1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282
283 /* Track pending CMSGs. */
284 enum {
285 TCP_CMSG_INQ = 1,
286 TCP_CMSG_TS = 2
287 };
288
289 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292 long sysctl_tcp_mem[3] __read_mostly;
293 EXPORT_SYMBOL(sysctl_tcp_mem);
294
295 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
296 EXPORT_SYMBOL(tcp_memory_allocated);
297
298 #if IS_ENABLED(CONFIG_SMC)
299 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
300 EXPORT_SYMBOL(tcp_have_smc);
301 #endif
302
303 /*
304 * Current number of TCP sockets.
305 */
306 struct percpu_counter tcp_sockets_allocated;
307 EXPORT_SYMBOL(tcp_sockets_allocated);
308
309 /*
310 * TCP splice context
311 */
312 struct tcp_splice_state {
313 struct pipe_inode_info *pipe;
314 size_t len;
315 unsigned int flags;
316 };
317
318 /*
319 * Pressure flag: try to collapse.
320 * Technical note: it is used by multiple contexts non atomically.
321 * All the __sk_mem_schedule() is of this nature: accounting
322 * is strict, actions are advisory and have some latency.
323 */
324 unsigned long tcp_memory_pressure __read_mostly;
325 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
326
tcp_enter_memory_pressure(struct sock * sk)327 void tcp_enter_memory_pressure(struct sock *sk)
328 {
329 unsigned long val;
330
331 if (READ_ONCE(tcp_memory_pressure))
332 return;
333 val = jiffies;
334
335 if (!val)
336 val--;
337 if (!cmpxchg(&tcp_memory_pressure, 0, val))
338 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
339 }
340 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
341
tcp_leave_memory_pressure(struct sock * sk)342 void tcp_leave_memory_pressure(struct sock *sk)
343 {
344 unsigned long val;
345
346 if (!READ_ONCE(tcp_memory_pressure))
347 return;
348 val = xchg(&tcp_memory_pressure, 0);
349 if (val)
350 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
351 jiffies_to_msecs(jiffies - val));
352 }
353 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
354
355 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)356 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
357 {
358 u8 res = 0;
359
360 if (seconds > 0) {
361 int period = timeout;
362
363 res = 1;
364 while (seconds > period && res < 255) {
365 res++;
366 timeout <<= 1;
367 if (timeout > rto_max)
368 timeout = rto_max;
369 period += timeout;
370 }
371 }
372 return res;
373 }
374
375 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)376 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
377 {
378 int period = 0;
379
380 if (retrans > 0) {
381 period = timeout;
382 while (--retrans) {
383 timeout <<= 1;
384 if (timeout > rto_max)
385 timeout = rto_max;
386 period += timeout;
387 }
388 }
389 return period;
390 }
391
tcp_compute_delivery_rate(const struct tcp_sock * tp)392 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
393 {
394 u32 rate = READ_ONCE(tp->rate_delivered);
395 u32 intv = READ_ONCE(tp->rate_interval_us);
396 u64 rate64 = 0;
397
398 if (rate && intv) {
399 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
400 do_div(rate64, intv);
401 }
402 return rate64;
403 }
404
405 /* Address-family independent initialization for a tcp_sock.
406 *
407 * NOTE: A lot of things set to zero explicitly by call to
408 * sk_alloc() so need not be done here.
409 */
tcp_init_sock(struct sock * sk)410 void tcp_init_sock(struct sock *sk)
411 {
412 struct inet_connection_sock *icsk = inet_csk(sk);
413 struct tcp_sock *tp = tcp_sk(sk);
414
415 tp->out_of_order_queue = RB_ROOT;
416 sk->tcp_rtx_queue = RB_ROOT;
417 tcp_init_xmit_timers(sk);
418 INIT_LIST_HEAD(&tp->tsq_node);
419 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
420
421 icsk->icsk_rto = TCP_TIMEOUT_INIT;
422 icsk->icsk_rto_min = TCP_RTO_MIN;
423 icsk->icsk_delack_max = TCP_DELACK_MAX;
424 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
425 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
426
427 /* So many TCP implementations out there (incorrectly) count the
428 * initial SYN frame in their delayed-ACK and congestion control
429 * algorithms that we must have the following bandaid to talk
430 * efficiently to them. -DaveM
431 */
432 tp->snd_cwnd = TCP_INIT_CWND;
433
434 /* There's a bubble in the pipe until at least the first ACK. */
435 tp->app_limited = ~0U;
436
437 /* See draft-stevens-tcpca-spec-01 for discussion of the
438 * initialization of these values.
439 */
440 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
441 tp->snd_cwnd_clamp = ~0;
442 tp->mss_cache = TCP_MSS_DEFAULT;
443
444 tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
445 tcp_assign_congestion_control(sk);
446
447 tp->tsoffset = 0;
448 tp->rack.reo_wnd_steps = 1;
449
450 sk->sk_write_space = sk_stream_write_space;
451 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
452
453 icsk->icsk_sync_mss = tcp_sync_mss;
454
455 WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
456 WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
457
458 sk_sockets_allocated_inc(sk);
459 sk->sk_route_forced_caps = NETIF_F_GSO;
460 }
461 EXPORT_SYMBOL(tcp_init_sock);
462
tcp_tx_timestamp(struct sock * sk,u16 tsflags)463 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
464 {
465 struct sk_buff *skb = tcp_write_queue_tail(sk);
466
467 if (tsflags && skb) {
468 struct skb_shared_info *shinfo = skb_shinfo(skb);
469 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
470
471 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
472 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
473 tcb->txstamp_ack = 1;
474 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
475 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
476 }
477 }
478
tcp_stream_is_readable(struct sock * sk,int target)479 static bool tcp_stream_is_readable(struct sock *sk, int target)
480 {
481 if (tcp_epollin_ready(sk, target))
482 return true;
483 return sk_is_readable(sk);
484 }
485
486 /*
487 * Wait for a TCP event.
488 *
489 * Note that we don't need to lock the socket, as the upper poll layers
490 * take care of normal races (between the test and the event) and we don't
491 * go look at any of the socket buffers directly.
492 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)493 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
494 {
495 __poll_t mask;
496 struct sock *sk = sock->sk;
497 const struct tcp_sock *tp = tcp_sk(sk);
498 int state;
499
500 sock_poll_wait(file, sock, wait);
501
502 state = inet_sk_state_load(sk);
503 if (state == TCP_LISTEN)
504 return inet_csk_listen_poll(sk);
505
506 /* Socket is not locked. We are protected from async events
507 * by poll logic and correct handling of state changes
508 * made by other threads is impossible in any case.
509 */
510
511 mask = 0;
512
513 /*
514 * EPOLLHUP is certainly not done right. But poll() doesn't
515 * have a notion of HUP in just one direction, and for a
516 * socket the read side is more interesting.
517 *
518 * Some poll() documentation says that EPOLLHUP is incompatible
519 * with the EPOLLOUT/POLLWR flags, so somebody should check this
520 * all. But careful, it tends to be safer to return too many
521 * bits than too few, and you can easily break real applications
522 * if you don't tell them that something has hung up!
523 *
524 * Check-me.
525 *
526 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
527 * our fs/select.c). It means that after we received EOF,
528 * poll always returns immediately, making impossible poll() on write()
529 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
530 * if and only if shutdown has been made in both directions.
531 * Actually, it is interesting to look how Solaris and DUX
532 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
533 * then we could set it on SND_SHUTDOWN. BTW examples given
534 * in Stevens' books assume exactly this behaviour, it explains
535 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
536 *
537 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
538 * blocking on fresh not-connected or disconnected socket. --ANK
539 */
540 if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
541 mask |= EPOLLHUP;
542 if (sk->sk_shutdown & RCV_SHUTDOWN)
543 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
544
545 /* Connected or passive Fast Open socket? */
546 if (state != TCP_SYN_SENT &&
547 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
548 int target = sock_rcvlowat(sk, 0, INT_MAX);
549
550 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
551 !sock_flag(sk, SOCK_URGINLINE) &&
552 tp->urg_data)
553 target++;
554
555 if (tcp_stream_is_readable(sk, target))
556 mask |= EPOLLIN | EPOLLRDNORM;
557
558 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
559 if (__sk_stream_is_writeable(sk, 1)) {
560 mask |= EPOLLOUT | EPOLLWRNORM;
561 } else { /* send SIGIO later */
562 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
563 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
564
565 /* Race breaker. If space is freed after
566 * wspace test but before the flags are set,
567 * IO signal will be lost. Memory barrier
568 * pairs with the input side.
569 */
570 smp_mb__after_atomic();
571 if (__sk_stream_is_writeable(sk, 1))
572 mask |= EPOLLOUT | EPOLLWRNORM;
573 }
574 } else
575 mask |= EPOLLOUT | EPOLLWRNORM;
576
577 if (tp->urg_data & TCP_URG_VALID)
578 mask |= EPOLLPRI;
579 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
580 /* Active TCP fastopen socket with defer_connect
581 * Return EPOLLOUT so application can call write()
582 * in order for kernel to generate SYN+data
583 */
584 mask |= EPOLLOUT | EPOLLWRNORM;
585 }
586 /* This barrier is coupled with smp_wmb() in tcp_reset() */
587 smp_rmb();
588 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
589 mask |= EPOLLERR;
590
591 return mask;
592 }
593 EXPORT_SYMBOL(tcp_poll);
594
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)595 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
596 {
597 struct tcp_sock *tp = tcp_sk(sk);
598 int answ;
599 bool slow;
600
601 switch (cmd) {
602 case SIOCINQ:
603 if (sk->sk_state == TCP_LISTEN)
604 return -EINVAL;
605
606 slow = lock_sock_fast(sk);
607 answ = tcp_inq(sk);
608 unlock_sock_fast(sk, slow);
609 break;
610 case SIOCATMARK:
611 answ = tp->urg_data &&
612 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
613 break;
614 case SIOCOUTQ:
615 if (sk->sk_state == TCP_LISTEN)
616 return -EINVAL;
617
618 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
619 answ = 0;
620 else
621 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
622 break;
623 case SIOCOUTQNSD:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628 answ = 0;
629 else
630 answ = READ_ONCE(tp->write_seq) -
631 READ_ONCE(tp->snd_nxt);
632 break;
633 default:
634 return -ENOIOCTLCMD;
635 }
636
637 return put_user(answ, (int __user *)arg);
638 }
639 EXPORT_SYMBOL(tcp_ioctl);
640
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)641 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
642 {
643 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
644 tp->pushed_seq = tp->write_seq;
645 }
646
forced_push(const struct tcp_sock * tp)647 static inline bool forced_push(const struct tcp_sock *tp)
648 {
649 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
650 }
651
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)652 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
653 {
654 struct tcp_sock *tp = tcp_sk(sk);
655 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
656
657 tcb->seq = tcb->end_seq = tp->write_seq;
658 tcb->tcp_flags = TCPHDR_ACK;
659 __skb_header_release(skb);
660 tcp_add_write_queue_tail(sk, skb);
661 sk_wmem_queued_add(sk, skb->truesize);
662 sk_mem_charge(sk, skb->truesize);
663 if (tp->nonagle & TCP_NAGLE_PUSH)
664 tp->nonagle &= ~TCP_NAGLE_PUSH;
665
666 tcp_slow_start_after_idle_check(sk);
667 }
668
tcp_mark_urg(struct tcp_sock * tp,int flags)669 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
670 {
671 if (flags & MSG_OOB)
672 tp->snd_up = tp->write_seq;
673 }
674
675 /* If a not yet filled skb is pushed, do not send it if
676 * we have data packets in Qdisc or NIC queues :
677 * Because TX completion will happen shortly, it gives a chance
678 * to coalesce future sendmsg() payload into this skb, without
679 * need for a timer, and with no latency trade off.
680 * As packets containing data payload have a bigger truesize
681 * than pure acks (dataless) packets, the last checks prevent
682 * autocorking if we only have an ACK in Qdisc/NIC queues,
683 * or if TX completion was delayed after we processed ACK packet.
684 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)685 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
686 int size_goal)
687 {
688 return skb->len < size_goal &&
689 sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
690 !tcp_rtx_queue_empty(sk) &&
691 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
692 }
693
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)694 void tcp_push(struct sock *sk, int flags, int mss_now,
695 int nonagle, int size_goal)
696 {
697 struct tcp_sock *tp = tcp_sk(sk);
698 struct sk_buff *skb;
699
700 skb = tcp_write_queue_tail(sk);
701 if (!skb)
702 return;
703 if (!(flags & MSG_MORE) || forced_push(tp))
704 tcp_mark_push(tp, skb);
705
706 tcp_mark_urg(tp, flags);
707
708 if (tcp_should_autocork(sk, skb, size_goal)) {
709
710 /* avoid atomic op if TSQ_THROTTLED bit is already set */
711 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
712 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
713 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
714 }
715 /* It is possible TX completion already happened
716 * before we set TSQ_THROTTLED.
717 */
718 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
719 return;
720 }
721
722 if (flags & MSG_MORE)
723 nonagle = TCP_NAGLE_CORK;
724
725 __tcp_push_pending_frames(sk, mss_now, nonagle);
726 }
727
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)728 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
729 unsigned int offset, size_t len)
730 {
731 struct tcp_splice_state *tss = rd_desc->arg.data;
732 int ret;
733
734 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
735 min(rd_desc->count, len), tss->flags);
736 if (ret > 0)
737 rd_desc->count -= ret;
738 return ret;
739 }
740
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)741 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
742 {
743 /* Store TCP splice context information in read_descriptor_t. */
744 read_descriptor_t rd_desc = {
745 .arg.data = tss,
746 .count = tss->len,
747 };
748
749 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
750 }
751
752 /**
753 * tcp_splice_read - splice data from TCP socket to a pipe
754 * @sock: socket to splice from
755 * @ppos: position (not valid)
756 * @pipe: pipe to splice to
757 * @len: number of bytes to splice
758 * @flags: splice modifier flags
759 *
760 * Description:
761 * Will read pages from given socket and fill them into a pipe.
762 *
763 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)764 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
765 struct pipe_inode_info *pipe, size_t len,
766 unsigned int flags)
767 {
768 struct sock *sk = sock->sk;
769 struct tcp_splice_state tss = {
770 .pipe = pipe,
771 .len = len,
772 .flags = flags,
773 };
774 long timeo;
775 ssize_t spliced;
776 int ret;
777
778 sock_rps_record_flow(sk);
779 /*
780 * We can't seek on a socket input
781 */
782 if (unlikely(*ppos))
783 return -ESPIPE;
784
785 ret = spliced = 0;
786
787 lock_sock(sk);
788
789 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
790 while (tss.len) {
791 ret = __tcp_splice_read(sk, &tss);
792 if (ret < 0)
793 break;
794 else if (!ret) {
795 if (spliced)
796 break;
797 if (sock_flag(sk, SOCK_DONE))
798 break;
799 if (sk->sk_err) {
800 ret = sock_error(sk);
801 break;
802 }
803 if (sk->sk_shutdown & RCV_SHUTDOWN)
804 break;
805 if (sk->sk_state == TCP_CLOSE) {
806 /*
807 * This occurs when user tries to read
808 * from never connected socket.
809 */
810 ret = -ENOTCONN;
811 break;
812 }
813 if (!timeo) {
814 ret = -EAGAIN;
815 break;
816 }
817 /* if __tcp_splice_read() got nothing while we have
818 * an skb in receive queue, we do not want to loop.
819 * This might happen with URG data.
