1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/power/swap.c
4 *
5 * This file provides functions for reading the suspend image from
6 * and writing it to a swap partition.
7 *
8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11 */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG "S1SUSPEND"
38
39 /*
40 * When reading an {un,}compressed image, we may restore pages in place,
41 * in which case some architectures need these pages cleaning before they
42 * can be executed. We don't know which pages these may be, so clean the lot.
43 */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48 * The swap map is a data structure used for keeping track of each page
49 * written to a swap partition. It consists of many swap_map_page
50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51 * These structures are stored on the swap and linked together with the
52 * help of the .next_swap member.
53 *
54 * The swap map is created during suspend. The swap map pages are
55 * allocated and populated one at a time, so we only need one memory
56 * page to set up the entire structure.
57 *
58 * During resume we pick up all swap_map_page structures into a list.
59 */
60
61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64 * Number of free pages that are not high.
65 */
low_free_pages(void)66 static inline unsigned long low_free_pages(void)
67 {
68 return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72 * Number of pages required to be kept free while writing the image. Always
73 * half of all available low pages before the writing starts.
74 */
reqd_free_pages(void)75 static inline unsigned long reqd_free_pages(void)
76 {
77 return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81 sector_t entries[MAP_PAGE_ENTRIES];
82 sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86 struct swap_map_page *map;
87 struct swap_map_page_list *next;
88 };
89
90 /**
91 * The swap_map_handle structure is used for handling swap in
92 * a file-alike way
93 */
94
95 struct swap_map_handle {
96 struct swap_map_page *cur;
97 struct swap_map_page_list *maps;
98 sector_t cur_swap;
99 sector_t first_sector;
100 unsigned int k;
101 unsigned long reqd_free_pages;
102 u32 crc32;
103 };
104
105 struct swsusp_header {
106 char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107 sizeof(u32)];
108 u32 crc32;
109 sector_t image;
110 unsigned int flags; /* Flags to pass to the "boot" kernel */
111 char orig_sig[10];
112 char sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118 * The following functions are used for tracing the allocated
119 * swap pages, so that they can be freed in case of an error.
120 */
121
122 struct swsusp_extent {
123 struct rb_node node;
124 unsigned long start;
125 unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
swsusp_extents_insert(unsigned long swap_offset)130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132 struct rb_node **new = &(swsusp_extents.rb_node);
133 struct rb_node *parent = NULL;
134 struct swsusp_extent *ext;
135
136 /* Figure out where to put the new node */
137 while (*new) {
138 ext = rb_entry(*new, struct swsusp_extent, node);
139 parent = *new;
140 if (swap_offset < ext->start) {
141 /* Try to merge */
142 if (swap_offset == ext->start - 1) {
143 ext->start--;
144 return 0;
145 }
146 new = &((*new)->rb_left);
147 } else if (swap_offset > ext->end) {
148 /* Try to merge */
149 if (swap_offset == ext->end + 1) {
150 ext->end++;
151 return 0;
152 }
153 new = &((*new)->rb_right);
154 } else {
155 /* It already is in the tree */
156 return -EINVAL;
157 }
158 }
159 /* Add the new node and rebalance the tree. */
160 ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161 if (!ext)
162 return -ENOMEM;
163
164 ext->start = swap_offset;
165 ext->end = swap_offset;
166 rb_link_node(&ext->node, parent, new);
167 rb_insert_color(&ext->node, &swsusp_extents);
168 return 0;
169 }
170
171 /**
172 * alloc_swapdev_block - allocate a swap page and register that it has
173 * been allocated, so that it can be freed in case of an error.
174 */
175
alloc_swapdev_block(int swap)176 sector_t alloc_swapdev_block(int swap)
177 {
178 unsigned long offset;
179
180 offset = swp_offset(get_swap_page_of_type(swap));
181 if (offset) {
182 if (swsusp_extents_insert(offset))
183 swap_free(swp_entry(swap, offset));
184 else
185 return swapdev_block(swap, offset);
186 }
187 return 0;
188 }
189
190 /**
191 * free_all_swap_pages - free swap pages allocated for saving image data.
192 * It also frees the extents used to register which swap entries had been
193 * allocated.
194 */
195
free_all_swap_pages(int swap)196 void free_all_swap_pages(int swap)
197 {
198 struct rb_node *node;
199
200 while ((node = swsusp_extents.rb_node)) {
201 struct swsusp_extent *ext;
202 unsigned long offset;
203
204 ext = rb_entry(node, struct swsusp_extent, node);
205 rb_erase(node, &swsusp_extents);
206 for (offset = ext->start; offset <= ext->end; offset++)
207 swap_free(swp_entry(swap, offset));
208
209 kfree(ext);
210 }
211 }
212
swsusp_swap_in_use(void)213 int swsusp_swap_in_use(void)
214 {
215 return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219 * General things
220 */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226 atomic_t count;
227 wait_queue_head_t wait;
228 blk_status_t error;
229 struct blk_plug plug;
230 };
231
hib_init_batch(struct hib_bio_batch * hb)232 static void hib_init_batch(struct hib_bio_batch *hb)
233 {
234 atomic_set(&hb->count, 0);
235 init_waitqueue_head(&hb->wait);
236 hb->error = BLK_STS_OK;
237 blk_start_plug(&hb->plug);
238 }
239
hib_finish_batch(struct hib_bio_batch * hb)240 static void hib_finish_batch(struct hib_bio_batch *hb)
241 {
242 blk_finish_plug(&hb->plug);
243 }
244
hib_end_io(struct bio * bio)245 static void hib_end_io(struct bio *bio)
246 {
247 struct hib_bio_batch *hb = bio->bi_private;
248 struct page *page = bio_first_page_all(bio);
249
250 if (bio->bi_status) {
251 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
252 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
253 (unsigned long long)bio->bi_iter.bi_sector);
254 }
255
256 if (bio_data_dir(bio) == WRITE)
257 put_page(page);
258 else if (clean_pages_on_read)
259 flush_icache_range((unsigned long)page_address(page),
260 (unsigned long)page_address(page) + PAGE_SIZE);
261
262 if (bio->bi_status && !hb->error)
263 hb->error = bio->bi_status;
264 if (atomic_dec_and_test(&hb->count))
265 wake_up(&hb->wait);
266
267 bio_put(bio);
268 }
269
hib_submit_io(int op,int op_flags,pgoff_t page_off,void * addr,struct hib_bio_batch * hb)270 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
271 struct hib_bio_batch *hb)
272 {
273 struct page *page = virt_to_page(addr);
274 struct bio *bio;
275 int error = 0;
276
277 bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
278 bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
279 bio_set_dev(bio, hib_resume_bdev);
280 bio_set_op_attrs(bio, op, op_flags);
281
282 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
283 pr_err("Adding page to bio failed at %llu\n",
284 (unsigned long long)bio->bi_iter.bi_sector);
285 bio_put(bio);
286 return -EFAULT;
287 }
288
289 if (hb) {
290 bio->bi_end_io = hib_end_io;
291 bio->bi_private = hb;
292 atomic_inc(&hb->count);
293 submit_bio(bio);
294 } else {
295 error = submit_bio_wait(bio);
296 bio_put(bio);
297 }
298
299 return error;
300 }
301
hib_wait_io(struct hib_bio_batch * hb)302 static int hib_wait_io(struct hib_bio_batch *hb)
303 {
304 /*
305 * We are relying on the behavior of blk_plug that a thread with
306 * a plug will flush the plug list before sleeping.
