1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2020, STMicroelectronics - All Rights Reserved
4  */
5 
6 #include <command.h>
7 #include <console.h>
8 #include <dfu.h>
9 #include <malloc.h>
10 #include <misc.h>
11 #include <mmc.h>
12 #include <part.h>
13 #include <asm/arch/stm32mp1_smc.h>
14 #include <asm/global_data.h>
15 #include <dm/uclass.h>
16 #include <jffs2/load_kernel.h>
17 #include <linux/list.h>
18 #include <linux/list_sort.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/sizes.h>
21 
22 #include "stm32prog.h"
23 
24 /* Primary GPT header size for 128 entries : 17kB = 34 LBA of 512B */
25 #define GPT_HEADER_SZ	34
26 
27 #define OPT_SELECT	BIT(0)
28 #define OPT_EMPTY	BIT(1)
29 #define OPT_DELETE	BIT(2)
30 
31 #define IS_SELECT(part)	((part)->option & OPT_SELECT)
32 #define IS_EMPTY(part)	((part)->option & OPT_EMPTY)
33 #define IS_DELETE(part)	((part)->option & OPT_DELETE)
34 
35 #define ALT_BUF_LEN			SZ_1K
36 
37 #define ROOTFS_MMC0_UUID \
38 	EFI_GUID(0xE91C4E10, 0x16E6, 0x4C0E, \
39 		 0xBD, 0x0E, 0x77, 0xBE, 0xCF, 0x4A, 0x35, 0x82)
40 
41 #define ROOTFS_MMC1_UUID \
42 	EFI_GUID(0x491F6117, 0x415D, 0x4F53, \
43 		 0x88, 0xC9, 0x6E, 0x0D, 0xE5, 0x4D, 0xEA, 0xC6)
44 
45 #define ROOTFS_MMC2_UUID \
46 	EFI_GUID(0xFD58F1C7, 0xBE0D, 0x4338, \
47 		 0x88, 0xE9, 0xAD, 0x8F, 0x05, 0x0A, 0xEB, 0x18)
48 
49 /* RAW parttion (binary / bootloader) used Linux - reserved UUID */
50 #define LINUX_RESERVED_UUID "8DA63339-0007-60C0-C436-083AC8230908"
51 
52 /*
53  * unique partition guid (uuid) for partition named "rootfs"
54  * on each MMC instance = SD Card or eMMC
55  * allow fixed kernel bootcmd: "rootf=PARTUID=e91c4e10-..."
56  */
57 static const efi_guid_t uuid_mmc[3] = {
58 	ROOTFS_MMC0_UUID,
59 	ROOTFS_MMC1_UUID,
60 	ROOTFS_MMC2_UUID
61 };
62 
63 DECLARE_GLOBAL_DATA_PTR;
64 
65 /* order of column in flash layout file */
66 enum stm32prog_col_t {
67 	COL_OPTION,
68 	COL_ID,
69 	COL_NAME,
70 	COL_TYPE,
71 	COL_IP,
72 	COL_OFFSET,
73 	COL_NB_STM32
74 };
75 
76 /* partition handling routines : CONFIG_CMD_MTDPARTS */
77 int mtdparts_init(void);
78 int find_dev_and_part(const char *id, struct mtd_device **dev,
79 		      u8 *part_num, struct part_info **part);
80 
stm32prog_get_error(struct stm32prog_data * data)81 char *stm32prog_get_error(struct stm32prog_data *data)
82 {
83 	static const char error_msg[] = "Unspecified";
84 
85 	if (strlen(data->error) == 0)
86 		strcpy(data->error, error_msg);
87 
88 	return data->error;
89 }
90 
stm32prog_header_check(struct raw_header_s * raw_header,struct image_header_s * header)91 u8 stm32prog_header_check(struct raw_header_s *raw_header,
92 			  struct image_header_s *header)
93 {
94 	unsigned int i;
95 
96 	header->present = 0;
97 	header->image_checksum = 0x0;
98 	header->image_length = 0x0;
99 
100 	if (!raw_header || !header) {
101 		log_debug("%s:no header data\n", __func__);
102 		return -1;
103 	}
104 	if (raw_header->magic_number !=
105 		(('S' << 0) | ('T' << 8) | ('M' << 16) | (0x32 << 24))) {
106 		log_debug("%s:invalid magic number : 0x%x\n",
107 			  __func__, raw_header->magic_number);
108 		return -2;
109 	}
110 	/* only header v1.0 supported */
111 	if (raw_header->header_version != 0x00010000) {
112 		log_debug("%s:invalid header version : 0x%x\n",
113 			  __func__, raw_header->header_version);
114 		return -3;
115 	}
116 	if (raw_header->reserved1 != 0x0 || raw_header->reserved2) {
117 		log_debug("%s:invalid reserved field\n", __func__);
118 		return -4;
119 	}
120 	for (i = 0; i < (sizeof(raw_header->padding) / 4); i++) {
121 		if (raw_header->padding[i] != 0) {
122 			log_debug("%s:invalid padding field\n", __func__);
123 			return -5;
124 		}
125 	}
126 	header->present = 1;
127 	header->image_checksum = le32_to_cpu(raw_header->image_checksum);
128 	header->image_length = le32_to_cpu(raw_header->image_length);
129 
130 	return 0;
131 }
132 
stm32prog_header_checksum(u32 addr,struct image_header_s * header)133 static u32 stm32prog_header_checksum(u32 addr, struct image_header_s *header)
134 {
135 	u32 i, checksum;
136 	u8 *payload;
137 
138 	/* compute checksum on payload */
139 	payload = (u8 *)addr;
140 	checksum = 0;
141 	for (i = header->image_length; i > 0; i--)
142 		checksum += *(payload++);
143 
144 	return checksum;
145 }
146 
147 /* FLASHLAYOUT PARSING *****************************************/
parse_option(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)148 static int parse_option(struct stm32prog_data *data,
149 			int i, char *p, struct stm32prog_part_t *part)
150 {
151 	int result = 0;
152 	char *c = p;
153 
154 	part->option = 0;
155 	if (!strcmp(p, "-"))
156 		return 0;
157 
158 	while (*c) {
159 		switch (*c) {
160 		case 'P':
161 			part->option |= OPT_SELECT;
162 			break;
163 		case 'E':
164 			part->option |= OPT_EMPTY;
165 			break;
166 		case 'D':
167 			part->option |= OPT_DELETE;
168 			break;
169 		default:
170 			result = -EINVAL;
171 			stm32prog_err("Layout line %d: invalid option '%c' in %s)",
172 				      i, *c, p);
173 			return -EINVAL;
174 		}
175 		c++;
176 	}
177 	if (!(part->option & OPT_SELECT)) {
178 		stm32prog_err("Layout line %d: missing 'P' in option %s", i, p);
179 		return -EINVAL;
180 	}
181 
182 	return result;
183 }
184 
parse_id(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)185 static int parse_id(struct stm32prog_data *data,
186 		    int i, char *p, struct stm32prog_part_t *part)
187 {
188 	int result = 0;
189 	unsigned long value;
190 
191 	result = strict_strtoul(p, 0, &value);
192 	part->id = value;
193 	if (result || value > PHASE_LAST_USER) {
194 		stm32prog_err("Layout line %d: invalid phase value = %s", i, p);
195 		result = -EINVAL;
196 	}
197 
198 	return result;
199 }
200 
parse_name(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)201 static int parse_name(struct stm32prog_data *data,
202 		      int i, char *p, struct stm32prog_part_t *part)
203 {
204 	int result = 0;
205 
206 	if (strlen(p) < sizeof(part->name)) {
207 		strcpy(part->name, p);
208 	} else {
209 		stm32prog_err("Layout line %d: partition name too long [%d]: %s",
210 			      i, strlen(p), p);
211 		result = -EINVAL;
212 	}
213 
214 	return result;
215 }
216 
parse_type(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)217 static int parse_type(struct stm32prog_data *data,
218 		      int i, char *p, struct stm32prog_part_t *part)
219 {
220 	int result = 0;