820 */
821 if (!skb_queue_empty(&sk->sk_receive_queue))
822 break;
823 sk_wait_data(sk, &timeo, NULL);
824 if (signal_pending(current)) {
825 ret = sock_intr_errno(timeo);
826 break;
827 }
828 continue;
829 }
830 tss.len -= ret;
831 spliced += ret;
832
833 if (!timeo)
834 break;
835 release_sock(sk);
836 lock_sock(sk);
837
838 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
839 (sk->sk_shutdown & RCV_SHUTDOWN) ||
840 signal_pending(current))
841 break;
842 }
843
844 release_sock(sk);
845
846 if (spliced)
847 return spliced;
848
849 return ret;
850 }
851 EXPORT_SYMBOL(tcp_splice_read);
852
tcp_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)853 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
854 bool force_schedule)
855 {
856 struct sk_buff *skb;
857
858 if (unlikely(tcp_under_memory_pressure(sk)))
859 sk_mem_reclaim_partial(sk);
860
861 skb = alloc_skb_fclone(size + MAX_TCP_HEADER, gfp);
862 if (likely(skb)) {
863 bool mem_scheduled;
864
865 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
866 if (force_schedule) {
867 mem_scheduled = true;
868 sk_forced_mem_schedule(sk, skb->truesize);
869 } else {
870 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
871 }
872 if (likely(mem_scheduled)) {
873 skb_reserve(skb, MAX_TCP_HEADER);
874 skb->ip_summed = CHECKSUM_PARTIAL;
875 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
876 return skb;
877 }
878 __kfree_skb(skb);
879 } else {
880 sk->sk_prot->enter_memory_pressure(sk);
881 sk_stream_moderate_sndbuf(sk);
882 }
883 return NULL;
884 }
885
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)886 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
887 int large_allowed)
888 {
889 struct tcp_sock *tp = tcp_sk(sk);
890 u32 new_size_goal, size_goal;
891
892 if (!large_allowed)
893 return mss_now;
894
895 /* Note : tcp_tso_autosize() will eventually split this later */
896 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
897 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
898
899 /* We try hard to avoid divides here */
900 size_goal = tp->gso_segs * mss_now;
901 if (unlikely(new_size_goal < size_goal ||
902 new_size_goal >= size_goal + mss_now)) {
903 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
904 sk->sk_gso_max_segs);
905 size_goal = tp->gso_segs * mss_now;
906 }
907
908 return max(size_goal, mss_now);
909 }
910
tcp_send_mss(struct sock * sk,int * size_goal,int flags)911 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
912 {
913 int mss_now;
914
915 mss_now = tcp_current_mss(sk);
916 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
917
918 return mss_now;
919 }
920
921 /* In some cases, both sendpage() and sendmsg() could have added
922 * an skb to the write queue, but failed adding payload on it.
923 * We need to remove it to consume less memory, but more
924 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
925 * users.
926 */
tcp_remove_empty_skb(struct sock * sk)927 void tcp_remove_empty_skb(struct sock *sk)
928 {
929 struct sk_buff *skb = tcp_write_queue_tail(sk);
930
931 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
932 tcp_unlink_write_queue(skb, sk);
933 if (tcp_write_queue_empty(sk))
934 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
935 tcp_wmem_free_skb(sk, skb);
936 }
937 }
938
tcp_build_frag(struct sock * sk,int size_goal,int flags,struct page * page,int offset,size_t * size)939 static struct sk_buff *tcp_build_frag(struct sock *sk, int size_goal, int flags,
940 struct page *page, int offset, size_t *size)
941 {
942 struct sk_buff *skb = tcp_write_queue_tail(sk);
943 struct tcp_sock *tp = tcp_sk(sk);
944 bool can_coalesce;
945 int copy, i;
946
947 if (!skb || (copy = size_goal - skb->len) <= 0 ||
948 !tcp_skb_can_collapse_to(skb)) {
949 new_segment:
950 if (!sk_stream_memory_free(sk))
951 return NULL;
952
953 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
954 tcp_rtx_and_write_queues_empty(sk));
955 if (!skb)
956 return NULL;
957
958 #ifdef CONFIG_TLS_DEVICE
959 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
960 #endif
961 tcp_skb_entail(sk, skb);
962 copy = size_goal;
963 }
964
965 if (copy > *size)
966 copy = *size;
967
968 i = skb_shinfo(skb)->nr_frags;
969 can_coalesce = skb_can_coalesce(skb, i, page, offset);
970 if (!can_coalesce && i >= sysctl_max_skb_frags) {
971 tcp_mark_push(tp, skb);
972 goto new_segment;
973 }
974 if (!sk_wmem_schedule(sk, copy))
975 return NULL;
976
977 if (can_coalesce) {
978 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
979 } else {
980 get_page(page);
981 skb_fill_page_desc(skb, i, page, offset, copy);
982 }
983
984 if (!(flags & MSG_NO_SHARED_FRAGS))
985 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
986
987 skb->len += copy;
988 skb->data_len += copy;
989 skb->truesize += copy;
990 sk_wmem_queued_add(sk, copy);
991 sk_mem_charge(sk, copy);
992 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
993 TCP_SKB_CB(skb)->end_seq += copy;
994 tcp_skb_pcount_set(skb, 0);
995
996 *size = copy;
997 return skb;
998 }
999
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)1000 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
1001 size_t size, int flags)
1002 {
1003 struct tcp_sock *tp = tcp_sk(sk);
1004 int mss_now, size_goal;
1005 int err;
1006 ssize_t copied;
1007 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1008
1009 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
1010 WARN_ONCE(!sendpage_ok(page),
1011 "page must not be a Slab one and have page_count > 0"))
1012 return -EINVAL;
1013
1014 /* Wait for a connection to finish. One exception is TCP Fast Open
1015 * (passive side) where data is allowed to be sent before a connection
1016 * is fully established.
1017 */
1018 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1019 !tcp_passive_fastopen(sk)) {
1020 err = sk_stream_wait_connect(sk, &timeo);
1021 if (err != 0)
1022 goto out_err;
1023 }
1024
1025 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1026
1027 mss_now = tcp_send_mss(sk, &size_goal, flags);
1028 copied = 0;
1029
1030 err = -EPIPE;
1031 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1032 goto out_err;
1033
1034 while (size > 0) {
1035 struct sk_buff *skb;
1036 size_t copy = size;
1037
1038 skb = tcp_build_frag(sk, size_goal, flags, page, offset, ©);
1039 if (!skb)
1040 goto wait_for_space;
1041
1042 if (!copied)
1043 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1044
1045 copied += copy;
1046 offset += copy;
1047 size -= copy;
1048 if (!size)
1049 goto out;
1050
1051 if (skb->len < size_goal || (flags & MSG_OOB))
1052 continue;
1053
1054 if (forced_push(tp)) {
1055 tcp_mark_push(tp, skb);
1056 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1057 } else if (skb == tcp_send_head(sk))
1058 tcp_push_one(sk, mss_now);
1059 continue;
1060
1061 wait_for_space:
1062 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1063 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1064 TCP_NAGLE_PUSH, size_goal);
1065
1066 err = sk_stream_wait_memory(sk, &timeo);
1067 if (err != 0)
1068 goto do_error;
1069
1070 mss_now = tcp_send_mss(sk, &size_goal, flags);
1071 }
1072
1073 out:
1074 if (copied) {
1075 tcp_tx_timestamp(sk, sk->sk_tsflags);
1076 if (!(flags & MSG_SENDPAGE_NOTLAST))
1077 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1078 }
1079 return copied;
1080
1081 do_error:
1082 tcp_remove_empty_skb(sk);
1083 if (copied)
1084 goto out;
1085 out_err:
1086 /* make sure we wake any epoll edge trigger waiter */
1087 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1088 sk->sk_write_space(sk);
1089 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1090 }
1091 return sk_stream_error(sk, flags, err);
1092 }
1093 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1094
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1095 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1096 size_t size, int flags)
1097 {
1098 if (!(sk->sk_route_caps & NETIF_F_SG))
1099 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1100
1101 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1102
1103 return do_tcp_sendpages(sk, page, offset, size, flags);
1104 }
1105 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1106
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1107 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1108 size_t size, int flags)
1109 {
1110 int ret;
1111
1112 lock_sock(sk);
1113 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1114 release_sock(sk);
1115
1116 return ret;
1117 }
1118 EXPORT_SYMBOL(tcp_sendpage);
1119
tcp_free_fastopen_req(struct tcp_sock * tp)1120 void tcp_free_fastopen_req(struct tcp_sock *tp)
1121 {
1122 if (tp->fastopen_req) {
1123 kfree(tp->fastopen_req);
1124 tp->fastopen_req = NULL;
1125 }
1126 }
1127
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1128 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1129 int *copied, size_t size,
1130 struct ubuf_info *uarg)
1131 {
1132 struct tcp_sock *tp = tcp_sk(sk);
1133 struct inet_sock *inet = inet_sk(sk);
1134 struct sockaddr *uaddr = msg->msg_name;
1135 int err, flags;
1136
1137 if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
1138 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1139 uaddr->sa_family == AF_UNSPEC))
1140 return -EOPNOTSUPP;
1141 if (tp->fastopen_req)
1142 return -EALREADY; /* Another Fast Open is in progress */
1143
1144 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1145 sk->sk_allocation);
1146 if (unlikely(!tp->fastopen_req))
1147 return -ENOBUFS;
1148 tp->fastopen_req->data = msg;
1149 tp->fastopen_req->size = size;
1150 tp->fastopen_req->uarg = uarg;
1151
1152 if (inet->defer_connect) {
1153 err = tcp_connect(sk);
1154 /* Same failure procedure as in tcp_v4/6_connect */
1155 if (err) {
1156 tcp_set_state(sk, TCP_CLOSE);
1157 inet->inet_dport = 0;
1158 sk->sk_route_caps = 0;
1159 }
1160 }
1161 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1162 err = __inet_stream_connect(sk->sk_socket, uaddr,
1163 msg->msg_namelen, flags, 1);
1164 /* fastopen_req could already be freed in __inet_stream_connect
1165 * if the connection times out or gets rst
1166 */
1167 if (tp->fastopen_req) {
1168 *copied = tp->fastopen_req->copied;
1169 tcp_free_fastopen_req(tp);
1170 inet->defer_connect = 0;
1171 }
1172 return err;
1173 }
1174
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1175 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1176 {
1177 struct tcp_sock *tp = tcp_sk(sk);
1178 struct ubuf_info *uarg = NULL;
1179 struct sk_buff *skb;
1180 struct sockcm_cookie sockc;
1181 int flags, err, copied = 0;
1182 int mss_now = 0, size_goal, copied_syn = 0;
1183 int process_backlog = 0;
1184 bool zc = false;
1185 long timeo;
1186
1187 flags = msg->msg_flags;
1188
1189 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1190 skb = tcp_write_queue_tail(sk);
1191 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1192 if (!uarg) {
1193 err = -ENOBUFS;
1194 goto out_err;
1195 }
1196
1197 zc = sk->sk_route_caps & NETIF_F_SG;
1198 if (!zc)
1199 uarg->zerocopy = 0;
1200 }
1201
1202 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1203 !tp->repair) {
1204 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1205 if (err == -EINPROGRESS && copied_syn > 0)
1206 goto out;
1207 else if (err)
1208 goto out_err;
1209 }
1210
1211 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1212
1213 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1214
1215 /* Wait for a connection to finish. One exception is TCP Fast Open
1216 * (passive side) where data is allowed to be sent before a connection
1217 * is fully established.
1218 */
1219 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1220 !tcp_passive_fastopen(sk)) {
1221 err = sk_stream_wait_connect(sk, &timeo);
1222 if (err != 0)
1223 goto do_error;
1224 }
1225
1226 if (unlikely(tp->repair)) {
1227 if (tp->repair_queue == TCP_RECV_QUEUE) {
1228 copied = tcp_send_rcvq(sk, msg, size);
1229 goto out_nopush;
1230 }
1231
1232 err = -EINVAL;
1233 if (tp->repair_queue == TCP_NO_QUEUE)
1234 goto out_err;
1235
1236 /* 'common' sending to sendq */
1237 }
1238
1239 sockcm_init(&sockc, sk);
1240 if (msg->msg_controllen) {
1241 err = sock_cmsg_send(sk, msg, &sockc);
1242 if (unlikely(err)) {
1243 err = -EINVAL;
1244 goto out_err;
1245 }
1246 }
1247
1248 /* This should be in poll */
1249 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1250
1251 /* Ok commence sending. */
1252 copied = 0;
1253
1254 restart:
1255 mss_now = tcp_send_mss(sk, &size_goal, flags);
1256
1257 err = -EPIPE;
1258 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1259 goto do_error;
1260
1261 while (msg_data_left(msg)) {
1262 int copy = 0;
1263
1264 skb = tcp_write_queue_tail(sk);
1265 if (skb)
1266 copy = size_goal - skb->len;
1267
1268 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1269 bool first_skb;
1270
1271 new_segment:
1272 if (!sk_stream_memory_free(sk))
1273 goto wait_for_space;
1274
1275 if (unlikely(process_backlog >= 16)) {
1276 process_backlog = 0;
1277 if (sk_flush_backlog(sk))
1278 goto restart;
1279 }
1280 first_skb = tcp_rtx_and_write_queues_empty(sk);
1281 skb = tcp_stream_alloc_skb(sk, 0, sk->sk_allocation,
1282 first_skb);
1283 if (!skb)
1284 goto wait_for_space;
1285
1286 process_backlog++;
1287
1288 tcp_skb_entail(sk, skb);
1289 copy = size_goal;
1290
1291 /* All packets are restored as if they have
1292 * already been sent. skb_mstamp_ns isn't set to
1293 * avoid wrong rtt estimation.
1294 */
1295 if (tp->repair)
1296 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1297 }
1298
1299 /* Try to append data to the end of skb. */
1300 if (copy > msg_data_left(msg))
1301 copy = msg_data_left(msg);
1302
1303 if (!zc) {
1304 bool merge = true;
1305 int i = skb_shinfo(skb)->nr_frags;
1306 struct page_frag *pfrag = sk_page_frag(sk);
1307
1308 if (!sk_page_frag_refill(sk, pfrag))
1309 goto wait_for_space;
1310
1311 if (!skb_can_coalesce(skb, i, pfrag->page,
1312 pfrag->offset)) {
1313 if (i >= sysctl_max_skb_frags) {
1314 tcp_mark_push(tp, skb);
1315 goto new_segment;
1316 }
1317 merge = false;
1318 }
1319
1320 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1321
1322 /* skb changing from pure zc to mixed, must charge zc */
1323 if (unlikely(skb_zcopy_pure(skb))) {
1324 if (!sk_wmem_schedule(sk, skb->data_len))
1325 goto wait_for_space;
1326
1327 sk_mem_charge(sk, skb->data_len);
1328 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
1329 }
1330
1331 if (!sk_wmem_schedule(sk, copy))
1332 goto wait_for_space;
1333
1334 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1335 pfrag->page,
1336 pfrag->offset,
1337 copy);
1338 if (err)
1339 goto do_error;
1340
1341 /* Update the skb. */
1342 if (merge) {
1343 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1344 } else {
1345 skb_fill_page_desc(skb, i, pfrag->page,
1346 pfrag->offset, copy);
1347 page_ref_inc(pfrag->page);
1348 }
1349 pfrag->offset += copy;
1350 } else {
1351 /* First append to a fragless skb builds initial
1352 * pure zerocopy skb
1353 */
1354 if (!skb->len)
1355 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1356
1357 if (!skb_zcopy_pure(skb)) {
1358 if (!sk_wmem_schedule(sk, copy))
1359 goto wait_for_space;
1360 }
1361
1362 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1363 if (err == -EMSGSIZE || err == -EEXIST) {
1364 tcp_mark_push(tp, skb);
1365 goto new_segment;
1366 }
1367 if (err < 0)
1368 goto do_error;
1369 copy = err;
1370 }
1371
1372 if (!copied)
1373 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1374
1375 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1376 TCP_SKB_CB(skb)->end_seq += copy;
1377 tcp_skb_pcount_set(skb, 0);
1378
1379 copied += copy;
1380 if (!msg_data_left(msg)) {
1381 if (unlikely(flags & MSG_EOR))
1382 TCP_SKB_CB(skb)->eor = 1;
1383 goto out;
1384 }
1385
1386 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1387 continue;
1388
1389 if (forced_push(tp)) {
1390 tcp_mark_push(tp, skb);
1391 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1392 } else if (skb == tcp_send_head(sk))
1393 tcp_push_one(sk, mss_now);
1394 continue;
1395
1396 wait_for_space:
1397 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1398 if (copied)
1399 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1400 TCP_NAGLE_PUSH, size_goal);
1401
1402 err = sk_stream_wait_memory(sk, &timeo);
1403 if (err != 0)
1404 goto do_error;
1405
1406 mss_now = tcp_send_mss(sk, &size_goal, flags);
1407 }
1408
1409 out:
1410 if (copied) {
1411 tcp_tx_timestamp(sk, sockc.tsflags);
1412 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1413 }
1414 out_nopush:
1415 net_zcopy_put(uarg);
1416 return copied + copied_syn;
1417
1418 do_error:
1419 tcp_remove_empty_skb(sk);
1420
1421 if (copied + copied_syn)
1422 goto out;
1423 out_err:
1424 net_zcopy_put_abort(uarg, true);
1425 err = sk_stream_error(sk, flags, err);
1426 /* make sure we wake any epoll edge trigger waiter */
1427 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1428 sk->sk_write_space(sk);
1429 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1430 }
1431 return err;
1432 }
1433 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1434
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1435 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1436 {
1437 int ret;
1438
1439 lock_sock(sk);
1440 ret = tcp_sendmsg_locked(sk, msg, size);
1441 release_sock(sk);
1442
1443 return ret;
1444 }
1445 EXPORT_SYMBOL(tcp_sendmsg);
1446
1447 /*
1448 * Handle reading urgent data. BSD has very simple semantics for
1449 * this, no blocking and very strange errors 8)
1450 */
1451
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1452 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1453 {
1454 struct tcp_sock *tp = tcp_sk(sk);
1455
1456 /* No URG data to read. */
1457 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1458 tp->urg_data == TCP_URG_READ)
1459 return -EINVAL; /* Yes this is right ! */
1460
1461 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1462 return -ENOTCONN;
1463
1464 if (tp->urg_data & TCP_URG_VALID) {
1465 int err = 0;
1466 char c = tp->urg_data;
1467
1468 if (!(flags & MSG_PEEK))
1469 tp->urg_data = TCP_URG_READ;
1470
1471 /* Read urgent data. */
1472 msg->msg_flags |= MSG_OOB;
1473
1474 if (len > 0) {
1475 if (!(flags & MSG_TRUNC))
1476 err = memcpy_to_msg(msg, &c, 1);
1477 len = 1;
1478 } else
1479 msg->msg_flags |= MSG_TRUNC;
1480
1481 return err ? -EFAULT : len;
1482 }
1483
1484 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1485 return 0;
1486
1487 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1488 * the available implementations agree in this case:
1489 * this call should never block, independent of the
1490 * blocking state of the socket.
