1 /*
2 * Performance events x86 architecture code
3 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kdebug.h>
23 #include <linux/sched/mm.h>
24 #include <linux/sched/clock.h>
25 #include <linux/uaccess.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/bitops.h>
29 #include <linux/device.h>
30 #include <linux/nospec.h>
31 #include <linux/static_call.h>
32
33 #include <asm/apic.h>
34 #include <asm/stacktrace.h>
35 #include <asm/nmi.h>
36 #include <asm/smp.h>
37 #include <asm/alternative.h>
38 #include <asm/mmu_context.h>
39 #include <asm/tlbflush.h>
40 #include <asm/timer.h>
41 #include <asm/desc.h>
42 #include <asm/ldt.h>
43 #include <asm/unwind.h>
44
45 #include "perf_event.h"
46
47 struct x86_pmu x86_pmu __read_mostly;
48 static struct pmu pmu;
49
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 .enabled = 1,
52 .pmu = &pmu,
53 };
54
55 DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56 DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57 DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59 /*
60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61 * from just a typename, as opposed to an actual function.
62 */
63 DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq, *x86_pmu.handle_irq);
64 DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65 DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all, *x86_pmu.enable_all);
66 DEFINE_STATIC_CALL_NULL(x86_pmu_enable, *x86_pmu.enable);
67 DEFINE_STATIC_CALL_NULL(x86_pmu_disable, *x86_pmu.disable);
68
69 DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71 DEFINE_STATIC_CALL_NULL(x86_pmu_add, *x86_pmu.add);
72 DEFINE_STATIC_CALL_NULL(x86_pmu_del, *x86_pmu.del);
73 DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75 DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events, *x86_pmu.schedule_events);
76 DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
77 DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
78
79 DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling, *x86_pmu.start_scheduling);
80 DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
81 DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling, *x86_pmu.stop_scheduling);
82
83 DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task, *x86_pmu.sched_task);
84 DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
85
86 DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs, *x86_pmu.drain_pebs);
87 DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
88
89 /*
90 * This one is magic, it will get called even when PMU init fails (because
91 * there is no PMU), in which case it should simply return NULL.
92 */
93 DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
94
95 u64 __read_mostly hw_cache_event_ids
96 [PERF_COUNT_HW_CACHE_MAX]
97 [PERF_COUNT_HW_CACHE_OP_MAX]
98 [PERF_COUNT_HW_CACHE_RESULT_MAX];
99 u64 __read_mostly hw_cache_extra_regs
100 [PERF_COUNT_HW_CACHE_MAX]
101 [PERF_COUNT_HW_CACHE_OP_MAX]
102 [PERF_COUNT_HW_CACHE_RESULT_MAX];
103
104 /*
105 * Propagate event elapsed time into the generic event.
106 * Can only be executed on the CPU where the event is active.
107 * Returns the delta events processed.
108 */
x86_perf_event_update(struct perf_event * event)109 u64 x86_perf_event_update(struct perf_event *event)
110 {
111 struct hw_perf_event *hwc = &event->hw;
112 int shift = 64 - x86_pmu.cntval_bits;
113 u64 prev_raw_count, new_raw_count;
114 u64 delta;
115
116 if (unlikely(!hwc->event_base))
117 return 0;
118
119 if (unlikely(is_topdown_count(event)) && x86_pmu.update_topdown_event)
120 return x86_pmu.update_topdown_event(event);
121
122 /*
123 * Careful: an NMI might modify the previous event value.
124 *
125 * Our tactic to handle this is to first atomically read and
126 * exchange a new raw count - then add that new-prev delta
127 * count to the generic event atomically:
128 */
129 again:
130 prev_raw_count = local64_read(&hwc->prev_count);
131 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
132
133 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
134 new_raw_count) != prev_raw_count)
135 goto again;
136
137 /*
138 * Now we have the new raw value and have updated the prev
139 * timestamp already. We can now calculate the elapsed delta
140 * (event-)time and add that to the generic event.
141 *
142 * Careful, not all hw sign-extends above the physical width
143 * of the count.
144 */
145 delta = (new_raw_count << shift) - (prev_raw_count << shift);
146 delta >>= shift;
147
148 local64_add(delta, &event->count);
149 local64_sub(delta, &hwc->period_left);
150
151 return new_raw_count;
152 }
153
154 /*
155 * Find and validate any extra registers to set up.
156 */
x86_pmu_extra_regs(u64 config,struct perf_event * event)157 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
158 {
159 struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
160 struct hw_perf_event_extra *reg;
161 struct extra_reg *er;
162
163 reg = &event->hw.extra_reg;
164
165 if (!extra_regs)
166 return 0;
167
168 for (er = extra_regs; er->msr; er++) {
169 if (er->event != (config & er->config_mask))
170 continue;
171 if (event->attr.config1 & ~er->valid_mask)
172 return -EINVAL;
173 /* Check if the extra msrs can be safely accessed*/
174 if (!er->extra_msr_access)
175 return -ENXIO;
176
177 reg->idx = er->idx;
178 reg->config = event->attr.config1;
179 reg->reg = er->msr;
180 break;
181 }
182 return 0;
183 }
184
185 static atomic_t active_events;
186 static atomic_t pmc_refcount;
187 static DEFINE_MUTEX(pmc_reserve_mutex);
188
189 #ifdef CONFIG_X86_LOCAL_APIC
190
get_possible_num_counters(void)191 static inline int get_possible_num_counters(void)
192 {
193 int i, num_counters = x86_pmu.num_counters;
194
195 if (!is_hybrid())
196 return num_counters;
197
198 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
199 num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
200
201 return num_counters;
202 }
203
reserve_pmc_hardware(void)204 static bool reserve_pmc_hardware(void)
205 {
206 int i, num_counters = get_possible_num_counters();
207
208 for (i = 0; i < num_counters; i++) {
209 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
210 goto perfctr_fail;
211 }
212
213 for (i = 0; i < num_counters; i++) {
214 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
215 goto eventsel_fail;
216 }
217
218 return true;
219
220 eventsel_fail:
221 for (i--; i >= 0; i--)
222 release_evntsel_nmi(x86_pmu_config_addr(i));
223
224 i = num_counters;
225
226 perfctr_fail:
227 for (i--; i >= 0; i--)
228 release_perfctr_nmi(x86_pmu_event_addr(i));
229
230 return false;
231 }
232
release_pmc_hardware(void)233 static void release_pmc_hardware(void)
234 {
235 int i, num_counters = get_possible_num_counters();
236
237 for (i = 0; i < num_counters; i++) {
238 release_perfctr_nmi(x86_pmu_event_addr(i));
239 release_evntsel_nmi(x86_pmu_config_addr(i));
240 }
241 }
242
243 #else
244
reserve_pmc_hardware(void)245 static bool reserve_pmc_hardware(void) { return true; }
release_pmc_hardware(void)246 static void release_pmc_hardware(void) {}
247
248 #endif
249
check_hw_exists(struct pmu * pmu,int num_counters,int num_counters_fixed)250 bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
251 {
252 u64 val, val_fail = -1, val_new= ~0;
253 int i, reg, reg_fail = -1, ret = 0;
254 int bios_fail = 0;
255 int reg_safe = -1;
256
257 /*
258 * Check to see if the BIOS enabled any of the counters, if so
259 * complain and bail.
260 */
261 for (i = 0; i < num_counters; i++) {
262 reg = x86_pmu_config_addr(i);
263 ret = rdmsrl_safe(reg, &val);
264 if (ret)
265 goto msr_fail;
266 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
267 bios_fail = 1;
268 val_fail = val;
269 reg_fail = reg;
270 } else {
271 reg_safe = i;
272 }
273 }
274
275 if (num_counters_fixed) {
276 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
277 ret = rdmsrl_safe(reg, &val);
278 if (ret)
279 goto msr_fail;
280 for (i = 0; i < num_counters_fixed; i++) {
281 if (fixed_counter_disabled(i, pmu))
282 continue;
283 if (val & (0x03ULL << i*4)) {
284 bios_fail = 1;
285 val_fail = val;
286 reg_fail = reg;
287 }
288 }
289 }
290
291 /*
292 * If all the counters are enabled, the below test will always
293 * fail. The tools will also become useless in this scenario.
294 * Just fail and disable the hardware counters.