307 */
308 wait_event(hb->wait, atomic_read(&hb->count) == 0);
309 return blk_status_to_errno(hb->error);
310 }
311
312 /*
313 * Saving part
314 */
315
mark_swapfiles(struct swap_map_handle * handle,unsigned int flags)316 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
317 {
318 int error;
319
320 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
321 swsusp_header, NULL);
322 if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
323 !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
324 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
325 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
326 swsusp_header->image = handle->first_sector;
327 swsusp_header->flags = flags;
328 if (flags & SF_CRC32_MODE)
329 swsusp_header->crc32 = handle->crc32;
330 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
331 swsusp_resume_block, swsusp_header, NULL);
332 } else {
333 pr_err("Swap header not found!\n");
334 error = -ENODEV;
335 }
336 return error;
337 }
338
339 /**
340 * swsusp_swap_check - check if the resume device is a swap device
341 * and get its index (if so)
342 *
343 * This is called before saving image
344 */
swsusp_swap_check(void)345 static int swsusp_swap_check(void)
346 {
347 int res;
348
349 if (swsusp_resume_device)
350 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
351 else
352 res = find_first_swap(&swsusp_resume_device);
353 if (res < 0)
354 return res;
355 root_swap = res;
356
357 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
358 NULL);
359 if (IS_ERR(hib_resume_bdev))
360 return PTR_ERR(hib_resume_bdev);
361
362 res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
363 if (res < 0)
364 blkdev_put(hib_resume_bdev, FMODE_WRITE);
365
366 return res;
367 }
368
369 /**
370 * write_page - Write one page to given swap location.
371 * @buf: Address we're writing.
372 * @offset: Offset of the swap page we're writing to.
373 * @hb: bio completion batch
374 */
375
write_page(void * buf,sector_t offset,struct hib_bio_batch * hb)376 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
377 {
378 void *src;
379 int ret;
380
381 if (!offset)
382 return -ENOSPC;
383
384 if (hb) {
385 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
386 __GFP_NORETRY);
387 if (src) {
388 copy_page(src, buf);
389 } else {
390 ret = hib_wait_io(hb); /* Free pages */
391 if (ret)
392 return ret;
393 src = (void *)__get_free_page(GFP_NOIO |
394 __GFP_NOWARN |
395 __GFP_NORETRY);
396 if (src) {
397 copy_page(src, buf);
398 } else {
399 WARN_ON_ONCE(1);
400 hb = NULL; /* Go synchronous */
401 src = buf;
402 }
403 }
404 } else {
405 src = buf;
406 }
407 return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
408 }
409
release_swap_writer(struct swap_map_handle * handle)410 static void release_swap_writer(struct swap_map_handle *handle)
411 {
412 if (handle->cur)
413 free_page((unsigned long)handle->cur);
414 handle->cur = NULL;
415 }
416
get_swap_writer(struct swap_map_handle * handle)417 static int get_swap_writer(struct swap_map_handle *handle)
418 {
419 int ret;
420
421 ret = swsusp_swap_check();
422 if (ret) {
423 if (ret != -ENOSPC)
424 pr_err("Cannot find swap device, try swapon -a\n");
425 return ret;
426 }
427 handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
428 if (!handle->cur) {
429 ret = -ENOMEM;
430 goto err_close;
431 }
432 handle->cur_swap = alloc_swapdev_block(root_swap);
433 if (!handle->cur_swap) {
434 ret = -ENOSPC;
435 goto err_rel;
436 }
437 handle->k = 0;
438 handle->reqd_free_pages = reqd_free_pages();
439 handle->first_sector = handle->cur_swap;
440 return 0;
441 err_rel:
442 release_swap_writer(handle);
443 err_close:
444 swsusp_close(FMODE_WRITE);
445 return ret;
446 }
447
swap_write_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)448 static int swap_write_page(struct swap_map_handle *handle, void *buf,
449 struct hib_bio_batch *hb)
450 {
451 int error = 0;
452 sector_t offset;
453
454 if (!handle->cur)
455 return -EINVAL;
456 offset = alloc_swapdev_block(root_swap);
457 error = write_page(buf, offset, hb);
458 if (error)
459 return error;
460 handle->cur->entries[handle->k++] = offset;
461 if (handle->k >= MAP_PAGE_ENTRIES) {
462 offset = alloc_swapdev_block(root_swap);
463 if (!offset)
464 return -ENOSPC;
465 handle->cur->next_swap = offset;
466 error = write_page(handle->cur, handle->cur_swap, hb);
467 if (error)
468 goto out;
469 clear_page(handle->cur);
470 handle->cur_swap = offset;
471 handle->k = 0;
472
473 if (hb && low_free_pages() <= handle->reqd_free_pages) {
474 error = hib_wait_io(hb);
475 if (error)
476 goto out;
477 /*
478 * Recalculate the number of required free pages, to
479 * make sure we never take more than half.