1491 * Mike <pall@rz.uni-karlsruhe.de>
1492 */
1493 return -EAGAIN;
1494 }
1495
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1496 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1497 {
1498 struct sk_buff *skb;
1499 int copied = 0, err = 0;
1500
1501 /* XXX -- need to support SO_PEEK_OFF */
1502
1503 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1504 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1505 if (err)
1506 return err;
1507 copied += skb->len;
1508 }
1509
1510 skb_queue_walk(&sk->sk_write_queue, skb) {
1511 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1512 if (err)
1513 break;
1514
1515 copied += skb->len;
1516 }
1517
1518 return err ?: copied;
1519 }
1520
1521 /* Clean up the receive buffer for full frames taken by the user,
1522 * then send an ACK if necessary. COPIED is the number of bytes
1523 * tcp_recvmsg has given to the user so far, it speeds up the
1524 * calculation of whether or not we must ACK for the sake of
1525 * a window update.
1526 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1527 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1528 {
1529 struct tcp_sock *tp = tcp_sk(sk);
1530 bool time_to_ack = false;
1531
1532 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1533
1534 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1535 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1536 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1537
1538 if (inet_csk_ack_scheduled(sk)) {
1539 const struct inet_connection_sock *icsk = inet_csk(sk);
1540
1541 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1542 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1543 /*
1544 * If this read emptied read buffer, we send ACK, if
1545 * connection is not bidirectional, user drained
1546 * receive buffer and there was a small segment
1547 * in queue.
1548 */
1549 (copied > 0 &&
1550 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1551 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1552 !inet_csk_in_pingpong_mode(sk))) &&
1553 !atomic_read(&sk->sk_rmem_alloc)))
1554 time_to_ack = true;
1555 }
1556
1557 /* We send an ACK if we can now advertise a non-zero window
1558 * which has been raised "significantly".
1559 *
1560 * Even if window raised up to infinity, do not send window open ACK
1561 * in states, where we will not receive more. It is useless.
1562 */
1563 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1564 __u32 rcv_window_now = tcp_receive_window(tp);
1565
1566 /* Optimize, __tcp_select_window() is not cheap. */
1567 if (2*rcv_window_now <= tp->window_clamp) {
1568 __u32 new_window = __tcp_select_window(sk);
1569
1570 /* Send ACK now, if this read freed lots of space
1571 * in our buffer. Certainly, new_window is new window.
1572 * We can advertise it now, if it is not less than current one.
1573 * "Lots" means "at least twice" here.
1574 */
1575 if (new_window && new_window >= 2 * rcv_window_now)
1576 time_to_ack = true;
1577 }
1578 }
1579 if (time_to_ack)
1580 tcp_send_ack(sk);
1581 }
1582
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1583 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1584 {
1585 struct sk_buff *skb;
1586 u32 offset;
1587
1588 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1589 offset = seq - TCP_SKB_CB(skb)->seq;
1590 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1591 pr_err_once("%s: found a SYN, please report !\n", __func__);
1592 offset--;
1593 }
1594 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1595 *off = offset;
1596 return skb;
1597 }
1598 /* This looks weird, but this can happen if TCP collapsing
1599 * splitted a fat GRO packet, while we released socket lock
1600 * in skb_splice_bits()
1601 */
1602 sk_eat_skb(sk, skb);
1603 }
1604 return NULL;
1605 }
1606
1607 /*
1608 * This routine provides an alternative to tcp_recvmsg() for routines
1609 * that would like to handle copying from skbuffs directly in 'sendfile'
1610 * fashion.
1611 * Note:
1612 * - It is assumed that the socket was locked by the caller.
1613 * - The routine does not block.
1614 * - At present, there is no support for reading OOB data
1615 * or for 'peeking' the socket using this routine
1616 * (although both would be easy to implement).
1617 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1618 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1619 sk_read_actor_t recv_actor)
1620 {
1621 struct sk_buff *skb;
1622 struct tcp_sock *tp = tcp_sk(sk);
1623 u32 seq = tp->copied_seq;
1624 u32 offset;
1625 int copied = 0;
1626
1627 if (sk->sk_state == TCP_LISTEN)
1628 return -ENOTCONN;
1629 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1630 if (offset < skb->len) {
1631 int used;
1632 size_t len;
1633
1634 len = skb->len - offset;
1635 /* Stop reading if we hit a patch of urgent data */
1636 if (tp->urg_data) {
1637 u32 urg_offset = tp->urg_seq - seq;
1638 if (urg_offset < len)
1639 len = urg_offset;
1640 if (!len)
1641 break;
1642 }
1643 used = recv_actor(desc, skb, offset, len);
1644 if (used <= 0) {
1645 if (!copied)
1646 copied = used;
1647 break;
1648 } else if (used <= len) {
1649 seq += used;
1650 copied += used;
1651 offset += used;
1652 }
1653 /* If recv_actor drops the lock (e.g. TCP splice
1654 * receive) the skb pointer might be invalid when
1655 * getting here: tcp_collapse might have deleted it
1656 * while aggregating skbs from the socket queue.
1657 */
1658 skb = tcp_recv_skb(sk, seq - 1, &offset);
1659 if (!skb)
1660 break;
1661 /* TCP coalescing might have appended data to the skb.
1662 * Try to splice more frags
1663 */
1664 if (offset + 1 != skb->len)
1665 continue;
1666 }
1667 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1668 sk_eat_skb(sk, skb);
1669 ++seq;
1670 break;
1671 }
1672 sk_eat_skb(sk, skb);
1673 if (!desc->count)
1674 break;
1675 WRITE_ONCE(tp->copied_seq, seq);
1676 }
1677 WRITE_ONCE(tp->copied_seq, seq);
1678
1679 tcp_rcv_space_adjust(sk);
1680
1681 /* Clean up data we have read: This will do ACK frames. */
1682 if (copied > 0) {
1683 tcp_recv_skb(sk, seq, &offset);
1684 tcp_cleanup_rbuf(sk, copied);
1685 }
1686 return copied;
1687 }
1688 EXPORT_SYMBOL(tcp_read_sock);
1689
tcp_peek_len(struct socket * sock)1690 int tcp_peek_len(struct socket *sock)
1691 {
1692 return tcp_inq(sock->sk);
1693 }
1694 EXPORT_SYMBOL(tcp_peek_len);
1695
1696 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1697 int tcp_set_rcvlowat(struct sock *sk, int val)
1698 {
1699 int cap;
1700
1701 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1702 cap = sk->sk_rcvbuf >> 1;
1703 else
1704 cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1705 val = min(val, cap);
1706 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1707
1708 /* Check if we need to signal EPOLLIN right now */
1709 tcp_data_ready(sk);
1710
1711 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1712 return 0;
1713
1714 val <<= 1;
1715 if (val > sk->sk_rcvbuf) {
1716 WRITE_ONCE(sk->sk_rcvbuf, val);
1717 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1718 }
1719 return 0;
1720 }
1721 EXPORT_SYMBOL(tcp_set_rcvlowat);
1722
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1723 void tcp_update_recv_tstamps(struct sk_buff *skb,
1724 struct scm_timestamping_internal *tss)
1725 {
1726 if (skb->tstamp)
1727 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1728 else
1729 tss->ts[0] = (struct timespec64) {0};
1730
1731 if (skb_hwtstamps(skb)->hwtstamp)
1732 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1733 else
1734 tss->ts[2] = (struct timespec64) {0};
1735 }
1736
1737 #ifdef CONFIG_MMU
1738 static const struct vm_operations_struct tcp_vm_ops = {
1739 };
1740
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1741 int tcp_mmap(struct file *file, struct socket *sock,
1742 struct vm_area_struct *vma)
1743 {
1744 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1745 return -EPERM;
1746 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1747
1748 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1749 vma->vm_flags |= VM_MIXEDMAP;
1750
1751 vma->vm_ops = &tcp_vm_ops;
1752 return 0;
1753 }
1754 EXPORT_SYMBOL(tcp_mmap);
1755
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1756 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1757 u32 *offset_frag)
1758 {
1759 skb_frag_t *frag;
1760
1761 if (unlikely(offset_skb >= skb->len))
1762 return NULL;
1763
1764 offset_skb -= skb_headlen(skb);
1765 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1766 return NULL;
1767
1768 frag = skb_shinfo(skb)->frags;
1769 while (offset_skb) {
1770 if (skb_frag_size(frag) > offset_skb) {
1771 *offset_frag = offset_skb;
1772 return frag;
1773 }
1774 offset_skb -= skb_frag_size(frag);
1775 ++frag;
1776 }
1777 *offset_frag = 0;
1778 return frag;
1779 }
1780
can_map_frag(const skb_frag_t * frag)1781 static bool can_map_frag(const skb_frag_t *frag)
1782 {
1783 return skb_frag_size(frag) == PAGE_SIZE && !skb_frag_off(frag);
1784 }
1785
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1786 static int find_next_mappable_frag(const skb_frag_t *frag,
1787 int remaining_in_skb)
1788 {
1789 int offset = 0;
1790
1791 if (likely(can_map_frag(frag)))
1792 return 0;
1793
1794 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1795 offset += skb_frag_size(frag);
1796 ++frag;
1797 }
1798 return offset;
1799 }
1800
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1801 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1802 struct tcp_zerocopy_receive *zc,
1803 struct sk_buff *skb, u32 offset)
1804 {
1805 u32 frag_offset, partial_frag_remainder = 0;
1806 int mappable_offset;
1807 skb_frag_t *frag;
1808
1809 /* worst case: skip to next skb. try to improve on this case below */
1810 zc->recv_skip_hint = skb->len - offset;
1811
1812 /* Find the frag containing this offset (and how far into that frag) */
1813 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1814 if (!frag)
1815 return;
1816
1817 if (frag_offset) {
1818 struct skb_shared_info *info = skb_shinfo(skb);
1819
1820 /* We read part of the last frag, must recvmsg() rest of skb. */
1821 if (frag == &info->frags[info->nr_frags - 1])
1822 return;
1823
1824 /* Else, we must at least read the remainder in this frag. */
1825 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1826 zc->recv_skip_hint -= partial_frag_remainder;
1827 ++frag;
1828 }
1829
1830 /* partial_frag_remainder: If part way through a frag, must read rest.
1831 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1832 * in partial_frag_remainder.
1833 */
1834 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1835 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1836 }
1837
1838 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1839 int nonblock, int flags,
1840 struct scm_timestamping_internal *tss,
1841 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1842 static int receive_fallback_to_copy(struct sock *sk,
1843 struct tcp_zerocopy_receive *zc, int inq,
1844 struct scm_timestamping_internal *tss)
1845 {
1846 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1847 struct msghdr msg = {};
1848 struct iovec iov;
1849 int err;
1850
1851 zc->length = 0;
1852 zc->recv_skip_hint = 0;
1853
1854 if (copy_address != zc->copybuf_address)
1855 return -EINVAL;
1856
1857 err = import_single_range(READ, (void __user *)copy_address,
1858 inq, &iov, &msg.msg_iter);
1859 if (err)
1860 return err;
1861
1862 err = tcp_recvmsg_locked(sk, &msg, inq, /*nonblock=*/1, /*flags=*/0,
1863 tss, &zc->msg_flags);
1864 if (err < 0)
1865 return err;
1866
1867 zc->copybuf_len = err;
1868 if (likely(zc->copybuf_len)) {
1869 struct sk_buff *skb;
1870 u32 offset;
1871
1872 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1873 if (skb)
1874 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1875 }
1876 return 0;
1877 }
1878
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1879 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1880 struct sk_buff *skb, u32 copylen,
1881 u32 *offset, u32 *seq)
1882 {
1883 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1884 struct msghdr msg = {};
1885 struct iovec iov;
1886 int err;
1887
1888 if (copy_address != zc->copybuf_address)
1889 return -EINVAL;
1890
1891 err = import_single_range(READ, (void __user *)copy_address,
1892 copylen, &iov, &msg.msg_iter);
1893 if (err)
1894 return err;
1895 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1896 if (err)
1897 return err;
1898 zc->recv_skip_hint -= copylen;
1899 *offset += copylen;
1900 *seq += copylen;
1901 return (__s32)copylen;
1902 }
1903
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1904 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1905 struct sock *sk,
1906 struct sk_buff *skb,
1907 u32 *seq,
1908 s32 copybuf_len,
1909 struct scm_timestamping_internal *tss)
1910 {
1911 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1912
1913 if (!copylen)
1914 return 0;
1915 /* skb is null if inq < PAGE_SIZE. */
1916 if (skb) {
1917 offset = *seq - TCP_SKB_CB(skb)->seq;
1918 } else {
1919 skb = tcp_recv_skb(sk, *seq, &offset);
1920 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1921 tcp_update_recv_tstamps(skb, tss);
1922 zc->msg_flags |= TCP_CMSG_TS;
1923 }
1924 }
1925
1926 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1927 seq);
1928 return zc->copybuf_len < 0 ? 0 : copylen;
1929 }
1930
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1931 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1932 struct page **pending_pages,
1933 unsigned long pages_remaining,
1934 unsigned long *address,
1935 u32 *length,
1936 u32 *seq,
1937 struct tcp_zerocopy_receive *zc,
1938 u32 total_bytes_to_map,
1939 int err)
1940 {
1941 /* At least one page did not map. Try zapping if we skipped earlier. */
1942 if (err == -EBUSY &&
1943 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1944 u32 maybe_zap_len;
1945
1946 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
1947 *length + /* Mapped or pending */
1948 (pages_remaining * PAGE_SIZE); /* Failed map. */
1949 zap_page_range(vma, *address, maybe_zap_len);
1950 err = 0;
1951 }
1952
1953 if (!err) {
1954 unsigned long leftover_pages = pages_remaining;
1955 int bytes_mapped;
1956
1957 /* We called zap_page_range, try to reinsert. */
1958 err = vm_insert_pages(vma, *address,
1959 pending_pages,
1960 &pages_remaining);
1961 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1962 *seq += bytes_mapped;
1963 *address += bytes_mapped;
1964 }
1965 if (err) {
1966 /* Either we were unable to zap, OR we zapped, retried an
1967 * insert, and still had an issue. Either ways, pages_remaining
1968 * is the number of pages we were unable to map, and we unroll
1969 * some state we speculatively touched before.