295 */
296
297 if (reg_safe == -1) {
298 reg = reg_safe;
299 goto msr_fail;
300 }
301
302 /*
303 * Read the current value, change it and read it back to see if it
304 * matches, this is needed to detect certain hardware emulators
305 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
306 */
307 reg = x86_pmu_event_addr(reg_safe);
308 if (rdmsrl_safe(reg, &val))
309 goto msr_fail;
310 val ^= 0xffffUL;
311 ret = wrmsrl_safe(reg, val);
312 ret |= rdmsrl_safe(reg, &val_new);
313 if (ret || val != val_new)
314 goto msr_fail;
315
316 /*
317 * We still allow the PMU driver to operate:
318 */
319 if (bios_fail) {
320 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
321 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
322 reg_fail, val_fail);
323 }
324
325 return true;
326
327 msr_fail:
328 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
329 pr_cont("PMU not available due to virtualization, using software events only.\n");
330 } else {
331 pr_cont("Broken PMU hardware detected, using software events only.\n");
332 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
333 reg, val_new);
334 }
335
336 return false;
337 }
338
hw_perf_event_destroy(struct perf_event * event)339 static void hw_perf_event_destroy(struct perf_event *event)
340 {
341 x86_release_hardware();
342 atomic_dec(&active_events);
343 }
344
hw_perf_lbr_event_destroy(struct perf_event * event)345 void hw_perf_lbr_event_destroy(struct perf_event *event)
346 {
347 hw_perf_event_destroy(event);
348
349 /* undo the lbr/bts event accounting */
350 x86_del_exclusive(x86_lbr_exclusive_lbr);
351 }
352
x86_pmu_initialized(void)353 static inline int x86_pmu_initialized(void)
354 {
355 return x86_pmu.handle_irq != NULL;
356 }
357
358 static inline int
set_ext_hw_attr(struct hw_perf_event * hwc,struct perf_event * event)359 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
360 {
361 struct perf_event_attr *attr = &event->attr;
362 unsigned int cache_type, cache_op, cache_result;
363 u64 config, val;
364
365 config = attr->config;
366
367 cache_type = (config >> 0) & 0xff;
368 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
369 return -EINVAL;
370 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
371
372 cache_op = (config >> 8) & 0xff;
373 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
374 return -EINVAL;
375 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
376
377 cache_result = (config >> 16) & 0xff;
378 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
379 return -EINVAL;
380 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
381
382 val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
383 if (val == 0)
384 return -ENOENT;
385
386 if (val == -1)
387 return -EINVAL;
388
389 hwc->config |= val;
390 attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
391 return x86_pmu_extra_regs(val, event);
392 }
393
x86_reserve_hardware(void)394 int x86_reserve_hardware(void)
395 {
396 int err = 0;
397
398 if (!atomic_inc_not_zero(&pmc_refcount)) {
399 mutex_lock(&pmc_reserve_mutex);
400 if (atomic_read(&pmc_refcount) == 0) {
401 if (!reserve_pmc_hardware()) {
402 err = -EBUSY;
403 } else {
404 reserve_ds_buffers();
405 reserve_lbr_buffers();
406 }
407 }
408 if (!err)
409 atomic_inc(&pmc_refcount);
410 mutex_unlock(&pmc_reserve_mutex);
411 }
412
413 return err;
414 }
415
x86_release_hardware(void)416 void x86_release_hardware(void)
417 {
418 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
419 release_pmc_hardware();
420 release_ds_buffers();
421 release_lbr_buffers();
422 mutex_unlock(&pmc_reserve_mutex);
423 }
424 }
425
426 /*
427 * Check if we can create event of a certain type (that no conflicting events
428 * are present).
429 */
x86_add_exclusive(unsigned int what)430 int x86_add_exclusive(unsigned int what)
431 {
432 int i;
433
434 /*
435 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
436 * LBR and BTS are still mutually exclusive.
437 */
438 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
439 goto out;
440
441 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
442 mutex_lock(&pmc_reserve_mutex);
443 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
444 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
445 goto fail_unlock;
446 }
447 atomic_inc(&x86_pmu.lbr_exclusive[what]);
448 mutex_unlock(&pmc_reserve_mutex);
449 }
450
451 out:
452 atomic_inc(&active_events);
453 return 0;
454
455 fail_unlock:
456 mutex_unlock(&pmc_reserve_mutex);
457 return -EBUSY;
458 }
459
x86_del_exclusive(unsigned int what)460 void x86_del_exclusive(unsigned int what)
461 {
462 atomic_dec(&active_events);
463
464 /*
465 * See the comment in x86_add_exclusive().
466 */
467 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
468 return;
469
470 atomic_dec(&x86_pmu.lbr_exclusive[what]);
471 }
472
x86_setup_perfctr(struct perf_event * event)473 int x86_setup_perfctr(struct perf_event *event)
474 {
475 struct perf_event_attr *attr = &event->attr;
476 struct hw_perf_event *hwc = &event->hw;
477 u64 config;
478
479 if (!is_sampling_event(event)) {
480 hwc->sample_period = x86_pmu.max_period;
481 hwc->last_period = hwc->sample_period;
482 local64_set(&hwc->period_left, hwc->sample_period);
483 }
484
485 if (attr->type == event->pmu->type)
486 return x86_pmu_extra_regs(event->attr.config, event);
487
488 if (attr->type == PERF_TYPE_HW_CACHE)
489 return set_ext_hw_attr(hwc, event);
490
491 if (attr->config >= x86_pmu.max_events)
492 return -EINVAL;
493
494 attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
495
496 /*
497 * The generic map:
498 */
499 config = x86_pmu.event_map(attr->config);
500
501 if (config == 0)
502 return -ENOENT;
503
504 if (config == -1LL)
505 return -EINVAL;
506
507 hwc->config |= config;
508
509 return 0;
510 }
511
512 /*
513 * check that branch_sample_type is compatible with
514 * settings needed for precise_ip > 1 which implies
515 * using the LBR to capture ALL taken branches at the
516 * priv levels of the measurement
517 */
precise_br_compat(struct perf_event * event)518 static inline int precise_br_compat(struct perf_event *event)
519 {
520 u64 m = event->attr.branch_sample_type;
521 u64 b = 0;
522
523 /* must capture all branches */
524 if (!(m & PERF_SAMPLE_BRANCH_ANY))
525 return 0;
526
527 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
528
529 if (!event->attr.exclude_user)
530 b |= PERF_SAMPLE_BRANCH_USER;
531
532 if (!event->attr.exclude_kernel)
533 b |= PERF_SAMPLE_BRANCH_KERNEL;
534
535 /*
536 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
537 */
538
539 return m == b;
540 }
541
x86_pmu_max_precise(void)542 int x86_pmu_max_precise(void)
543 {
544 int precise = 0;
545
546 /* Support for constant skid */
547 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
548 precise++;
549
550 /* Support for IP fixup */
551 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
552 precise++;
553
554 if (x86_pmu.pebs_prec_dist)
555 precise++;
556 }
557 return precise;
558 }
559
x86_pmu_hw_config(struct perf_event * event)560 int x86_pmu_hw_config(struct perf_event *event)
561 {
562 if (event->attr.precise_ip) {
563 int precise = x86_pmu_max_precise();
564
565 if (event->attr.precise_ip > precise)
566 return -EOPNOTSUPP;
567
568 /* There's no sense in having PEBS for non sampling events: */
569 if (!is_sampling_event(event))
570 return -EINVAL;
571 }
572 /*
573 * check that PEBS LBR correction does not conflict with
574 * whatever the user is asking with attr->branch_sample_type
575 */
576 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
577 u64 *br_type = &event->attr.branch_sample_type;
578
579 if (has_branch_stack(event)) {
580 if (!precise_br_compat(event))
581 return -EOPNOTSUPP;
582
583 /* branch_sample_type is compatible */
584
585 } else {
586 /*
587 * user did not specify branch_sample_type
588 *
589 * For PEBS fixups, we capture all
590 * the branches at the priv level of the
591 * event.