221 	int len = 0;
222 
223 	part->bin_nb = 0;
224 	if (!strncmp(p, "Binary", 6)) {
225 		part->part_type = PART_BINARY;
226 
227 		/* search for Binary(X) case */
228 		len = strlen(p);
229 		part->bin_nb = 1;
230 		if (len > 6) {
231 			if (len < 8 ||
232 			    (p[6] != '(') ||
233 			    (p[len - 1] != ')'))
234 				result = -EINVAL;
235 			else
236 				part->bin_nb =
237 					simple_strtoul(&p[7], NULL, 10);
238 		}
239 	} else if (!strcmp(p, "System")) {
240 		part->part_type = PART_SYSTEM;
241 	} else if (!strcmp(p, "FileSystem")) {
242 		part->part_type = PART_FILESYSTEM;
243 	} else if (!strcmp(p, "RawImage")) {
244 		part->part_type = RAW_IMAGE;
245 	} else {
246 		result = -EINVAL;
247 	}
248 	if (result)
249 		stm32prog_err("Layout line %d: type parsing error : '%s'",
250 			      i, p);
251 
252 	return result;
253 }
254 
parse_ip(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)255 static int parse_ip(struct stm32prog_data *data,
256 		    int i, char *p, struct stm32prog_part_t *part)
257 {
258 	int result = 0;
259 	unsigned int len = 0;
260 
261 	part->dev_id = 0;
262 	if (!strcmp(p, "none")) {
263 		part->target = STM32PROG_NONE;
264 	} else if (!strncmp(p, "mmc", 3)) {
265 		part->target = STM32PROG_MMC;
266 		len = 3;
267 	} else if (!strncmp(p, "nor", 3)) {
268 		part->target = STM32PROG_NOR;
269 		len = 3;
270 	} else if (!strncmp(p, "nand", 4)) {
271 		part->target = STM32PROG_NAND;
272 		len = 4;
273 	} else if (!strncmp(p, "spi-nand", 8)) {
274 		part->target = STM32PROG_SPI_NAND;
275 		len = 8;
276 	} else if (!strncmp(p, "ram", 3)) {
277 		part->target = STM32PROG_RAM;
278 		len = 0;
279 	} else {
280 		result = -EINVAL;
281 	}
282 	if (len) {
283 		/* only one digit allowed for device id */
284 		if (strlen(p) != len + 1) {
285 			result = -EINVAL;
286 		} else {
287 			part->dev_id = p[len] - '0';
288 			if (part->dev_id > 9)
289 				result = -EINVAL;
290 		}
291 	}
292 	if (result)
293 		stm32prog_err("Layout line %d: ip parsing error: '%s'", i, p);
294 
295 	return result;
296 }
297 
parse_offset(struct stm32prog_data * data,int i,char * p,struct stm32prog_part_t * part)298 static int parse_offset(struct stm32prog_data *data,
299 			int i, char *p, struct stm32prog_part_t *part)
300 {
301 	int result = 0;
302 	char *tail;
303 
304 	part->part_id = 0;
305 	part->addr = 0;
306 	part->size = 0;
307 	/* eMMC boot parttion */
308 	if (!strncmp(p, "boot", 4)) {
309 		if (strlen(p) != 5) {
310 			result = -EINVAL;
311 		} else {
312 			if (p[4] == '1')
313 				part->part_id = -1;
314 			else if (p[4] == '2')
315 				part->part_id = -2;
316 			else
317 				result = -EINVAL;
318 		}
319 		if (result)
320 			stm32prog_err("Layout line %d: invalid part '%s'",
321 				      i, p);
322 	} else {
323 		part->addr = simple_strtoull(p, &tail, 0);
324 		if (tail == p || *tail != '\0') {
325 			stm32prog_err("Layout line %d: invalid offset '%s'",
326 				      i, p);
327 			result = -EINVAL;
328 		}
329 	}
330 
331 	return result;
332 }
333 
334 static
335 int (* const parse[COL_NB_STM32])(struct stm32prog_data *data, int i, char *p,
336 				  struct stm32prog_part_t *part) = {
337 	[COL_OPTION] = parse_option,
338 	[COL_ID] = parse_id,
339 	[COL_NAME] =  parse_name,
340 	[COL_TYPE] = parse_type,
341 	[COL_IP] = parse_ip,
342 	[COL_OFFSET] = parse_offset,
343 };
344 
parse_flash_layout(struct stm32prog_data * data,ulong addr,ulong size)345 static int parse_flash_layout(struct stm32prog_data *data,
346 			      ulong addr,
347 			      ulong size)
348 {
349 	int column = 0, part_nb = 0, ret;
350 	bool end_of_line, eof;
351 	char *p, *start, *last, *col;
352 	struct stm32prog_part_t *part;
353 	int part_list_size;
354 	int i;
355 
356 	data->part_nb = 0;
357 
358 	/* check if STM32image is detected */
359 	if (!stm32prog_header_check((struct raw_header_s *)addr,
360 				    &data->header)) {
361 		u32 checksum;
362 
363 		addr = addr + BL_HEADER_SIZE;
364 		size = data->header.image_length;
365 
366 		checksum = stm32prog_header_checksum(addr, &data->header);
367 		if (checksum != data->header.image_checksum) {
368 			stm32prog_err("Layout: invalid checksum : 0x%x expected 0x%x",
369 				      checksum, data->header.image_checksum);
370 			return -EIO;
371 		}
372 	}
373 	if (!size)
374 		return -EINVAL;
375 
376 	start = (char *)addr;
377 	last = start + size;
378 
379 	*last = 0x0; /* force null terminated string */
380 	log_debug("flash layout =\n%s\n", start);
381 
382 	/* calculate expected number of partitions */
383 	part_list_size = 1;
384 	p = start;
385 	while (*p && (p < last)) {
386 		if (*p++ == '\n') {
387 			part_list_size++;
388 			if (p < last && *p == '#')
389 				part_list_size--;
390 		}
391 	}
392 	if (part_list_size > PHASE_LAST_USER) {
393 		stm32prog_err("Layout: too many partition (%d)",
394 			      part_list_size);
395 		return -1;
396 	}
397 	part = calloc(sizeof(struct stm32prog_part_t), part_list_size);
398 	if (!part) {
399 		stm32prog_err("Layout: alloc failed");
400 		return -ENOMEM;
401 	}
402 	data->part_array = part;
403 
404 	/* main parsing loop */
405 	i = 1;
406 	eof = false;
407 	p = start;
408 	col = start; /* 1st column */
409 	end_of_line = false;
410 	while (!eof) {
411 		switch (*p) {
412 		/* CR is ignored and replaced by NULL character */
413 		case '\r':
414 			*p = '\0';
415 			p++;
416 			continue;
417 		case '\0':
418 			end_of_line = true;
419 			eof = true;
420 			break;
421 		case '\n':
422 			end_of_line = true;
423 			break;
424 		case '\t':
425 			break;
426 		case '#':
427 			/* comment line is skipped */
428 			if (column == 0 && p == col) {
429 				while ((p < last) && *p)
430 					if (*p++ == '\n')
431 						break;
432 				col = p;
433 				i++;
434 				if (p >= last || !*p) {
435 					eof = true;
436 					end_of_line = true;
437 				}
438 				continue;
439 			}
440 			/* fall through */
441 		/* by default continue with the next character */
442 		default:
443 			p++;
444 			continue;
445 		}
446 
447 		/* replace by \0: allow string parsing for each column */
448 		*p = '\0';
449 		p++;
450 		if (p >= last) {
451 			eof = true;
452 			end_of_line = true;
453 		}
454 
455 		/* skip empty line and multiple TAB in tsv file */
456 		if (strlen(col) == 0) {
457 			col = p;
458 			/* skip empty line */
459 			if (column == 0 && end_of_line) {
460 				end_of_line = false;
461 				i++;
462 			}
463 			continue;
464 		}
465 
