enum spi_nor_protocol proto)
2032 {
2033 read->num_mode_clocks = num_mode_clocks;
2034 read->num_wait_states = num_wait_states;
2035 read->opcode = opcode;
2036 read->proto = proto;
2037 }
2038
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2039 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2040 enum spi_nor_protocol proto)
2041 {
2042 pp->opcode = opcode;
2043 pp->proto = proto;
2044 }
2045
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2046 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2047 {
2048 size_t i;
2049
2050 for (i = 0; i < size; i++)
2051 if (table[i][0] == (int)hwcaps)
2052 return table[i][1];
2053
2054 return -EINVAL;
2055 }
2056
spi_nor_hwcaps_read2cmd(u32 hwcaps)2057 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2058 {
2059 static const int hwcaps_read2cmd[][2] = {
2060 { SNOR_HWCAPS_READ, SNOR_CMD_READ },
2061 { SNOR_HWCAPS_READ_FAST, SNOR_CMD_READ_FAST },
2062 { SNOR_HWCAPS_READ_1_1_1_DTR, SNOR_CMD_READ_1_1_1_DTR },
2063 { SNOR_HWCAPS_READ_1_1_2, SNOR_CMD_READ_1_1_2 },
2064 { SNOR_HWCAPS_READ_1_2_2, SNOR_CMD_READ_1_2_2 },
2065 { SNOR_HWCAPS_READ_2_2_2, SNOR_CMD_READ_2_2_2 },
2066 { SNOR_HWCAPS_READ_1_2_2_DTR, SNOR_CMD_READ_1_2_2_DTR },
2067 { SNOR_HWCAPS_READ_1_1_4, SNOR_CMD_READ_1_1_4 },
2068 { SNOR_HWCAPS_READ_1_4_4, SNOR_CMD_READ_1_4_4 },
2069 { SNOR_HWCAPS_READ_4_4_4, SNOR_CMD_READ_4_4_4 },
2070 { SNOR_HWCAPS_READ_1_4_4_DTR, SNOR_CMD_READ_1_4_4_DTR },
2071 { SNOR_HWCAPS_READ_1_1_8, SNOR_CMD_READ_1_1_8 },
2072 { SNOR_HWCAPS_READ_1_8_8, SNOR_CMD_READ_1_8_8 },
2073 { SNOR_HWCAPS_READ_8_8_8, SNOR_CMD_READ_8_8_8 },
2074 { SNOR_HWCAPS_READ_1_8_8_DTR, SNOR_CMD_READ_1_8_8_DTR },
2075 { SNOR_HWCAPS_READ_8_8_8_DTR, SNOR_CMD_READ_8_8_8_DTR },
2076 };
2077
2078 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2079 ARRAY_SIZE(hwcaps_read2cmd));
2080 }
2081
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2082 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2083 {
2084 static const int hwcaps_pp2cmd[][2] = {
2085 { SNOR_HWCAPS_PP, SNOR_CMD_PP },
2086 { SNOR_HWCAPS_PP_1_1_4, SNOR_CMD_PP_1_1_4 },
2087 { SNOR_HWCAPS_PP_1_4_4, SNOR_CMD_PP_1_4_4 },
2088 { SNOR_HWCAPS_PP_4_4_4, SNOR_CMD_PP_4_4_4 },
2089 { SNOR_HWCAPS_PP_1_1_8, SNOR_CMD_PP_1_1_8 },
2090 { SNOR_HWCAPS_PP_1_8_8, SNOR_CMD_PP_1_8_8 },
2091 { SNOR_HWCAPS_PP_8_8_8, SNOR_CMD_PP_8_8_8 },
2092 { SNOR_HWCAPS_PP_8_8_8_DTR, SNOR_CMD_PP_8_8_8_DTR },
2093 };
2094
2095 return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2096 ARRAY_SIZE(hwcaps_pp2cmd));
2097 }
2098
2099 /**
2100 * spi_nor_spimem_check_op - check if the operation is supported
2101 * by controller
2102 *@nor: pointer to a 'struct spi_nor'
2103 *@op: pointer to op template to be checked
2104 *
2105 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2106 */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2107 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2108 struct spi_mem_op *op)
2109 {
2110 /*
2111 * First test with 4 address bytes. The opcode itself might
2112 * be a 3B addressing opcode but we don't care, because
2113 * SPI controller implementation should not check the opcode,
2114 * but just the sequence.
2115 */
2116 op->addr.nbytes = 4;
2117 if (!spi_mem_supports_op(nor->spimem, op)) {
2118 if (nor->mtd.size > SZ_16M)
2119 return -EOPNOTSUPP;
2120
2121 /* If flash size <= 16MB, 3 address bytes are sufficient */
2122 op->addr.nbytes = 3;
2123 if (!spi_mem_supports_op(nor->spimem, op))
2124 return -EOPNOTSUPP;
2125 }
2126
2127 return 0;
2128 }
2129
2130 /**
2131 * spi_nor_spimem_check_readop - check if the read op is supported
2132 * by controller
2133 *@nor: pointer to a 'struct spi_nor'
2134 *@read: pointer to op template to be checked
2135 *
2136 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2137 */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2138 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2139 const struct spi_nor_read_command *read)
2140 {
2141 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 0),
2142 SPI_MEM_OP_ADDR(3, 0, 0),
2143 SPI_MEM_OP_DUMMY(1, 0),
2144 SPI_MEM_OP_DATA_IN(1, NULL, 0));
2145
2146 spi_nor_spimem_setup_op(nor, &op, read->proto);
2147
2148 /* convert the dummy cycles to the number of bytes */
2149 op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
2150 if (spi_nor_protocol_is_dtr(nor->read_proto))
2151 op.dummy.nbytes *= 2;
2152
2153 return spi_nor_spimem_check_op(nor, &op);
2154 }
2155
2156 /**
2157 * spi_nor_spimem_check_pp - check if the page program op is supported
2158 * by controller
2159 *@nor: pointer to a 'struct spi_nor'
2160 *@pp: pointer to op template to be checked
2161 *
2162 * Returns 0 if operation is supported, -EOPNOTSUPP otherwise.
2163 */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2164 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2165 const struct spi_nor_pp_command *pp)
2166 {
2167 struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 0),
2168 SPI_MEM_OP_ADDR(3, 0, 0),
2169 SPI_MEM_OP_NO_DUMMY,
2170 SPI_MEM_OP_DATA_OUT(1, NULL, 0));
2171
2172 spi_nor_spimem_setup_op(nor, &op, pp->proto);
2173
2174 return spi_nor_spimem_check_op(nor, &op);
2175 }
2176
2177 /**
2178 * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2179 * based on SPI controller capabilities
2180 * @nor: pointer to a 'struct spi_nor'
2181 * @hwcaps: pointer to resulting capabilities after adjusting
2182 * according to controller and flash's capability
2183 */
2184 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2185 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2186 {
2187 struct spi_nor_flash_parameter *params = nor->params;
2188 unsigned int cap;
2189
2190 /* X-X-X modes are not supported yet, mask them all. */
2191 *hwcaps &= ~SNOR_HWCAPS_X_X_X;
2192
2193 /*
2194 * If the reset line is broken, we do not want to enter a stateful
2195 * mode.