1970 */
1971 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1972
1973 *length -= bytes_not_mapped;
1974 zc->recv_skip_hint += bytes_not_mapped;
1975 }
1976 return err;
1977 }
1978
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)1979 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1980 struct page **pages,
1981 unsigned int pages_to_map,
1982 unsigned long *address,
1983 u32 *length,
1984 u32 *seq,
1985 struct tcp_zerocopy_receive *zc,
1986 u32 total_bytes_to_map)
1987 {
1988 unsigned long pages_remaining = pages_to_map;
1989 unsigned int pages_mapped;
1990 unsigned int bytes_mapped;
1991 int err;
1992
1993 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
1994 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
1995 bytes_mapped = PAGE_SIZE * pages_mapped;
1996 /* Even if vm_insert_pages fails, it may have partially succeeded in
1997 * mapping (some but not all of the pages).
1998 */
1999 *seq += bytes_mapped;
2000 *address += bytes_mapped;
2001
2002 if (likely(!err))
2003 return 0;
2004
2005 /* Error: maybe zap and retry + rollback state for failed inserts. */
2006 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2007 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2008 err);
2009 }
2010
2011 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2012 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2013 struct tcp_zerocopy_receive *zc,
2014 struct scm_timestamping_internal *tss)
2015 {
2016 unsigned long msg_control_addr;
2017 struct msghdr cmsg_dummy;
2018
2019 msg_control_addr = (unsigned long)zc->msg_control;
2020 cmsg_dummy.msg_control = (void *)msg_control_addr;
2021 cmsg_dummy.msg_controllen =
2022 (__kernel_size_t)zc->msg_controllen;
2023 cmsg_dummy.msg_flags = in_compat_syscall()
2024 ? MSG_CMSG_COMPAT : 0;
2025 cmsg_dummy.msg_control_is_user = true;
2026 zc->msg_flags = 0;
2027 if (zc->msg_control == msg_control_addr &&
2028 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2029 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2030 zc->msg_control = (__u64)
2031 ((uintptr_t)cmsg_dummy.msg_control);
2032 zc->msg_controllen =
2033 (__u64)cmsg_dummy.msg_controllen;
2034 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2035 }
2036 }
2037
2038 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2039 static int tcp_zerocopy_receive(struct sock *sk,
2040 struct tcp_zerocopy_receive *zc,
2041 struct scm_timestamping_internal *tss)
2042 {
2043 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2044 unsigned long address = (unsigned long)zc->address;
2045 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2046 s32 copybuf_len = zc->copybuf_len;
2047 struct tcp_sock *tp = tcp_sk(sk);
2048 const skb_frag_t *frags = NULL;
2049 unsigned int pages_to_map = 0;
2050 struct vm_area_struct *vma;
2051 struct sk_buff *skb = NULL;
2052 u32 seq = tp->copied_seq;
2053 u32 total_bytes_to_map;
2054 int inq = tcp_inq(sk);
2055 int ret;
2056
2057 zc->copybuf_len = 0;
2058 zc->msg_flags = 0;
2059
2060 if (address & (PAGE_SIZE - 1) || address != zc->address)
2061 return -EINVAL;
2062
2063 if (sk->sk_state == TCP_LISTEN)
2064 return -ENOTCONN;
2065
2066 sock_rps_record_flow(sk);
2067
2068 if (inq && inq <= copybuf_len)
2069 return receive_fallback_to_copy(sk, zc, inq, tss);
2070
2071 if (inq < PAGE_SIZE) {
2072 zc->length = 0;
2073 zc->recv_skip_hint = inq;
2074 if (!inq && sock_flag(sk, SOCK_DONE))
2075 return -EIO;
2076 return 0;
2077 }
2078
2079 mmap_read_lock(current->mm);
2080
2081 vma = vma_lookup(current->mm, address);
2082 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2083 mmap_read_unlock(current->mm);
2084 return -EINVAL;
2085 }
2086 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2087 avail_len = min_t(u32, vma_len, inq);
2088 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2089 if (total_bytes_to_map) {
2090 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2091 zap_page_range(vma, address, total_bytes_to_map);
2092 zc->length = total_bytes_to_map;
2093 zc->recv_skip_hint = 0;
2094 } else {
2095 zc->length = avail_len;
2096 zc->recv_skip_hint = avail_len;
2097 }
2098 ret = 0;
2099 while (length + PAGE_SIZE <= zc->length) {
2100 int mappable_offset;
2101 struct page *page;
2102
2103 if (zc->recv_skip_hint < PAGE_SIZE) {
2104 u32 offset_frag;
2105
2106 if (skb) {
2107 if (zc->recv_skip_hint > 0)
2108 break;
2109 skb = skb->next;
2110 offset = seq - TCP_SKB_CB(skb)->seq;
2111 } else {
2112 skb = tcp_recv_skb(sk, seq, &offset);
2113 }
2114
2115 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2116 tcp_update_recv_tstamps(skb, tss);
2117 zc->msg_flags |= TCP_CMSG_TS;
2118 }
2119 zc->recv_skip_hint = skb->len - offset;
2120 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2121 if (!frags || offset_frag)
2122 break;
2123 }
2124
2125 mappable_offset = find_next_mappable_frag(frags,
2126 zc->recv_skip_hint);
2127 if (mappable_offset) {
2128 zc->recv_skip_hint = mappable_offset;
2129 break;
2130 }
2131 page = skb_frag_page(frags);
2132 prefetchw(page);
2133 pages[pages_to_map++] = page;
2134 length += PAGE_SIZE;
2135 zc->recv_skip_hint -= PAGE_SIZE;
2136 frags++;
2137 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2138 zc->recv_skip_hint < PAGE_SIZE) {
2139 /* Either full batch, or we're about to go to next skb
2140 * (and we cannot unroll failed ops across skbs).
2141 */
2142 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2143 pages_to_map,
2144 &address, &length,
2145 &seq, zc,
2146 total_bytes_to_map);
2147 if (ret)
2148 goto out;
2149 pages_to_map = 0;
2150 }
2151 }
2152 if (pages_to_map) {
2153 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2154 &address, &length, &seq,
2155 zc, total_bytes_to_map);
2156 }
2157 out:
2158 mmap_read_unlock(current->mm);
2159 /* Try to copy straggler data. */
2160 if (!ret)
2161 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2162
2163 if (length + copylen) {
2164 WRITE_ONCE(tp->copied_seq, seq);
2165 tcp_rcv_space_adjust(sk);
2166
2167 /* Clean up data we have read: This will do ACK frames. */
2168 tcp_recv_skb(sk, seq, &offset);
2169 tcp_cleanup_rbuf(sk, length + copylen);
2170 ret = 0;
2171 if (length == zc->length)
2172 zc->recv_skip_hint = 0;
2173 } else {
2174 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2175 ret = -EIO;
2176 }
2177 zc->length = length;
2178 return ret;
2179 }
2180 #endif
2181
2182 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2183 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2184 struct scm_timestamping_internal *tss)
2185 {
2186 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2187 bool has_timestamping = false;
2188
2189 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2190 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2191 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2192 if (new_tstamp) {
2193 struct __kernel_timespec kts = {
2194 .tv_sec = tss->ts[0].tv_sec,
2195 .tv_nsec = tss->ts[0].tv_nsec,
2196 };
2197 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2198 sizeof(kts), &kts);
2199 } else {
2200 struct __kernel_old_timespec ts_old = {
2201 .tv_sec = tss->ts[0].tv_sec,
2202 .tv_nsec = tss->ts[0].tv_nsec,
2203 };
2204 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2205 sizeof(ts_old), &ts_old);
2206 }
2207 } else {
2208 if (new_tstamp) {
2209 struct __kernel_sock_timeval stv = {
2210 .tv_sec = tss->ts[0].tv_sec,
2211 .tv_usec = tss->ts[0].tv_nsec / 1000,
2212 };
2213 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2214 sizeof(stv), &stv);
2215 } else {
2216 struct __kernel_old_timeval tv = {
2217 .tv_sec = tss->ts[0].tv_sec,
2218 .tv_usec = tss->ts[0].tv_nsec / 1000,
2219 };
2220 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2221 sizeof(tv), &tv);
2222 }
2223 }
2224 }
2225
2226 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2227 has_timestamping = true;
2228 else
2229 tss->ts[0] = (struct timespec64) {0};
2230 }
2231
2232 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2233 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2234 has_timestamping = true;
2235 else
2236 tss->ts[2] = (struct timespec64) {0};
2237 }
2238
2239 if (has_timestamping) {
2240 tss->ts[1] = (struct timespec64) {0};
2241 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2242 put_cmsg_scm_timestamping64(msg, tss);
2243 else
2244 put_cmsg_scm_timestamping(msg, tss);
2245 }
2246 }
2247
tcp_inq_hint(struct sock * sk)2248 static int tcp_inq_hint(struct sock *sk)
2249 {
2250 const struct tcp_sock *tp = tcp_sk(sk);
2251 u32 copied_seq = READ_ONCE(tp->copied_seq);
2252 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2253 int inq;
2254
2255 inq = rcv_nxt - copied_seq;
2256 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2257 lock_sock(sk);
2258 inq = tp->rcv_nxt - tp->copied_seq;
2259 release_sock(sk);
2260 }
2261 /* After receiving a FIN, tell the user-space to continue reading
2262 * by returning a non-zero inq.
2263 */
2264 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2265 inq = 1;
2266 return inq;
2267 }
2268
2269 /*
2270 * This routine copies from a sock struct into the user buffer.
2271 *
2272 * Technical note: in 2.3 we work on _locked_ socket, so that
2273 * tricks with *seq access order and skb->users are not required.
2274 * Probably, code can be easily improved even more.
2275 */
2276
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2277 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2278 int nonblock, int flags,
2279 struct scm_timestamping_internal *tss,
2280 int *cmsg_flags)
2281 {
2282 struct tcp_sock *tp = tcp_sk(sk);
2283 int copied = 0;
2284 u32 peek_seq;
2285 u32 *seq;
2286 unsigned long used;
2287 int err;
2288 int target; /* Read at least this many bytes */
2289 long timeo;
2290 struct sk_buff *skb, *last;
2291 u32 urg_hole = 0;
2292
2293 err = -ENOTCONN;
2294 if (sk->sk_state == TCP_LISTEN)
2295 goto out;
2296
2297 if (tp->recvmsg_inq)
2298 *cmsg_flags = TCP_CMSG_INQ;
2299 timeo = sock_rcvtimeo(sk, nonblock);
2300
2301 /* Urgent data needs to be handled specially. */
2302 if (flags & MSG_OOB)
2303 goto recv_urg;
2304
2305 if (unlikely(tp->repair)) {
2306 err = -EPERM;
2307 if (!(flags & MSG_PEEK))
2308 goto out;
2309
2310 if (tp->repair_queue == TCP_SEND_QUEUE)
2311 goto recv_sndq;
2312
2313 err = -EINVAL;
2314 if (tp->repair_queue == TCP_NO_QUEUE)
2315 goto out;
2316
2317 /* 'common' recv queue MSG_PEEK-ing */
2318 }
2319
2320 seq = &tp->copied_seq;
2321 if (flags & MSG_PEEK) {
2322 peek_seq = tp->copied_seq;
2323 seq = &peek_seq;
2324 }
2325
2326 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2327
2328 do {
2329 u32 offset;
2330
2331 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2332 if (tp->urg_data && tp->urg_seq == *seq) {
2333 if (copied)
2334 break;
2335 if (signal_pending(current)) {
2336 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2337 break;
2338 }
2339 }
2340
2341 /* Next get a buffer. */
2342
2343 last = skb_peek_tail(&sk->sk_receive_queue);
2344 skb_queue_walk(&sk->sk_receive_queue, skb) {
2345 last = skb;
2346 /* Now that we have two receive queues this
2347 * shouldn't happen.
2348 */
2349 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2350 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2351 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2352 flags))
2353 break;
2354
2355 offset = *seq - TCP_SKB_CB(skb)->seq;
2356 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2357 pr_err_once("%s: found a SYN, please report !\n", __func__);
2358 offset--;
2359 }
2360 if (offset < skb->len)
2361 goto found_ok_skb;
2362 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2363 goto found_fin_ok;
2364 WARN(!(flags & MSG_PEEK),
2365 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2366 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2367 }
2368
2369 /* Well, if we have backlog, try to process it now yet. */
2370
2371 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2372 break;
2373
2374 if (copied) {
2375 if (sk->sk_err ||
2376 sk->sk_state == TCP_CLOSE ||
2377 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2378 !timeo ||
2379 signal_pending(current))
2380 break;
2381 } else {
2382 if (sock_flag(sk, SOCK_DONE))
2383 break;
2384
2385 if (sk->sk_err) {
2386 copied = sock_error(sk);
2387 break;
2388 }
2389
2390 if (sk->sk_shutdown & RCV_SHUTDOWN)
2391 break;
2392
2393 if (sk->sk_state == TCP_CLOSE) {
2394 /* This occurs when user tries to read
2395 * from never connected socket.
2396 */
2397 copied = -ENOTCONN;
2398 break;
2399 }
2400
2401 if (!timeo) {
2402 copied = -EAGAIN;
2403 break;
2404 }
2405
2406 if (signal_pending(current)) {
2407 copied = sock_intr_errno(timeo);
2408 break;
2409 }
2410 }
2411
2412 tcp_cleanup_rbuf(sk, copied);
2413
2414 if (copied >= target) {
2415 /* Do not sleep, just process backlog. */
2416 release_sock(sk);
2417 lock_sock(sk);
2418 } else {
2419 sk_wait_data(sk, &timeo, last);
2420 }
2421
2422 if ((flags & MSG_PEEK) &&
2423 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2424 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2425 current->comm,
2426 task_pid_nr(current));
2427 peek_seq = tp->copied_seq;
2428 }
2429 continue;
2430
2431 found_ok_skb:
2432 /* Ok so how much can we use? */
2433 used = skb->len - offset;
2434 if (len < used)
2435 used = len;
2436
2437 /* Do we have urgent data here? */
2438 if (tp->urg_data) {
2439 u32 urg_offset = tp->urg_seq - *seq;
2440 if (urg_offset < used) {
2441 if (!urg_offset) {
2442 if (!sock_flag(sk, SOCK_URGINLINE)) {
2443 WRITE_ONCE(*seq, *seq + 1);
2444 urg_hole++;
2445 offset++;
2446 used--;
2447 if (!used)
2448 goto skip_copy;
2449 }
2450 } else
2451 used = urg_offset;
2452 }
2453 }
2454
2455 if (!(flags & MSG_TRUNC)) {
2456 err = skb_copy_datagram_msg(skb, offset, msg, used);
2457 if (err) {
2458 /* Exception. Bailout! */
2459 if (!copied)
2460 copied = -EFAULT;
2461 break;
2462 }
2463 }
2464
2465 WRITE_ONCE(*seq, *seq + used);
2466 copied += used;
2467 len -= used;
2468
2469 tcp_rcv_space_adjust(sk);
2470
2471 skip_copy:
2472 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2473 tp->urg_data = 0;
2474 tcp_fast_path_check(sk);
2475 }
2476
2477 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2478 tcp_update_recv_tstamps(skb, tss);
2479 *cmsg_flags |= TCP_CMSG_TS;
2480 }
2481
2482 if (used + offset < skb->len)
2483 continue;
2484
2485 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2486 goto found_fin_ok;
2487 if (!(flags & MSG_PEEK))
2488 sk_eat_skb(sk, skb);
2489 continue;
2490
2491 found_fin_ok:
2492 /* Process the FIN. */
2493 WRITE_ONCE(*seq, *seq + 1);
2494 if (!(flags & MSG_PEEK))
2495 sk_eat_skb(sk, skb);
2496 break;
2497 } while (len > 0);
2498
2499 /* According to UNIX98, msg_name/msg_namelen are ignored
2500 * on connected socket. I was just happy when found this 8) --ANK
2501 */
2502
2503 /* Clean up data we have read: This will do ACK frames. */
2504 tcp_cleanup_rbuf(sk, copied);
2505 return copied;
2506
2507 out:
2508 return err;
2509
2510 recv_urg:
2511 err = tcp_recv_urg(sk, msg, len, flags);
2512 goto out;
2513
2514 recv_sndq:
2515 err = tcp_peek_sndq(sk, msg, len);
2516 goto out;
2517 }
2518
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2519 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2520 int flags, int *addr_len)
2521 {
2522 int cmsg_flags = 0, ret, inq;
2523 struct scm_timestamping_internal tss;
2524
2525 if (unlikely(flags & MSG_ERRQUEUE))
2526 return inet_recv_error(sk, msg, len, addr_len);
2527
2528 if (sk_can_busy_loop(sk) &&
2529 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2530 sk->sk_state == TCP_ESTABLISHED)
2531 sk_busy_loop(sk, nonblock);
2532
2533 lock_sock(sk);
2534 ret = tcp_recvmsg_locked(sk, msg, len, nonblock, flags, &tss,
2535 &cmsg_flags);
2536 release_sock(sk);
2537
2538 if (cmsg_flags && ret >= 0) {
2539 if (cmsg_flags & TCP_CMSG_TS)
2540 tcp_recv_timestamp(msg, sk, &tss);
2541 if (cmsg_flags & TCP_CMSG_INQ) {
2542 inq = tcp_inq_hint(sk);
2543 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2544 }
2545 }
2546 return ret;
2547 }
2548 EXPORT_SYMBOL(tcp_recvmsg);
2549
tcp_set_state(struct sock * sk,int state)2550 void tcp_set_state(struct sock *sk, int state)
2551 {
2552 int oldstate = sk->sk_state;
2553
2554 /* We defined a new enum for TCP states that are exported in BPF
2555 * so as not force the internal TCP states to be frozen. The
2556 * following checks will detect if an internal state value ever
2557 * differs from the BPF value. If this ever happens, then we will
2558 * need to remap the internal value to the BPF value before calling
2559 * tcp_call_bpf_2arg.