466 		if (column < COL_NB_STM32) {
467 			ret = parse[column](data, i, col, part);
468 			if (ret)
469 				return ret;
470 		}
471 
472 		/* save the beginning of the next column */
473 		column++;
474 		col = p;
475 
476 		if (!end_of_line)
477 			continue;
478 
479 		/* end of the line detected */
480 		end_of_line = false;
481 
482 		if (column < COL_NB_STM32) {
483 			stm32prog_err("Layout line %d: no enought column", i);
484 			return -EINVAL;
485 		}
486 		column = 0;
487 		part_nb++;
488 		part++;
489 		i++;
490 		if (part_nb >= part_list_size) {
491 			part = NULL;
492 			if (!eof) {
493 				stm32prog_err("Layout: no enought memory for %d part",
494 					      part_nb);
495 				return -EINVAL;
496 			}
497 		}
498 	}
499 	data->part_nb = part_nb;
500 	if (data->part_nb == 0) {
501 		stm32prog_err("Layout: no partition found");
502 		return -ENODEV;
503 	}
504 
505 	return 0;
506 }
507 
part_cmp(void * priv,struct list_head * a,struct list_head * b)508 static int __init part_cmp(void *priv, struct list_head *a, struct list_head *b)
509 {
510 	struct stm32prog_part_t *parta, *partb;
511 
512 	parta = container_of(a, struct stm32prog_part_t, list);
513 	partb = container_of(b, struct stm32prog_part_t, list);
514 
515 	if (parta->part_id != partb->part_id)
516 		return parta->part_id - partb->part_id;
517 	else
518 		return parta->addr > partb->addr ? 1 : -1;
519 }
520 
get_mtd_by_target(char * string,enum stm32prog_target target,int dev_id)521 static void get_mtd_by_target(char *string, enum stm32prog_target target,
522 			      int dev_id)
523 {
524 	const char *dev_str;
525 
526 	switch (target) {
527 	case STM32PROG_NOR:
528 		dev_str = "nor";
529 		break;
530 	case STM32PROG_NAND:
531 		dev_str = "nand";
532 		break;
533 	case STM32PROG_SPI_NAND:
534 		dev_str = "spi-nand";
535 		break;
536 	default:
537 		dev_str = "invalid";
538 		break;
539 	}
540 	sprintf(string, "%s%d", dev_str, dev_id);
541 }
542 
init_device(struct stm32prog_data * data,struct stm32prog_dev_t * dev)543 static int init_device(struct stm32prog_data *data,
544 		       struct stm32prog_dev_t *dev)
545 {
546 	struct mmc *mmc = NULL;
547 	struct blk_desc *block_dev = NULL;
548 	struct mtd_info *mtd = NULL;
549 	char mtd_id[16];
550 	int part_id;
551 	int ret;
552 	u64 first_addr = 0, last_addr = 0;
553 	struct stm32prog_part_t *part, *next_part;
554 	u64 part_addr, part_size;
555 	bool part_found;
556 	const char *part_name;
557 
558 	switch (dev->target) {
559 	case STM32PROG_MMC:
560 		if (!IS_ENABLED(CONFIG_MMC)) {
561 			stm32prog_err("unknown device type = %d", dev->target);
562 			return -ENODEV;
563 		}
564 		mmc = find_mmc_device(dev->dev_id);
565 		if (!mmc || mmc_init(mmc)) {
566 			stm32prog_err("mmc device %d not found", dev->dev_id);
567 			return -ENODEV;
568 		}
569 		block_dev = mmc_get_blk_desc(mmc);
570 		if (!block_dev) {
571 			stm32prog_err("mmc device %d not probed", dev->dev_id);
572 			return -ENODEV;
573 		}
574 		dev->erase_size = mmc->erase_grp_size * block_dev->blksz;
575 		dev->mmc = mmc;
576 
577 		/* reserve a full erase group for each GTP headers */
578 		if (mmc->erase_grp_size > GPT_HEADER_SZ) {
579 			first_addr = dev->erase_size;
580 			last_addr = (u64)(block_dev->lba -
581 					  mmc->erase_grp_size) *
582 				    block_dev->blksz;
583 		} else {
584 			first_addr = (u64)GPT_HEADER_SZ * block_dev->blksz;
585 			last_addr = (u64)(block_dev->lba - GPT_HEADER_SZ - 1) *
586 				    block_dev->blksz;
587 		}
588 		log_debug("MMC %d: lba=%ld blksz=%ld\n", dev->dev_id,
589 			  block_dev->lba, block_dev->blksz);
590 		log_debug(" available address = 0x%llx..0x%llx\n",
591 			  first_addr, last_addr);
592 		log_debug(" full_update = %d\n", dev->full_update);
593 		break;
594 	case STM32PROG_NOR:
595 	case STM32PROG_NAND:
596 	case STM32PROG_SPI_NAND:
597 		if (!IS_ENABLED(CONFIG_MTD)) {
598 			stm32prog_err("unknown device type = %d", dev->target);
599 			return -ENODEV;
600 		}
601 		get_mtd_by_target(mtd_id, dev->target, dev->dev_id);
602 		log_debug("%s\n", mtd_id);
603 
604 		mtdparts_init();
605 		mtd = get_mtd_device_nm(mtd_id);
606 		if (IS_ERR(mtd)) {
607 			stm32prog_err("MTD device %s not found", mtd_id);
608 			return -ENODEV;
609 		}
610 		first_addr = 0;
611 		last_addr = mtd->size;
612 		dev->erase_size = mtd->erasesize;
613 		log_debug("MTD device %s: size=%lld erasesize=%d\n",
614 			  mtd_id, mtd->size, mtd->erasesize);
615 		log_debug(" available address = 0x%llx..0x%llx\n",
616 			  first_addr, last_addr);
617 		dev->mtd = mtd;
618 		break;
619 	case STM32PROG_RAM:
620 		first_addr = gd->bd->bi_dram[0].start;
621 		last_addr = first_addr + gd->bd->bi_dram[0].size;
622 		dev->erase_size = 1;
623 		break;
624 	default:
625 		stm32prog_err("unknown device type = %d", dev->target);
626 		return -ENODEV;
627 	}
628 	log_debug(" erase size = 0x%x\n", dev->erase_size);
629 	log_debug(" full_update = %d\n", dev->full_update);
630 
631 	/* order partition list in offset order */
632 	list_sort(NULL, &dev->part_list, &part_cmp);
633 	part_id = 1;
634 	log_debug("id : Opt Phase     Name target.n dev.n addr     size     part_off part_size\n");
635 	list_for_each_entry(part, &dev->part_list, list) {
636 		if (part->bin_nb > 1) {
637 			if ((dev->target != STM32PROG_NAND &&
638 			     dev->target != STM32PROG_SPI_NAND) ||
639 			    part->id >= PHASE_FIRST_USER ||
640 			    strncmp(part->name, "fsbl", 4)) {
641 				stm32prog_err("%s (0x%x): multiple binary %d not supported",
642 					      part->name, part->id,
643 					      part->bin_nb);
644 				return -EINVAL;
645 			}
646 		}
647 		if (part->part_type == RAW_IMAGE) {
648 			part->part_id = 0x0;
649 			part->addr = 0x0;
650 			if (block_dev)
651 				part->size = block_dev->lba * block_dev->blksz;
652 			else
653 				part->size = last_addr;
654 			log_debug("-- : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx\n",
655 				  part->option, part->id, part->name,
656 				  part->part_type, part->bin_nb, part->target,
657 				  part->dev_id, part->addr, part->size);
658 			continue;
659 		}
660 		if (part->part_id < 0) { /* boot hw partition for eMMC */
661 			if (mmc) {
662 				part->size = mmc->capacity_boot;
663 			} else {
664 				stm32prog_err("%s (0x%x): hw partition not expected : %d",
665 					      part->name, part->id,
666 					      part->part_id);
667 				return -ENODEV;
668 			}
669 		} else {