2196 */
2197 if (nor->flags & SNOR_F_BROKEN_RESET)
2198 *hwcaps &= ~(SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR);
2199
2200 for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2201 int rdidx, ppidx;
2202
2203 if (!(*hwcaps & BIT(cap)))
2204 continue;
2205
2206 rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2207 if (rdidx >= 0 &&
2208 spi_nor_spimem_check_readop(nor, ¶ms->reads[rdidx]))
2209 *hwcaps &= ~BIT(cap);
2210
2211 ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2212 if (ppidx < 0)
2213 continue;
2214
2215 if (spi_nor_spimem_check_pp(nor,
2216 ¶ms->page_programs[ppidx]))
2217 *hwcaps &= ~BIT(cap);
2218 }
2219 }
2220
2221 /**
2222 * spi_nor_set_erase_type() - set a SPI NOR erase type
2223 * @erase: pointer to a structure that describes a SPI NOR erase type
2224 * @size: the size of the sector/block erased by the erase type
2225 * @opcode: the SPI command op code to erase the sector/block
2226 */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2227 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2228 u8 opcode)
2229 {
2230 erase->size = size;
2231 erase->opcode = opcode;
2232 /* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2233 erase->size_shift = ffs(erase->size) - 1;
2234 erase->size_mask = (1 << erase->size_shift) - 1;
2235 }
2236
2237 /**
2238 * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2239 * @map: the erase map of the SPI NOR
2240 * @erase_mask: bitmask encoding erase types that can erase the entire
2241 * flash memory
2242 * @flash_size: the spi nor flash memory size
2243 */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2244 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2245 u8 erase_mask, u64 flash_size)
2246 {
2247 /* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2248 map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2249 SNOR_LAST_REGION;
2250 map->uniform_region.size = flash_size;
2251 map->regions = &map->uniform_region;
2252 map->uniform_erase_type = erase_mask;
2253 }
2254
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt)2255 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2256 const struct sfdp_parameter_header *bfpt_header,
2257 const struct sfdp_bfpt *bfpt)
2258 {
2259 int ret;
2260
2261 if (nor->manufacturer && nor->manufacturer->fixups &&
2262 nor->manufacturer->fixups->post_bfpt) {
2263 ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2264 bfpt);
2265 if (ret)
2266 return ret;
2267 }
2268
2269 if (nor->info->fixups && nor->info->fixups->post_bfpt)
2270 return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt);
2271
2272 return 0;
2273 }
2274
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2275 static int spi_nor_select_read(struct spi_nor *nor,
2276 u32 shared_hwcaps)
2277 {
2278 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2279 const struct spi_nor_read_command *read;
2280
2281 if (best_match < 0)
2282 return -EINVAL;
2283
2284 cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2285 if (cmd < 0)
2286 return -EINVAL;
2287
2288 read = &nor->params->reads[cmd];
2289 nor->read_opcode = read->opcode;
2290 nor->read_proto = read->proto;
2291
2292 /*
2293 * In the SPI NOR framework, we don't need to make the difference
2294 * between mode clock cycles and wait state clock cycles.
2295 * Indeed, the value of the mode clock cycles is used by a QSPI
2296 * flash memory to know whether it should enter or leave its 0-4-4
2297 * (Continuous Read / XIP) mode.
2298 * eXecution In Place is out of the scope of the mtd sub-system.
2299 * Hence we choose to merge both mode and wait state clock cycles
2300 * into the so called dummy clock cycles.
2301 */
2302 nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2303 return 0;
2304 }
2305
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2306 static int spi_nor_select_pp(struct spi_nor *nor,
2307 u32 shared_hwcaps)
2308 {
2309 int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2310 const struct spi_nor_pp_command *pp;
2311
2312 if (best_match < 0)
2313 return -EINVAL;
2314
2315 cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2316 if (cmd < 0)
2317 return -EINVAL;
2318
2319 pp = &nor->params->page_programs[cmd];
2320 nor->program_opcode = pp->opcode;
2321 nor->write_proto = pp->proto;
2322 return 0;
2323 }
2324
2325 /**
2326 * spi_nor_select_uniform_erase() - select optimum uniform erase type
2327 * @map: the erase map of the SPI NOR
2328 * @wanted_size: the erase type size to search for. Contains the value of
2329 * info->sector_size or of the "small sector" size in case
2330 * CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2331 *
2332 * Once the optimum uniform sector erase command is found, disable all the
2333 * other.
2334 *
2335 * Return: pointer to erase type on success, NULL otherwise.
2336 */
2337 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2338 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2339 const u32 wanted_size)
2340 {
2341 const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2342 int i;
2343 u8 uniform_erase_type = map->uniform_erase_type;
2344
2345 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2346 if (!(uniform_erase_type & BIT(i)))
2347 continue;
2348
2349 tested_erase = &map->erase_type[i];
2350
2351 /*
2352 * If the current erase size is the one, stop here:
2353 * we have found the right uniform Sector Erase command.
2354 */
2355 if (tested_erase->size == wanted_size) {
2356 erase = tested_erase;
2357 break;
2358 }
2359
2360 /*
2361 * Otherwise, the current erase size is still a valid candidate.
2362 * Select the biggest valid candidate.
2363 */
2364 if (!erase && tested_erase->size)
2365 erase = tested_erase;
2366 /* keep iterating to find the wanted_size */
2367 }
2368
2369 if (!erase)
2370 return NULL;
2371
2372 /* Disable all other Sector Erase commands. */
2373 map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2374 map->uniform_erase_type |= BIT(erase - map->erase_type);
2375 return erase;
2376 }
2377
spi_nor_select_erase(struct spi_nor * nor)2378 static int spi_nor_select_erase(struct spi_nor *nor)
2379 {
2380 struct spi_nor_erase_map *map = &nor->params->erase_map;
2381 const struct spi_nor_erase_type *erase = NULL;
2382 struct mtd_info *mtd = &nor->mtd;
2383 u32 wanted_size = nor->info->sector_size;
2384 int i;
2385
2386 /*
2387 * The previous implementation handling Sector Erase commands assumed
2388 * that the SPI flash memory has an uniform layout then used only one
2389 * of the supported erase sizes for all Sector Erase commands.