592 */
593 *br_type = PERF_SAMPLE_BRANCH_ANY;
594
595 if (!event->attr.exclude_user)
596 *br_type |= PERF_SAMPLE_BRANCH_USER;
597
598 if (!event->attr.exclude_kernel)
599 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
600 }
601 }
602
603 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
604 event->attach_state |= PERF_ATTACH_TASK_DATA;
605
606 /*
607 * Generate PMC IRQs:
608 * (keep 'enabled' bit clear for now)
609 */
610 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
611
612 /*
613 * Count user and OS events unless requested not to
614 */
615 if (!event->attr.exclude_user)
616 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
617 if (!event->attr.exclude_kernel)
618 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
619
620 if (event->attr.type == event->pmu->type)
621 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
622
623 if (event->attr.sample_period && x86_pmu.limit_period) {
624 if (x86_pmu.limit_period(event, event->attr.sample_period) >
625 event->attr.sample_period)
626 return -EINVAL;
627 }
628
629 /* sample_regs_user never support XMM registers */
630 if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
631 return -EINVAL;
632 /*
633 * Besides the general purpose registers, XMM registers may
634 * be collected in PEBS on some platforms, e.g. Icelake
635 */
636 if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
637 if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
638 return -EINVAL;
639
640 if (!event->attr.precise_ip)
641 return -EINVAL;
642 }
643
644 return x86_setup_perfctr(event);
645 }
646
647 /*
648 * Setup the hardware configuration for a given attr_type
649 */
__x86_pmu_event_init(struct perf_event * event)650 static int __x86_pmu_event_init(struct perf_event *event)
651 {
652 int err;
653
654 if (!x86_pmu_initialized())
655 return -ENODEV;
656
657 err = x86_reserve_hardware();
658 if (err)
659 return err;
660
661 atomic_inc(&active_events);
662 event->destroy = hw_perf_event_destroy;
663
664 event->hw.idx = -1;
665 event->hw.last_cpu = -1;
666 event->hw.last_tag = ~0ULL;
667
668 /* mark unused */
669 event->hw.extra_reg.idx = EXTRA_REG_NONE;
670 event->hw.branch_reg.idx = EXTRA_REG_NONE;
671
672 return x86_pmu.hw_config(event);
673 }
674
x86_pmu_disable_all(void)675 void x86_pmu_disable_all(void)
676 {
677 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
678 int idx;
679
680 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
681 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
682 u64 val;
683
684 if (!test_bit(idx, cpuc->active_mask))
685 continue;
686 rdmsrl(x86_pmu_config_addr(idx), val);
687 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
688 continue;
689 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
690 wrmsrl(x86_pmu_config_addr(idx), val);
691 if (is_counter_pair(hwc))
692 wrmsrl(x86_pmu_config_addr(idx + 1), 0);
693 }
694 }
695
perf_guest_get_msrs(int * nr)696 struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr)
697 {
698 return static_call(x86_pmu_guest_get_msrs)(nr);
699 }
700 EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
701
702 /*
703 * There may be PMI landing after enabled=0. The PMI hitting could be before or
704 * after disable_all.
705 *
706 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
707 * It will not be re-enabled in the NMI handler again, because enabled=0. After
708 * handling the NMI, disable_all will be called, which will not change the
709 * state either. If PMI hits after disable_all, the PMU is already disabled
710 * before entering NMI handler. The NMI handler will not change the state
711 * either.
712 *
713 * So either situation is harmless.
714 */
x86_pmu_disable(struct pmu * pmu)715 static void x86_pmu_disable(struct pmu *pmu)
716 {
717 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
718
719 if (!x86_pmu_initialized())
720 return;
721
722 if (!cpuc->enabled)
723 return;
724
725 cpuc->n_added = 0;
726 cpuc->enabled = 0;
727 barrier();
728
729 static_call(x86_pmu_disable_all)();
730 }
731
x86_pmu_enable_all(int added)732 void x86_pmu_enable_all(int added)
733 {
734 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
735 int idx;
736
737 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
738 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
739
740 if (!test_bit(idx, cpuc->active_mask))
741 continue;
742
743 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
744 }
745 }
746
is_x86_event(struct perf_event * event)747 static inline int is_x86_event(struct perf_event *event)
748 {
749 int i;
750
751 if (!is_hybrid())
752 return event->pmu == &pmu;
753
754 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
755 if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
756 return true;
757 }
758
759 return false;
760 }
761
x86_get_pmu(unsigned int cpu)762 struct pmu *x86_get_pmu(unsigned int cpu)
763 {
764 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
765
766 /*
767 * All CPUs of the hybrid type have been offline.
768 * The x86_get_pmu() should not be invoked.
769 */
770 if (WARN_ON_ONCE(!cpuc->pmu))
771 return &pmu;
772
773 return cpuc->pmu;
774 }
775 /*
776 * Event scheduler state:
777 *
778 * Assign events iterating over all events and counters, beginning
779 * with events with least weights first. Keep the current iterator
780 * state in struct sched_state.
781 */
782 struct sched_state {
783 int weight;
784 int event; /* event index */
785 int counter; /* counter index */
786 int unassigned; /* number of events to be assigned left */
787 int nr_gp; /* number of GP counters used */
788 u64 used;
789 };
790
791 /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
792 #define SCHED_STATES_MAX 2
793
794 struct perf_sched {
795 int max_weight;
796 int max_events;
797 int max_gp;
798 int saved_states;
799 struct event_constraint **constraints;
800 struct sched_state state;
801 struct sched_state saved[SCHED_STATES_MAX];
802 };
803
804 /*
805 * Initialize iterator that runs through all events and counters.
806 */
perf_sched_init(struct perf_sched * sched,struct event_constraint ** constraints,int num,int wmin,int wmax,int gpmax)807 static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
808 int num, int wmin, int wmax, int gpmax)
809 {
810 int idx;
811
812 memset(sched, 0, sizeof(*sched));
813 sched->max_events = num;
814 sched->max_weight = wmax;
815 sched->max_gp = gpmax;
816 sched->constraints = constraints;
817
818 for (idx = 0; idx < num; idx++) {
819 if (constraints[idx]->weight == wmin)
820 break;
821 }
822
823 sched->state.event = idx; /* start with min weight */
824 sched->state.weight = wmin;
825 sched->state.unassigned = num;
826 }
827
perf_sched_save_state(struct perf_sched * sched)828 static void perf_sched_save_state(struct perf_sched *sched)
829 {
830 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
831 return;
832
833 sched->saved[sched->saved_states] = sched->state;
834 sched->saved_states++;
835 }
836
perf_sched_restore_state(struct perf_sched * sched)837 static bool perf_sched_restore_state(struct perf_sched *sched)
838 {
839 if (!sched->saved_states)
840 return false;
841
842 sched->saved_states--;
843 sched->state = sched->saved[sched->saved_states];
844
845 /* this assignment didn't work out */
846 /* XXX broken vs EVENT_PAIR */
847 sched->state.used &= ~BIT_ULL(sched->state.counter);
848
849 /* try the next one */
850 sched->state.counter++;
851
852 return true;
853 }
854
855 /*
856 * Select a counter for the current event to schedule. Return true on
857 * success.
858 */
__perf_sched_find_counter(struct perf_sched * sched)859 static bool __perf_sched_find_counter(struct perf_sched *sched)
860 {
861 struct event_constraint *c;
862 int idx;
863
864 if (!sched->state.unassigned)
865 return false;
866
867 if (sched->state.event >= sched->max_events)
868 return false;
869
870 c = sched->constraints[sched->state.event];
871 /* Prefer fixed purpose counters */
872 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
873 idx = INTEL_PMC_IDX_FIXED;
874 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
875 u64 mask = BIT_ULL(idx);
876
877 if (sched->state.used & mask)
878 continue;
879
880 sched->state.used |= mask;
881 goto done;
882 }
883 }
884
885 /* Grab the first unused counter starting with idx */
886 idx = sched->state.counter;
887 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
888 u64 mask = BIT_ULL(idx);
889
890 if (c->flags & PERF_X86_EVENT_PAIR)
891 mask |= mask << 1;
892
893 if (sched->state.used & mask)
894 continue;
895
896 if (sched->state.nr_gp++ >= sched->max_gp)
897 return false;
898
899 sched->state.used |= mask;
900 goto done;
901 }
902
903 return false;
904
905 done:
906 sched->state.counter = idx;
907
908 if (c->overlap)
909 perf_sched_save_state(sched);
910
911 return true;
912 }
913
perf_sched_find_counter(struct perf_sched * sched)914 static bool perf_sched_find_counter(struct perf_sched *sched)
915 {
916 while (!__perf_sched_find_counter(sched)) {
917 if (!perf_sched_restore_state(sched))
918 return false;
919 }
920
921 return true;
922 }
923
924 /*
925 * Go through all unassigned events and find the next one to schedule.
926 * Take events with the least weight first. Return true on success.
927 */
perf_sched_next_event(struct perf_sched * sched)928 static bool perf_sched_next_event(struct perf_sched *sched)
929 {
930 struct event_constraint *c;
931
932 if (!sched->state.unassigned || !--sched->state.unassigned)
933 return false;
934
935 do {
936 /* next event */
937 sched->state.event++;
938 if (sched->state.event >= sched->max_events) {
939 /* next weight */
940 sched->state.event = 0;
941 sched->state.weight++;
942 if (sched->state.weight > sched->max_weight)
943 return false;
944 }
945 c = sched->constraints[sched->state.event];
946 } while (c->weight != sched->state.weight);
947
948 sched->state.counter = 0; /* start with first counter */
949
950 return true;
951 }
952
953 /*
954 * Assign a counter for each event.