670 			part->part_id = part_id++;
671 
672 			/* last partition : size to the end of the device */
673 			if (part->list.next != &dev->part_list) {
674 				next_part =
675 					container_of(part->list.next,
676 						     struct stm32prog_part_t,
677 						     list);
678 				if (part->addr < next_part->addr) {
679 					part->size = next_part->addr -
680 						     part->addr;
681 				} else {
682 					stm32prog_err("%s (0x%x): same address : 0x%llx == %s (0x%x): 0x%llx",
683 						      part->name, part->id,
684 						      part->addr,
685 						      next_part->name,
686 						      next_part->id,
687 						      next_part->addr);
688 					return -EINVAL;
689 				}
690 			} else {
691 				if (part->addr <= last_addr) {
692 					part->size = last_addr - part->addr;
693 				} else {
694 					stm32prog_err("%s (0x%x): invalid address 0x%llx (max=0x%llx)",
695 						      part->name, part->id,
696 						      part->addr, last_addr);
697 					return -EINVAL;
698 				}
699 			}
700 			if (part->addr < first_addr) {
701 				stm32prog_err("%s (0x%x): invalid address 0x%llx (min=0x%llx)",
702 					      part->name, part->id,
703 					      part->addr, first_addr);
704 				return -EINVAL;
705 			}
706 		}
707 		if ((part->addr & ((u64)part->dev->erase_size - 1)) != 0) {
708 			stm32prog_err("%s (0x%x): not aligned address : 0x%llx on erase size 0x%x",
709 				      part->name, part->id, part->addr,
710 				      part->dev->erase_size);
711 			return -EINVAL;
712 		}
713 		log_debug("%02d : %1d %02x %14s %02d.%d %02d.%02d %08llx %08llx",
714 			  part->part_id, part->option, part->id, part->name,
715 			  part->part_type, part->bin_nb, part->target,
716 			  part->dev_id, part->addr, part->size);
717 
718 		part_addr = 0;
719 		part_size = 0;
720 		part_found = false;
721 
722 		/* check coherency with existing partition */
723 		if (block_dev) {
724 			/*
725 			 * block devices with GPT: check user partition size
726 			 * only for partial update, the GPT partions are be
727 			 * created for full update
728 			 */
729 			if (dev->full_update || part->part_id < 0) {
730 				log_debug("\n");
731 				continue;
732 			}
733 			struct disk_partition partinfo;
734 
735 			ret = part_get_info(block_dev, part->part_id,
736 					    &partinfo);
737 
738 			if (ret) {
739 				stm32prog_err("%s (0x%x):Couldn't find part %d on device mmc %d",
740 					      part->name, part->id,
741 					      part_id, part->dev_id);
742 				return -ENODEV;
743 			}
744 			part_addr = (u64)partinfo.start * partinfo.blksz;
745 			part_size = (u64)partinfo.size * partinfo.blksz;
746 			part_name = (char *)partinfo.name;
747 			part_found = true;
748 		}
749 
750 		if (IS_ENABLED(CONFIG_MTD) && mtd) {
751 			char mtd_part_id[32];
752 			struct part_info *mtd_part;
753 			struct mtd_device *mtd_dev;
754 			u8 part_num;
755 
756 			sprintf(mtd_part_id, "%s,%d", mtd_id,
757 				part->part_id - 1);
758 			ret = find_dev_and_part(mtd_part_id, &mtd_dev,
759 						&part_num, &mtd_part);
760 			if (ret != 0) {
761 				stm32prog_err("%s (0x%x): Invalid MTD partition %s",
762 					      part->name, part->id,
763 					      mtd_part_id);
764 				return -ENODEV;
765 			}
766 			part_addr = mtd_part->offset;
767 			part_size = mtd_part->size;
768 			part_name = mtd_part->name;
769 			part_found = true;
770 		}
771 
772 		/* no partition for this device */
773 		if (!part_found) {
774 			log_debug("\n");
775 			continue;
776 		}
777 
778 		log_debug(" %08llx %08llx\n", part_addr, part_size);
779 
780 		if (part->addr != part_addr) {
781 			stm32prog_err("%s (0x%x): Bad address for partition %d (%s) = 0x%llx <> 0x%llx expected",
782 				      part->name, part->id, part->part_id,
783 				      part_name, part->addr, part_addr);
784 			return -ENODEV;
785 		}
786 		if (part->size != part_size) {
787 			stm32prog_err("%s (0x%x): Bad size for partition %d (%s) at 0x%llx = 0x%llx <> 0x%llx expected",
788 				      part->name, part->id, part->part_id,
789 				      part_name, part->addr, part->size,
790 				      part_size);
791 			return -ENODEV;
792 		}
793 	}
794 	return 0;
795 }
796 
treat_partition_list(struct stm32prog_data * data)797 static int treat_partition_list(struct stm32prog_data *data)
798 {
799 	int i, j;
800 	struct stm32prog_part_t *part;
801 
802 	for (j = 0; j < STM32PROG_MAX_DEV; j++) {
803 		data->dev[j].target = STM32PROG_NONE;
804 		INIT_LIST_HEAD(&data->dev[j].part_list);
805 	}
806 
807 	data->tee_detected = false;
808 	data->fsbl_nor_detected = false;
809 	for (i = 0; i < data->part_nb; i++) {
810 		part = &data->part_array[i];
811 		part->alt_id = -1;
812 
813 		/* skip partition with IP="none" */
814 		if (part->target == STM32PROG_NONE) {
815 			if (IS_SELECT(part)) {
816 				stm32prog_err("Layout: selected none phase = 0x%x",
817 					      part->id);
818 				return -EINVAL;
819 			}
820 			continue;
821 		}
822 
823 		if (part->id == PHASE_FLASHLAYOUT ||
824 		    part->id > PHASE_LAST_USER) {
825 			stm32prog_err("Layout: invalid phase = 0x%x",
826 				      part->id);
827 			return -EINVAL;
828 		}
829 		for (j = i + 1; j < data->part_nb; j++) {
830 			if (part->id == data->part_array[j].id) {
831 				stm32prog_err("Layout: duplicated phase 0x%x at line %d and %d",
832 					      part->id, i, j);
833 				return -EINVAL;
834 			}
835 		}
836 		for (j = 0; j < STM32PROG_MAX_DEV; j++) {
837 			if (data->dev[j].target == STM32PROG_NONE) {
838 				/* new device found */
839 				data->dev[j].target = part->target;
840 				data->dev[j].dev_id = part->dev_id;
841 				data->dev[j].full_update = true;
842 				data->dev_nb++;
843 				break;
844 			} else if ((part->target == data->dev[j].target) &&
845 				   (part->dev_id == data->dev[j].dev_id)) {
846 				break;
847 			}
848 		}
849 		if (j == STM32PROG_MAX_DEV) {
850 			stm32prog_err("Layout: too many device");
851 			return -EINVAL;
852 		}
853 		switch (part->target)  {
854 		case STM32PROG_NOR:
855 			if (!data->fsbl_nor_detected &&
856 			    !strncmp(part->name, "fsbl", 4))
857 				data->fsbl_nor_detected = true;
858 			/* fallthrough */
859 		case STM32PROG_NAND:
860 		case STM32PROG_SPI_NAND:
861 			if (!data->tee_detected &&
862 			    !strncmp(part->name, "tee", 3))
863 				data->tee_detected = true;
864 			break;
865 		default:
866 			break;
867 		}
868 		part->dev = &data->dev[j];
869 		if (!IS_SELECT(part))
870 			part->dev->full_update = false;