480 */
481 handle->reqd_free_pages = reqd_free_pages();
482 }
483 }
484 out:
485 return error;
486 }
487
flush_swap_writer(struct swap_map_handle * handle)488 static int flush_swap_writer(struct swap_map_handle *handle)
489 {
490 if (handle->cur && handle->cur_swap)
491 return write_page(handle->cur, handle->cur_swap, NULL);
492 else
493 return -EINVAL;
494 }
495
swap_writer_finish(struct swap_map_handle * handle,unsigned int flags,int error)496 static int swap_writer_finish(struct swap_map_handle *handle,
497 unsigned int flags, int error)
498 {
499 if (!error) {
500 pr_info("S");
501 error = mark_swapfiles(handle, flags);
502 pr_cont("|\n");
503 flush_swap_writer(handle);
504 }
505
506 if (error)
507 free_all_swap_pages(root_swap);
508 release_swap_writer(handle);
509 swsusp_close(FMODE_WRITE);
510
511 return error;
512 }
513
514 /* We need to remember how much compressed data we need to read. */
515 #define LZO_HEADER sizeof(size_t)
516
517 /* Number of pages/bytes we'll compress at one time. */
518 #define LZO_UNC_PAGES 32
519 #define LZO_UNC_SIZE (LZO_UNC_PAGES * PAGE_SIZE)
520
521 /* Number of pages/bytes we need for compressed data (worst case). */
522 #define LZO_CMP_PAGES DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
523 LZO_HEADER, PAGE_SIZE)
524 #define LZO_CMP_SIZE (LZO_CMP_PAGES * PAGE_SIZE)
525
526 /* Maximum number of threads for compression/decompression. */
527 #define LZO_THREADS 3
528
529 /* Minimum/maximum number of pages for read buffering. */
530 #define LZO_MIN_RD_PAGES 1024
531 #define LZO_MAX_RD_PAGES 8192
532
533
534 /**
535 * save_image - save the suspend image data
536 */
537
save_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)538 static int save_image(struct swap_map_handle *handle,
539 struct snapshot_handle *snapshot,
540 unsigned int nr_to_write)
541 {
542 unsigned int m;
543 int ret;
544 int nr_pages;
545 int err2;
546 struct hib_bio_batch hb;
547 ktime_t start;
548 ktime_t stop;
549
550 hib_init_batch(&hb);
551
552 pr_info("Saving image data pages (%u pages)...\n",
553 nr_to_write);
554 m = nr_to_write / 10;
555 if (!m)
556 m = 1;
557 nr_pages = 0;
558 start = ktime_get();
559 while (1) {
560 ret = snapshot_read_next(snapshot);
561 if (ret <= 0)
562 break;
563 ret = swap_write_page(handle, data_of(*snapshot), &hb);
564 if (ret)
565 break;
566 if (!(nr_pages % m))
567 pr_info("Image saving progress: %3d%%\n",
568 nr_pages / m * 10);
569 nr_pages++;
570 }
571 err2 = hib_wait_io(&hb);
572 hib_finish_batch(&hb);
573 stop = ktime_get();
574 if (!ret)
575 ret = err2;
576 if (!ret)
577 pr_info("Image saving done\n");
578 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
579 return ret;
580 }
581
582 /**
583 * Structure used for CRC32.
584 */
585 struct crc_data {
586 struct task_struct *thr; /* thread */
587 atomic_t ready; /* ready to start flag */
588 atomic_t stop; /* ready to stop flag */
589 unsigned run_threads; /* nr current threads */
590 wait_queue_head_t go; /* start crc update */
591 wait_queue_head_t done; /* crc update done */
592 u32 *crc32; /* points to handle's crc32 */
593 size_t *unc_len[LZO_THREADS]; /* uncompressed lengths */
594 unsigned char *unc[LZO_THREADS]; /* uncompressed data */
595 };
596
597 /**
598 * CRC32 update function that runs in its own thread.
599 */
crc32_threadfn(void * data)600 static int crc32_threadfn(void *data)
601 {
602 struct crc_data *d = data;
603 unsigned i;
604
605 while (1) {
606 wait_event(d->go, atomic_read(&d->ready) ||
607 kthread_should_stop());
608 if (kthread_should_stop()) {
609 d->thr = NULL;
610 atomic_set(&d->stop, 1);
611 wake_up(&d->done);
612 break;
613 }
614 atomic_set(&d->ready, 0);
615
616 for (i = 0; i < d->run_threads; i++)
617 *d->crc32 = crc32_le(*d->crc32,
618 d->unc[i], *d->unc_len[i]);
619 atomic_set(&d->stop, 1);
620 wake_up(&d->done);
621 }
622 return 0;
623 }
624 /**
625 * Structure used for LZO data compression.
626 */
627 struct cmp_data {
628 struct task_struct *thr; /* thread */
629 atomic_t ready; /* ready to start flag */
630 atomic_t stop; /* ready to stop flag */
631 int ret; /* return code */
632 wait_queue_head_t go; /* start compression */
633 wait_queue_head_t done; /* compression done */
634 size_t unc_len; /* uncompressed length */
635 size_t cmp_len; /* compressed length */
636 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
637 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
638 unsigned char wrk[LZO1X_1_MEM_COMPRESS]; /* compression workspace */
639 };
640
641 /**
642 * Compression function that runs in its own thread.