2390 * So to be backward compatible, the new implementation also tries to
2391 * manage the SPI flash memory as uniform with a single erase sector
2392 * size, when possible.
2393 */
2394 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2395 /* prefer "small sector" erase if possible */
2396 wanted_size = 4096u;
2397 #endif
2398
2399 if (spi_nor_has_uniform_erase(nor)) {
2400 erase = spi_nor_select_uniform_erase(map, wanted_size);
2401 if (!erase)
2402 return -EINVAL;
2403 nor->erase_opcode = erase->opcode;
2404 mtd->erasesize = erase->size;
2405 return 0;
2406 }
2407
2408 /*
2409 * For non-uniform SPI flash memory, set mtd->erasesize to the
2410 * maximum erase sector size. No need to set nor->erase_opcode.
2411 */
2412 for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2413 if (map->erase_type[i].size) {
2414 erase = &map->erase_type[i];
2415 break;
2416 }
2417 }
2418
2419 if (!erase)
2420 return -EINVAL;
2421
2422 mtd->erasesize = erase->size;
2423 return 0;
2424 }
2425
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2426 static int spi_nor_default_setup(struct spi_nor *nor,
2427 const struct spi_nor_hwcaps *hwcaps)
2428 {
2429 struct spi_nor_flash_parameter *params = nor->params;
2430 u32 ignored_mask, shared_mask;
2431 int err;
2432
2433 /*
2434 * Keep only the hardware capabilities supported by both the SPI
2435 * controller and the SPI flash memory.
2436 */
2437 shared_mask = hwcaps->mask & params->hwcaps.mask;
2438
2439 if (nor->spimem) {
2440 /*
2441 * When called from spi_nor_probe(), all caps are set and we
2442 * need to discard some of them based on what the SPI
2443 * controller actually supports (using spi_mem_supports_op()).
2444 */
2445 spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2446 } else {
2447 /*
2448 * SPI n-n-n protocols are not supported when the SPI
2449 * controller directly implements the spi_nor interface.
2450 * Yet another reason to switch to spi-mem.
2451 */
2452 ignored_mask = SNOR_HWCAPS_X_X_X | SNOR_HWCAPS_X_X_X_DTR;
2453 if (shared_mask & ignored_mask) {
2454 dev_dbg(nor->dev,
2455 "SPI n-n-n protocols are not supported.\n");
2456 shared_mask &= ~ignored_mask;
2457 }
2458 }
2459
2460 /* Select the (Fast) Read command. */
2461 err = spi_nor_select_read(nor, shared_mask);
2462 if (err) {
2463 dev_dbg(nor->dev,
2464 "can't select read settings supported by both the SPI controller and memory.\n");
2465 return err;
2466 }
2467
2468 /* Select the Page Program command. */
2469 err = spi_nor_select_pp(nor, shared_mask);
2470 if (err) {
2471 dev_dbg(nor->dev,
2472 "can't select write settings supported by both the SPI controller and memory.\n");
2473 return err;
2474 }
2475
2476 /* Select the Sector Erase command. */
2477 err = spi_nor_select_erase(nor);
2478 if (err) {
2479 dev_dbg(nor->dev,
2480 "can't select erase settings supported by both the SPI controller and memory.\n");
2481 return err;
2482 }
2483
2484 return 0;
2485 }
2486
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2487 static int spi_nor_setup(struct spi_nor *nor,
2488 const struct spi_nor_hwcaps *hwcaps)
2489 {
2490 if (!nor->params->setup)
2491 return 0;
2492
2493 return nor->params->setup(nor, hwcaps);
2494 }
2495
2496 /**
2497 * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2498 * settings based on MFR register and ->default_init() hook.
2499 * @nor: pointer to a 'struct spi_nor'.
2500 */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2501 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2502 {
2503 if (nor->manufacturer && nor->manufacturer->fixups &&
2504 nor->manufacturer->fixups->default_init)
2505 nor->manufacturer->fixups->default_init(nor);
2506
2507 if (nor->info->fixups && nor->info->fixups->default_init)
2508 nor->info->fixups->default_init(nor);
2509 }
2510
2511 /**
2512 * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2513 * based on JESD216 SFDP standard.
2514 * @nor: pointer to a 'struct spi_nor'.
2515 *
2516 * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2517 * legacy flash parameters and settings will be restored.
2518 */
spi_nor_sfdp_init_params(struct spi_nor * nor)2519 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2520 {
2521 struct spi_nor_flash_parameter sfdp_params;
2522
2523 memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2524
2525 if (spi_nor_parse_sfdp(nor)) {
2526 memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2527 nor->addr_width = 0;
2528 nor->flags &= ~SNOR_F_4B_OPCODES;
2529 }
2530 }
2531
2532 /**
2533 * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2534 * based on nor->info data.
2535 * @nor: pointer to a 'struct spi_nor'.
2536 */
spi_nor_info_init_params(struct spi_nor * nor)2537 static void spi_nor_info_init_params(struct spi_nor *nor)
2538 {
2539 struct spi_nor_flash_parameter *params = nor->params;
2540 struct spi_nor_erase_map *map = ¶ms->erase_map;
2541 const struct flash_info *info = nor->info;
2542 struct device_node *np = spi_nor_get_flash_node(nor);
2543 u8 i, erase_mask;
2544
2545 /* Initialize default flash parameters and settings. */
2546 params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2547 params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2548 params->setup = spi_nor_default_setup;
2549 params->otp.org = &info->otp_org;
2550
2551 /* Default to 16-bit Write Status (01h) Command */
2552 nor->flags |= SNOR_F_HAS_16BIT_SR;
2553
2554 /* Set SPI NOR sizes. */
2555 params->writesize = 1;
2556 params->size = (u64)info->sector_size * info->n_sectors;
2557 params->page_size = info->page_size;
2558
2559 if (!(info->flags & SPI_NOR_NO_FR)) {
2560 /* Default to Fast Read for DT and non-DT platform devices. */
2561 params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2562
2563 /* Mask out Fast Read if not requested at DT instantiation. */
2564 if (np && !of_property_read_bool(np, "m25p,fast-read"))
2565 params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2566 }
2567
2568 /* (Fast) Read settings. */
2569 params->hwcaps.mask |= SNOR_HWCAPS_READ;
2570 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ],
2571 0, 0, SPINOR_OP_READ,
2572 SNOR_PROTO_1_1_1);
2573
2574 if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2575 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_FAST],
2576 0, 8, SPINOR_OP_READ_FAST,
2577 SNOR_PROTO_1_1_1);
2578
2579 if (info->flags & SPI_NOR_DUAL_READ) {
2580 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2581 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_2],
2582 0, 8, SPINOR_OP_READ_1_1_2,
2583 SNOR_PROTO_1_1_2);
2584 }
2585
2586 if (info->flags & SPI_NOR_QUAD_READ) {
2587 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2588 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_4],
2589 0, 8, SPINOR_OP_READ_1_1_4,
2590 SNOR_PROTO_1_1_4);
2591 }
2592
2593 if (info->flags & SPI_NOR_OCTAL_READ) {
2594 params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2595 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8],
2596 0, 8, SPINOR_OP_READ_1_1_8,
2597 SNOR_PROTO_1_1_8);
2598 }
2599
2600 if (info->flags & SPI_NOR_OCTAL_DTR_READ) {
2601 params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
2602 spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_8_8_8_DTR],
2603 0, 20, SPINOR_OP_READ_FAST,
2604 SNOR_PROTO_8_8_8_DTR);
2605 }
2606
2607 /* Page Program settings. */
2608 params->hwcaps.mask |= SNOR_HWCAPS_PP;
2609 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP],
2610 SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2611
2612 if (info->flags & SPI_NOR_OCTAL_DTR_PP) {
2613 params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
2614 /*
2615 * Since xSPI Page Program opcode is backward compatible with
2616 * Legacy SPI, use Legacy SPI opcode there as well.