2560 */
2561 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2562 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2563 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2564 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2565 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2566 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2567 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2568 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2569 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2570 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2571 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2572 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2573 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2574
2575 /* bpf uapi header bpf.h defines an anonymous enum with values
2576 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2577 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2578 * But clang built vmlinux does not have this enum in DWARF
2579 * since clang removes the above code before generating IR/debuginfo.
2580 * Let us explicitly emit the type debuginfo to ensure the
2581 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2582 * regardless of which compiler is used.
2583 */
2584 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2585
2586 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2587 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2588
2589 switch (state) {
2590 case TCP_ESTABLISHED:
2591 if (oldstate != TCP_ESTABLISHED)
2592 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2593 break;
2594
2595 case TCP_CLOSE:
2596 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2597 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2598
2599 sk->sk_prot->unhash(sk);
2600 if (inet_csk(sk)->icsk_bind_hash &&
2601 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2602 inet_put_port(sk);
2603 fallthrough;
2604 default:
2605 if (oldstate == TCP_ESTABLISHED)
2606 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2607 }
2608
2609 /* Change state AFTER socket is unhashed to avoid closed
2610 * socket sitting in hash tables.
2611 */
2612 inet_sk_state_store(sk, state);
2613 }
2614 EXPORT_SYMBOL_GPL(tcp_set_state);
2615
2616 /*
2617 * State processing on a close. This implements the state shift for
2618 * sending our FIN frame. Note that we only send a FIN for some
2619 * states. A shutdown() may have already sent the FIN, or we may be
2620 * closed.
2621 */
2622
2623 static const unsigned char new_state[16] = {
2624 /* current state: new state: action: */
2625 [0 /* (Invalid) */] = TCP_CLOSE,
2626 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2627 [TCP_SYN_SENT] = TCP_CLOSE,
2628 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2629 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2630 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2631 [TCP_TIME_WAIT] = TCP_CLOSE,
2632 [TCP_CLOSE] = TCP_CLOSE,
2633 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2634 [TCP_LAST_ACK] = TCP_LAST_ACK,
2635 [TCP_LISTEN] = TCP_CLOSE,
2636 [TCP_CLOSING] = TCP_CLOSING,
2637 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2638 };
2639
tcp_close_state(struct sock * sk)2640 static int tcp_close_state(struct sock *sk)
2641 {
2642 int next = (int)new_state[sk->sk_state];
2643 int ns = next & TCP_STATE_MASK;
2644
2645 tcp_set_state(sk, ns);
2646
2647 return next & TCP_ACTION_FIN;
2648 }
2649
2650 /*
2651 * Shutdown the sending side of a connection. Much like close except
2652 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2653 */
2654
tcp_shutdown(struct sock * sk,int how)2655 void tcp_shutdown(struct sock *sk, int how)
2656 {
2657 /* We need to grab some memory, and put together a FIN,
2658 * and then put it into the queue to be sent.
2659 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2660 */
2661 if (!(how & SEND_SHUTDOWN))
2662 return;
2663
2664 /* If we've already sent a FIN, or it's a closed state, skip this. */
2665 if ((1 << sk->sk_state) &
2666 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2667 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2668 /* Clear out any half completed packets. FIN if needed. */
2669 if (tcp_close_state(sk))
2670 tcp_send_fin(sk);
2671 }
2672 }
2673 EXPORT_SYMBOL(tcp_shutdown);
2674
tcp_orphan_count_sum(void)2675 int tcp_orphan_count_sum(void)
2676 {
2677 int i, total = 0;
2678
2679 for_each_possible_cpu(i)
2680 total += per_cpu(tcp_orphan_count, i);
2681
2682 return max(total, 0);
2683 }
2684
2685 static int tcp_orphan_cache;
2686 static struct timer_list tcp_orphan_timer;
2687 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2688
tcp_orphan_update(struct timer_list * unused)2689 static void tcp_orphan_update(struct timer_list *unused)
2690 {
2691 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2692 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2693 }
2694
tcp_too_many_orphans(int shift)2695 static bool tcp_too_many_orphans(int shift)
2696 {
2697 return READ_ONCE(tcp_orphan_cache) << shift > sysctl_tcp_max_orphans;
2698 }
2699
tcp_check_oom(struct sock * sk,int shift)2700 bool tcp_check_oom(struct sock *sk, int shift)
2701 {
2702 bool too_many_orphans, out_of_socket_memory;
2703
2704 too_many_orphans = tcp_too_many_orphans(shift);
2705 out_of_socket_memory = tcp_out_of_memory(sk);
2706
2707 if (too_many_orphans)
2708 net_info_ratelimited("too many orphaned sockets\n");
2709 if (out_of_socket_memory)
2710 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2711 return too_many_orphans || out_of_socket_memory;
2712 }
2713
__tcp_close(struct sock * sk,long timeout)2714 void __tcp_close(struct sock *sk, long timeout)
2715 {
2716 struct sk_buff *skb;
2717 int data_was_unread = 0;
2718 int state;
2719
2720 sk->sk_shutdown = SHUTDOWN_MASK;
2721
2722 if (sk->sk_state == TCP_LISTEN) {
2723 tcp_set_state(sk, TCP_CLOSE);
2724
2725 /* Special case. */
2726 inet_csk_listen_stop(sk);
2727
2728 goto adjudge_to_death;
2729 }
2730
2731 /* We need to flush the recv. buffs. We do this only on the
2732 * descriptor close, not protocol-sourced closes, because the
2733 * reader process may not have drained the data yet!
2734 */
2735 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2736 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2737
2738 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2739 len--;
2740 data_was_unread += len;
2741 __kfree_skb(skb);
2742 }
2743
2744 sk_mem_reclaim(sk);
2745
2746 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2747 if (sk->sk_state == TCP_CLOSE)
2748 goto adjudge_to_death;
2749
2750 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2751 * data was lost. To witness the awful effects of the old behavior of
2752 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2753 * GET in an FTP client, suspend the process, wait for the client to
2754 * advertise a zero window, then kill -9 the FTP client, wheee...
2755 * Note: timeout is always zero in such a case.
2756 */
2757 if (unlikely(tcp_sk(sk)->repair)) {
2758 sk->sk_prot->disconnect(sk, 0);
2759 } else if (data_was_unread) {
2760 /* Unread data was tossed, zap the connection. */
2761 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2762 tcp_set_state(sk, TCP_CLOSE);
2763 tcp_send_active_reset(sk, sk->sk_allocation);
2764 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2765 /* Check zero linger _after_ checking for unread data. */
2766 sk->sk_prot->disconnect(sk, 0);
2767 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2768 } else if (tcp_close_state(sk)) {
2769 /* We FIN if the application ate all the data before
2770 * zapping the connection.
2771 */
2772
2773 /* RED-PEN. Formally speaking, we have broken TCP state
2774 * machine. State transitions:
2775 *
2776 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2777 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2778 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2779 *
2780 * are legal only when FIN has been sent (i.e. in window),
2781 * rather than queued out of window. Purists blame.
2782 *
2783 * F.e. "RFC state" is ESTABLISHED,
2784 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2785 *
2786 * The visible declinations are that sometimes
2787 * we enter time-wait state, when it is not required really
2788 * (harmless), do not send active resets, when they are
2789 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2790 * they look as CLOSING or LAST_ACK for Linux)
2791 * Probably, I missed some more holelets.
2792 * --ANK
2793 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2794 * in a single packet! (May consider it later but will
2795 * probably need API support or TCP_CORK SYN-ACK until
2796 * data is written and socket is closed.)
2797 */
2798 tcp_send_fin(sk);
2799 }
2800
2801 sk_stream_wait_close(sk, timeout);
2802
2803 adjudge_to_death:
2804 state = sk->sk_state;
2805 sock_hold(sk);
2806 sock_orphan(sk);
2807
2808 local_bh_disable();
2809 bh_lock_sock(sk);
2810 /* remove backlog if any, without releasing ownership. */
2811 __release_sock(sk);
2812
2813 this_cpu_inc(tcp_orphan_count);
2814
2815 /* Have we already been destroyed by a softirq or backlog? */
2816 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2817 goto out;
2818
2819 /* This is a (useful) BSD violating of the RFC. There is a
2820 * problem with TCP as specified in that the other end could
2821 * keep a socket open forever with no application left this end.
2822 * We use a 1 minute timeout (about the same as BSD) then kill
2823 * our end. If they send after that then tough - BUT: long enough
2824 * that we won't make the old 4*rto = almost no time - whoops
2825 * reset mistake.
2826 *
2827 * Nope, it was not mistake. It is really desired behaviour
2828 * f.e. on http servers, when such sockets are useless, but
2829 * consume significant resources. Let's do it with special
2830 * linger2 option. --ANK
2831 */
2832
2833 if (sk->sk_state == TCP_FIN_WAIT2) {
2834 struct tcp_sock *tp = tcp_sk(sk);
2835 if (tp->linger2 < 0) {
2836 tcp_set_state(sk, TCP_CLOSE);
2837 tcp_send_active_reset(sk, GFP_ATOMIC);
2838 __NET_INC_STATS(sock_net(sk),
2839 LINUX_MIB_TCPABORTONLINGER);
2840 } else {
2841 const int tmo = tcp_fin_time(sk);
2842
2843 if (tmo > TCP_TIMEWAIT_LEN) {
2844 inet_csk_reset_keepalive_timer(sk,
2845 tmo - TCP_TIMEWAIT_LEN);
2846 } else {
2847 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2848 goto out;
2849 }
2850 }
2851 }
2852 if (sk->sk_state != TCP_CLOSE) {
2853 sk_mem_reclaim(sk);
2854 if (tcp_check_oom(sk, 0)) {
2855 tcp_set_state(sk, TCP_CLOSE);
2856 tcp_send_active_reset(sk, GFP_ATOMIC);
2857 __NET_INC_STATS(sock_net(sk),
2858 LINUX_MIB_TCPABORTONMEMORY);
2859 } else if (!check_net(sock_net(sk))) {
2860 /* Not possible to send reset; just close */
2861 tcp_set_state(sk, TCP_CLOSE);
2862 }
2863 }
2864
2865 if (sk->sk_state == TCP_CLOSE) {
2866 struct request_sock *req;
2867
2868 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2869 lockdep_sock_is_held(sk));
2870 /* We could get here with a non-NULL req if the socket is
2871 * aborted (e.g., closed with unread data) before 3WHS
2872 * finishes.