643 */
lzo_compress_threadfn(void * data)644 static int lzo_compress_threadfn(void *data)
645 {
646 struct cmp_data *d = data;
647
648 while (1) {
649 wait_event(d->go, atomic_read(&d->ready) ||
650 kthread_should_stop());
651 if (kthread_should_stop()) {
652 d->thr = NULL;
653 d->ret = -1;
654 atomic_set(&d->stop, 1);
655 wake_up(&d->done);
656 break;
657 }
658 atomic_set(&d->ready, 0);
659
660 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
661 d->cmp + LZO_HEADER, &d->cmp_len,
662 d->wrk);
663 atomic_set(&d->stop, 1);
664 wake_up(&d->done);
665 }
666 return 0;
667 }
668
669 /**
670 * save_image_lzo - Save the suspend image data compressed with LZO.
671 * @handle: Swap map handle to use for saving the image.
672 * @snapshot: Image to read data from.
673 * @nr_to_write: Number of pages to save.
674 */
save_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_write)675 static int save_image_lzo(struct swap_map_handle *handle,
676 struct snapshot_handle *snapshot,
677 unsigned int nr_to_write)
678 {
679 unsigned int m;
680 int ret = 0;
681 int nr_pages;
682 int err2;
683 struct hib_bio_batch hb;
684 ktime_t start;
685 ktime_t stop;
686 size_t off;
687 unsigned thr, run_threads, nr_threads;
688 unsigned char *page = NULL;
689 struct cmp_data *data = NULL;
690 struct crc_data *crc = NULL;
691
692 hib_init_batch(&hb);
693
694 /*
695 * We'll limit the number of threads for compression to limit memory
696 * footprint.
697 */
698 nr_threads = num_online_cpus() - 1;
699 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
700
701 page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
702 if (!page) {
703 pr_err("Failed to allocate LZO page\n");
704 ret = -ENOMEM;
705 goto out_clean;
706 }
707
708 data = vzalloc(array_size(nr_threads, sizeof(*data)));
709 if (!data) {
710 pr_err("Failed to allocate LZO data\n");
711 ret = -ENOMEM;
712 goto out_clean;
713 }
714
715 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
716 if (!crc) {
717 pr_err("Failed to allocate crc\n");
718 ret = -ENOMEM;
719 goto out_clean;
720 }
721
722 /*
723 * Start the compression threads.
724 */
725 for (thr = 0; thr < nr_threads; thr++) {
726 init_waitqueue_head(&data[thr].go);
727 init_waitqueue_head(&data[thr].done);
728
729 data[thr].thr = kthread_run(lzo_compress_threadfn,
730 &data[thr],
731 "image_compress/%u", thr);
732 if (IS_ERR(data[thr].thr)) {
733 data[thr].thr = NULL;
734 pr_err("Cannot start compression threads\n");
735 ret = -ENOMEM;
736 goto out_clean;
737 }
738 }
739
740 /*
741 * Start the CRC32 thread.
742 */
743 init_waitqueue_head(&crc->go);
744 init_waitqueue_head(&crc->done);
745
746 handle->crc32 = 0;
747 crc->crc32 = &handle->crc32;
748 for (thr = 0; thr < nr_threads; thr++) {
749 crc->unc[thr] = data[thr].unc;
750 crc->unc_len[thr] = &data[thr].unc_len;
751 }
752
753 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
754 if (IS_ERR(crc->thr)) {
755 crc->thr = NULL;
756 pr_err("Cannot start CRC32 thread\n");
757 ret = -ENOMEM;
758 goto out_clean;
759 }
760
761 /*
762 * Adjust the number of required free pages after all allocations have
763 * been done. We don't want to run out of pages when writing.
764 */
765 handle->reqd_free_pages = reqd_free_pages();
766
767 pr_info("Using %u thread(s) for compression\n", nr_threads);
768 pr_info("Compressing and saving image data (%u pages)...\n",
769 nr_to_write);
770 m = nr_to_write / 10;
771 if (!m)
772 m = 1;
773 nr_pages = 0;
774 start = ktime_get();
775 for (;;) {
776 for (thr = 0; thr < nr_threads; thr++) {
777 for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
778 ret = snapshot_read_next(snapshot);
779 if (ret < 0)
780 goto out_finish;
781
782 if (!ret)
783 break;
784
785 memcpy(data[thr].unc + off,
786 data_of(*snapshot), PAGE_SIZE);
787
788 if (!(nr_pages % m))
789 pr_info("Image saving progress: %3d%%\n",
790 nr_pages / m * 10);
791 nr_pages++;
792 }
793 if (!off)
794 break;
795
796 data[thr].unc_len = off;
797
798 atomic_set(&data[thr].ready, 1);
799 wake_up(&data[thr].go);
800 }
801
802 if (!thr)
803 break;
804
805 crc->run_threads = thr;
806 atomic_set(&crc->ready, 1);
807 wake_up(&crc->go);
808
809 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
810 wait_event(data[thr].done,
811 atomic_read(&data[thr].stop));
812 atomic_set(&data[thr].stop, 0);
813
814 ret = data[thr].ret;
815
816 if (ret < 0) {
817 pr_err("LZO compression failed\n");
818 goto out_finish;
819 }
820
821 if (unlikely(!data[thr].cmp_len ||
822 data[thr].cmp_len >
823 lzo1x_worst_compress(data[thr].unc_len))) {
824 pr_err("Invalid LZO compressed length\n");
825 ret = -1;
826 goto out_finish;
827 }
828
829 *(size_t *)data[thr].cmp = data[thr].cmp_len;
830
831 /*
832 * Given we are writing one page at a time to disk, we
833 * copy that much from the buffer, although the last
834 * bit will likely be smaller than full page. This is
835 * OK - we saved the length of the compressed data, so
836 * any garbage at the end will be discarded when we
837 * read it.