2617 */
2618 spi_nor_set_pp_settings(¶ms->page_programs[SNOR_CMD_PP_8_8_8_DTR],
2619 SPINOR_OP_PP, SNOR_PROTO_8_8_8_DTR);
2620 }
2621
2622 /*
2623 * Sector Erase settings. Sort Erase Types in ascending order, with the
2624 * smallest erase size starting at BIT(0).
2625 */
2626 erase_mask = 0;
2627 i = 0;
2628 if (info->flags & SECT_4K_PMC) {
2629 erase_mask |= BIT(i);
2630 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2631 SPINOR_OP_BE_4K_PMC);
2632 i++;
2633 } else if (info->flags & SECT_4K) {
2634 erase_mask |= BIT(i);
2635 spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2636 SPINOR_OP_BE_4K);
2637 i++;
2638 }
2639 erase_mask |= BIT(i);
2640 spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2641 SPINOR_OP_SE);
2642 spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2643 }
2644
2645 /**
2646 * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2647 * after SFDP has been parsed (is also called for SPI NORs that do not
2648 * support RDSFDP).
2649 * @nor: pointer to a 'struct spi_nor'
2650 *
2651 * Typically used to tweak various parameters that could not be extracted by
2652 * other means (i.e. when information provided by the SFDP/flash_info tables
2653 * are incomplete or wrong).
2654 */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2655 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2656 {
2657 if (nor->manufacturer && nor->manufacturer->fixups &&
2658 nor->manufacturer->fixups->post_sfdp)
2659 nor->manufacturer->fixups->post_sfdp(nor);
2660
2661 if (nor->info->fixups && nor->info->fixups->post_sfdp)
2662 nor->info->fixups->post_sfdp(nor);
2663 }
2664
2665 /**
2666 * spi_nor_late_init_params() - Late initialization of default flash parameters.
2667 * @nor: pointer to a 'struct spi_nor'
2668 *
2669 * Used to set default flash parameters and settings when the ->default_init()
2670 * hook or the SFDP parser let voids.
2671 */
spi_nor_late_init_params(struct spi_nor * nor)2672 static void spi_nor_late_init_params(struct spi_nor *nor)
2673 {
2674 /*
2675 * NOR protection support. When locking_ops are not provided, we pick
2676 * the default ones.
2677 */
2678 if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2679 spi_nor_init_default_locking_ops(nor);
2680 }
2681
2682 /**
2683 * spi_nor_init_params() - Initialize the flash's parameters and settings.
2684 * @nor: pointer to a 'struct spi_nor'.
2685 *
2686 * The flash parameters and settings are initialized based on a sequence of
2687 * calls that are ordered by priority:
2688 *
2689 * 1/ Default flash parameters initialization. The initializations are done
2690 * based on nor->info data:
2691 * spi_nor_info_init_params()
2692 *
2693 * which can be overwritten by:
2694 * 2/ Manufacturer flash parameters initialization. The initializations are
2695 * done based on MFR register, or when the decisions can not be done solely
2696 * based on MFR, by using specific flash_info tweeks, ->default_init():
2697 * spi_nor_manufacturer_init_params()
2698 *
2699 * which can be overwritten by:
2700 * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
2701 * should be more accurate that the above.
2702 * spi_nor_sfdp_init_params()
2703 *
2704 * Please note that there is a ->post_bfpt() fixup hook that can overwrite
2705 * the flash parameters and settings immediately after parsing the Basic
2706 * Flash Parameter Table.
2707 *
2708 * which can be overwritten by:
2709 * 4/ Post SFDP flash parameters initialization. Used to tweak various
2710 * parameters that could not be extracted by other means (i.e. when
2711 * information provided by the SFDP/flash_info tables are incomplete or
2712 * wrong).
2713 * spi_nor_post_sfdp_fixups()
2714 *
2715 * 5/ Late default flash parameters initialization, used when the
2716 * ->default_init() hook or the SFDP parser do not set specific params.
2717 * spi_nor_late_init_params()
2718 */
spi_nor_init_params(struct spi_nor * nor)2719 static int spi_nor_init_params(struct spi_nor *nor)
2720 {
2721 nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
2722 if (!nor->params)
2723 return -ENOMEM;
2724
2725 spi_nor_info_init_params(nor);
2726
2727 spi_nor_manufacturer_init_params(nor);
2728
2729 if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ |
2730 SPI_NOR_OCTAL_READ | SPI_NOR_OCTAL_DTR_READ)) &&
2731 !(nor->info->flags & SPI_NOR_SKIP_SFDP))
2732 spi_nor_sfdp_init_params(nor);
2733
2734 spi_nor_post_sfdp_fixups(nor);
2735
2736 spi_nor_late_init_params(nor);
2737
2738 return 0;
2739 }
2740
2741 /** spi_nor_octal_dtr_enable() - enable Octal DTR I/O if needed
2742 * @nor: pointer to a 'struct spi_nor'
2743 * @enable: whether to enable or disable Octal DTR
2744 *
2745 * Return: 0 on success, -errno otherwise.
2746 */
spi_nor_octal_dtr_enable(struct spi_nor * nor,bool enable)2747 static int spi_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
2748 {
2749 int ret;
2750
2751 if (!nor->params->octal_dtr_enable)
2752 return 0;
2753
2754 if (!(nor->read_proto == SNOR_PROTO_8_8_8_DTR &&
2755 nor->write_proto == SNOR_PROTO_8_8_8_DTR))
2756 return 0;
2757
2758 if (!(nor->flags & SNOR_F_IO_MODE_EN_VOLATILE))
2759 return 0;
2760
2761 ret = nor->params->octal_dtr_enable(nor, enable);
2762 if (ret)
2763 return ret;
2764
2765 if (enable)
2766 nor->reg_proto = SNOR_PROTO_8_8_8_DTR;
2767 else
2768 nor->reg_proto = SNOR_PROTO_1_1_1;
2769
2770 return 0;
2771 }
2772
2773 /**
2774 * spi_nor_quad_enable() - enable Quad I/O if needed.