955 */
perf_assign_events(struct event_constraint ** constraints,int n,int wmin,int wmax,int gpmax,int * assign)956 int perf_assign_events(struct event_constraint **constraints, int n,
957 int wmin, int wmax, int gpmax, int *assign)
958 {
959 struct perf_sched sched;
960
961 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
962
963 do {
964 if (!perf_sched_find_counter(&sched))
965 break; /* failed */
966 if (assign)
967 assign[sched.state.event] = sched.state.counter;
968 } while (perf_sched_next_event(&sched));
969
970 return sched.state.unassigned;
971 }
972 EXPORT_SYMBOL_GPL(perf_assign_events);
973
x86_schedule_events(struct cpu_hw_events * cpuc,int n,int * assign)974 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
975 {
976 int num_counters = hybrid(cpuc->pmu, num_counters);
977 struct event_constraint *c;
978 struct perf_event *e;
979 int n0, i, wmin, wmax, unsched = 0;
980 struct hw_perf_event *hwc;
981 u64 used_mask = 0;
982
983 /*
984 * Compute the number of events already present; see x86_pmu_add(),
985 * validate_group() and x86_pmu_commit_txn(). For the former two
986 * cpuc->n_events hasn't been updated yet, while for the latter
987 * cpuc->n_txn contains the number of events added in the current
988 * transaction.
989 */
990 n0 = cpuc->n_events;
991 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
992 n0 -= cpuc->n_txn;
993
994 static_call_cond(x86_pmu_start_scheduling)(cpuc);
995
996 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
997 c = cpuc->event_constraint[i];
998
999 /*
1000 * Previously scheduled events should have a cached constraint,
1001 * while new events should not have one.
1002 */
1003 WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1004
1005 /*
1006 * Request constraints for new events; or for those events that
1007 * have a dynamic constraint -- for those the constraint can
1008 * change due to external factors (sibling state, allow_tfa).
1009 */
1010 if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1011 c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1012 cpuc->event_constraint[i] = c;
1013 }
1014
1015 wmin = min(wmin, c->weight);
1016 wmax = max(wmax, c->weight);
1017 }
1018
1019 /*
1020 * fastpath, try to reuse previous register
1021 */
1022 for (i = 0; i < n; i++) {
1023 u64 mask;
1024
1025 hwc = &cpuc->event_list[i]->hw;
1026 c = cpuc->event_constraint[i];
1027
1028 /* never assigned */
1029 if (hwc->idx == -1)
1030 break;
1031
1032 /* constraint still honored */
1033 if (!test_bit(hwc->idx, c->idxmsk))
1034 break;
1035
1036 mask = BIT_ULL(hwc->idx);
1037 if (is_counter_pair(hwc))
1038 mask |= mask << 1;
1039
1040 /* not already used */
1041 if (used_mask & mask)
1042 break;
1043
1044 used_mask |= mask;
1045
1046 if (assign)
1047 assign[i] = hwc->idx;
1048 }
1049
1050 /* slow path */
1051 if (i != n) {
1052 int gpmax = num_counters;
1053
1054 /*
1055 * Do not allow scheduling of more than half the available
1056 * generic counters.
1057 *
1058 * This helps avoid counter starvation of sibling thread by
1059 * ensuring at most half the counters cannot be in exclusive
1060 * mode. There is no designated counters for the limits. Any
1061 * N/2 counters can be used. This helps with events with
1062 * specific counter constraints.
1063 */
1064 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1065 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1066 gpmax /= 2;
1067
1068 /*
1069 * Reduce the amount of available counters to allow fitting
1070 * the extra Merge events needed by large increment events.
1071 */
1072 if (x86_pmu.flags & PMU_FL_PAIR) {
1073 gpmax = num_counters - cpuc->n_pair;
1074 WARN_ON(gpmax <= 0);
1075 }
1076
1077 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1078 wmax, gpmax, assign);
1079 }
1080
1081 /*
1082 * In case of success (unsched = 0), mark events as committed,
1083 * so we do not put_constraint() in case new events are added
1084 * and fail to be scheduled
1085 *
1086 * We invoke the lower level commit callback to lock the resource
1087 *
1088 * We do not need to do all of this in case we are called to
1089 * validate an event group (assign == NULL)
1090 */
1091 if (!unsched && assign) {
1092 for (i = 0; i < n; i++)
1093 static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1094 } else {
1095 for (i = n0; i < n; i++) {
1096 e = cpuc->event_list[i];
1097
1098 /*
1099 * release events that failed scheduling
1100 */
1101 static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1102
1103 cpuc->event_constraint[i] = NULL;
1104 }
1105 }
1106
1107 static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1108
1109 return unsched ? -EINVAL : 0;
1110 }
1111
add_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1112 static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1113 struct perf_event *event)
1114 {
1115 if (is_metric_event(event)) {
1116 if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1117 return -EINVAL;
1118 cpuc->n_metric++;
1119 cpuc->n_txn_metric++;
1120 }
1121
1122 return 0;
1123 }
1124
del_nr_metric_event(struct cpu_hw_events * cpuc,struct perf_event * event)1125 static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1126 struct perf_event *event)
1127 {
1128 if (is_metric_event(event))
1129 cpuc->n_metric--;
1130 }
1131
collect_event(struct cpu_hw_events * cpuc,struct perf_event * event,int max_count,int n)1132 static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1133 int max_count, int n)
1134 {
1135 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1136
1137 if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1138 return -EINVAL;
1139
1140 if (n >= max_count + cpuc->n_metric)
1141 return -EINVAL;
1142
1143 cpuc->event_list[n] = event;
1144 if (is_counter_pair(&event->hw)) {
1145 cpuc->n_pair++;
1146 cpuc->n_txn_pair++;
1147 }
1148
1149 return 0;
1150 }
1151
1152 /*
1153 * dogrp: true if must collect siblings events (group)
1154 * returns total number of events and error code
1155 */
collect_events(struct cpu_hw_events * cpuc,struct perf_event * leader,bool dogrp)1156 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1157 {
1158 int num_counters = hybrid(cpuc->pmu, num_counters);
1159 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1160 struct perf_event *event;
1161 int n, max_count;
1162
1163 max_count = num_counters + num_counters_fixed;
1164
1165 /* current number of events already accepted */
1166 n = cpuc->n_events;
1167 if (!cpuc->n_events)
1168 cpuc->pebs_output = 0;
1169
1170 if (!cpuc->is_fake && leader->attr.precise_ip) {
1171 /*
1172 * For PEBS->PT, if !aux_event, the group leader (PT) went
1173 * away, the group was broken down and this singleton event
1174 * can't schedule any more.
1175 */
1176 if (is_pebs_pt(leader) && !leader->aux_event)
1177 return -EINVAL;
1178
1179 /*
1180 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1181 */
1182 if (cpuc->pebs_output &&
1183 cpuc->pebs_output != is_pebs_pt(leader) + 1)
1184 return -EINVAL;
1185
1186 cpuc->pebs_output = is_pebs_pt(leader) + 1;
1187 }
1188
1189 if (is_x86_event(leader)) {
1190 if (collect_event(cpuc, leader, max_count, n))
1191 return -EINVAL;
1192 n++;
1193 }
1194
1195 if (!dogrp)
1196 return n;
1197
1198 for_each_sibling_event(event, leader) {
1199 if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1200 continue;
1201
1202 if (collect_event(cpuc, event, max_count, n))
1203 return -EINVAL;
1204
1205 n++;
1206 }
1207 return n;
1208 }
1209
x86_assign_hw_event(struct perf_event * event,struct cpu_hw_events * cpuc,int i)1210 static inline void x86_assign_hw_event(struct perf_event *event,
1211 struct cpu_hw_events *cpuc, int i)
1212 {
1213 struct hw_perf_event *hwc = &event->hw;
1214 int idx;
1215
1216 idx = hwc->idx = cpuc->assign[i];
1217 hwc->last_cpu = smp_processor_id();
1218 hwc->last_tag = ++cpuc->tags[i];
1219
1220 static_call_cond(x86_pmu_assign)(event, idx);
1221
1222 switch (hwc->idx) {
1223 case INTEL_PMC_IDX_FIXED_BTS:
1224 case INTEL_PMC_IDX_FIXED_VLBR:
1225 hwc->config_base = 0;
1226 hwc->event_base = 0;
1227 break;
1228
1229 case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1230 /* All the metric events are mapped onto the fixed counter 3. */
1231 idx = INTEL_PMC_IDX_FIXED_SLOTS;
1232 fallthrough;
1233 case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1234 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1235 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1236 (idx - INTEL_PMC_IDX_FIXED);
1237 hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1238 INTEL_PMC_FIXED_RDPMC_BASE;
1239 break;
1240
1241 default:
1242 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1243 hwc->event_base = x86_pmu_event_addr(hwc->idx);
1244 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1245 break;
1246 }
1247 }
1248
1249 /**
1250 * x86_perf_rdpmc_index - Return PMC counter used for event
1251 * @event: the perf_event to which the PMC counter was assigned
1252 *
1253 * The counter assigned to this performance event may change if interrupts
1254 * are enabled. This counter should thus never be used while interrupts are
1255 * enabled. Before this function is used to obtain the assigned counter the
1256 * event should be checked for validity using, for example,
1257 * perf_event_read_local(), within the same interrupt disabled section in
1258 * which this counter is planned to be used.