838 */
839 for (off = 0;
840 off < LZO_HEADER + data[thr].cmp_len;
841 off += PAGE_SIZE) {
842 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
843
844 ret = swap_write_page(handle, page, &hb);
845 if (ret)
846 goto out_finish;
847 }
848 }
849
850 wait_event(crc->done, atomic_read(&crc->stop));
851 atomic_set(&crc->stop, 0);
852 }
853
854 out_finish:
855 err2 = hib_wait_io(&hb);
856 stop = ktime_get();
857 if (!ret)
858 ret = err2;
859 if (!ret)
860 pr_info("Image saving done\n");
861 swsusp_show_speed(start, stop, nr_to_write, "Wrote");
862 out_clean:
863 hib_finish_batch(&hb);
864 if (crc) {
865 if (crc->thr)
866 kthread_stop(crc->thr);
867 kfree(crc);
868 }
869 if (data) {
870 for (thr = 0; thr < nr_threads; thr++)
871 if (data[thr].thr)
872 kthread_stop(data[thr].thr);
873 vfree(data);
874 }
875 if (page) free_page((unsigned long)page);
876
877 return ret;
878 }
879
880 /**
881 * enough_swap - Make sure we have enough swap to save the image.
882 *
883 * Returns TRUE or FALSE after checking the total amount of swap
884 * space available from the resume partition.
885 */
886
enough_swap(unsigned int nr_pages)887 static int enough_swap(unsigned int nr_pages)
888 {
889 unsigned int free_swap = count_swap_pages(root_swap, 1);
890 unsigned int required;
891
892 pr_debug("Free swap pages: %u\n", free_swap);
893
894 required = PAGES_FOR_IO + nr_pages;
895 return free_swap > required;
896 }
897
898 /**
899 * swsusp_write - Write entire image and metadata.
900 * @flags: flags to pass to the "boot" kernel in the image header
901 *
902 * It is important _NOT_ to umount filesystems at this point. We want
903 * them synced (in case something goes wrong) but we DO not want to mark
904 * filesystem clean: it is not. (And it does not matter, if we resume
905 * correctly, we'll mark system clean, anyway.)
906 */
907
swsusp_write(unsigned int flags)908 int swsusp_write(unsigned int flags)
909 {
910 struct swap_map_handle handle;
911 struct snapshot_handle snapshot;
912 struct swsusp_info *header;
913 unsigned long pages;
914 int error;
915
916 pages = snapshot_get_image_size();
917 error = get_swap_writer(&handle);
918 if (error) {
919 pr_err("Cannot get swap writer\n");
920 return error;
921 }
922 if (flags & SF_NOCOMPRESS_MODE) {
923 if (!enough_swap(pages)) {
924 pr_err("Not enough free swap\n");
925 error = -ENOSPC;
926 goto out_finish;
927 }
928 }
929 memset(&snapshot, 0, sizeof(struct snapshot_handle));
930 error = snapshot_read_next(&snapshot);
931 if (error < (int)PAGE_SIZE) {
932 if (error >= 0)
933 error = -EFAULT;
934
935 goto out_finish;
936 }
937 header = (struct swsusp_info *)data_of(snapshot);
938 error = swap_write_page(&handle, header, NULL);
939 if (!error) {
940 error = (flags & SF_NOCOMPRESS_MODE) ?
941 save_image(&handle, &snapshot, pages - 1) :
942 save_image_lzo(&handle, &snapshot, pages - 1);
943 }
944 out_finish:
945 error = swap_writer_finish(&handle, flags, error);
946 return error;
947 }
948
949 /**
950 * The following functions allow us to read data using a swap map
951 * in a file-alike way
952 */
953
release_swap_reader(struct swap_map_handle * handle)954 static void release_swap_reader(struct swap_map_handle *handle)
955 {
956 struct swap_map_page_list *tmp;
957
958 while (handle->maps) {
959 if (handle->maps->map)
960 free_page((unsigned long)handle->maps->map);
961 tmp = handle->maps;
962 handle->maps = handle->maps->next;
963 kfree(tmp);
964 }
965 handle->cur = NULL;
966 }
967
get_swap_reader(struct swap_map_handle * handle,unsigned int * flags_p)968 static int get_swap_reader(struct swap_map_handle *handle,
969 unsigned int *flags_p)
970 {
971 int error;
972 struct swap_map_page_list *tmp, *last;
973 sector_t offset;
974
975 *flags_p = swsusp_header->flags;
976
977 if (!swsusp_header->image) /* how can this happen? */
978 return -EINVAL;
979
980 handle->cur = NULL;
981 last = handle->maps = NULL;
982 offset = swsusp_header->image;
983 while (offset) {
984 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
985 if (!tmp) {
986 release_swap_reader(handle);
987 return -ENOMEM;
988 }
989 if (!handle->maps)
990 handle->maps = tmp;
991 if (last)
992 last->next = tmp;
993 last = tmp;
994
995 tmp->map = (struct swap_map_page *)
996 __get_free_page(GFP_NOIO | __GFP_HIGH);
997 if (!tmp->map) {
998 release_swap_reader(handle);
999 return -ENOMEM;
1000 }
1001
1002 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
1003 if (error) {
1004 release_swap_reader(handle);
1005 return error;
1006 }
1007 offset = tmp->map->next_swap;
1008 }
1009 handle->k = 0;
1010 handle->cur = handle->maps->map;
1011 return 0;
1012 }
1013
swap_read_page(struct swap_map_handle * handle,void * buf,struct hib_bio_batch * hb)1014 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1015 struct hib_bio_batch *hb)
1016 {
1017 sector_t offset;
1018 int error;
1019 struct swap_map_page_list *tmp;
1020
1021 if (!handle->cur)
1022 return -EINVAL;
1023 offset = handle->cur->entries[handle->k];
1024 if (!offset)
1025 return -EFAULT;
1026 error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1027 if (error)
1028 return error;
1029 if (++handle->k >= MAP_PAGE_ENTRIES) {
1030 handle->k = 0;