2775 * @nor: pointer to a 'struct spi_nor'
2776 *
2777 * Return: 0 on success, -errno otherwise.
2778 */
spi_nor_quad_enable(struct spi_nor * nor)2779 static int spi_nor_quad_enable(struct spi_nor *nor)
2780 {
2781 if (!nor->params->quad_enable)
2782 return 0;
2783
2784 if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
2785 spi_nor_get_protocol_width(nor->write_proto) == 4))
2786 return 0;
2787
2788 return nor->params->quad_enable(nor);
2789 }
2790
spi_nor_init(struct spi_nor * nor)2791 static int spi_nor_init(struct spi_nor *nor)
2792 {
2793 int err;
2794
2795 err = spi_nor_octal_dtr_enable(nor, true);
2796 if (err) {
2797 dev_dbg(nor->dev, "octal mode not supported\n");
2798 return err;
2799 }
2800
2801 err = spi_nor_quad_enable(nor);
2802 if (err) {
2803 dev_dbg(nor->dev, "quad mode not supported\n");
2804 return err;
2805 }
2806
2807 /*
2808 * Some SPI NOR flashes are write protected by default after a power-on
2809 * reset cycle, in order to avoid inadvertent writes during power-up.
2810 * Backward compatibility imposes to unlock the entire flash memory
2811 * array at power-up by default. Depending on the kernel configuration
2812 * (1) do nothing, (2) always unlock the entire flash array or (3)
2813 * unlock the entire flash array only when the software write
2814 * protection bits are volatile. The latter is indicated by
2815 * SNOR_F_SWP_IS_VOLATILE.
2816 */
2817 if (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE) ||
2818 (IS_ENABLED(CONFIG_MTD_SPI_NOR_SWP_DISABLE_ON_VOLATILE) &&
2819 nor->flags & SNOR_F_SWP_IS_VOLATILE))
2820 spi_nor_try_unlock_all(nor);
2821
2822 if (nor->addr_width == 4 &&
2823 nor->read_proto != SNOR_PROTO_8_8_8_DTR &&
2824 !(nor->flags & SNOR_F_4B_OPCODES)) {
2825 /*
2826 * If the RESET# pin isn't hooked up properly, or the system
2827 * otherwise doesn't perform a reset command in the boot
2828 * sequence, it's impossible to 100% protect against unexpected
2829 * reboots (e.g., crashes). Warn the user (or hopefully, system
2830 * designer) that this is bad.
2831 */
2832 WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
2833 "enabling reset hack; may not recover from unexpected reboots\n");
2834 nor->params->set_4byte_addr_mode(nor, true);
2835 }
2836
2837 return 0;
2838 }
2839
2840 /**
2841 * spi_nor_soft_reset() - Perform a software reset
2842 * @nor: pointer to 'struct spi_nor'
2843 *
2844 * Performs a "Soft Reset and Enter Default Protocol Mode" sequence which resets
2845 * the device to its power-on-reset state. This is useful when the software has
2846 * made some changes to device (volatile) registers and needs to reset it before
2847 * shutting down, for example.
2848 *
2849 * Not every flash supports this sequence. The same set of opcodes might be used
2850 * for some other operation on a flash that does not support this. Support for
2851 * this sequence can be discovered via SFDP in the BFPT table.
2852 *
2853 * Return: 0 on success, -errno otherwise.
2854 */
spi_nor_soft_reset(struct spi_nor * nor)2855 static void spi_nor_soft_reset(struct spi_nor *nor)
2856 {
2857 struct spi_mem_op op;
2858 int ret;
2859
2860 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRSTEN, 0),
2861 SPI_MEM_OP_NO_DUMMY,
2862 SPI_MEM_OP_NO_ADDR,
2863 SPI_MEM_OP_NO_DATA);
2864
2865 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2866
2867 ret = spi_mem_exec_op(nor->spimem, &op);
2868 if (ret) {
2869 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2870 return;
2871 }
2872
2873 op = (struct spi_mem_op)SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_SRST, 0),
2874 SPI_MEM_OP_NO_DUMMY,
2875 SPI_MEM_OP_NO_ADDR,
2876 SPI_MEM_OP_NO_DATA);
2877
2878 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
2879
2880 ret = spi_mem_exec_op(nor->spimem, &op);
2881 if (ret) {
2882 dev_warn(nor->dev, "Software reset failed: %d\n", ret);
2883 return;
2884 }
2885
2886 /*
2887 * Software Reset is not instant, and the delay varies from flash to
2888 * flash. Looking at a few flashes, most range somewhere below 100
2889 * microseconds. So, sleep for a range of 200-400 us.