1259 *
1260 * Return: The index of the performance monitoring counter assigned to
1261 * @perf_event.
1262 */
x86_perf_rdpmc_index(struct perf_event * event)1263 int x86_perf_rdpmc_index(struct perf_event *event)
1264 {
1265 lockdep_assert_irqs_disabled();
1266
1267 return event->hw.event_base_rdpmc;
1268 }
1269
match_prev_assignment(struct hw_perf_event * hwc,struct cpu_hw_events * cpuc,int i)1270 static inline int match_prev_assignment(struct hw_perf_event *hwc,
1271 struct cpu_hw_events *cpuc,
1272 int i)
1273 {
1274 return hwc->idx == cpuc->assign[i] &&
1275 hwc->last_cpu == smp_processor_id() &&
1276 hwc->last_tag == cpuc->tags[i];
1277 }
1278
1279 static void x86_pmu_start(struct perf_event *event, int flags);
1280
x86_pmu_enable(struct pmu * pmu)1281 static void x86_pmu_enable(struct pmu *pmu)
1282 {
1283 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1284 struct perf_event *event;
1285 struct hw_perf_event *hwc;
1286 int i, added = cpuc->n_added;
1287
1288 if (!x86_pmu_initialized())
1289 return;
1290
1291 if (cpuc->enabled)
1292 return;
1293
1294 if (cpuc->n_added) {
1295 int n_running = cpuc->n_events - cpuc->n_added;
1296 /*
1297 * apply assignment obtained either from
1298 * hw_perf_group_sched_in() or x86_pmu_enable()
1299 *
1300 * step1: save events moving to new counters
1301 */
1302 for (i = 0; i < n_running; i++) {
1303 event = cpuc->event_list[i];
1304 hwc = &event->hw;
1305
1306 /*
1307 * we can avoid reprogramming counter if:
1308 * - assigned same counter as last time
1309 * - running on same CPU as last time
1310 * - no other event has used the counter since
1311 */
1312 if (hwc->idx == -1 ||
1313 match_prev_assignment(hwc, cpuc, i))
1314 continue;
1315
1316 /*
1317 * Ensure we don't accidentally enable a stopped
1318 * counter simply because we rescheduled.
1319 */
1320 if (hwc->state & PERF_HES_STOPPED)
1321 hwc->state |= PERF_HES_ARCH;
1322
1323 x86_pmu_stop(event, PERF_EF_UPDATE);
1324 }
1325
1326 /*
1327 * step2: reprogram moved events into new counters
1328 */
1329 for (i = 0; i < cpuc->n_events; i++) {
1330 event = cpuc->event_list[i];
1331 hwc = &event->hw;
1332
1333 if (!match_prev_assignment(hwc, cpuc, i))
1334 x86_assign_hw_event(event, cpuc, i);
1335 else if (i < n_running)
1336 continue;
1337
1338 if (hwc->state & PERF_HES_ARCH)
1339 continue;
1340
1341 x86_pmu_start(event, PERF_EF_RELOAD);
1342 }
1343 cpuc->n_added = 0;
1344 perf_events_lapic_init();
1345 }
1346
1347 cpuc->enabled = 1;
1348 barrier();
1349
1350 static_call(x86_pmu_enable_all)(added);
1351 }
1352
1353 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1354
1355 /*
1356 * Set the next IRQ period, based on the hwc->period_left value.
1357 * To be called with the event disabled in hw:
1358 */
x86_perf_event_set_period(struct perf_event * event)1359 int x86_perf_event_set_period(struct perf_event *event)
1360 {
1361 struct hw_perf_event *hwc = &event->hw;
1362 s64 left = local64_read(&hwc->period_left);
1363 s64 period = hwc->sample_period;
1364 int ret = 0, idx = hwc->idx;
1365
1366 if (unlikely(!hwc->event_base))
1367 return 0;
1368
1369 if (unlikely(is_topdown_count(event)) &&
1370 x86_pmu.set_topdown_event_period)
1371 return x86_pmu.set_topdown_event_period(event);
1372
1373 /*
1374 * If we are way outside a reasonable range then just skip forward:
1375 */
1376 if (unlikely(left <= -period)) {
1377 left = period;
1378 local64_set(&hwc->period_left, left);
1379 hwc->last_period = period;
1380 ret = 1;
1381 }
1382
1383 if (unlikely(left <= 0)) {
1384 left += period;
1385 local64_set(&hwc->period_left, left);
1386 hwc->last_period = period;
1387 ret = 1;
1388 }
1389 /*
1390 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1391 */
1392 if (unlikely(left < 2))
1393 left = 2;
1394
1395 if (left > x86_pmu.max_period)
1396 left = x86_pmu.max_period;
1397
1398 if (x86_pmu.limit_period)
1399 left = x86_pmu.limit_period(event, left);
1400
1401 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1402
1403 /*
1404 * The hw event starts counting from this event offset,
1405 * mark it to be able to extra future deltas:
1406 */
1407 local64_set(&hwc->prev_count, (u64)-left);
1408
1409 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1410
1411 /*
1412 * Sign extend the Merge event counter's upper 16 bits since
1413 * we currently declare a 48-bit counter width
1414 */
1415 if (is_counter_pair(hwc))
1416 wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1417
1418 /*
1419 * Due to erratum on certan cpu we need
1420 * a second write to be sure the register
1421 * is updated properly
1422 */
1423 if (x86_pmu.perfctr_second_write) {
1424 wrmsrl(hwc->event_base,
1425 (u64)(-left) & x86_pmu.cntval_mask);
1426 }
1427
1428 perf_event_update_userpage(event);
1429
1430 return ret;
1431 }
1432
x86_pmu_enable_event(struct perf_event * event)1433 void x86_pmu_enable_event(struct perf_event *event)
1434 {
1435 if (__this_cpu_read(cpu_hw_events.enabled))
1436 __x86_pmu_enable_event(&event->hw,
1437 ARCH_PERFMON_EVENTSEL_ENABLE);
1438 }
1439
1440 /*
1441 * Add a single event to the PMU.
1442 *
1443 * The event is added to the group of enabled events
1444 * but only if it can be scheduled with existing events.
1445 */
x86_pmu_add(struct perf_event * event,int flags)1446 static int x86_pmu_add(struct perf_event *event, int flags)
1447 {
1448 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1449 struct hw_perf_event *hwc;
1450 int assign[X86_PMC_IDX_MAX];
1451 int n, n0, ret;
1452
1453 hwc = &event->hw;
1454
1455 n0 = cpuc->n_events;
1456 ret = n = collect_events(cpuc, event, false);
1457 if (ret < 0)
1458 goto out;
1459
1460 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1461 if (!(flags & PERF_EF_START))
1462 hwc->state |= PERF_HES_ARCH;
1463
1464 /*
1465 * If group events scheduling transaction was started,
1466 * skip the schedulability test here, it will be performed
1467 * at commit time (->commit_txn) as a whole.
1468 *
1469 * If commit fails, we'll call ->del() on all events
1470 * for which ->add() was called.
1471 */
1472 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1473 goto done_collect;
1474
1475 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1476 if (ret)
1477 goto out;
1478 /*
1479 * copy new assignment, now we know it is possible
1480 * will be used by hw_perf_enable()
1481 */
1482 memcpy(cpuc->assign, assign, n*sizeof(int));
1483
1484 done_collect:
1485 /*
1486 * Commit the collect_events() state. See x86_pmu_del() and
1487 * x86_pmu_*_txn().
1488 */
1489 cpuc->n_events = n;
1490 cpuc->n_added += n - n0;
1491 cpuc->n_txn += n - n0;
1492
1493 /*
1494 * This is before x86_pmu_enable() will call x86_pmu_start(),
1495 * so we enable LBRs before an event needs them etc..