2873 */
2874 if (req)
2875 reqsk_fastopen_remove(sk, req, false);
2876 inet_csk_destroy_sock(sk);
2877 }
2878 /* Otherwise, socket is reprieved until protocol close. */
2879
2880 out:
2881 bh_unlock_sock(sk);
2882 local_bh_enable();
2883 }
2884
tcp_close(struct sock * sk,long timeout)2885 void tcp_close(struct sock *sk, long timeout)
2886 {
2887 lock_sock(sk);
2888 __tcp_close(sk, timeout);
2889 release_sock(sk);
2890 sock_put(sk);
2891 }
2892 EXPORT_SYMBOL(tcp_close);
2893
2894 /* These states need RST on ABORT according to RFC793 */
2895
tcp_need_reset(int state)2896 static inline bool tcp_need_reset(int state)
2897 {
2898 return (1 << state) &
2899 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2900 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2901 }
2902
tcp_rtx_queue_purge(struct sock * sk)2903 static void tcp_rtx_queue_purge(struct sock *sk)
2904 {
2905 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2906
2907 tcp_sk(sk)->highest_sack = NULL;
2908 while (p) {
2909 struct sk_buff *skb = rb_to_skb(p);
2910
2911 p = rb_next(p);
2912 /* Since we are deleting whole queue, no need to
2913 * list_del(&skb->tcp_tsorted_anchor)
2914 */
2915 tcp_rtx_queue_unlink(skb, sk);
2916 tcp_wmem_free_skb(sk, skb);
2917 }
2918 }
2919
tcp_write_queue_purge(struct sock * sk)2920 void tcp_write_queue_purge(struct sock *sk)
2921 {
2922 struct sk_buff *skb;
2923
2924 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2925 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2926 tcp_skb_tsorted_anchor_cleanup(skb);
2927 tcp_wmem_free_skb(sk, skb);
2928 }
2929 tcp_rtx_queue_purge(sk);
2930 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2931 sk_mem_reclaim(sk);
2932 tcp_clear_all_retrans_hints(tcp_sk(sk));
2933 tcp_sk(sk)->packets_out = 0;
2934 inet_csk(sk)->icsk_backoff = 0;
2935 }
2936
tcp_disconnect(struct sock * sk,int flags)2937 int tcp_disconnect(struct sock *sk, int flags)
2938 {
2939 struct inet_sock *inet = inet_sk(sk);
2940 struct inet_connection_sock *icsk = inet_csk(sk);
2941 struct tcp_sock *tp = tcp_sk(sk);
2942 int old_state = sk->sk_state;
2943 u32 seq;
2944
2945 if (old_state != TCP_CLOSE)
2946 tcp_set_state(sk, TCP_CLOSE);
2947
2948 /* ABORT function of RFC793 */
2949 if (old_state == TCP_LISTEN) {
2950 inet_csk_listen_stop(sk);
2951 } else if (unlikely(tp->repair)) {
2952 sk->sk_err = ECONNABORTED;
2953 } else if (tcp_need_reset(old_state) ||
2954 (tp->snd_nxt != tp->write_seq &&
2955 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2956 /* The last check adjusts for discrepancy of Linux wrt. RFC
2957 * states
2958 */
2959 tcp_send_active_reset(sk, gfp_any());
2960 sk->sk_err = ECONNRESET;
2961 } else if (old_state == TCP_SYN_SENT)
2962 sk->sk_err = ECONNRESET;
2963
2964 tcp_clear_xmit_timers(sk);
2965 __skb_queue_purge(&sk->sk_receive_queue);
2966 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2967 tp->urg_data = 0;
2968 tcp_write_queue_purge(sk);
2969 tcp_fastopen_active_disable_ofo_check(sk);
2970 skb_rbtree_purge(&tp->out_of_order_queue);
2971
2972 inet->inet_dport = 0;
2973
2974 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2975 inet_reset_saddr(sk);
2976
2977 sk->sk_shutdown = 0;
2978 sock_reset_flag(sk, SOCK_DONE);
2979 tp->srtt_us = 0;
2980 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2981 tp->rcv_rtt_last_tsecr = 0;
2982
2983 seq = tp->write_seq + tp->max_window + 2;
2984 if (!seq)
2985 seq = 1;
2986 WRITE_ONCE(tp->write_seq, seq);
2987
2988 icsk->icsk_backoff = 0;
2989 icsk->icsk_probes_out = 0;
2990 icsk->icsk_probes_tstamp = 0;
2991 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2992 icsk->icsk_rto_min = TCP_RTO_MIN;
2993 icsk->icsk_delack_max = TCP_DELACK_MAX;
2994 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2995 tp->snd_cwnd = TCP_INIT_CWND;
2996 tp->snd_cwnd_cnt = 0;
2997 tp->window_clamp = 0;
2998 tp->delivered = 0;
2999 tp->delivered_ce = 0;
3000 if (icsk->icsk_ca_ops->release)
3001 icsk->icsk_ca_ops->release(sk);
3002 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3003 icsk->icsk_ca_initialized = 0;
3004 tcp_set_ca_state(sk, TCP_CA_Open);
3005 tp->is_sack_reneg = 0;
3006 tcp_clear_retrans(tp);
3007 tp->total_retrans = 0;
3008 inet_csk_delack_init(sk);
3009 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3010 * issue in __tcp_select_window()
3011 */
3012 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3013 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3014 __sk_dst_reset(sk);
3015 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3016 tcp_saved_syn_free(tp);
3017 tp->compressed_ack = 0;
3018 tp->segs_in = 0;
3019 tp->segs_out = 0;
3020 tp->bytes_sent = 0;
3021 tp->bytes_acked = 0;
3022 tp->bytes_received = 0;
3023 tp->bytes_retrans = 0;
3024 tp->data_segs_in = 0;
3025 tp->data_segs_out = 0;
3026 tp->duplicate_sack[0].start_seq = 0;
3027 tp->duplicate_sack[0].end_seq = 0;
3028 tp->dsack_dups = 0;
3029 tp->reord_seen = 0;
3030 tp->retrans_out = 0;
3031 tp->sacked_out = 0;
3032 tp->tlp_high_seq = 0;
3033 tp->last_oow_ack_time = 0;
3034 /* There's a bubble in the pipe until at least the first ACK. */
3035 tp->app_limited = ~0U;
3036 tp->rack.mstamp = 0;
3037 tp->rack.advanced = 0;
3038 tp->rack.reo_wnd_steps = 1;
3039 tp->rack.last_delivered = 0;
3040 tp->rack.reo_wnd_persist = 0;
3041 tp->rack.dsack_seen = 0;
3042 tp->syn_data_acked = 0;
3043 tp->rx_opt.saw_tstamp = 0;
3044 tp->rx_opt.dsack = 0;
3045 tp->rx_opt.num_sacks = 0;
3046 tp->rcv_ooopack = 0;
3047
3048
3049 /* Clean up fastopen related fields */
3050 tcp_free_fastopen_req(tp);
3051 inet->defer_connect = 0;
3052 tp->fastopen_client_fail = 0;
3053
3054 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3055
3056 if (sk->sk_frag.page) {
3057 put_page(sk->sk_frag.page);
3058 sk->sk_frag.page = NULL;
3059 sk->sk_frag.offset = 0;
3060 }
3061
3062 sk_error_report(sk);
3063 return 0;
3064 }
3065 EXPORT_SYMBOL(tcp_disconnect);
3066
tcp_can_repair_sock(const struct sock * sk)3067 static inline bool tcp_can_repair_sock(const struct sock *sk)
3068 {
3069 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3070 (sk->sk_state != TCP_LISTEN);
3071 }
3072
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3073 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3074 {
3075 struct tcp_repair_window opt;
3076
3077 if (!tp->repair)
3078 return -EPERM;
3079
3080 if (len != sizeof(opt))
3081 return -EINVAL;
3082
3083 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3084 return -EFAULT;
3085
3086 if (opt.max_window < opt.snd_wnd)
3087 return -EINVAL;
3088
3089 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3090 return -EINVAL;
3091
3092 if (after(opt.rcv_wup, tp->rcv_nxt))
3093 return -EINVAL;
3094
3095 tp->snd_wl1 = opt.snd_wl1;
3096 tp->snd_wnd = opt.snd_wnd;
3097 tp->max_window = opt.max_window;
3098
3099 tp->rcv_wnd = opt.rcv_wnd;
3100 tp->rcv_wup = opt.rcv_wup;
3101
3102 return 0;
3103 }
3104
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3105 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3106 unsigned int len)
3107 {
3108 struct tcp_sock *tp = tcp_sk(sk);
3109 struct tcp_repair_opt opt;
3110 size_t offset = 0;
3111
3112 while (len >= sizeof(opt)) {
3113 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3114 return -EFAULT;
3115
3116 offset += sizeof(opt);
3117 len -= sizeof(opt);
3118
3119 switch (opt.opt_code) {
3120 case TCPOPT_MSS:
3121 tp->rx_opt.mss_clamp = opt.opt_val;
3122 tcp_mtup_init(sk);
3123 break;
3124 case TCPOPT_WINDOW:
3125 {
3126 u16 snd_wscale = opt.opt_val & 0xFFFF;
3127 u16 rcv_wscale = opt.opt_val >> 16;
3128
3129 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3130 return -EFBIG;
3131
3132 tp->rx_opt.snd_wscale = snd_wscale;
3133 tp->rx_opt.rcv_wscale = rcv_wscale;
3134 tp->rx_opt.wscale_ok = 1;
3135 }
3136 break;
3137 case TCPOPT_SACK_PERM:
3138 if (opt.opt_val != 0)
3139 return -EINVAL;
3140
3141 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3142 break;
3143 case TCPOPT_TIMESTAMP:
3144 if (opt.opt_val != 0)
3145 return -EINVAL;
3146
3147 tp->rx_opt.tstamp_ok = 1;
3148 break;
3149 }
3150 }
3151
3152 return 0;
3153 }
3154
3155 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3156 EXPORT_SYMBOL(tcp_tx_delay_enabled);
3157
tcp_enable_tx_delay(void)3158 static void tcp_enable_tx_delay(void)
3159 {
3160 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3161 static int __tcp_tx_delay_enabled = 0;
3162
3163 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3164 static_branch_enable(&tcp_tx_delay_enabled);
3165 pr_info("TCP_TX_DELAY enabled\n");
3166 }
3167 }
3168 }
3169
3170 /* When set indicates to always queue non-full frames. Later the user clears
3171 * this option and we transmit any pending partial frames in the queue. This is
3172 * meant to be used alongside sendfile() to get properly filled frames when the
3173 * user (for example) must write out headers with a write() call first and then
3174 * use sendfile to send out the data parts.
3175 *
3176 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3177 * TCP_NODELAY.
3178 */
__tcp_sock_set_cork(struct sock * sk,bool on)3179 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3180 {
3181 struct tcp_sock *tp = tcp_sk(sk);
3182
3183 if (on) {
3184 tp->nonagle |= TCP_NAGLE_CORK;
3185 } else {
3186 tp->nonagle &= ~TCP_NAGLE_CORK;
3187 if (tp->nonagle & TCP_NAGLE_OFF)
3188 tp->nonagle |= TCP_NAGLE_PUSH;
3189 tcp_push_pending_frames(sk);
3190 }
3191 }
3192
tcp_sock_set_cork(struct sock * sk,bool on)3193 void tcp_sock_set_cork(struct sock *sk, bool on)
3194 {
3195 lock_sock(sk);
3196 __tcp_sock_set_cork(sk, on);
3197 release_sock(sk);
3198 }
3199 EXPORT_SYMBOL(tcp_sock_set_cork);
3200
3201 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3202 * remembered, but it is not activated until cork is cleared.
3203 *
3204 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3205 * even TCP_CORK for currently queued segments.
3206 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3207 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3208 {
3209 if (on) {
3210 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3211 tcp_push_pending_frames(sk);
3212 } else {
3213 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3214 }
3215 }
3216
tcp_sock_set_nodelay(struct sock * sk)3217 void tcp_sock_set_nodelay(struct sock *sk)
3218 {
3219 lock_sock(sk);
3220 __tcp_sock_set_nodelay(sk, true);
3221 release_sock(sk);
3222 }
3223 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3224
__tcp_sock_set_quickack(struct sock * sk,int val)3225 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3226 {
3227 if (!val) {
3228 inet_csk_enter_pingpong_mode(sk);
3229 return;
3230 }
3231
3232 inet_csk_exit_pingpong_mode(sk);
3233 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3234 inet_csk_ack_scheduled(sk)) {
3235 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3236 tcp_cleanup_rbuf(sk, 1);
3237 if (!(val & 1))
3238 inet_csk_enter_pingpong_mode(sk);
3239 }
3240 }
3241
tcp_sock_set_quickack(struct sock * sk,int val)3242 void tcp_sock_set_quickack(struct sock *sk, int val)
3243 {
3244 lock_sock(sk);
3245 __tcp_sock_set_quickack(sk, val);
3246 release_sock(sk);
3247 }
3248 EXPORT_SYMBOL(tcp_sock_set_quickack);
3249
tcp_sock_set_syncnt(struct sock * sk,int val)3250 int tcp_sock_set_syncnt(struct sock *sk, int val)
3251 {
3252 if (val < 1 || val > MAX_TCP_SYNCNT)
3253 return -EINVAL;
3254
3255 lock_sock(sk);
3256 inet_csk(sk)->icsk_syn_retries = val;
3257 release_sock(sk);
3258 return 0;
3259 }
3260 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3261
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3262 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3263 {
3264 lock_sock(sk);
3265 inet_csk(sk)->icsk_user_timeout = val;
3266 release_sock(sk);
3267 }
3268 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3269
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3270 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3271 {
3272 struct tcp_sock *tp = tcp_sk(sk);
3273
3274 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3275 return -EINVAL;
3276
3277 tp->keepalive_time = val * HZ;
3278 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3279 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3280 u32 elapsed = keepalive_time_elapsed(tp);
3281
3282 if (tp->keepalive_time > elapsed)
3283 elapsed = tp->keepalive_time - elapsed;
3284 else
3285 elapsed = 0;
3286 inet_csk_reset_keepalive_timer(sk, elapsed);
3287 }
3288
3289 return 0;
3290 }
3291
tcp_sock_set_keepidle(struct sock * sk,int val)3292 int tcp_sock_set_keepidle(struct sock *sk, int val)
3293 {
3294 int err;
3295
3296 lock_sock(sk);
3297 err = tcp_sock_set_keepidle_locked(sk, val);
3298 release_sock(sk);
3299 return err;
3300 }
3301 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3302
tcp_sock_set_keepintvl(struct sock * sk,int val)3303 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3304 {
3305 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3306 return -EINVAL;
3307
3308 lock_sock(sk);
3309 tcp_sk(sk)->keepalive_intvl = val * HZ;
3310 release_sock(sk);
3311 return 0;
3312 }
3313 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3314
tcp_sock_set_keepcnt(struct sock * sk,int val)3315 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3316 {
3317 if (val < 1 || val > MAX_TCP_KEEPCNT)
3318 return -EINVAL;
3319
3320 lock_sock(sk);
3321 tcp_sk(sk)->keepalive_probes = val;
3322 release_sock(sk);
3323 return 0;
3324 }
3325 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3326
tcp_set_window_clamp(struct sock * sk,int val)3327 int tcp_set_window_clamp(struct sock *sk, int val)
3328 {
3329 struct tcp_sock *tp = tcp_sk(sk);
3330
3331 if (!val) {
3332 if (sk->sk_state != TCP_CLOSE)
3333 return -EINVAL;
3334 tp->window_clamp = 0;
3335 } else {
3336 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3337 SOCK_MIN_RCVBUF / 2 : val;
3338 tp->rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3339 }
3340 return 0;
3341 }
3342
3343 /*
3344 * Socket option code for TCP.
3345 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3346 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3347 sockptr_t optval, unsigned int optlen)
3348 {
3349 struct tcp_sock *tp = tcp_sk(sk);
3350 struct inet_connection_sock *icsk = inet_csk(sk);
3351 struct net *net = sock_net(sk);
3352 int val;
3353 int err = 0;
3354
3355 /* These are data/string values, all the others are ints */
3356 switch (optname) {
3357 case TCP_CONGESTION: {
3358 char name[TCP_CA_NAME_MAX];
3359
3360 if (optlen < 1)
3361 return -EINVAL;
3362
3363 val = strncpy_from_sockptr(name, optval,
3364 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3365 if (val < 0)
3366 return -EFAULT;
3367 name[val] = 0;
3368
3369 lock_sock(sk);
3370 err = tcp_set_congestion_control(sk, name, true,
3371 ns_capable(sock_net(sk)->user_ns,
3372 CAP_NET_ADMIN));
3373 release_sock(sk);
3374 return err;
3375 }
3376 case TCP_ULP: {
3377 char name[TCP_ULP_NAME_MAX];
3378
3379 if (optlen < 1)
3380 return -EINVAL;
3381
3382 val = strncpy_from_sockptr(name, optval,
3383 min_t(long, TCP_ULP_NAME_MAX - 1,
3384 optlen));
3385 if (val < 0)
3386 return -EFAULT;
3387 name[val] = 0;
3388
3389 lock_sock(sk);
3390 err = tcp_set_ulp(sk, name);
3391 release_sock(sk);
3392 return err;
3393 }
3394 case TCP_FASTOPEN_KEY: {
3395 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3396 __u8 *backup_key = NULL;
3397
3398 /* Allow a backup key as well to facilitate key rotation
3399 * First key is the active one.