2890 */
2891 usleep_range(SPI_NOR_SRST_SLEEP_MIN, SPI_NOR_SRST_SLEEP_MAX);
2892 }
2893
2894 /* mtd suspend handler */
spi_nor_suspend(struct mtd_info * mtd)2895 static int spi_nor_suspend(struct mtd_info *mtd)
2896 {
2897 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2898 int ret;
2899
2900 /* Disable octal DTR mode if we enabled it. */
2901 ret = spi_nor_octal_dtr_enable(nor, false);
2902 if (ret)
2903 dev_err(nor->dev, "suspend() failed\n");
2904
2905 return ret;
2906 }
2907
2908 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)2909 static void spi_nor_resume(struct mtd_info *mtd)
2910 {
2911 struct spi_nor *nor = mtd_to_spi_nor(mtd);
2912 struct device *dev = nor->dev;
2913 int ret;
2914
2915 /* re-initialize the nor chip */
2916 ret = spi_nor_init(nor);
2917 if (ret)
2918 dev_err(dev, "resume() failed\n");
2919 }
2920
spi_nor_get_device(struct mtd_info * mtd)2921 static int spi_nor_get_device(struct mtd_info *mtd)
2922 {
2923 struct mtd_info *master = mtd_get_master(mtd);
2924 struct spi_nor *nor = mtd_to_spi_nor(master);
2925 struct device *dev;
2926
2927 if (nor->spimem)
2928 dev = nor->spimem->spi->controller->dev.parent;
2929 else
2930 dev = nor->dev;
2931
2932 if (!try_module_get(dev->driver->owner))
2933 return -ENODEV;
2934
2935 return 0;
2936 }
2937
spi_nor_put_device(struct mtd_info * mtd)2938 static void spi_nor_put_device(struct mtd_info *mtd)
2939 {
2940 struct mtd_info *master = mtd_get_master(mtd);
2941 struct spi_nor *nor = mtd_to_spi_nor(master);
2942 struct device *dev;
2943
2944 if (nor->spimem)
2945 dev = nor->spimem->spi->controller->dev.parent;
2946 else
2947 dev = nor->dev;
2948
2949 module_put(dev->driver->owner);
2950 }
2951
spi_nor_restore(struct spi_nor * nor)2952 void spi_nor_restore(struct spi_nor *nor)
2953 {
2954 /* restore the addressing mode */
2955 if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
2956 nor->flags & SNOR_F_BROKEN_RESET)
2957 nor->params->set_4byte_addr_mode(nor, false);
2958
2959 if (nor->flags & SNOR_F_SOFT_RESET)
2960 spi_nor_soft_reset(nor);
2961 }
2962 EXPORT_SYMBOL_GPL(spi_nor_restore);
2963
spi_nor_match_id(struct spi_nor * nor,const char * name)2964 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
2965 const char *name)
2966 {
2967 unsigned int i, j;
2968
2969 for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2970 for (j = 0; j < manufacturers[i]->nparts; j++) {
2971 if (!strcmp(name, manufacturers[i]->parts[j].name)) {
2972 nor->manufacturer = manufacturers[i];
2973 return &manufacturers[i]->parts[j];
2974 }
2975 }
2976 }
2977
2978 return NULL;
2979 }
2980
spi_nor_set_addr_width(struct spi_nor * nor)2981 static int spi_nor_set_addr_width(struct spi_nor *nor)
2982 {
2983 if (nor->addr_width) {
2984 /* already configured from SFDP */
2985 } else if (nor->read_proto == SNOR_PROTO_8_8_8_DTR) {
2986 /*
2987 * In 8D-8D-8D mode, one byte takes half a cycle to transfer. So
2988 * in this protocol an odd address width cannot be used because
2989 * then the address phase would only span a cycle and a half.
2990 * Half a cycle would be left over. We would then have to start
2991 * the dummy phase in the middle of a cycle and so too the data
2992 * phase, and we will end the transaction with half a cycle left
2993 * over.
2994 *
2995 * Force all 8D-8D-8D flashes to use an address width of 4 to
2996 * avoid this situation.
2997 */
2998 nor->addr_width = 4;
2999 } else if (nor->info->addr_width) {
3000 nor->addr_width = nor->info->addr_width;
3001 } else {
3002 nor->addr_width = 3;
3003 }
3004
3005 if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3006 /* enable 4-byte addressing if the device exceeds 16MiB */
3007 nor->addr_width = 4;
3008 }
3009
3010 if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3011 dev_dbg(nor->dev, "address width is too large: %u\n",
3012 nor->addr_width);
3013 return -EINVAL;
3014 }
3015
3016 /* Set 4byte opcodes when possible. */
3017 if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3018 !(nor->flags & SNOR_F_HAS_4BAIT))
3019 spi_nor_set_4byte_opcodes(nor);
3020
3021 return 0;
3022 }
3023
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3024 static void spi_nor_debugfs_init(struct spi_nor *nor,
3025 const struct flash_info *info)
3026 {
3027 struct mtd_info *mtd = &nor->mtd;
3028
3029 mtd->dbg.partname = info->name;
3030 mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3031 info->id_len, info->id);
3032 }
3033
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3034 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3035 const char *name)
3036 {
3037 const struct flash_info *info = NULL;
3038
3039 if (name)
3040 info = spi_nor_match_id(nor, name);
3041 /* Try to auto-detect if chip name wasn't specified or not found */
3042 if (!info)
3043 info = spi_nor_read_id(nor);
3044 if (IS_ERR_OR_NULL(info))
3045 return ERR_PTR(-ENOENT);
3046
3047 /*
3048 * If caller has specified name of flash model that can normally be
3049 * detected using JEDEC, let's verify it.
3050 */
3051 if (name && info->id_len) {
3052 const struct flash_info *jinfo;
3053
3054 jinfo = spi_nor_read_id(nor);
3055 if (IS_ERR(jinfo)) {
3056 return jinfo;
3057 } else if (jinfo != info) {
3058 /*
3059 * JEDEC knows better, so overwrite platform ID. We
3060 * can't trust partitions any longer, but we'll let
3061 * mtd apply them anyway, since some partitions may be
3062 * marked read-only, and we don't want to lose that
3063 * information, even if it's not 100% accurate.
3064 */
3065 dev_warn(nor->dev, "found %s, expected %s\n",
3066 jinfo->name, info->name);
3067 info = jinfo;
3068 }
3069 }
3070
3071 return info;
3072 }
3073
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3074 int spi_nor_scan(struct spi_nor *nor, const char *name,
3075 const struct spi_nor_hwcaps *hwcaps)
3076 {
3077 const struct flash_info *info;
3078 struct device *dev = nor->dev;
3079 struct mtd_info *mtd = &nor->mtd;
3080 struct device_node *np = spi_nor_get_flash_node(nor);
3081 int ret;
3082 int i;
3083
3084 ret = spi_nor_check(nor);
3085 if (ret)
3086 return ret;
3087
3088 /* Reset SPI protocol for all commands. */
3089 nor->reg_proto = SNOR_PROTO_1_1_1;
3090 nor->read_proto = SNOR_PROTO_1_1_1;
3091 nor->write_proto = SNOR_PROTO_1_1_1;
3092
3093 /*
3094 * We need the bounce buffer early to read/write registers when going
3095 * through the spi-mem layer (buffers have to be DMA-able).
3096 * For spi-mem drivers, we'll reallocate a new buffer if
3097 * nor->page_size turns out to be greater than PAGE_SIZE (which
3098 * shouldn't happen before long since NOR pages are usually less
3099 * than 1KB) after spi_nor_scan() returns.
3100 */
3101 nor->bouncebuf_size = PAGE_SIZE;
3102 nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3103 GFP_KERNEL);
3104 if (!nor->bouncebuf)
3105 return -ENOMEM;
3106
3107 info = spi_nor_get_flash_info(nor, name);
3108 if (IS_ERR(info))
3109 return PTR_ERR(info);
3110
3111 nor->info = info;
3112
3113 spi_nor_debugfs_init(nor, info);
3114
3115 mutex_init(&nor->lock);
3116
3117 /*
3118 * Make sure the XSR_RDY flag is set before calling
3119 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3120 * with Atmel SPI NOR.