1496 */
1497 static_call_cond(x86_pmu_add)(event);
1498
1499 ret = 0;
1500 out:
1501 return ret;
1502 }
1503
x86_pmu_start(struct perf_event * event,int flags)1504 static void x86_pmu_start(struct perf_event *event, int flags)
1505 {
1506 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1507 int idx = event->hw.idx;
1508
1509 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1510 return;
1511
1512 if (WARN_ON_ONCE(idx == -1))
1513 return;
1514
1515 if (flags & PERF_EF_RELOAD) {
1516 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1517 x86_perf_event_set_period(event);
1518 }
1519
1520 event->hw.state = 0;
1521
1522 cpuc->events[idx] = event;
1523 __set_bit(idx, cpuc->active_mask);
1524 static_call(x86_pmu_enable)(event);
1525 perf_event_update_userpage(event);
1526 }
1527
perf_event_print_debug(void)1528 void perf_event_print_debug(void)
1529 {
1530 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1531 u64 pebs, debugctl;
1532 int cpu = smp_processor_id();
1533 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1534 int num_counters = hybrid(cpuc->pmu, num_counters);
1535 int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1536 struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1537 unsigned long flags;
1538 int idx;
1539
1540 if (!num_counters)
1541 return;
1542
1543 local_irq_save(flags);
1544
1545 if (x86_pmu.version >= 2) {
1546 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1547 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1548 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1549 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1550
1551 pr_info("\n");
1552 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1553 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1554 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1555 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
1556 if (pebs_constraints) {
1557 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1558 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1559 }
1560 if (x86_pmu.lbr_nr) {
1561 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1562 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1563 }
1564 }
1565 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1566
1567 for (idx = 0; idx < num_counters; idx++) {
1568 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1569 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1570
1571 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1572
1573 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
1574 cpu, idx, pmc_ctrl);
1575 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
1576 cpu, idx, pmc_count);
1577 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
1578 cpu, idx, prev_left);
1579 }
1580 for (idx = 0; idx < num_counters_fixed; idx++) {
1581 if (fixed_counter_disabled(idx, cpuc->pmu))
1582 continue;
1583 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1584
1585 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1586 cpu, idx, pmc_count);
1587 }
1588 local_irq_restore(flags);
1589 }
1590
x86_pmu_stop(struct perf_event * event,int flags)1591 void x86_pmu_stop(struct perf_event *event, int flags)
1592 {
1593 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1594 struct hw_perf_event *hwc = &event->hw;
1595
1596 if (test_bit(hwc->idx, cpuc->active_mask)) {
1597 static_call(x86_pmu_disable)(event);
1598 __clear_bit(hwc->idx, cpuc->active_mask);
1599 cpuc->events[hwc->idx] = NULL;
1600 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1601 hwc->state |= PERF_HES_STOPPED;
1602 }
1603
1604 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1605 /*
1606 * Drain the remaining delta count out of a event
1607 * that we are disabling:
1608 */
1609 x86_perf_event_update(event);
1610 hwc->state |= PERF_HES_UPTODATE;
1611 }
1612 }
1613
x86_pmu_del(struct perf_event * event,int flags)1614 static void x86_pmu_del(struct perf_event *event, int flags)
1615 {
1616 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1617 union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1618 int i;
1619
1620 /*
1621 * If we're called during a txn, we only need to undo x86_pmu.add.
1622 * The events never got scheduled and ->cancel_txn will truncate
1623 * the event_list.
1624 *
1625 * XXX assumes any ->del() called during a TXN will only be on
1626 * an event added during that same TXN.
1627 */
1628 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1629 goto do_del;
1630
1631 __set_bit(event->hw.idx, cpuc->dirty);
1632
1633 /*
1634 * Not a TXN, therefore cleanup properly.
1635 */
1636 x86_pmu_stop(event, PERF_EF_UPDATE);
1637
1638 for (i = 0; i < cpuc->n_events; i++) {
1639 if (event == cpuc->event_list[i])
1640 break;
1641 }
1642
1643 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1644 return;
1645
1646 /* If we have a newly added event; make sure to decrease n_added. */
1647 if (i >= cpuc->n_events - cpuc->n_added)
1648 --cpuc->n_added;
1649
1650 static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1651
1652 /* Delete the array entry. */
1653 while (++i < cpuc->n_events) {
1654 cpuc->event_list[i-1] = cpuc->event_list[i];
1655 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1656 }
1657 cpuc->event_constraint[i-1] = NULL;
1658 --cpuc->n_events;
1659 if (intel_cap.perf_metrics)
1660 del_nr_metric_event(cpuc, event);
1661
1662 perf_event_update_userpage(event);
1663
1664 do_del:
1665
1666 /*
1667 * This is after x86_pmu_stop(); so we disable LBRs after any
1668 * event can need them etc..
1669 */
1670 static_call_cond(x86_pmu_del)(event);
1671 }
1672
x86_pmu_handle_irq(struct pt_regs * regs)1673 int x86_pmu_handle_irq(struct pt_regs *regs)
1674 {
1675 struct perf_sample_data data;
1676 struct cpu_hw_events *cpuc;
1677 struct perf_event *event;
1678 int idx, handled = 0;
1679 u64 val;
1680
1681 cpuc = this_cpu_ptr(&cpu_hw_events);
1682
1683 /*
1684 * Some chipsets need to unmask the LVTPC in a particular spot
1685 * inside the nmi handler. As a result, the unmasking was pushed
1686 * into all the nmi handlers.
1687 *
1688 * This generic handler doesn't seem to have any issues where the
1689 * unmasking occurs so it was left at the top.
1690 */
1691 apic_write(APIC_LVTPC, APIC_DM_NMI);
1692
1693 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1694 if (!test_bit(idx, cpuc->active_mask))
1695 continue;
1696
1697 event = cpuc->events[idx];
1698
1699 val = x86_perf_event_update(event);
1700 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1701 continue;
1702
1703 /*
1704 * event overflow
1705 */
1706 handled++;
1707 perf_sample_data_init(&data, 0, event->hw.last_period);
1708
1709 if (!x86_perf_event_set_period(event))
1710 continue;
1711
1712 if (perf_event_overflow(event, &data, regs))
1713 x86_pmu_stop(event, 0);
1714 }
1715
1716 if (handled)
1717 inc_irq_stat(apic_perf_irqs);
1718
1719 return handled;
1720 }
1721
perf_events_lapic_init(void)1722 void perf_events_lapic_init(void)
1723 {
1724 if (!x86_pmu.apic || !x86_pmu_initialized())
1725 return;
1726
1727 /*
1728 * Always use NMI for PMU
1729 */
1730 apic_write(APIC_LVTPC, APIC_DM_NMI);
1731 }
1732
1733 static int
perf_event_nmi_handler(unsigned int cmd,struct pt_regs * regs)1734 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1735 {
1736 u64 start_clock;
1737 u64 finish_clock;
1738 int ret;
1739
1740 /*
1741 * All PMUs/events that share this PMI handler should make sure to
1742 * increment active_events for their events.
1743 */
1744 if (!atomic_read(&active_events))
1745 return NMI_DONE;
1746
1747 start_clock = sched_clock();
1748 ret = static_call(x86_pmu_handle_irq)(regs);
1749 finish_clock = sched_clock();
1750
1751 perf_sample_event_took(finish_clock - start_clock);
1752
1753 return ret;
1754 }
1755 NOKPROBE_SYMBOL(perf_event_nmi_handler);
1756
1757 struct event_constraint emptyconstraint;
1758 struct event_constraint unconstrained;
1759
x86_pmu_prepare_cpu(unsigned int cpu)1760 static int x86_pmu_prepare_cpu(unsigned int cpu)
1761 {
1762 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1763 int i;
1764
1765 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1766 cpuc->kfree_on_online[i] = NULL;
1767 if (x86_pmu.cpu_prepare)
1768 return x86_pmu.cpu_prepare(cpu);
1769 return 0;
1770 }
1771
x86_pmu_dead_cpu(unsigned int cpu)1772 static int x86_pmu_dead_cpu(unsigned int cpu)
1773 {
1774 if (x86_pmu.cpu_dead)
1775 x86_pmu.cpu_dead(cpu);
1776 return 0;
1777 }
1778
x86_pmu_online_cpu(unsigned int cpu)1779 static int x86_pmu_online_cpu(unsigned int cpu)
1780 {
1781 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1782 int i;
1783
1784 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1785 kfree(cpuc->kfree_on_online[i]);
1786 cpuc->kfree_on_online[i] = NULL;
1787 }
1788 return 0;
1789 }
1790
x86_pmu_starting_cpu(unsigned int cpu)1791 static int x86_pmu_starting_cpu(unsigned int cpu)
1792 {
1793 if (x86_pmu.cpu_starting)
1794 x86_pmu.cpu_starting(cpu);
1795 return 0;
1796 }
1797
x86_pmu_dying_cpu(unsigned int cpu)1798 static int x86_pmu_dying_cpu(unsigned int cpu)
1799 {
1800 if (x86_pmu.cpu_dying)
1801 x86_pmu.cpu_dying(cpu);
1802 return 0;
1803 }
1804
pmu_check_apic(void)1805 static void __init pmu_check_apic(void)
1806 {
1807 if (boot_cpu_has(X86_FEATURE_APIC))
1808 return;
1809
1810 x86_pmu.apic = 0;
1811 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1812 pr_info("no hardware sampling interrupt available.\n");
1813
1814 /*
1815 * If we have a PMU initialized but no APIC
1816 * interrupts, we cannot sample hardware
1817 * events (user-space has to fall back and
1818 * sample via a hrtimer based software event):
1819 */
1820 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1821
1822 }
1823
1824 static struct attribute_group x86_pmu_format_group __ro_after_init = {
1825 .name = "format",
1826 .attrs = NULL,
1827 };
1828
events_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1829 ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1830 {
1831 struct perf_pmu_events_attr *pmu_attr =
1832 container_of(attr, struct perf_pmu_events_attr, attr);
1833 u64 config = 0;
1834
1835 if (pmu_attr->id < x86_pmu.max_events)
1836 config = x86_pmu.event_map(pmu_attr->id);
1837
1838 /* string trumps id */
1839 if (pmu_attr->event_str)
1840 return sprintf(page, "%s", pmu_attr->event_str);
1841
1842 return x86_pmu.events_sysfs_show(page, config);
1843 }
1844 EXPORT_SYMBOL_GPL(events_sysfs_show);
1845
events_ht_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1846 ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1847 char *page)
1848 {
1849 struct perf_pmu_events_ht_attr *pmu_attr =
1850 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1851
1852 /*
1853 * Report conditional events depending on Hyper-Threading.