3400 */
3401 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3402 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3403 return -EINVAL;
3404
3405 if (copy_from_sockptr(key, optval, optlen))
3406 return -EFAULT;
3407
3408 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3409 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3410
3411 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3412 }
3413 default:
3414 /* fallthru */
3415 break;
3416 }
3417
3418 if (optlen < sizeof(int))
3419 return -EINVAL;
3420
3421 if (copy_from_sockptr(&val, optval, sizeof(val)))
3422 return -EFAULT;
3423
3424 lock_sock(sk);
3425
3426 switch (optname) {
3427 case TCP_MAXSEG:
3428 /* Values greater than interface MTU won't take effect. However
3429 * at the point when this call is done we typically don't yet
3430 * know which interface is going to be used
3431 */
3432 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3433 err = -EINVAL;
3434 break;
3435 }
3436 tp->rx_opt.user_mss = val;
3437 break;
3438
3439 case TCP_NODELAY:
3440 __tcp_sock_set_nodelay(sk, val);
3441 break;
3442
3443 case TCP_THIN_LINEAR_TIMEOUTS:
3444 if (val < 0 || val > 1)
3445 err = -EINVAL;
3446 else
3447 tp->thin_lto = val;
3448 break;
3449
3450 case TCP_THIN_DUPACK:
3451 if (val < 0 || val > 1)
3452 err = -EINVAL;
3453 break;
3454
3455 case TCP_REPAIR:
3456 if (!tcp_can_repair_sock(sk))
3457 err = -EPERM;
3458 else if (val == TCP_REPAIR_ON) {
3459 tp->repair = 1;
3460 sk->sk_reuse = SK_FORCE_REUSE;
3461 tp->repair_queue = TCP_NO_QUEUE;
3462 } else if (val == TCP_REPAIR_OFF) {
3463 tp->repair = 0;
3464 sk->sk_reuse = SK_NO_REUSE;
3465 tcp_send_window_probe(sk);
3466 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3467 tp->repair = 0;
3468 sk->sk_reuse = SK_NO_REUSE;
3469 } else
3470 err = -EINVAL;
3471
3472 break;
3473
3474 case TCP_REPAIR_QUEUE:
3475 if (!tp->repair)
3476 err = -EPERM;
3477 else if ((unsigned int)val < TCP_QUEUES_NR)
3478 tp->repair_queue = val;
3479 else
3480 err = -EINVAL;
3481 break;
3482
3483 case TCP_QUEUE_SEQ:
3484 if (sk->sk_state != TCP_CLOSE) {
3485 err = -EPERM;
3486 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3487 if (!tcp_rtx_queue_empty(sk))
3488 err = -EPERM;
3489 else
3490 WRITE_ONCE(tp->write_seq, val);
3491 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3492 if (tp->rcv_nxt != tp->copied_seq) {
3493 err = -EPERM;
3494 } else {
3495 WRITE_ONCE(tp->rcv_nxt, val);
3496 WRITE_ONCE(tp->copied_seq, val);
3497 }
3498 } else {
3499 err = -EINVAL;
3500 }
3501 break;
3502
3503 case TCP_REPAIR_OPTIONS:
3504 if (!tp->repair)
3505 err = -EINVAL;
3506 else if (sk->sk_state == TCP_ESTABLISHED)
3507 err = tcp_repair_options_est(sk, optval, optlen);
3508 else
3509 err = -EPERM;
3510 break;
3511
3512 case TCP_CORK:
3513 __tcp_sock_set_cork(sk, val);
3514 break;
3515
3516 case TCP_KEEPIDLE:
3517 err = tcp_sock_set_keepidle_locked(sk, val);
3518 break;
3519 case TCP_KEEPINTVL:
3520 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3521 err = -EINVAL;
3522 else
3523 tp->keepalive_intvl = val * HZ;
3524 break;
3525 case TCP_KEEPCNT:
3526 if (val < 1 || val > MAX_TCP_KEEPCNT)
3527 err = -EINVAL;
3528 else
3529 tp->keepalive_probes = val;
3530 break;
3531 case TCP_SYNCNT:
3532 if (val < 1 || val > MAX_TCP_SYNCNT)
3533 err = -EINVAL;
3534 else
3535 icsk->icsk_syn_retries = val;
3536 break;
3537
3538 case TCP_SAVE_SYN:
3539 /* 0: disable, 1: enable, 2: start from ether_header */
3540 if (val < 0 || val > 2)
3541 err = -EINVAL;
3542 else
3543 tp->save_syn = val;
3544 break;
3545
3546 case TCP_LINGER2:
3547 if (val < 0)
3548 tp->linger2 = -1;
3549 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3550 tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3551 else
3552 tp->linger2 = val * HZ;
3553 break;
3554
3555 case TCP_DEFER_ACCEPT:
3556 /* Translate value in seconds to number of retransmits */
3557 icsk->icsk_accept_queue.rskq_defer_accept =
3558 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3559 TCP_RTO_MAX / HZ);
3560 break;
3561
3562 case TCP_WINDOW_CLAMP:
3563 err = tcp_set_window_clamp(sk, val);
3564 break;
3565
3566 case TCP_QUICKACK:
3567 __tcp_sock_set_quickack(sk, val);
3568 break;
3569
3570 #ifdef CONFIG_TCP_MD5SIG
3571 case TCP_MD5SIG:
3572 case TCP_MD5SIG_EXT:
3573 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3574 break;
3575 #endif
3576 case TCP_USER_TIMEOUT:
3577 /* Cap the max time in ms TCP will retry or probe the window
3578 * before giving up and aborting (ETIMEDOUT) a connection.
3579 */
3580 if (val < 0)
3581 err = -EINVAL;
3582 else
3583 icsk->icsk_user_timeout = val;
3584 break;
3585
3586 case TCP_FASTOPEN:
3587 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3588 TCPF_LISTEN))) {
3589 tcp_fastopen_init_key_once(net);
3590
3591 fastopen_queue_tune(sk, val);
3592 } else {
3593 err = -EINVAL;
3594 }
3595 break;
3596 case TCP_FASTOPEN_CONNECT:
3597 if (val > 1 || val < 0) {
3598 err = -EINVAL;
3599 } else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
3600 if (sk->sk_state == TCP_CLOSE)
3601 tp->fastopen_connect = val;
3602 else
3603 err = -EINVAL;
3604 } else {
3605 err = -EOPNOTSUPP;
3606 }
3607 break;
3608 case TCP_FASTOPEN_NO_COOKIE:
3609 if (val > 1 || val < 0)
3610 err = -EINVAL;
3611 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3612 err = -EINVAL;
3613 else
3614 tp->fastopen_no_cookie = val;
3615 break;
3616 case TCP_TIMESTAMP:
3617 if (!tp->repair)
3618 err = -EPERM;
3619 else
3620 tp->tsoffset = val - tcp_time_stamp_raw();
3621 break;
3622 case TCP_REPAIR_WINDOW:
3623 err = tcp_repair_set_window(tp, optval, optlen);
3624 break;
3625 case TCP_NOTSENT_LOWAT:
3626 tp->notsent_lowat = val;
3627 sk->sk_write_space(sk);
3628 break;
3629 case TCP_INQ:
3630 if (val > 1 || val < 0)
3631 err = -EINVAL;
3632 else
3633 tp->recvmsg_inq = val;
3634 break;
3635 case TCP_TX_DELAY:
3636 if (val)
3637 tcp_enable_tx_delay();
3638 tp->tcp_tx_delay = val;
3639 break;
3640 default:
3641 err = -ENOPROTOOPT;
3642 break;
3643 }
3644
3645 release_sock(sk);
3646 return err;
3647 }
3648
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3649 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3650 unsigned int optlen)
3651 {
3652 const struct inet_connection_sock *icsk = inet_csk(sk);
3653
3654 if (level != SOL_TCP)
3655 return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3656 optval, optlen);
3657 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3658 }
3659 EXPORT_SYMBOL(tcp_setsockopt);
3660
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3661 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3662 struct tcp_info *info)
3663 {
3664 u64 stats[__TCP_CHRONO_MAX], total = 0;
3665 enum tcp_chrono i;
3666
3667 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3668 stats[i] = tp->chrono_stat[i - 1];
3669 if (i == tp->chrono_type)
3670 stats[i] += tcp_jiffies32 - tp->chrono_start;
3671 stats[i] *= USEC_PER_SEC / HZ;
3672 total += stats[i];
3673 }
3674
3675 info->tcpi_busy_time = total;
3676 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3677 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3678 }
3679
3680 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3681 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3682 {
3683 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3684 const struct inet_connection_sock *icsk = inet_csk(sk);
3685 unsigned long rate;
3686 u32 now;
3687 u64 rate64;
3688 bool slow;
3689
3690 memset(info, 0, sizeof(*info));
3691 if (sk->sk_type != SOCK_STREAM)
3692 return;
3693
3694 info->tcpi_state = inet_sk_state_load(sk);
3695
3696 /* Report meaningful fields for all TCP states, including listeners */
3697 rate = READ_ONCE(sk->sk_pacing_rate);
3698 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3699 info->tcpi_pacing_rate = rate64;
3700
3701 rate = READ_ONCE(sk->sk_max_pacing_rate);
3702 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3703 info->tcpi_max_pacing_rate = rate64;
3704
3705 info->tcpi_reordering = tp->reordering;
3706 info->tcpi_snd_cwnd = tp->snd_cwnd;
3707
3708 if (info->tcpi_state == TCP_LISTEN) {
3709 /* listeners aliased fields :
3710 * tcpi_unacked -> Number of children ready for accept()
3711 * tcpi_sacked -> max backlog
3712 */
3713 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3714 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3715 return;
3716 }
3717
3718 slow = lock_sock_fast(sk);
3719
3720 info->tcpi_ca_state = icsk->icsk_ca_state;
3721 info->tcpi_retransmits = icsk->icsk_retransmits;
3722 info->tcpi_probes = icsk->icsk_probes_out;
3723 info->tcpi_backoff = icsk->icsk_backoff;
3724
3725 if (tp->rx_opt.tstamp_ok)
3726 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3727 if (tcp_is_sack(tp))
3728 info->tcpi_options |= TCPI_OPT_SACK;
3729 if (tp->rx_opt.wscale_ok) {
3730 info->tcpi_options |= TCPI_OPT_WSCALE;
3731 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3732 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3733 }
3734
3735 if (tp->ecn_flags & TCP_ECN_OK)
3736 info->tcpi_options |= TCPI_OPT_ECN;
3737 if (tp->ecn_flags & TCP_ECN_SEEN)
3738 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3739 if (tp->syn_data_acked)
3740 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3741
3742 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3743 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3744 info->tcpi_snd_mss = tp->mss_cache;
3745 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3746
3747 info->tcpi_unacked = tp->packets_out;
3748 info->tcpi_sacked = tp->sacked_out;
3749
3750 info->tcpi_lost = tp->lost_out;
3751 info->tcpi_retrans = tp->retrans_out;
3752
3753 now = tcp_jiffies32;
3754 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3755 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3756 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3757
3758 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3759 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3760 info->tcpi_rtt = tp->srtt_us >> 3;
3761 info->tcpi_rttvar = tp->mdev_us >> 2;
3762 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3763 info->tcpi_advmss = tp->advmss;
3764
3765 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3766 info->tcpi_rcv_space = tp->rcvq_space.space;
3767
3768 info->tcpi_total_retrans = tp->total_retrans;
3769
3770 info->tcpi_bytes_acked = tp->bytes_acked;
3771 info->tcpi_bytes_received = tp->bytes_received;
3772 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3773 tcp_get_info_chrono_stats(tp, info);
3774
3775 info->tcpi_segs_out = tp->segs_out;
3776 info->tcpi_segs_in = tp->segs_in;
3777
3778 info->tcpi_min_rtt = tcp_min_rtt(tp);
3779 info->tcpi_data_segs_in = tp->data_segs_in;
3780 info->tcpi_data_segs_out = tp->data_segs_out;
3781
3782 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3783 rate64 = tcp_compute_delivery_rate(tp);
3784 if (rate64)
3785 info->tcpi_delivery_rate = rate64;
3786 info->tcpi_delivered = tp->delivered;
3787 info->tcpi_delivered_ce = tp->delivered_ce;
3788 info->tcpi_bytes_sent = tp->bytes_sent;
3789 info->tcpi_bytes_retrans = tp->bytes_retrans;
3790 info->tcpi_dsack_dups = tp->dsack_dups;
3791 info->tcpi_reord_seen = tp->reord_seen;
3792 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3793 info->tcpi_snd_wnd = tp->snd_wnd;
3794 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3795 unlock_sock_fast(sk, slow);
3796 }
3797 EXPORT_SYMBOL_GPL(tcp_get_info);
3798
tcp_opt_stats_get_size(void)3799 static size_t tcp_opt_stats_get_size(void)
3800 {
3801 return
3802 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3803 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3804 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3805 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3806 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3807 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3808 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3809 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3810 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3811 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3812 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3813 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3814 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3815 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3816 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3817 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3818 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3819 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3820 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3821 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3822 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3823 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3824 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3825 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3826 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3827 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3828 0;
3829 }
3830
3831 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)3832 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3833 {
3834 if (skb->protocol == htons(ETH_P_IP))
3835 return ip_hdr(skb)->ttl;
3836 else if (skb->protocol == htons(ETH_P_IPV6))
3837 return ipv6_hdr(skb)->hop_limit;
3838 else
3839 return 0;
3840 }
3841
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)3842 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3843 const struct sk_buff *orig_skb,
3844 const struct sk_buff *ack_skb)
3845 {
3846 const struct tcp_sock *tp = tcp_sk(sk);
3847 struct sk_buff *stats;
3848 struct tcp_info info;
3849 unsigned long rate;
3850 u64 rate64;
3851
3852 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3853 if (!stats)
3854 return NULL;
3855
3856 tcp_get_info_chrono_stats(tp, &info);
3857 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3858 info.tcpi_busy_time, TCP_NLA_PAD);
3859 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3860 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3861 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3862 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3863 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3864 tp->data_segs_out, TCP_NLA_PAD);
3865 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3866 tp->total_retrans, TCP_NLA_PAD);
3867
3868 rate = READ_ONCE(sk->sk_pacing_rate);
3869 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3870 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3871
3872 rate64 = tcp_compute_delivery_rate(tp);
3873 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3874
3875 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3876 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3877 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3878
3879 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3880 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3881 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3882 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3883 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3884
3885 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3886 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3887
3888 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3889 TCP_NLA_PAD);
3890 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3891 TCP_NLA_PAD);
3892 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3893 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3894 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3895 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3896 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3897 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3898 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3899 TCP_NLA_PAD);
3900 if (ack_skb)
3901 nla_put_u8(stats, TCP_NLA_TTL,
3902 tcp_skb_ttl_or_hop_limit(ack_skb));
3903
3904 return stats;
3905 }
3906
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3907 static int do_tcp_getsockopt(struct sock *sk, int level,
3908 int optname, char __user *optval, int __user *optlen)
3909 {
3910 struct inet_connection_sock *icsk = inet_csk(sk);
3911 struct tcp_sock *tp = tcp_sk(sk);
3912 struct net *net = sock_net(sk);
3913 int val, len;
3914
3915 if (get_user(len, optlen))
3916 return -EFAULT;
3917
3918 len = min_t(unsigned int, len, sizeof(int));
3919
3920 if (len < 0)
3921 return -EINVAL;
3922
3923 switch (optname) {
3924 case TCP_MAXSEG:
3925 val = tp->mss_cache;
3926 if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3927 val = tp->rx_opt.user_mss;
3928 if (tp->repair)
3929 val = tp->rx_opt.mss_clamp;
3930 break;
3931 case TCP_NODELAY:
3932 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3933 break;
3934 case TCP_CORK:
3935 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3936 break;
3937 case TCP_KEEPIDLE:
3938 val = keepalive_time_when(tp) / HZ;
3939 break;
3940 case TCP_KEEPINTVL:
3941 val = keepalive_intvl_when(tp) / HZ;
3942 break;
3943 case TCP_KEEPCNT:
3944 val = keepalive_probes(tp);
3945 break;
3946 case TCP_SYNCNT:
3947 val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
3948 break;
3949 case TCP_LINGER2:
3950 val = tp->linger2;
3951 if (val >= 0)
3952 val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3953 break;
3954 case TCP_DEFER_ACCEPT:
3955 val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3956 TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
3957 break;
3958 case TCP_WINDOW_CLAMP:
3959 val = tp->window_clamp;
3960 break;
3961 case TCP_INFO: {