3121 */
3122 if (info->flags & SPI_NOR_XSR_RDY)
3123 nor->flags |= SNOR_F_READY_XSR_RDY;
3124
3125 if (info->flags & SPI_NOR_HAS_LOCK)
3126 nor->flags |= SNOR_F_HAS_LOCK;
3127
3128 mtd->_write = spi_nor_write;
3129
3130 /* Init flash parameters based on flash_info struct and SFDP */
3131 ret = spi_nor_init_params(nor);
3132 if (ret)
3133 return ret;
3134
3135 if (!mtd->name)
3136 mtd->name = dev_name(dev);
3137 mtd->priv = nor;
3138 mtd->type = MTD_NORFLASH;
3139 mtd->writesize = nor->params->writesize;
3140 mtd->flags = MTD_CAP_NORFLASH;
3141 mtd->size = nor->params->size;
3142 mtd->_erase = spi_nor_erase;
3143 mtd->_read = spi_nor_read;
3144 mtd->_suspend = spi_nor_suspend;
3145 mtd->_resume = spi_nor_resume;
3146 mtd->_get_device = spi_nor_get_device;
3147 mtd->_put_device = spi_nor_put_device;
3148
3149 if (info->flags & USE_FSR)
3150 nor->flags |= SNOR_F_USE_FSR;
3151 if (info->flags & SPI_NOR_HAS_TB) {
3152 nor->flags |= SNOR_F_HAS_SR_TB;
3153 if (info->flags & SPI_NOR_TB_SR_BIT6)
3154 nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3155 }
3156
3157 if (info->flags & NO_CHIP_ERASE)
3158 nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3159 if (info->flags & USE_CLSR)
3160 nor->flags |= SNOR_F_USE_CLSR;
3161 if (info->flags & SPI_NOR_SWP_IS_VOLATILE)
3162 nor->flags |= SNOR_F_SWP_IS_VOLATILE;
3163
3164 if (info->flags & SPI_NOR_4BIT_BP) {
3165 nor->flags |= SNOR_F_HAS_4BIT_BP;
3166 if (info->flags & SPI_NOR_BP3_SR_BIT6)
3167 nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3168 }
3169
3170 if (info->flags & SPI_NOR_NO_ERASE)
3171 mtd->flags |= MTD_NO_ERASE;
3172
3173 mtd->dev.parent = dev;
3174 nor->page_size = nor->params->page_size;
3175 mtd->writebufsize = nor->page_size;
3176
3177 if (of_property_read_bool(np, "broken-flash-reset"))
3178 nor->flags |= SNOR_F_BROKEN_RESET;
3179
3180 /*
3181 * Configure the SPI memory:
3182 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3183 * - set the number of dummy cycles (mode cycles + wait states).
3184 * - set the SPI protocols for register and memory accesses.
3185 */
3186 ret = spi_nor_setup(nor, hwcaps);
3187 if (ret)
3188 return ret;
3189
3190 if (info->flags & SPI_NOR_4B_OPCODES)
3191 nor->flags |= SNOR_F_4B_OPCODES;
3192
3193 if (info->flags & SPI_NOR_IO_MODE_EN_VOLATILE)
3194 nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
3195
3196 ret = spi_nor_set_addr_width(nor);
3197 if (ret)
3198 return ret;
3199
3200 spi_nor_register_locking_ops(nor);
3201
3202 /* Send all the required SPI flash commands to initialize device */
3203 ret = spi_nor_init(nor);
3204 if (ret)
3205 return ret;
3206
3207 /* Configure OTP parameters and ops */
3208 spi_nor_otp_init(nor);
3209
3210 dev_info(dev, "%s (%lld Kbytes)\n", info->name,
3211 (long long)mtd->size >> 10);
3212
3213 dev_dbg(dev,
3214 "mtd .name = %s, .size = 0x%llx (%lldMiB), "
3215 ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3216 mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3217 mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3218
3219 if (mtd->numeraseregions)
3220 for (i = 0; i < mtd->numeraseregions; i++)
3221 dev_dbg(dev,
3222 "mtd.eraseregions[%d] = { .offset = 0x%llx, "
3223 ".erasesize = 0x%.8x (%uKiB), "
3224 ".numblocks = %d }\n",
3225 i, (long long)mtd->eraseregions[i].offset,
3226 mtd->eraseregions[i].erasesize,
3227 mtd->eraseregions[i].erasesize / 1024,
3228 mtd->eraseregions[i].numblocks);
3229 return 0;
3230 }
3231 EXPORT_SYMBOL_GPL(spi_nor_scan);
3232
spi_nor_create_read_dirmap(struct spi_nor * nor)3233 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3234 {
3235 struct spi_mem_dirmap_info info = {
3236 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 0),
3237 SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3238 SPI_MEM_OP_DUMMY(nor->read_dummy, 0),
3239 SPI_MEM_OP_DATA_IN(0, NULL, 0)),
3240 .offset = 0,
3241 .length = nor->mtd.size,
3242 };
3243 struct spi_mem_op *op = &info.op_tmpl;
3244
3245 spi_nor_spimem_setup_op(nor, op, nor->read_proto);
3246
3247 /* convert the dummy cycles to the number of bytes */
3248 op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3249 if (spi_nor_protocol_is_dtr(nor->read_proto))
3250 op->dummy.nbytes *= 2;
3251
3252 /*
3253 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3254 * of data bytes is non-zero, the data buswidth won't be set here. So,
3255 * do it explicitly.
3256 */
3257 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3258
3259 nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3260 &info);
3261 return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3262 }
3263
spi_nor_create_write_dirmap(struct spi_nor * nor)3264 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3265 {
3266 struct spi_mem_dirmap_info info = {
3267 .op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 0),
3268 SPI_MEM_OP_ADDR(nor->addr_width, 0, 0),
3269 SPI_MEM_OP_NO_DUMMY,
3270 SPI_MEM_OP_DATA_OUT(0, NULL, 0)),
3271 .offset = 0,
3272 .length = nor->mtd.size,
3273 };
3274 struct spi_mem_op *op = &info.op_tmpl;
3275
3276 if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3277 op->addr.nbytes = 0;
3278
3279 spi_nor_spimem_setup_op(nor, op, nor->write_proto);
3280
3281 /*
3282 * Since spi_nor_spimem_setup_op() only sets buswidth when the number
3283 * of data bytes is non-zero, the data buswidth won't be set here. So,
3284 * do it explicitly.
3285 */
3286 op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3287
3288 nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3289 &info);
3290 return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3291 }
3292
spi_nor_probe(struct spi_mem * spimem)3293 static int spi_nor_probe(struct spi_mem *spimem)
3294 {
3295 struct spi_device *spi = spimem->spi;
3296 struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3297 struct spi_nor *nor;
3298 /*
3299 * Enable all caps by default. The core will mask them after
3300 * checking what's really supported using spi_mem_supports_op().