871 		list_add_tail(&part->list, &data->dev[j].part_list);
872 	}
873 
874 	return 0;
875 }
876 
create_gpt_partitions(struct stm32prog_data * data)877 static int create_gpt_partitions(struct stm32prog_data *data)
878 {
879 	int offset = 0;
880 	const int buflen = SZ_8K;
881 	char *buf;
882 	char uuid[UUID_STR_LEN + 1];
883 	unsigned char *uuid_bin;
884 	unsigned int mmc_id;
885 	int i;
886 	bool rootfs_found;
887 	struct stm32prog_part_t *part;
888 
889 	buf = malloc(buflen);
890 	if (!buf)
891 		return -ENOMEM;
892 
893 	puts("partitions : ");
894 	/* initialize the selected device */
895 	for (i = 0; i < data->dev_nb; i++) {
896 		/* create gpt partition support only for full update on MMC */
897 		if (data->dev[i].target != STM32PROG_MMC ||
898 		    !data->dev[i].full_update)
899 			continue;
900 
901 		offset = 0;
902 		rootfs_found = false;
903 		memset(buf, 0, buflen);
904 
905 		list_for_each_entry(part, &data->dev[i].part_list, list) {
906 			/* skip eMMC boot partitions */
907 			if (part->part_id < 0)
908 				continue;
909 			/* skip Raw Image */
910 			if (part->part_type == RAW_IMAGE)
911 				continue;
912 
913 			if (offset + 100 > buflen) {
914 				log_debug("\n%s: buffer too small, %s skippped",
915 					  __func__, part->name);
916 				continue;
917 			}
918 
919 			if (!offset)
920 				offset += sprintf(buf, "gpt write mmc %d \"",
921 						  data->dev[i].dev_id);
922 
923 			offset += snprintf(buf + offset, buflen - offset,
924 					   "name=%s,start=0x%llx,size=0x%llx",
925 					   part->name,
926 					   part->addr,
927 					   part->size);
928 
929 			if (part->part_type == PART_BINARY)
930 				offset += snprintf(buf + offset,
931 						   buflen - offset,
932 						   ",type="
933 						   LINUX_RESERVED_UUID);
934 			else
935 				offset += snprintf(buf + offset,
936 						   buflen - offset,
937 						   ",type=linux");
938 
939 			if (part->part_type == PART_SYSTEM)
940 				offset += snprintf(buf + offset,
941 						   buflen - offset,
942 						   ",bootable");
943 
944 			if (!rootfs_found && !strcmp(part->name, "rootfs")) {
945 				mmc_id = part->dev_id;
946 				rootfs_found = true;
947 				if (mmc_id < ARRAY_SIZE(uuid_mmc)) {
948 					uuid_bin =
949 					  (unsigned char *)uuid_mmc[mmc_id].b;
950 					uuid_bin_to_str(uuid_bin, uuid,
951 							UUID_STR_FORMAT_GUID);
952 					offset += snprintf(buf + offset,
953 							   buflen - offset,
954 							   ",uuid=%s", uuid);
955 				}
956 			}
957 
958 			offset += snprintf(buf + offset, buflen - offset, ";");
959 		}
960 
961 		if (offset) {
962 			offset += snprintf(buf + offset, buflen - offset, "\"");
963 			log_debug("\ncmd: %s\n", buf);
964 			if (run_command(buf, 0)) {
965 				stm32prog_err("GPT partitionning fail: %s",
966 					      buf);
967 				free(buf);
968 
969 				return -1;
970 			}
971 		}
972 
973 		if (data->dev[i].mmc)
974 			part_init(mmc_get_blk_desc(data->dev[i].mmc));
975 
976 #ifdef DEBUG
977 		sprintf(buf, "gpt verify mmc %d", data->dev[i].dev_id);
978 		log_debug("\ncmd: %s", buf);
979 		if (run_command(buf, 0))
980 			printf("fail !\n");
981 		else
982 			printf("OK\n");
983 
984 		sprintf(buf, "part list mmc %d", data->dev[i].dev_id);
985 		run_command(buf, 0);
986 #endif
987 	}
988 	puts("done\n");
989 
990 #ifdef DEBUG
991 	run_command("mtd list", 0);
992 #endif
993 	free(buf);
994 
995 	return 0;
996 }
997 
stm32prog_alt_add(struct stm32prog_data * data,struct dfu_entity * dfu,struct stm32prog_part_t * part)998 static int stm32prog_alt_add(struct stm32prog_data *data,
999 			     struct dfu_entity *dfu,
1000 			     struct stm32prog_part_t *part)
1001 {
1002 	int ret = 0;
1003 	int offset = 0;
1004 	char devstr[10];
1005 	char dfustr[10];
1006 	char buf[ALT_BUF_LEN];
1007 	u32 size;
1008 	char multiplier,  type;
1009 
1010 	/* max 3 digit for sector size */
1011 	if (part->size > SZ_1M) {
1012 		size = (u32)(part->size / SZ_1M);
1013 		multiplier = 'M';
1014 	} else if (part->size > SZ_1K) {
1015 		size = (u32)(part->size / SZ_1K);
1016 		multiplier = 'K';
1017 	} else {
1018 		size = (u32)part->size;
1019 		multiplier = 'B';
1020 	}
1021 	if (IS_SELECT(part) && !IS_EMPTY(part))
1022 		type = 'e'; /*Readable and Writeable*/
1023 	else
1024 		type = 'a';/*Readable*/
1025 
1026 	memset(buf, 0, sizeof(buf));
1027 	offset = snprintf(buf, ALT_BUF_LEN - offset,
1028 			  "@%s/0x%02x/1*%d%c%c ",
1029 			  part->name, part->id,
1030 			  size, multiplier, type);
1031 
1032 	if (part->target == STM32PROG_RAM) {
1033 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1034 				   "ram 0x%llx 0x%llx",
1035 				   part->addr, part->size);
1036 	} else if (part->part_type == RAW_IMAGE) {
1037 		u64 dfu_size;
1038 
1039 		if (part->dev->target == STM32PROG_MMC)
1040 			dfu_size = part->size / part->dev->mmc->read_bl_len;
1041 		else
1042 			dfu_size = part->size;
1043 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1044 				   "raw 0x0 0x%llx", dfu_size);
1045 	} else if (part->part_id < 0) {
1046 		u64 nb_blk = part->size / part->dev->mmc->read_bl_len;
1047 
1048 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1049 				   "raw 0x%llx 0x%llx",
1050 				   part->addr, nb_blk);
1051 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1052 				   " mmcpart %d;", -(part->part_id));
1053 	} else {
1054 		if (part->part_type == PART_SYSTEM &&
1055 		    (part->target == STM32PROG_NAND ||
1056 		     part->target == STM32PROG_NOR ||
1057 		     part->target == STM32PROG_SPI_NAND))
1058 			offset += snprintf(buf + offset,
1059 					   ALT_BUF_LEN - offset,
1060 					   "partubi");
1061 		else
1062 			offset += snprintf(buf + offset,
1063 					   ALT_BUF_LEN - offset,
1064 					   "part");
1065 		/* dev_id requested by DFU MMC */
1066 		if (part->target == STM32PROG_MMC)
1067 			offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1068 					   " %d", part->dev_id);
1069 		offset += snprintf(buf + offset, ALT_BUF_LEN - offset,
1070 				   " %d;", part->part_id);
1071 	}
1072 	ret = -ENODEV;
1073 	switch (part->target) {
1074 	case STM32PROG_MMC:
1075 		if (IS_ENABLED(CONFIG_MMC)) {
1076 			ret = 0;
1077 			sprintf(dfustr, "mmc");
1078 			sprintf(devstr, "%d", part->dev_id);
1079 		}
1080 		break;
1081 	case STM32PROG_NAND:
1082 	case STM32PROG_NOR:
1083 	case STM32PROG_SPI_NAND:
1084 		if (IS_ENABLED(CONFIG_MTD)) {
1085 			ret = 0;
1086 			sprintf(dfustr, "mtd");
1087 			get_mtd_by_target(devstr, part->target, part->dev_id);