1854 *
1855 * This is overly conservative as usually the HT special
1856 * handling is not needed if the other CPU thread is idle.
1857 *
1858 * Note this does not (and cannot) handle the case when thread
1859 * siblings are invisible, for example with virtualization
1860 * if they are owned by some other guest. The user tool
1861 * has to re-read when a thread sibling gets onlined later.
1862 */
1863 return sprintf(page, "%s",
1864 topology_max_smt_threads() > 1 ?
1865 pmu_attr->event_str_ht :
1866 pmu_attr->event_str_noht);
1867 }
1868
events_hybrid_sysfs_show(struct device * dev,struct device_attribute * attr,char * page)1869 ssize_t events_hybrid_sysfs_show(struct device *dev,
1870 struct device_attribute *attr,
1871 char *page)
1872 {
1873 struct perf_pmu_events_hybrid_attr *pmu_attr =
1874 container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1875 struct x86_hybrid_pmu *pmu;
1876 const char *str, *next_str;
1877 int i;
1878
1879 if (hweight64(pmu_attr->pmu_type) == 1)
1880 return sprintf(page, "%s", pmu_attr->event_str);
1881
1882 /*
1883 * Hybrid PMUs may support the same event name, but with different
1884 * event encoding, e.g., the mem-loads event on an Atom PMU has
1885 * different event encoding from a Core PMU.
1886 *
1887 * The event_str includes all event encodings. Each event encoding
1888 * is divided by ";". The order of the event encodings must follow
1889 * the order of the hybrid PMU index.
1890 */
1891 pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1892
1893 str = pmu_attr->event_str;
1894 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1895 if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1896 continue;
1897 if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1898 next_str = strchr(str, ';');
1899 if (next_str)
1900 return snprintf(page, next_str - str + 1, "%s", str);
1901 else
1902 return sprintf(page, "%s", str);
1903 }
1904 str = strchr(str, ';');
1905 str++;
1906 }
1907
1908 return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1911
1912 EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1913 EVENT_ATTR(instructions, INSTRUCTIONS );
1914 EVENT_ATTR(cache-references, CACHE_REFERENCES );
1915 EVENT_ATTR(cache-misses, CACHE_MISSES );
1916 EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1917 EVENT_ATTR(branch-misses, BRANCH_MISSES );
1918 EVENT_ATTR(bus-cycles, BUS_CYCLES );
1919 EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1920 EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1921 EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1922
1923 static struct attribute *empty_attrs;
1924
1925 static struct attribute *events_attr[] = {
1926 EVENT_PTR(CPU_CYCLES),
1927 EVENT_PTR(INSTRUCTIONS),
1928 EVENT_PTR(CACHE_REFERENCES),
1929 EVENT_PTR(CACHE_MISSES),
1930 EVENT_PTR(BRANCH_INSTRUCTIONS),
1931 EVENT_PTR(BRANCH_MISSES),
1932 EVENT_PTR(BUS_CYCLES),
1933 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1934 EVENT_PTR(STALLED_CYCLES_BACKEND),
1935 EVENT_PTR(REF_CPU_CYCLES),
1936 NULL,
1937 };
1938
1939 /*
1940 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1941 * out of events_attr attributes.
1942 */
1943 static umode_t
is_visible(struct kobject * kobj,struct attribute * attr,int idx)1944 is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1945 {
1946 struct perf_pmu_events_attr *pmu_attr;
1947
1948 if (idx >= x86_pmu.max_events)
1949 return 0;
1950
1951 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1952 /* str trumps id */
1953 return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1954 }
1955
1956 static struct attribute_group x86_pmu_events_group __ro_after_init = {
1957 .name = "events",
1958 .attrs = events_attr,
1959 .is_visible = is_visible,
1960 };
1961
x86_event_sysfs_show(char * page,u64 config,u64 event)1962 ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1963 {
1964 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1965 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1966 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1967 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1968 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1969 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1970 ssize_t ret;
1971
1972 /*
1973 * We have whole page size to spend and just little data
1974 * to write, so we can safely use sprintf.
1975 */
1976 ret = sprintf(page, "event=0x%02llx", event);
1977
1978 if (umask)
1979 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1980
1981 if (edge)
1982 ret += sprintf(page + ret, ",edge");
1983
1984 if (pc)
1985 ret += sprintf(page + ret, ",pc");
1986
1987 if (any)
1988 ret += sprintf(page + ret, ",any");
1989
1990 if (inv)
1991 ret += sprintf(page + ret, ",inv");
1992
1993 if (cmask)
1994 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1995
1996 ret += sprintf(page + ret, "\n");
1997
1998 return ret;
1999 }
2000
2001 static struct attribute_group x86_pmu_attr_group;
2002 static struct attribute_group x86_pmu_caps_group;
2003
x86_pmu_static_call_update(void)2004 static void x86_pmu_static_call_update(void)
2005 {
2006 static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2007 static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2008 static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2009 static_call_update(x86_pmu_enable, x86_pmu.enable);
2010 static_call_update(x86_pmu_disable, x86_pmu.disable);
2011
2012 static_call_update(x86_pmu_assign, x86_pmu.assign);
2013
2014 static_call_update(x86_pmu_add, x86_pmu.add);
2015 static_call_update(x86_pmu_del, x86_pmu.del);
2016 static_call_update(x86_pmu_read, x86_pmu.read);
2017
2018 static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2019 static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2020 static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2021
2022 static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2023 static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2024 static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2025
2026 static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2027 static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2028
2029 static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2030 static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2031
2032 static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2033 }
2034
_x86_pmu_read(struct perf_event * event)2035 static void _x86_pmu_read(struct perf_event *event)
2036 {
2037 x86_perf_event_update(event);
2038 }
2039
x86_pmu_show_pmu_cap(int num_counters,int num_counters_fixed,u64 intel_ctrl)2040 void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2041 u64 intel_ctrl)
2042 {
2043 pr_info("... version: %d\n", x86_pmu.version);
2044 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
2045 pr_info("... generic registers: %d\n", num_counters);
2046 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
2047 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
2048 pr_info("... fixed-purpose events: %lu\n",
2049 hweight64((((1ULL << num_counters_fixed) - 1)
2050 << INTEL_PMC_IDX_FIXED) & intel_ctrl));
2051 pr_info("... event mask: %016Lx\n", intel_ctrl);
2052 }
2053
2054 /*
2055 * The generic code is not hybrid friendly. The hybrid_pmu->pmu
2056 * of the first registered PMU is unconditionally assigned to
2057 * each possible cpuctx->ctx.pmu.
2058 * Update the correct hybrid PMU to the cpuctx->ctx.pmu.