1031 free_page((unsigned long)handle->maps->map);
1032 tmp = handle->maps;
1033 handle->maps = handle->maps->next;
1034 kfree(tmp);
1035 if (!handle->maps)
1036 release_swap_reader(handle);
1037 else
1038 handle->cur = handle->maps->map;
1039 }
1040 return error;
1041 }
1042
swap_reader_finish(struct swap_map_handle * handle)1043 static int swap_reader_finish(struct swap_map_handle *handle)
1044 {
1045 release_swap_reader(handle);
1046
1047 return 0;
1048 }
1049
1050 /**
1051 * load_image - load the image using the swap map handle
1052 * @handle and the snapshot handle @snapshot
1053 * (assume there are @nr_pages pages to load)
1054 */
1055
load_image(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1056 static int load_image(struct swap_map_handle *handle,
1057 struct snapshot_handle *snapshot,
1058 unsigned int nr_to_read)
1059 {
1060 unsigned int m;
1061 int ret = 0;
1062 ktime_t start;
1063 ktime_t stop;
1064 struct hib_bio_batch hb;
1065 int err2;
1066 unsigned nr_pages;
1067
1068 hib_init_batch(&hb);
1069
1070 clean_pages_on_read = true;
1071 pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1072 m = nr_to_read / 10;
1073 if (!m)
1074 m = 1;
1075 nr_pages = 0;
1076 start = ktime_get();
1077 for ( ; ; ) {
1078 ret = snapshot_write_next(snapshot);
1079 if (ret <= 0)
1080 break;
1081 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1082 if (ret)
1083 break;
1084 if (snapshot->sync_read)
1085 ret = hib_wait_io(&hb);
1086 if (ret)
1087 break;
1088 if (!(nr_pages % m))
1089 pr_info("Image loading progress: %3d%%\n",
1090 nr_pages / m * 10);
1091 nr_pages++;
1092 }
1093 err2 = hib_wait_io(&hb);
1094 hib_finish_batch(&hb);
1095 stop = ktime_get();
1096 if (!ret)
1097 ret = err2;
1098 if (!ret) {
1099 pr_info("Image loading done\n");
1100 snapshot_write_finalize(snapshot);
1101 if (!snapshot_image_loaded(snapshot))
1102 ret = -ENODATA;
1103 }
1104 swsusp_show_speed(start, stop, nr_to_read, "Read");
1105 return ret;
1106 }
1107
1108 /**
1109 * Structure used for LZO data decompression.
1110 */
1111 struct dec_data {
1112 struct task_struct *thr; /* thread */
1113 atomic_t ready; /* ready to start flag */
1114 atomic_t stop; /* ready to stop flag */
1115 int ret; /* return code */
1116 wait_queue_head_t go; /* start decompression */
1117 wait_queue_head_t done; /* decompression done */
1118 size_t unc_len; /* uncompressed length */
1119 size_t cmp_len; /* compressed length */
1120 unsigned char unc[LZO_UNC_SIZE]; /* uncompressed buffer */
1121 unsigned char cmp[LZO_CMP_SIZE]; /* compressed buffer */
1122 };
1123
1124 /**
1125 * Decompression function that runs in its own thread.
1126 */
lzo_decompress_threadfn(void * data)1127 static int lzo_decompress_threadfn(void *data)
1128 {
1129 struct dec_data *d = data;
1130
1131 while (1) {
1132 wait_event(d->go, atomic_read(&d->ready) ||
1133 kthread_should_stop());
1134 if (kthread_should_stop()) {
1135 d->thr = NULL;
1136 d->ret = -1;
1137 atomic_set(&d->stop, 1);
1138 wake_up(&d->done);
1139 break;
1140 }
1141 atomic_set(&d->ready, 0);
1142
1143 d->unc_len = LZO_UNC_SIZE;
1144 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1145 d->unc, &d->unc_len);
1146 if (clean_pages_on_decompress)
1147 flush_icache_range((unsigned long)d->unc,
1148 (unsigned long)d->unc + d->unc_len);
1149
1150 atomic_set(&d->stop, 1);
1151 wake_up(&d->done);
1152 }
1153 return 0;
1154 }
1155
1156 /**
1157 * load_image_lzo - Load compressed image data and decompress them with LZO.
1158 * @handle: Swap map handle to use for loading data.
1159 * @snapshot: Image to copy uncompressed data into.
1160 * @nr_to_read: Number of pages to load.
1161 */
load_image_lzo(struct swap_map_handle * handle,struct snapshot_handle * snapshot,unsigned int nr_to_read)1162 static int load_image_lzo(struct swap_map_handle *handle,
1163 struct snapshot_handle *snapshot,
1164 unsigned int nr_to_read)
1165 {
1166 unsigned int m;
1167 int ret = 0;
1168 int eof = 0;
1169 struct hib_bio_batch hb;
1170 ktime_t start;
1171 ktime_t stop;
1172 unsigned nr_pages;
1173 size_t off;
1174 unsigned i, thr, run_threads, nr_threads;
1175 unsigned ring = 0, pg = 0, ring_size = 0,
1176 have = 0, want, need, asked = 0;
1177 unsigned long read_pages = 0;
1178 unsigned char **page = NULL;
1179 struct dec_data *data = NULL;
1180 struct crc_data *crc = NULL;
1181
1182 hib_init_batch(&hb);
1183
1184 /*
1185 * We'll limit the number of threads for decompression to limit memory
1186 * footprint.
1187 */
1188 nr_threads = num_online_cpus() - 1;
1189 nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1190
1191 page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1192 if (!page) {
1193 pr_err("Failed to allocate LZO page\n");
1194 ret = -ENOMEM;
1195 goto out_clean;
1196 }
1197
1198 data = vzalloc(array_size(nr_threads, sizeof(*data)));
1199 if (!data) {
1200 pr_err("Failed to allocate LZO data\n");
1201 ret = -ENOMEM;
1202 goto out_clean;
1203 }
1204
1205 crc = kzalloc(sizeof(*crc), GFP_KERNEL);
1206 if (!crc) {
1207 pr_err("Failed to allocate crc\n");
1208 ret = -ENOMEM;
1209 goto out_clean;
1210 }
1211
1212 clean_pages_on_decompress = true;
1213
1214 /*
1215 * Start the decompression threads.