1088 		}
1089 		break;
1090 	case STM32PROG_RAM:
1091 		ret = 0;
1092 		sprintf(dfustr, "ram");
1093 		sprintf(devstr, "0");
1094 		break;
1095 	default:
1096 		break;
1097 	}
1098 	if (ret) {
1099 		stm32prog_err("invalid target: %d", part->target);
1100 		return ret;
1101 	}
1102 	log_debug("dfu_alt_add(%s,%s,%s)\n", dfustr, devstr, buf);
1103 	ret = dfu_alt_add(dfu, dfustr, devstr, buf);
1104 	log_debug("dfu_alt_add(%s,%s,%s) result %d\n",
1105 		  dfustr, devstr, buf, ret);
1106 
1107 	return ret;
1108 }
1109 
stm32prog_alt_add_virt(struct dfu_entity * dfu,char * name,int phase,int size)1110 static int stm32prog_alt_add_virt(struct dfu_entity *dfu,
1111 				  char *name, int phase, int size)
1112 {
1113 	int ret = 0;
1114 	char devstr[4];
1115 	char buf[ALT_BUF_LEN];
1116 
1117 	sprintf(devstr, "%d", phase);
1118 	sprintf(buf, "@%s/0x%02x/1*%dBe", name, phase, size);
1119 	ret = dfu_alt_add(dfu, "virt", devstr, buf);
1120 	log_debug("dfu_alt_add(virt,%s,%s) result %d\n", devstr, buf, ret);
1121 
1122 	return ret;
1123 }
1124 
dfu_init_entities(struct stm32prog_data * data)1125 static int dfu_init_entities(struct stm32prog_data *data)
1126 {
1127 	int ret = 0;
1128 	int phase, i, alt_id;
1129 	struct stm32prog_part_t *part;
1130 	struct dfu_entity *dfu;
1131 	int alt_nb;
1132 
1133 	alt_nb = 3; /* number of virtual = CMD, OTP, PMIC*/
1134 	if (data->part_nb == 0)
1135 		alt_nb++;  /* +1 for FlashLayout */
1136 	else
1137 		for (i = 0; i < data->part_nb; i++) {
1138 			if (data->part_array[i].target != STM32PROG_NONE)
1139 				alt_nb++;
1140 		}
1141 
1142 	if (dfu_alt_init(alt_nb, &dfu))
1143 		return -ENODEV;
1144 
1145 	puts("DFU alt info setting: ");
1146 	if (data->part_nb) {
1147 		alt_id = 0;
1148 		for (phase = 1;
1149 		     (phase <= PHASE_LAST_USER) &&
1150 		     (alt_id < alt_nb) && !ret;
1151 		     phase++) {
1152 			/* ordering alt setting by phase id */
1153 			part = NULL;
1154 			for (i = 0; i < data->part_nb; i++) {
1155 				if (phase == data->part_array[i].id) {
1156 					part = &data->part_array[i];
1157 					break;
1158 				}
1159 			}
1160 			if (!part)
1161 				continue;
1162 			if (part->target == STM32PROG_NONE)
1163 				continue;
1164 			part->alt_id = alt_id;
1165 			alt_id++;
1166 
1167 			ret = stm32prog_alt_add(data, dfu, part);
1168 		}
1169 	} else {
1170 		char buf[ALT_BUF_LEN];
1171 
1172 		sprintf(buf, "@FlashLayout/0x%02x/1*256Ke ram %x 40000",
1173 			PHASE_FLASHLAYOUT, STM32_DDR_BASE);
1174 		ret = dfu_alt_add(dfu, "ram", NULL, buf);
1175 		log_debug("dfu_alt_add(ram, NULL,%s) result %d\n", buf, ret);
1176 	}
1177 
1178 	if (!ret)
1179 		ret = stm32prog_alt_add_virt(dfu, "virtual", PHASE_CMD, 512);
1180 
1181 	if (!ret)
1182 		ret = stm32prog_alt_add_virt(dfu, "OTP", PHASE_OTP, 512);
1183 
1184 	if (!ret && CONFIG_IS_ENABLED(DM_PMIC))
1185 		ret = stm32prog_alt_add_virt(dfu, "PMIC", PHASE_PMIC, 8);
1186 
1187 	if (ret)
1188 		stm32prog_err("dfu init failed: %d", ret);
1189 	puts("done\n");
1190 
1191 #ifdef DEBUG
1192 	dfu_show_entities();
1193 #endif
1194 	return ret;
1195 }
1196 
stm32prog_otp_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1197 int stm32prog_otp_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1198 			long *size)
1199 {
1200 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1201 
1202 	if (!data->otp_part) {
1203 		data->otp_part = memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1204 		if (!data->otp_part)
1205 			return -ENOMEM;
1206 	}
1207 
1208 	if (!offset)
1209 		memset(data->otp_part, 0, OTP_SIZE);
1210 
1211 	if (offset + *size > OTP_SIZE)
1212 		*size = OTP_SIZE - offset;
1213 
1214 	memcpy((void *)((u32)data->otp_part + offset), buffer, *size);
1215 
1216 	return 0;
1217 }
1218 
stm32prog_otp_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1219 int stm32prog_otp_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1220 		       long *size)
1221 {
1222 	int result = 0;
1223 
1224 	if (!IS_ENABLED(CONFIG_ARM_SMCCC)) {
1225 		stm32prog_err("OTP update not supported");
1226 
1227 		return -1;
1228 	}
1229 
1230 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1231 	/* alway read for first packet */
1232 	if (!offset) {
1233 		if (!data->otp_part)
1234 			data->otp_part =
1235 				memalign(CONFIG_SYS_CACHELINE_SIZE, OTP_SIZE);
1236 
1237 		if (!data->otp_part) {
1238 			result = -ENOMEM;
1239 			goto end_otp_read;
1240 		}
1241 
1242 		/* init struct with 0 */
1243 		memset(data->otp_part, 0, OTP_SIZE);
1244 
1245 		/* call the service */
1246 		result = stm32_smc_exec(STM32_SMC_BSEC, STM32_SMC_READ_ALL,
1247 					(u32)data->otp_part, 0);
1248 		if (result)
1249 			goto end_otp_read;
1250 	}
1251 
1252 	if (!data->otp_part) {
1253 		result = -ENOMEM;
1254 		goto end_otp_read;
1255 	}
1256 
1257 	if (offset + *size > OTP_SIZE)
1258 		*size = OTP_SIZE - offset;
1259 	memcpy(buffer, (void *)((u32)data->otp_part + offset), *size);
1260 
1261 end_otp_read:
1262 	log_debug("%s: result %i\n", __func__, result);
1263 
1264 	return result;
1265 }
1266 
stm32prog_otp_start(struct stm32prog_data * data)1267 int stm32prog_otp_start(struct stm32prog_data *data)
1268 {
1269 	int result = 0;
1270 	struct arm_smccc_res res;
1271 
1272 	if (!IS_ENABLED(CONFIG_ARM_SMCCC)) {
1273 		stm32prog_err("OTP update not supported");
1274 
1275 		return -1;
1276 	}
1277 
1278 	if (!data->otp_part) {
1279 		stm32prog_err("start OTP without data");
1280 		return -1;
1281 	}
1282 
1283 	arm_smccc_smc(STM32_SMC_BSEC, STM32_SMC_WRITE_ALL,
1284 		      (u32)data->otp_part, 0, 0, 0, 0, 0, &res);
1285 
1286 	if (!res.a0) {
1287 		switch (res.a1) {
1288 		case 0:
1289 			result = 0;
1290 			break;
1291 		case 1:
1292 			stm32prog_err("Provisioning");
1293 			result = 0;
1294 			break;
1295 		default:
1296 			log_err("%s: OTP incorrect value (err = %ld)\n",
1297 				__func__, res.a1);
1298 			result = -EINVAL;
1299 			break;
1300 		}
1301 	} else {
1302 		log_err("%s: Failed to exec svc=%x op=%x in secure mode (err = %ld)\n",
1303 			__func__, STM32_SMC_BSEC, STM32_SMC_WRITE_ALL, res.a0);
1304 		result = -EINVAL;
1305 	}
1306 
1307 	free(data->otp_part);
1308 	data->otp_part = NULL;
1309 	log_debug("%s: result %i\n", __func__, result);
1310 
1311 	return result;
1312 }
1313 
stm32prog_pmic_write(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1314 int stm32prog_pmic_write(struct stm32prog_data *data, u32 offset, u8 *buffer,