3962 struct tcp_info info;
3963
3964 if (get_user(len, optlen))
3965 return -EFAULT;
3966
3967 tcp_get_info(sk, &info);
3968
3969 len = min_t(unsigned int, len, sizeof(info));
3970 if (put_user(len, optlen))
3971 return -EFAULT;
3972 if (copy_to_user(optval, &info, len))
3973 return -EFAULT;
3974 return 0;
3975 }
3976 case TCP_CC_INFO: {
3977 const struct tcp_congestion_ops *ca_ops;
3978 union tcp_cc_info info;
3979 size_t sz = 0;
3980 int attr;
3981
3982 if (get_user(len, optlen))
3983 return -EFAULT;
3984
3985 ca_ops = icsk->icsk_ca_ops;
3986 if (ca_ops && ca_ops->get_info)
3987 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3988
3989 len = min_t(unsigned int, len, sz);
3990 if (put_user(len, optlen))
3991 return -EFAULT;
3992 if (copy_to_user(optval, &info, len))
3993 return -EFAULT;
3994 return 0;
3995 }
3996 case TCP_QUICKACK:
3997 val = !inet_csk_in_pingpong_mode(sk);
3998 break;
3999
4000 case TCP_CONGESTION:
4001 if (get_user(len, optlen))
4002 return -EFAULT;
4003 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4004 if (put_user(len, optlen))
4005 return -EFAULT;
4006 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
4007 return -EFAULT;
4008 return 0;
4009
4010 case TCP_ULP:
4011 if (get_user(len, optlen))
4012 return -EFAULT;
4013 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4014 if (!icsk->icsk_ulp_ops) {
4015 if (put_user(0, optlen))
4016 return -EFAULT;
4017 return 0;
4018 }
4019 if (put_user(len, optlen))
4020 return -EFAULT;
4021 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
4022 return -EFAULT;
4023 return 0;
4024
4025 case TCP_FASTOPEN_KEY: {
4026 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4027 unsigned int key_len;
4028
4029 if (get_user(len, optlen))
4030 return -EFAULT;
4031
4032 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4033 TCP_FASTOPEN_KEY_LENGTH;
4034 len = min_t(unsigned int, len, key_len);
4035 if (put_user(len, optlen))
4036 return -EFAULT;
4037 if (copy_to_user(optval, key, len))
4038 return -EFAULT;
4039 return 0;
4040 }
4041 case TCP_THIN_LINEAR_TIMEOUTS:
4042 val = tp->thin_lto;
4043 break;
4044
4045 case TCP_THIN_DUPACK:
4046 val = 0;
4047 break;
4048
4049 case TCP_REPAIR:
4050 val = tp->repair;
4051 break;
4052
4053 case TCP_REPAIR_QUEUE:
4054 if (tp->repair)
4055 val = tp->repair_queue;
4056 else
4057 return -EINVAL;
4058 break;
4059
4060 case TCP_REPAIR_WINDOW: {
4061 struct tcp_repair_window opt;
4062
4063 if (get_user(len, optlen))
4064 return -EFAULT;
4065
4066 if (len != sizeof(opt))
4067 return -EINVAL;
4068
4069 if (!tp->repair)
4070 return -EPERM;
4071
4072 opt.snd_wl1 = tp->snd_wl1;
4073 opt.snd_wnd = tp->snd_wnd;
4074 opt.max_window = tp->max_window;
4075 opt.rcv_wnd = tp->rcv_wnd;
4076 opt.rcv_wup = tp->rcv_wup;
4077
4078 if (copy_to_user(optval, &opt, len))
4079 return -EFAULT;
4080 return 0;
4081 }
4082 case TCP_QUEUE_SEQ:
4083 if (tp->repair_queue == TCP_SEND_QUEUE)
4084 val = tp->write_seq;
4085 else if (tp->repair_queue == TCP_RECV_QUEUE)
4086 val = tp->rcv_nxt;
4087 else
4088 return -EINVAL;
4089 break;
4090
4091 case TCP_USER_TIMEOUT:
4092 val = icsk->icsk_user_timeout;
4093 break;
4094
4095 case TCP_FASTOPEN:
4096 val = icsk->icsk_accept_queue.fastopenq.max_qlen;
4097 break;
4098
4099 case TCP_FASTOPEN_CONNECT:
4100 val = tp->fastopen_connect;
4101 break;
4102
4103 case TCP_FASTOPEN_NO_COOKIE:
4104 val = tp->fastopen_no_cookie;
4105 break;
4106
4107 case TCP_TX_DELAY:
4108 val = tp->tcp_tx_delay;
4109 break;
4110
4111 case TCP_TIMESTAMP:
4112 val = tcp_time_stamp_raw() + tp->tsoffset;
4113 break;
4114 case TCP_NOTSENT_LOWAT:
4115 val = tp->notsent_lowat;
4116 break;
4117 case TCP_INQ:
4118 val = tp->recvmsg_inq;
4119 break;
4120 case TCP_SAVE_SYN:
4121 val = tp->save_syn;
4122 break;
4123 case TCP_SAVED_SYN: {
4124 if (get_user(len, optlen))
4125 return -EFAULT;
4126
4127 lock_sock(sk);
4128 if (tp->saved_syn) {
4129 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4130 if (put_user(tcp_saved_syn_len(tp->saved_syn),
4131 optlen)) {
4132 release_sock(sk);
4133 return -EFAULT;
4134 }
4135 release_sock(sk);
4136 return -EINVAL;
4137 }
4138 len = tcp_saved_syn_len(tp->saved_syn);
4139 if (put_user(len, optlen)) {
4140 release_sock(sk);
4141 return -EFAULT;
4142 }
4143 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4144 release_sock(sk);
4145 return -EFAULT;
4146 }
4147 tcp_saved_syn_free(tp);
4148 release_sock(sk);
4149 } else {
4150 release_sock(sk);
4151 len = 0;
4152 if (put_user(len, optlen))
4153 return -EFAULT;
4154 }
4155 return 0;
4156 }
4157 #ifdef CONFIG_MMU
4158 case TCP_ZEROCOPY_RECEIVE: {
4159 struct scm_timestamping_internal tss;
4160 struct tcp_zerocopy_receive zc = {};
4161 int err;
4162
4163 if (get_user(len, optlen))
4164 return -EFAULT;
4165 if (len < 0 ||
4166 len < offsetofend(struct tcp_zerocopy_receive, length))
4167 return -EINVAL;
4168 if (unlikely(len > sizeof(zc))) {
4169 err = check_zeroed_user(optval + sizeof(zc),
4170 len - sizeof(zc));
4171 if (err < 1)
4172 return err == 0 ? -EINVAL : err;
4173 len = sizeof(zc);
4174 if (put_user(len, optlen))
4175 return -EFAULT;
4176 }
4177 if (copy_from_user(&zc, optval, len))
4178 return -EFAULT;
4179 if (zc.reserved)
4180 return -EINVAL;
4181 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4182 return -EINVAL;
4183 lock_sock(sk);
4184 err = tcp_zerocopy_receive(sk, &zc, &tss);
4185 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4186 &zc, &len, err);
4187 release_sock(sk);
4188 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4189 goto zerocopy_rcv_cmsg;
4190 switch (len) {
4191 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4192 goto zerocopy_rcv_cmsg;
4193 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4194 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4195 case offsetofend(struct tcp_zerocopy_receive, flags):
4196 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4197 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4198 case offsetofend(struct tcp_zerocopy_receive, err):
4199 goto zerocopy_rcv_sk_err;
4200 case offsetofend(struct tcp_zerocopy_receive, inq):
4201 goto zerocopy_rcv_inq;
4202 case offsetofend(struct tcp_zerocopy_receive, length):
4203 default:
4204 goto zerocopy_rcv_out;
4205 }
4206 zerocopy_rcv_cmsg:
4207 if (zc.msg_flags & TCP_CMSG_TS)
4208 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4209 else
4210 zc.msg_flags = 0;
4211 zerocopy_rcv_sk_err:
4212 if (!err)
4213 zc.err = sock_error(sk);
4214 zerocopy_rcv_inq:
4215 zc.inq = tcp_inq_hint(sk);
4216 zerocopy_rcv_out:
4217 if (!err && copy_to_user(optval, &zc, len))
4218 err = -EFAULT;
4219 return err;
4220 }
4221 #endif
4222 default:
4223 return -ENOPROTOOPT;
4224 }
4225
4226 if (put_user(len, optlen))
4227 return -EFAULT;
4228 if (copy_to_user(optval, &val, len))
4229 return -EFAULT;
4230 return 0;
4231 }
4232
tcp_bpf_bypass_getsockopt(int level,int optname)4233 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4234 {
4235 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4236 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4237 */
4238 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4239 return true;
4240
4241 return false;
4242 }
4243 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4244
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4245 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4246 int __user *optlen)
4247 {
4248 struct inet_connection_sock *icsk = inet_csk(sk);
4249
4250 if (level != SOL_TCP)
4251 return icsk->icsk_af_ops->getsockopt(sk, level, optname,
4252 optval, optlen);
4253 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4254 }
4255 EXPORT_SYMBOL(tcp_getsockopt);
4256
4257 #ifdef CONFIG_TCP_MD5SIG
4258 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4259 static DEFINE_MUTEX(tcp_md5sig_mutex);
4260 static bool tcp_md5sig_pool_populated = false;
4261
__tcp_alloc_md5sig_pool(void)4262 static void __tcp_alloc_md5sig_pool(void)
4263 {
4264 struct crypto_ahash *hash;
4265 int cpu;
4266
4267 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4268 if (IS_ERR(hash))
4269 return;
4270
4271 for_each_possible_cpu(cpu) {
4272 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4273 struct ahash_request *req;
4274
4275 if (!scratch) {
4276 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4277 sizeof(struct tcphdr),
4278 GFP_KERNEL,
4279 cpu_to_node(cpu));
4280 if (!scratch)
4281 return;
4282 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4283 }
4284 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4285 continue;
4286
4287 req = ahash_request_alloc(hash, GFP_KERNEL);
4288 if (!req)
4289 return;
4290
4291 ahash_request_set_callback(req, 0, NULL, NULL);
4292
4293 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4294 }
4295 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4296 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4297 */
4298 smp_wmb();
4299 tcp_md5sig_pool_populated = true;
4300 }
4301
tcp_alloc_md5sig_pool(void)4302 bool tcp_alloc_md5sig_pool(void)
4303 {
4304 if (unlikely(!tcp_md5sig_pool_populated)) {
4305 mutex_lock(&tcp_md5sig_mutex);
4306
4307 if (!tcp_md5sig_pool_populated) {
4308 __tcp_alloc_md5sig_pool();
4309 if (tcp_md5sig_pool_populated)
4310 static_branch_inc(&tcp_md5_needed);
4311 }
4312
4313 mutex_unlock(&tcp_md5sig_mutex);
4314 }
4315 return tcp_md5sig_pool_populated;
4316 }
4317 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4318
4319
4320 /**
4321 * tcp_get_md5sig_pool - get md5sig_pool for this user
4322 *
4323 * We use percpu structure, so if we succeed, we exit with preemption
4324 * and BH disabled, to make sure another thread or softirq handling
4325 * wont try to get same context.
4326 */
tcp_get_md5sig_pool(void)4327 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4328 {
4329 local_bh_disable();
4330
4331 if (tcp_md5sig_pool_populated) {
4332 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4333 smp_rmb();
4334 return this_cpu_ptr(&tcp_md5sig_pool);
4335 }
4336 local_bh_enable();
4337 return NULL;
4338 }
4339 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4340
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4341 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4342 const struct sk_buff *skb, unsigned int header_len)
4343 {
4344 struct scatterlist sg;
4345 const struct tcphdr *tp = tcp_hdr(skb);
4346 struct ahash_request *req = hp->md5_req;
4347 unsigned int i;
4348 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4349 skb_headlen(skb) - header_len : 0;
4350 const struct skb_shared_info *shi = skb_shinfo(skb);
4351 struct sk_buff *frag_iter;
4352
4353 sg_init_table(&sg, 1);
4354
4355 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4356 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4357 if (crypto_ahash_update(req))
4358 return 1;
4359
4360 for (i = 0; i < shi->nr_frags; ++i) {
4361 const skb_frag_t *f = &shi->frags[i];
4362 unsigned int offset = skb_frag_off(f);
4363 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4364
4365 sg_set_page(&sg, page, skb_frag_size(f),
4366 offset_in_page(offset));
4367 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4368 if (crypto_ahash_update(req))
4369 return 1;
4370 }
4371
4372 skb_walk_frags(skb, frag_iter)
4373 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4374 return 1;
4375
4376 return 0;
4377 }
4378 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4379
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4380 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4381 {
4382 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4383 struct scatterlist sg;
4384
4385 sg_init_one(&sg, key->key, keylen);
4386 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4387
4388 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4389 return data_race(crypto_ahash_update(hp->md5_req));
4390 }
4391 EXPORT_SYMBOL(tcp_md5_hash_key);
4392
4393 #endif
4394
tcp_done(struct sock * sk)4395 void tcp_done(struct sock *sk)
4396 {
4397 struct request_sock *req;
4398
4399 /* We might be called with a new socket, after
4400 * inet_csk_prepare_forced_close() has been called
4401 * so we can not use lockdep_sock_is_held(sk)
4402 */
4403 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4404
4405 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4406 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4407
4408 tcp_set_state(sk, TCP_CLOSE);
4409 tcp_clear_xmit_timers(sk);
4410 if (req)
4411 reqsk_fastopen_remove(sk, req, false);
4412
4413 sk->sk_shutdown = SHUTDOWN_MASK;
4414
4415 if (!sock_flag(sk, SOCK_DEAD))
4416 sk->sk_state_change(sk);
4417 else
4418 inet_csk_destroy_sock(sk);
4419 }
4420 EXPORT_SYMBOL_GPL(tcp_done);
4421
tcp_abort(struct sock * sk,int err)4422 int tcp_abort(struct sock *sk, int err)
4423 {
4424 if (!sk_fullsock(sk)) {
4425 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4426 struct request_sock *req = inet_reqsk(sk);
4427
4428 local_bh_disable();
4429 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4430 local_bh_enable();
4431 return 0;
4432 }
4433 return -EOPNOTSUPP;
4434 }
4435
4436 /* Don't race with userspace socket closes such as tcp_close. */
4437 lock_sock(sk);
4438
4439 if (sk->sk_state == TCP_LISTEN) {
4440 tcp_set_state(sk, TCP_CLOSE);
4441 inet_csk_listen_stop(sk);
4442 }
4443
4444 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4445 local_bh_disable();
4446 bh_lock_sock(sk);
4447
4448 if (!sock_flag(sk, SOCK_DEAD)) {
4449 sk->sk_err = err;
4450 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4451 smp_wmb();
4452 sk_error_report(sk);
4453 if (tcp_need_reset(sk->sk_state))
4454 tcp_send_active_reset(sk, GFP_ATOMIC);
4455 tcp_done(sk);
4456 }
4457
4458 bh_unlock_sock(sk);
4459 local_bh_enable();
4460 tcp_write_queue_purge(sk);
4461 release_sock(sk);
4462 return 0;
4463 }
4464 EXPORT_SYMBOL_GPL(tcp_abort);
4465
4466 extern struct tcp_congestion_ops tcp_reno;
4467
4468 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4469 static int __init set_thash_entries(char *str)
4470 {
4471 ssize_t ret;
4472
4473 if (!str)
4474 return 0;
4475
4476 ret = kstrtoul(str, 0, &thash_entries);
4477 if (ret)
4478 return 0;
4479
4480 return 1;
4481 }
4482 __setup("thash_entries=", set_thash_entries);
4483
tcp_init_mem(void)4484 static void __init tcp_init_mem(void)
4485 {
4486 unsigned long limit = nr_free_buffer_pages() / 16;
4487
4488 limit = max(limit, 128UL);
4489 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4490 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4491 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4492 }
4493
tcp_init(void)4494 void __init tcp_init(void)
4495 {
4496 int max_rshare, max_wshare, cnt;
4497 unsigned long limit;
4498 unsigned int i;
4499
4500 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4501 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4502 sizeof_field(struct sk_buff, cb));
4503
4504 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4505
4506 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4507 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4508
4509 inet_hashinfo_init(&tcp_hashinfo);
4510 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4511 thash_entries, 21, /* one slot per 2 MB*/
4512 0, 64 * 1024);
4513 tcp_hashinfo.bind_bucket_cachep =
4514 kmem_cache_create("tcp_bind_bucket",
4515 sizeof(struct inet_bind_bucket), 0,
4516 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4517 SLAB_ACCOUNT,
4518 NULL);
4519
4520 /* Size and allocate the main established and bind bucket
4521 * hash tables.
4522 *
4523 * The methodology is similar to that of the buffer cache.
4524 */
4525 tcp_hashinfo.ehash =
4526 alloc_large_system_hash("TCP established",
4527 sizeof(struct inet_ehash_bucket),
4528 thash_entries,
4529 17, /* one slot per 128 KB of memory */
4530 0,
4531 NULL,
4532 &tcp_hashinfo.ehash_mask,
4533 0,
4534 thash_entries ? 0 : 512 * 1024);
4535 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4536 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4537
4538 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4539 panic("TCP: failed to alloc ehash_locks");
4540 tcp_hashinfo.bhash =
4541 alloc_large_system_hash("TCP bind",
4542 sizeof(struct inet_bind_hashbucket),
4543 tcp_hashinfo.ehash_mask + 1,
4544 17, /* one slot per 128 KB of memory */
4545 0,
4546 &tcp_hashinfo.bhash_size,
4547 NULL,
4548 0,
4549 64 * 1024);
4550 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4551 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4552 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4553 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4554 }
4555
4556
4557 cnt = tcp_hashinfo.ehash_mask + 1;
4558 sysctl_tcp_max_orphans = cnt / 2;
4559
4560 tcp_init_mem();
4561 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4562 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4563 max_wshare = min(4UL*1024*1024, limit);
4564 max_rshare = min(6UL*1024*1024, limit);
4565
4566 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4567 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4568 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4569
4570 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4571 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4572 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4573
4574 pr_info("Hash tables configured (established %u bind %u)\n",
4575 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4576
4577 tcp_v4_init();
4578 tcp_metrics_init();
4579 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4580 tcp_tasklet_init();
4581 mptcp_init();
4582 }
4583