1216 */
1217 for (thr = 0; thr < nr_threads; thr++) {
1218 init_waitqueue_head(&data[thr].go);
1219 init_waitqueue_head(&data[thr].done);
1220
1221 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1222 &data[thr],
1223 "image_decompress/%u", thr);
1224 if (IS_ERR(data[thr].thr)) {
1225 data[thr].thr = NULL;
1226 pr_err("Cannot start decompression threads\n");
1227 ret = -ENOMEM;
1228 goto out_clean;
1229 }
1230 }
1231
1232 /*
1233 * Start the CRC32 thread.
1234 */
1235 init_waitqueue_head(&crc->go);
1236 init_waitqueue_head(&crc->done);
1237
1238 handle->crc32 = 0;
1239 crc->crc32 = &handle->crc32;
1240 for (thr = 0; thr < nr_threads; thr++) {
1241 crc->unc[thr] = data[thr].unc;
1242 crc->unc_len[thr] = &data[thr].unc_len;
1243 }
1244
1245 crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1246 if (IS_ERR(crc->thr)) {
1247 crc->thr = NULL;
1248 pr_err("Cannot start CRC32 thread\n");
1249 ret = -ENOMEM;
1250 goto out_clean;
1251 }
1252
1253 /*
1254 * Set the number of pages for read buffering.
1255 * This is complete guesswork, because we'll only know the real
1256 * picture once prepare_image() is called, which is much later on
1257 * during the image load phase. We'll assume the worst case and
1258 * say that none of the image pages are from high memory.
1259 */
1260 if (low_free_pages() > snapshot_get_image_size())
1261 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1262 read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1263
1264 for (i = 0; i < read_pages; i++) {
1265 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1266 GFP_NOIO | __GFP_HIGH :
1267 GFP_NOIO | __GFP_NOWARN |
1268 __GFP_NORETRY);
1269
1270 if (!page[i]) {
1271 if (i < LZO_CMP_PAGES) {
1272 ring_size = i;
1273 pr_err("Failed to allocate LZO pages\n");
1274 ret = -ENOMEM;
1275 goto out_clean;
1276 } else {
1277 break;
1278 }
1279 }
1280 }
1281 want = ring_size = i;
1282
1283 pr_info("Using %u thread(s) for decompression\n", nr_threads);
1284 pr_info("Loading and decompressing image data (%u pages)...\n",
1285 nr_to_read);
1286 m = nr_to_read / 10;
1287 if (!m)
1288 m = 1;
1289 nr_pages = 0;
1290 start = ktime_get();
1291
1292 ret = snapshot_write_next(snapshot);
1293 if (ret <= 0)
1294 goto out_finish;
1295
1296 for(;;) {
1297 for (i = 0; !eof && i < want; i++) {
1298 ret = swap_read_page(handle, page[ring], &hb);
1299 if (ret) {
1300 /*
1301 * On real read error, finish. On end of data,
1302 * set EOF flag and just exit the read loop.
1303 */
1304 if (handle->cur &&
1305 handle->cur->entries[handle->k]) {
1306 goto out_finish;
1307 } else {
1308 eof = 1;
1309 break;
1310 }
1311 }
1312 if (++ring >= ring_size)
1313 ring = 0;
1314 }
1315 asked += i;
1316 want -= i;
1317
1318 /*
1319 * We are out of data, wait for some more.
1320 */
1321 if (!have) {
1322 if (!asked)
1323 break;
1324
1325 ret = hib_wait_io(&hb);
1326 if (ret)
1327 goto out_finish;
1328 have += asked;
1329 asked = 0;
1330 if (eof)
1331 eof = 2;
1332 }
1333
1334 if (crc->run_threads) {
1335 wait_event(crc->done, atomic_read(&crc->stop));
1336 atomic_set(&crc->stop, 0);
1337 crc->run_threads = 0;
1338 }
1339
1340 for (thr = 0; have && thr < nr_threads; thr++) {
1341 data[thr].cmp_len = *(size_t *)page[pg];
1342 if (unlikely(!data[thr].cmp_len ||
1343 data[thr].cmp_len >
1344 lzo1x_worst_compress(LZO_UNC_SIZE))) {
1345 pr_err("Invalid LZO compressed length\n");
1346 ret = -1;
1347 goto out_finish;
1348 }
1349
1350 need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1351 PAGE_SIZE);
1352 if (need > have) {
1353 if (eof > 1) {
1354 ret = -1;
1355 goto out_finish;
1356 }
1357 break;
1358 }
1359
1360 for (off = 0;
1361 off < LZO_HEADER + data[thr].cmp_len;
1362 off += PAGE_SIZE) {
1363 memcpy(data[thr].cmp + off,
1364 page[pg], PAGE_SIZE);
1365 have--;
1366 want++;
1367 if (++pg >= ring_size)
1368 pg = 0;
1369 }
1370
1371 atomic_set(&data[thr].ready, 1);
1372 wake_up(&data[thr].go);
1373 }
1374
1375 /*
1376 * Wait for more data while we are decompressing.