1315 			 long *size)
1316 {
1317 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1318 
1319 	if (!offset)
1320 		memset(data->pmic_part, 0, PMIC_SIZE);
1321 
1322 	if (offset + *size > PMIC_SIZE)
1323 		*size = PMIC_SIZE - offset;
1324 
1325 	memcpy(&data->pmic_part[offset], buffer, *size);
1326 
1327 	return 0;
1328 }
1329 
stm32prog_pmic_read(struct stm32prog_data * data,u32 offset,u8 * buffer,long * size)1330 int stm32prog_pmic_read(struct stm32prog_data *data, u32 offset, u8 *buffer,
1331 			long *size)
1332 {
1333 	int result = 0, ret;
1334 	struct udevice *dev;
1335 
1336 	if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1337 		stm32prog_err("PMIC update not supported");
1338 
1339 		return -EOPNOTSUPP;
1340 	}
1341 
1342 	log_debug("%s: %x %lx\n", __func__, offset, *size);
1343 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1344 					  DM_DRIVER_GET(stpmic1_nvm),
1345 					  &dev);
1346 	if (ret)
1347 		return ret;
1348 
1349 	/* alway request PMIC for first packet */
1350 	if (!offset) {
1351 		/* init struct with 0 */
1352 		memset(data->pmic_part, 0, PMIC_SIZE);
1353 
1354 		ret = uclass_get_device_by_driver(UCLASS_MISC,
1355 						  DM_DRIVER_GET(stpmic1_nvm),
1356 						  &dev);
1357 		if (ret)
1358 			return ret;
1359 
1360 		ret = misc_read(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1361 		if (ret < 0) {
1362 			result = ret;
1363 			goto end_pmic_read;
1364 		}
1365 		if (ret != PMIC_SIZE) {
1366 			result = -EACCES;
1367 			goto end_pmic_read;
1368 		}
1369 	}
1370 
1371 	if (offset + *size > PMIC_SIZE)
1372 		*size = PMIC_SIZE - offset;
1373 
1374 	memcpy(buffer, &data->pmic_part[offset], *size);
1375 
1376 end_pmic_read:
1377 	log_debug("%s: result %i\n", __func__, result);
1378 	return result;
1379 }
1380 
stm32prog_pmic_start(struct stm32prog_data * data)1381 int stm32prog_pmic_start(struct stm32prog_data *data)
1382 {
1383 	int ret;
1384 	struct udevice *dev;
1385 
1386 	if (!CONFIG_IS_ENABLED(PMIC_STPMIC1)) {
1387 		stm32prog_err("PMIC update not supported");
1388 
1389 		return -EOPNOTSUPP;
1390 	}
1391 
1392 	ret = uclass_get_device_by_driver(UCLASS_MISC,
1393 					  DM_DRIVER_GET(stpmic1_nvm),
1394 					  &dev);
1395 	if (ret)
1396 		return ret;
1397 
1398 	return misc_write(dev, 0xF8, data->pmic_part, PMIC_SIZE);
1399 }
1400 
1401 /* copy FSBL on NAND to improve reliability on NAND */
stm32prog_copy_fsbl(struct stm32prog_part_t * part)1402 static int stm32prog_copy_fsbl(struct stm32prog_part_t *part)
1403 {
1404 	int ret, i;
1405 	void *fsbl;
1406 	struct image_header_s header;
1407 	struct raw_header_s raw_header;
1408 	struct dfu_entity *dfu;
1409 	long size, offset;
1410 
1411 	if (part->target != STM32PROG_NAND &&
1412 	    part->target != STM32PROG_SPI_NAND)
1413 		return -1;
1414 
1415 	dfu = dfu_get_entity(part->alt_id);
1416 
1417 	/* read header */
1418 	dfu_transaction_cleanup(dfu);
1419 	size = BL_HEADER_SIZE;
1420 	ret = dfu->read_medium(dfu, 0, (void *)&raw_header, &size);
1421 	if (ret)
1422 		return ret;
1423 	if (stm32prog_header_check(&raw_header, &header))
1424 		return -1;
1425 
1426 	/* read header + payload */
1427 	size = header.image_length + BL_HEADER_SIZE;
1428 	size = round_up(size, part->dev->mtd->erasesize);
1429 	fsbl = calloc(1, size);
1430 	if (!fsbl)
1431 		return -ENOMEM;
1432 	ret = dfu->read_medium(dfu, 0, fsbl, &size);
1433 	log_debug("%s read size=%lx ret=%d\n", __func__, size, ret);
1434 	if (ret)
1435 		goto error;
1436 
1437 	dfu_transaction_cleanup(dfu);
1438 	offset = 0;
1439 	for (i = part->bin_nb - 1; i > 0; i--) {
1440 		offset += size;
1441 		/* write to the next erase block */
1442 		ret = dfu->write_medium(dfu, offset, fsbl, &size);
1443 		log_debug("%s copy at ofset=%lx size=%lx ret=%d",
1444 			  __func__, offset, size, ret);
1445 		if (ret)
1446 			goto error;
1447 	}
1448 
1449 error:
1450 	free(fsbl);
1451 	return ret;
1452 }
1453 
stm32prog_end_phase(struct stm32prog_data * data)1454 static void stm32prog_end_phase(struct stm32prog_data *data)
1455 {
1456 	if (data->phase == PHASE_FLASHLAYOUT) {
1457 		if (parse_flash_layout(data, STM32_DDR_BASE, 0))
1458 			stm32prog_err("Layout: invalid FlashLayout");
1459 		return;
1460 	}
1461 
1462 	if (!data->cur_part)
1463 		return;
1464 
1465 	if (data->cur_part->target == STM32PROG_RAM) {
1466 		if (data->cur_part->part_type == PART_SYSTEM)
1467 			data->uimage = data->cur_part->addr;
1468 		if (data->cur_part->part_type == PART_FILESYSTEM)
1469 			data->dtb = data->cur_part->addr;
1470 	}
1471 
1472 	if (CONFIG_IS_ENABLED(MMC) &&
1473 	    data->cur_part->part_id < 0) {
1474 		char cmdbuf[60];
1475 
1476 		sprintf(cmdbuf, "mmc bootbus %d 0 0 0; mmc partconf %d 1 %d 0",
1477 			data->cur_part->dev_id, data->cur_part->dev_id,
1478 			-(data->cur_part->part_id));
1479 		if (run_command(cmdbuf, 0)) {
1480 			stm32prog_err("commands '%s' failed", cmdbuf);
1481 			return;
1482 		}
1483 	}
1484 
1485 	if (CONFIG_IS_ENABLED(MTD) &&
1486 	    data->cur_part->bin_nb > 1) {
1487 		if (stm32prog_copy_fsbl(data->cur_part)) {
1488 			stm32prog_err("%s (0x%x): copy of fsbl failed",
1489 				      data->cur_part->name, data->cur_part->id);
1490 			return;
1491 		}
1492 	}
1493 }
1494 
stm32prog_do_reset(struct stm32prog_data * data)1495 void stm32prog_do_reset(struct stm32prog_data *data)
1496 {
1497 	if (data->phase == PHASE_RESET) {
1498 		data->phase = PHASE_DO_RESET;
1499 		puts("Reset requested\n");
1500 	}
1501 }
1502 
stm32prog_next_phase(struct stm32prog_data * data)1503 void stm32prog_next_phase(struct stm32prog_data *data)
1504 {
1505 	int phase, i;
1506 	struct stm32prog_part_t *part;
1507 	bool found;
1508 
1509 	phase = data->phase;
1510 	switch (phase) {
1511 	case PHASE_RESET:
1512 	case PHASE_END:
1513 	case PHASE_DO_RESET:
1514 		return;
1515 	}
1516 
1517 	/* found next selected partition */
1518 	data->dfu_seq = 0;
1519 	data->cur_part = NULL;
1520 	data->phase = PHASE_END;
1521 	found = false;
1522 	do {
1523 		phase++;
1524 		if (phase > PHASE_LAST_USER)
1525 			break;
1526 		for (i = 0; i < data->part_nb; i++) {
1527 			part = &data->part_array[i];
1528 			if (part->id == phase) {
1529 				if (IS_SELECT(part) && !IS_EMPTY(part)) {
1530 					data->cur_part = part;
1531 					data->phase = phase;
1532 					found = true;
1533 				}
1534 				break;
1535 			}
1536 		}
1537 	} while (!found);
1538 