3301 */
3302 const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3303 char *flash_name;
3304 int ret;
3305
3306 nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3307 if (!nor)
3308 return -ENOMEM;
3309
3310 nor->spimem = spimem;
3311 nor->dev = &spi->dev;
3312 spi_nor_set_flash_node(nor, spi->dev.of_node);
3313
3314 spi_mem_set_drvdata(spimem, nor);
3315
3316 if (data && data->name)
3317 nor->mtd.name = data->name;
3318
3319 if (!nor->mtd.name)
3320 nor->mtd.name = spi_mem_get_name(spimem);
3321
3322 /*
3323 * For some (historical?) reason many platforms provide two different
3324 * names in flash_platform_data: "name" and "type". Quite often name is
3325 * set to "m25p80" and then "type" provides a real chip name.
3326 * If that's the case, respect "type" and ignore a "name".
3327 */
3328 if (data && data->type)
3329 flash_name = data->type;
3330 else if (!strcmp(spi->modalias, "spi-nor"))
3331 flash_name = NULL; /* auto-detect */
3332 else
3333 flash_name = spi->modalias;
3334
3335 ret = spi_nor_scan(nor, flash_name, &hwcaps);
3336 if (ret)
3337 return ret;
3338
3339 /*
3340 * None of the existing parts have > 512B pages, but let's play safe
3341 * and add this logic so that if anyone ever adds support for such
3342 * a NOR we don't end up with buffer overflows.
3343 */
3344 if (nor->page_size > PAGE_SIZE) {
3345 nor->bouncebuf_size = nor->page_size;
3346 devm_kfree(nor->dev, nor->bouncebuf);
3347 nor->bouncebuf = devm_kmalloc(nor->dev,
3348 nor->bouncebuf_size,
3349 GFP_KERNEL);
3350 if (!nor->bouncebuf)
3351 return -ENOMEM;
3352 }
3353
3354 ret = spi_nor_create_read_dirmap(nor);
3355 if (ret)
3356 return ret;
3357
3358 ret = spi_nor_create_write_dirmap(nor);
3359 if (ret)
3360 return ret;
3361
3362 return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3363 data ? data->nr_parts : 0);
3364 }
3365
spi_nor_remove(struct spi_mem * spimem)3366 static int spi_nor_remove(struct spi_mem *spimem)
3367 {
3368 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3369
3370 spi_nor_restore(nor);
3371
3372 /* Clean up MTD stuff. */
3373 return mtd_device_unregister(&nor->mtd);
3374 }
3375
spi_nor_shutdown(struct spi_mem * spimem)3376 static void spi_nor_shutdown(struct spi_mem *spimem)
3377 {
3378 struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3379
3380 spi_nor_restore(nor);
3381 }
3382
3383 /*
3384 * Do NOT add to this array without reading the following:
3385 *
3386 * Historically, many flash devices are bound to this driver by their name. But
3387 * since most of these flash are compatible to some extent, and their
3388 * differences can often be differentiated by the JEDEC read-ID command, we
3389 * encourage new users to add support to the spi-nor library, and simply bind
3390 * against a generic string here (e.g., "jedec,spi-nor").
3391 *
3392 * Many flash names are kept here in this list (as well as in spi-nor.c) to
3393 * keep them available as module aliases for existing platforms.
3394 */
3395 static const struct spi_device_id spi_nor_dev_ids[] = {
3396 /*
3397 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3398 * hack around the fact that the SPI core does not provide uevent
3399 * matching for .of_match_table
3400 */
3401 {"spi-nor"},
3402
3403 /*
3404 * Entries not used in DTs that should be safe to drop after replacing
3405 * them with "spi-nor" in platform data.
3406 */
3407 {"s25sl064a"}, {"w25x16"}, {"m25p10"}, {"m25px64"},
3408
3409 /*
3410 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3411 * should be kept for backward compatibility.
3412 */
3413 {"at25df321a"}, {"at25df641"}, {"at26df081a"},
3414 {"mx25l4005a"}, {"mx25l1606e"}, {"mx25l6405d"}, {"mx25l12805d"},
3415 {"mx25l25635e"},{"mx66l51235l"},
3416 {"n25q064"}, {"n25q128a11"}, {"n25q128a13"}, {"n25q512a"},
3417 {"s25fl256s1"}, {"s25fl512s"}, {"s25sl12801"}, {"s25fl008k"},
3418 {"s25fl064k"},
3419 {"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3420 {"m25p40"}, {"m25p80"}, {"m25p16"}, {"m25p32"},
3421 {"m25p64"}, {"m25p128"},
3422 {"w25x80"}, {"w25x32"}, {"w25q32"}, {"w25q32dw"},
3423 {"w25q80bl"}, {"w25q128"}, {"w25q256"},
3424
3425 /* Flashes that can't be detected using JEDEC */
3426 {"m25p05-nonjedec"}, {"m25p10-nonjedec"}, {"m25p20-nonjedec"},
3427 {"m25p40-nonjedec"}, {"m25p80-nonjedec"}, {"m25p16-nonjedec"},
3428 {"m25p32-nonjedec"}, {"m25p64-nonjedec"}, {"m25p128-nonjedec"},
3429
3430 /* Everspin MRAMs (non-JEDEC) */
3431 { "mr25h128" }, /* 128 Kib, 40 MHz */
3432 { "mr25h256" }, /* 256 Kib, 40 MHz */
3433 { "mr25h10" }, /* 1 Mib, 40 MHz */
3434 { "mr25h40" }, /* 4 Mib, 40 MHz */
3435
3436 { },
3437 };
3438 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3439
3440 static const struct of_device_id spi_nor_of_table[] = {
3441 /*
3442 * Generic compatibility for SPI NOR that can be identified by the
3443 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3444 */
3445 { .compatible = "jedec,spi-nor" },
3446 { /* sentinel */ },
3447 };
3448 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3449
3450 /*
3451 * REVISIT: many of these chips have deep power-down modes, which
3452 * should clearly be entered on suspend() to minimize power use.
3453 * And also when they're otherwise idle...
3454 */
3455 static struct spi_mem_driver spi_nor_driver = {
3456 .spidrv = {
3457 .driver = {
3458 .name = "spi-nor",
3459 .of_match_table = spi_nor_of_table,
3460 .dev_groups = spi_nor_sysfs_groups,
3461 },
3462 .id_table = spi_nor_dev_ids,
3463 },
3464 .probe = spi_nor_probe,
3465 .remove = spi_nor_remove,
3466 .shutdown = spi_nor_shutdown,
3467 };
3468 module_spi_mem_driver(spi_nor_driver);
3469
3470 MODULE_LICENSE("GPL v2");
3471 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3472 MODULE_AUTHOR("Mike Lavender");
3473 MODULE_DESCRIPTION("framework for SPI NOR");
3474