1377 */
1378 if (have < LZO_CMP_PAGES && asked) {
1379 ret = hib_wait_io(&hb);
1380 if (ret)
1381 goto out_finish;
1382 have += asked;
1383 asked = 0;
1384 if (eof)
1385 eof = 2;
1386 }
1387
1388 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1389 wait_event(data[thr].done,
1390 atomic_read(&data[thr].stop));
1391 atomic_set(&data[thr].stop, 0);
1392
1393 ret = data[thr].ret;
1394
1395 if (ret < 0) {
1396 pr_err("LZO decompression failed\n");
1397 goto out_finish;
1398 }
1399
1400 if (unlikely(!data[thr].unc_len ||
1401 data[thr].unc_len > LZO_UNC_SIZE ||
1402 data[thr].unc_len & (PAGE_SIZE - 1))) {
1403 pr_err("Invalid LZO uncompressed length\n");
1404 ret = -1;
1405 goto out_finish;
1406 }
1407
1408 for (off = 0;
1409 off < data[thr].unc_len; off += PAGE_SIZE) {
1410 memcpy(data_of(*snapshot),
1411 data[thr].unc + off, PAGE_SIZE);
1412
1413 if (!(nr_pages % m))
1414 pr_info("Image loading progress: %3d%%\n",
1415 nr_pages / m * 10);
1416 nr_pages++;
1417
1418 ret = snapshot_write_next(snapshot);
1419 if (ret <= 0) {
1420 crc->run_threads = thr + 1;
1421 atomic_set(&crc->ready, 1);
1422 wake_up(&crc->go);
1423 goto out_finish;
1424 }
1425 }
1426 }
1427
1428 crc->run_threads = thr;
1429 atomic_set(&crc->ready, 1);
1430 wake_up(&crc->go);
1431 }
1432
1433 out_finish:
1434 if (crc->run_threads) {
1435 wait_event(crc->done, atomic_read(&crc->stop));
1436 atomic_set(&crc->stop, 0);
1437 }
1438 stop = ktime_get();
1439 if (!ret) {
1440 pr_info("Image loading done\n");
1441 snapshot_write_finalize(snapshot);
1442 if (!snapshot_image_loaded(snapshot))
1443 ret = -ENODATA;
1444 if (!ret) {
1445 if (swsusp_header->flags & SF_CRC32_MODE) {
1446 if(handle->crc32 != swsusp_header->crc32) {
1447 pr_err("Invalid image CRC32!\n");
1448 ret = -ENODATA;
1449 }
1450 }
1451 }
1452 }
1453 swsusp_show_speed(start, stop, nr_to_read, "Read");
1454 out_clean:
1455 hib_finish_batch(&hb);
1456 for (i = 0; i < ring_size; i++)
1457 free_page((unsigned long)page[i]);
1458 if (crc) {
1459 if (crc->thr)
1460 kthread_stop(crc->thr);
1461 kfree(crc);
1462 }
1463 if (data) {
1464 for (thr = 0; thr < nr_threads; thr++)
1465 if (data[thr].thr)
1466 kthread_stop(data[thr].thr);
1467 vfree(data);
1468 }
1469 vfree(page);
1470
1471 return ret;
1472 }
1473
1474 /**
1475 * swsusp_read - read the hibernation image.
1476 * @flags_p: flags passed by the "frozen" kernel in the image header should
1477 * be written into this memory location
1478 */
1479
swsusp_read(unsigned int * flags_p)1480 int swsusp_read(unsigned int *flags_p)
1481 {
1482 int error;
1483 struct swap_map_handle handle;
1484 struct snapshot_handle snapshot;
1485 struct swsusp_info *header;
1486
1487 memset(&snapshot, 0, sizeof(struct snapshot_handle));
1488 error = snapshot_write_next(&snapshot);
1489 if (error < (int)PAGE_SIZE)
1490 return error < 0 ? error : -EFAULT;
1491 header = (struct swsusp_info *)data_of(snapshot);
1492 error = get_swap_reader(&handle, flags_p);
1493 if (error)
1494 goto end;
1495 if (!error)
1496 error = swap_read_page(&handle, header, NULL);
1497 if (!error) {
1498 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1499 load_image(&handle, &snapshot, header->pages - 1) :
1500 load_image_lzo(&handle, &snapshot, header->pages - 1);
1501 }
1502 swap_reader_finish(&handle);
1503 end:
1504 if (!error)
1505 pr_debug("Image successfully loaded\n");
1506 else
1507 pr_debug("Error %d resuming\n", error);
1508 return error;
1509 }
1510
1511 /**
1512 * swsusp_check - Check for swsusp signature in the resume device
1513 */
1514
swsusp_check(void)1515 int swsusp_check(void)
1516 {
1517 int error;
1518 void *holder;
1519
1520 hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1521 FMODE_READ | FMODE_EXCL, &holder);
1522 if (!IS_ERR(hib_resume_bdev)) {
1523 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1524 clear_page(swsusp_header);
1525 error = hib_submit_io(REQ_OP_READ, 0,
1526 swsusp_resume_block,
1527 swsusp_header, NULL);
1528 if (error)
1529 goto put;
1530
1531 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1532 memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1533 /* Reset swap signature now */
1534 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1535 swsusp_resume_block,
1536 swsusp_header, NULL);
1537 } else {
1538 error = -EINVAL;
1539 }
1540
1541 put:
1542 if (error)
1543 blkdev_put(hib_resume_bdev, FMODE_READ | FMODE_EXCL);
1544 else
1545 pr_debug("Image signature found, resuming\n");
1546 } else {
1547 error = PTR_ERR(hib_resume_bdev);
1548 }
1549
1550 if (error)
1551 pr_debug("Image not found (code %d)\n", error);
1552
1553 return error;
1554 }
1555
1556 /**
1557 * swsusp_close - close swap device.
1558 */
1559
swsusp_close(fmode_t mode)1560 void swsusp_close(fmode_t mode)
1561 {
1562 if (IS_ERR(hib_resume_bdev)) {
1563 pr_debug("Image device not initialised\n");
1564 return;
1565 }
1566
1567 blkdev_put(hib_resume_bdev, mode);
1568 }
1569
1570 /**
1571 * swsusp_unmark - Unmark swsusp signature in the resume device
1572 */
1573
1574 #ifdef CONFIG_SUSPEND
swsusp_unmark(void)1575 int swsusp_unmark(void)
1576 {
1577 int error;
1578
1579 hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1580 swsusp_header, NULL);
1581 if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1582 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1583 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1584 swsusp_resume_block,
1585 swsusp_header, NULL);
1586 } else {
1587 pr_err("Cannot find swsusp signature!\n");
1588 error = -ENODEV;
1589 }
1590
1591 /*
1592 * We just returned from suspend, we don't need the image any more.
1593 */
1594 free_all_swap_pages(root_swap);
1595
1596 return error;
1597 }
1598 #endif
1599
swsusp_header_init(void)1600 static int __init swsusp_header_init(void)
1601 {
1602 swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1603 if (!swsusp_header)
1604 panic("Could not allocate memory for swsusp_header\n");
1605 return 0;
1606 }
1607
1608 core_initcall(swsusp_header_init);
1609