1539 	if (data->phase == PHASE_END)
1540 		puts("Phase=END\n");
1541 }
1542 
part_delete(struct stm32prog_data * data,struct stm32prog_part_t * part)1543 static int part_delete(struct stm32prog_data *data,
1544 		       struct stm32prog_part_t *part)
1545 {
1546 	int ret = 0;
1547 	unsigned long blks, blks_offset, blks_size;
1548 	struct blk_desc *block_dev = NULL;
1549 	char cmdbuf[40];
1550 	char devstr[10];
1551 
1552 	printf("Erasing %s ", part->name);
1553 	switch (part->target) {
1554 	case STM32PROG_MMC:
1555 		if (!IS_ENABLED(CONFIG_MMC)) {
1556 			ret = -1;
1557 			stm32prog_err("%s (0x%x): erase invalid",
1558 				      part->name, part->id);
1559 			break;
1560 		}
1561 		printf("on mmc %d: ", part->dev->dev_id);
1562 		block_dev = mmc_get_blk_desc(part->dev->mmc);
1563 		blks_offset = lldiv(part->addr, part->dev->mmc->read_bl_len);
1564 		blks_size = lldiv(part->size, part->dev->mmc->read_bl_len);
1565 		/* -1 or -2 : delete boot partition of MMC
1566 		 * need to switch to associated hwpart 1 or 2
1567 		 */
1568 		if (part->part_id < 0)
1569 			if (blk_select_hwpart_devnum(IF_TYPE_MMC,
1570 						     part->dev->dev_id,
1571 						     -part->part_id))
1572 				return -1;
1573 
1574 		blks = blk_derase(block_dev, blks_offset, blks_size);
1575 
1576 		/* return to user partition */
1577 		if (part->part_id < 0)
1578 			blk_select_hwpart_devnum(IF_TYPE_MMC,
1579 						 part->dev->dev_id, 0);
1580 		if (blks != blks_size) {
1581 			ret = -1;
1582 			stm32prog_err("%s (0x%x): MMC erase failed",
1583 				      part->name, part->id);
1584 		}
1585 		break;
1586 	case STM32PROG_NOR:
1587 	case STM32PROG_NAND:
1588 	case STM32PROG_SPI_NAND:
1589 		if (!IS_ENABLED(CONFIG_MTD)) {
1590 			ret = -1;
1591 			stm32prog_err("%s (0x%x): erase invalid",
1592 				      part->name, part->id);
1593 			break;
1594 		}
1595 		get_mtd_by_target(devstr, part->target, part->dev->dev_id);
1596 		printf("on %s: ", devstr);
1597 		sprintf(cmdbuf, "mtd erase %s 0x%llx 0x%llx",
1598 			devstr, part->addr, part->size);
1599 		if (run_command(cmdbuf, 0)) {
1600 			ret = -1;
1601 			stm32prog_err("%s (0x%x): MTD erase commands failed (%s)",
1602 				      part->name, part->id, cmdbuf);
1603 		}
1604 		break;
1605 	case STM32PROG_RAM:
1606 		printf("on ram: ");
1607 		memset((void *)(uintptr_t)part->addr, 0, (size_t)part->size);
1608 		break;
1609 	default:
1610 		ret = -1;
1611 		stm32prog_err("%s (0x%x): erase invalid", part->name, part->id);
1612 		break;
1613 	}
1614 	if (!ret)
1615 		printf("done\n");
1616 
1617 	return ret;
1618 }
1619 
stm32prog_devices_init(struct stm32prog_data * data)1620 static void stm32prog_devices_init(struct stm32prog_data *data)
1621 {
1622 	int i;
1623 	int ret;
1624 	struct stm32prog_part_t *part;
1625 
1626 	ret = treat_partition_list(data);
1627 	if (ret)
1628 		goto error;
1629 
1630 	/* initialize the selected device */
1631 	for (i = 0; i < data->dev_nb; i++) {
1632 		ret = init_device(data, &data->dev[i]);
1633 		if (ret)
1634 			goto error;
1635 	}
1636 
1637 	/* delete RAW partition before create partition */
1638 	for (i = 0; i < data->part_nb; i++) {
1639 		part = &data->part_array[i];
1640 
1641 		if (part->part_type != RAW_IMAGE)
1642 			continue;
1643 
1644 		if (!IS_SELECT(part) || !IS_DELETE(part))
1645 			continue;
1646 
1647 		ret = part_delete(data, part);
1648 		if (ret)
1649 			goto error;
1650 	}
1651 
1652 	if (IS_ENABLED(CONFIG_MMC)) {
1653 		ret = create_gpt_partitions(data);
1654 		if (ret)
1655 			goto error;
1656 	}
1657 
1658 	/* delete partition GPT or MTD */
1659 	for (i = 0; i < data->part_nb; i++) {
1660 		part = &data->part_array[i];
1661 
1662 		if (part->part_type == RAW_IMAGE)
1663 			continue;
1664 
1665 		if (!IS_SELECT(part) || !IS_DELETE(part))
1666 			continue;
1667 
1668 		ret = part_delete(data, part);
1669 		if (ret)
1670 			goto error;
1671 	}
1672 
1673 	return;
1674 
1675 error:
1676 	data->part_nb = 0;
1677 }
1678 
stm32prog_dfu_init(struct stm32prog_data * data)1679 int stm32prog_dfu_init(struct stm32prog_data *data)
1680 {
1681 	/* init device if no error */
1682 	if (data->part_nb)
1683 		stm32prog_devices_init(data);
1684 
1685 	if (data->part_nb)
1686 		stm32prog_next_phase(data);
1687 
1688 	/* prepare DFU for device read/write */
1689 	dfu_free_entities();
1690 	return dfu_init_entities(data);
1691 }
1692 
stm32prog_init(struct stm32prog_data * data,ulong addr,ulong size)1693 int stm32prog_init(struct stm32prog_data *data, ulong addr, ulong size)
1694 {
1695 	memset(data, 0x0, sizeof(*data));
1696 	data->read_phase = PHASE_RESET;
1697 	data->phase = PHASE_FLASHLAYOUT;
1698 
1699 	return parse_flash_layout(data, addr, size);
1700 }
1701 
stm32prog_clean(struct stm32prog_data * data)1702 void stm32prog_clean(struct stm32prog_data *data)
1703 {
1704 	/* clean */
1705 	dfu_free_entities();
1706 	free(data->part_array);
1707 	free(data->otp_part);
1708 	free(data->buffer);
1709 	free(data->header_data);
1710 }
1711 
1712 /* DFU callback: used after serial and direct DFU USB access */
dfu_flush_callback(struct dfu_entity * dfu)1713 void dfu_flush_callback(struct dfu_entity *dfu)
1714 {
1715 	if (!stm32prog_data)
1716 		return;
1717 
1718 	if (dfu->dev_type == DFU_DEV_VIRT) {
1719 		if (dfu->data.virt.dev_num == PHASE_OTP)
1720 			stm32prog_otp_start(stm32prog_data);
1721 		else if (dfu->data.virt.dev_num == PHASE_PMIC)
1722 			stm32prog_pmic_start(stm32prog_data);
1723 		return;
1724 	}
1725 
1726 	if (dfu->dev_type == DFU_DEV_RAM) {
1727 		if (dfu->alt == 0 &&
1728 		    stm32prog_data->phase == PHASE_FLASHLAYOUT) {
1729 			stm32prog_end_phase(stm32prog_data);
1730 			/* waiting DFU DETACH for reenumeration */
1731 		}
1732 	}
1733 
1734 	if (!stm32prog_data->cur_part)
1735 		return;
1736 
1737 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1738 		stm32prog_end_phase(stm32prog_data);
1739 		stm32prog_next_phase(stm32prog_data);
1740 	}
1741 }
1742 
dfu_initiated_callback(struct dfu_entity * dfu)1743 void dfu_initiated_callback(struct dfu_entity *dfu)
1744 {
1745 	if (!stm32prog_data)
1746 		return;
1747 
1748 	if (!stm32prog_data->cur_part)
1749 		return;
1750 
1751 	/* force the saved offset for the current partition */
1752 	if (dfu->alt == stm32prog_data->cur_part->alt_id) {
1753 		dfu->offset = stm32prog_data->offset;
1754 		stm32prog_data->dfu_seq = 0;
1755 		log_debug("dfu offset = 0x%llx\n", dfu->offset);
1756 	}
1757 }
1758