2059 */
x86_pmu_update_cpu_context(struct pmu * pmu,int cpu)2060 void x86_pmu_update_cpu_context(struct pmu *pmu, int cpu)
2061 {
2062 struct perf_cpu_context *cpuctx;
2063
2064 if (!pmu->pmu_cpu_context)
2065 return;
2066
2067 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2068 cpuctx->ctx.pmu = pmu;
2069 }
2070
init_hw_perf_events(void)2071 static int __init init_hw_perf_events(void)
2072 {
2073 struct x86_pmu_quirk *quirk;
2074 int err;
2075
2076 pr_info("Performance Events: ");
2077
2078 switch (boot_cpu_data.x86_vendor) {
2079 case X86_VENDOR_INTEL:
2080 err = intel_pmu_init();
2081 break;
2082 case X86_VENDOR_AMD:
2083 err = amd_pmu_init();
2084 break;
2085 case X86_VENDOR_HYGON:
2086 err = amd_pmu_init();
2087 x86_pmu.name = "HYGON";
2088 break;
2089 case X86_VENDOR_ZHAOXIN:
2090 case X86_VENDOR_CENTAUR:
2091 err = zhaoxin_pmu_init();
2092 break;
2093 default:
2094 err = -ENOTSUPP;
2095 }
2096 if (err != 0) {
2097 pr_cont("no PMU driver, software events only.\n");
2098 return 0;
2099 }
2100
2101 pmu_check_apic();
2102
2103 /* sanity check that the hardware exists or is emulated */
2104 if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2105 return 0;
2106
2107 pr_cont("%s PMU driver.\n", x86_pmu.name);
2108
2109 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2110
2111 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2112 quirk->func();
2113
2114 if (!x86_pmu.intel_ctrl)
2115 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2116
2117 perf_events_lapic_init();
2118 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2119
2120 unconstrained = (struct event_constraint)
2121 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2122 0, x86_pmu.num_counters, 0, 0);
2123
2124 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2125
2126 if (!x86_pmu.events_sysfs_show)
2127 x86_pmu_events_group.attrs = &empty_attrs;
2128
2129 pmu.attr_update = x86_pmu.attr_update;
2130
2131 if (!is_hybrid()) {
2132 x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2133 x86_pmu.num_counters_fixed,
2134 x86_pmu.intel_ctrl);
2135 }
2136
2137 if (!x86_pmu.read)
2138 x86_pmu.read = _x86_pmu_read;
2139
2140 if (!x86_pmu.guest_get_msrs)
2141 x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2142
2143 x86_pmu_static_call_update();
2144
2145 /*
2146 * Install callbacks. Core will call them for each online
2147 * cpu.
2148 */
2149 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2150 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2151 if (err)
2152 return err;
2153
2154 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2155 "perf/x86:starting", x86_pmu_starting_cpu,
2156 x86_pmu_dying_cpu);
2157 if (err)
2158 goto out;
2159
2160 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2161 x86_pmu_online_cpu, NULL);
2162 if (err)
2163 goto out1;
2164
2165 if (!is_hybrid()) {
2166 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2167 if (err)
2168 goto out2;
2169 } else {
2170 u8 cpu_type = get_this_hybrid_cpu_type();
2171 struct x86_hybrid_pmu *hybrid_pmu;
2172 int i, j;
2173
2174 if (!cpu_type && x86_pmu.get_hybrid_cpu_type)
2175 cpu_type = x86_pmu.get_hybrid_cpu_type();
2176
2177 for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2178 hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2179
2180 hybrid_pmu->pmu = pmu;
2181 hybrid_pmu->pmu.type = -1;
2182 hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2183 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
2184 hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2185
2186 err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2187 (hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2188 if (err)
2189 break;
2190
2191 if (cpu_type == hybrid_pmu->cpu_type)
2192 x86_pmu_update_cpu_context(&hybrid_pmu->pmu, raw_smp_processor_id());
2193 }
2194
2195 if (i < x86_pmu.num_hybrid_pmus) {
2196 for (j = 0; j < i; j++)
2197 perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2198 pr_warn("Failed to register hybrid PMUs\n");
2199 kfree(x86_pmu.hybrid_pmu);
2200 x86_pmu.hybrid_pmu = NULL;
2201 x86_pmu.num_hybrid_pmus = 0;
2202 goto out2;
2203 }
2204 }
2205
2206 return 0;
2207
2208 out2:
2209 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2210 out1:
2211 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2212 out:
2213 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2214 return err;
2215 }
2216 early_initcall(init_hw_perf_events);
2217
x86_pmu_read(struct perf_event * event)2218 static void x86_pmu_read(struct perf_event *event)
2219 {
2220 static_call(x86_pmu_read)(event);
2221 }
2222
2223 /*
2224 * Start group events scheduling transaction
2225 * Set the flag to make pmu::enable() not perform the
2226 * schedulability test, it will be performed at commit time
2227 *
2228 * We only support PERF_PMU_TXN_ADD transactions. Save the
2229 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2230 * transactions.
2231 */
x86_pmu_start_txn(struct pmu * pmu,unsigned int txn_flags)2232 static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2233 {
2234 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2235
2236 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
2237
2238 cpuc->txn_flags = txn_flags;
2239 if (txn_flags & ~PERF_PMU_TXN_ADD)
2240 return;
2241
2242 perf_pmu_disable(pmu);
2243 __this_cpu_write(cpu_hw_events.n_txn, 0);
2244 __this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2245 __this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2246 }
2247
2248 /*
2249 * Stop group events scheduling transaction
2250 * Clear the flag and pmu::enable() will perform the
2251 * schedulability test.
2252 */
x86_pmu_cancel_txn(struct pmu * pmu)2253 static void x86_pmu_cancel_txn(struct pmu *pmu)
2254 {
2255 unsigned int txn_flags;
2256 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2257
2258 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2259
2260 txn_flags = cpuc->txn_flags;
2261 cpuc->txn_flags = 0;
2262 if (txn_flags & ~PERF_PMU_TXN_ADD)
2263 return;
2264
2265 /*
2266 * Truncate collected array by the number of events added in this
2267 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2268 */
2269 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2270 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2271 __this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2272 __this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2273 perf_pmu_enable(pmu);
2274 }
2275
2276 /*
2277 * Commit group events scheduling transaction
2278 * Perform the group schedulability test as a whole
2279 * Return 0 if success
2280 *
2281 * Does not cancel the transaction on failure; expects the caller to do this.
2282 */
x86_pmu_commit_txn(struct pmu * pmu)2283 static int x86_pmu_commit_txn(struct pmu *pmu)
2284 {
2285 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2286 int assign[X86_PMC_IDX_MAX];
2287 int n, ret;
2288
2289 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
2290
2291 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2292 cpuc->txn_flags = 0;
2293 return 0;
2294 }
2295
2296 n = cpuc->n_events;
2297
2298 if (!x86_pmu_initialized())
2299 return -EAGAIN;
2300
2301 ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2302 if (ret)
2303 return ret;
2304
2305 /*
2306 * copy new assignment, now we know it is possible
2307 * will be used by hw_perf_enable()
2308 */
2309 memcpy(cpuc->assign, assign, n*sizeof(int));
2310
2311 cpuc->txn_flags = 0;
2312 perf_pmu_enable(pmu);
2313 return 0;
2314 }
2315 /*
2316 * a fake_cpuc is used to validate event groups. Due to
2317 * the extra reg logic, we need to also allocate a fake
2318 * per_core and per_cpu structure. Otherwise, group events
2319 * using extra reg may conflict without the kernel being
2320 * able to catch this when the last event gets added to
2321 * the group.
2322 */
free_fake_cpuc(struct cpu_hw_events * cpuc)2323 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2324 {
2325 intel_cpuc_finish(cpuc);
2326 kfree(cpuc);
2327 }
2328
allocate_fake_cpuc(struct pmu * event_pmu)2329 static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2330 {
2331 struct cpu_hw_events *cpuc;
2332 int cpu;
2333
2334 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2335 if (!cpuc)
2336 return ERR_PTR(-ENOMEM);
2337 cpuc->is_fake = 1;
2338
2339 if (is_hybrid()) {
2340 struct x86_hybrid_pmu *h_pmu;
2341
2342 h_pmu = hybrid_pmu(event_pmu);
2343 if (cpumask_empty(&h_pmu->supported_cpus))
2344 goto error;
2345 cpu = cpumask_first(&h_pmu->supported_cpus);
2346 } else
2347 cpu = raw_smp_processor_id();
2348 cpuc->pmu = event_pmu;
2349
2350 if (intel_cpuc_prepare(cpuc, cpu))
2351 goto error;
2352
2353 return cpuc;
2354 error:
2355 free_fake_cpuc(cpuc);
2356 return ERR_PTR(-ENOMEM);
2357 }
2358
2359 /*
2360 * validate that we can schedule this event
2361 */
validate_event(struct perf_event * event)2362 static int validate_event(struct perf_event *event)
2363 {
2364 struct cpu_hw_events *fake_cpuc;
2365 struct event_constraint *c;
2366 int ret = 0;
2367
2368 fake_cpuc = allocate_fake_cpuc(event->pmu);
2369 if (IS_ERR(fake_cpuc))
2370 return PTR_ERR(fake_cpuc);
2371
2372 c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2373
2374 if (!c || !c->weight)
2375 ret = -EINVAL;
2376
2377 if (x86_pmu.put_event_constraints)
2378 x86_pmu.put_event_constraints(fake_cpuc, event);
2379
2380 free_fake_cpuc(fake_cpuc);
2381
2382 return ret;
2383 }
2384
2385 /*
2386 * validate a single event group
2387 *
2388 * validation include:
2389 * - check events are compatible which each other
2390 * - events do not compete for the same counter
2391 * - number of events <= number of counters
2392 *
2393 * validation ensures the group can be loaded onto the
2394 * PMU if it was the only group available.
2395 */
validate_group(struct perf_event * event)2396 static int validate_group(struct perf_event *event)
2397 {
2398 struct perf_event *leader = event->group_leader;
2399 struct cpu_hw_events *fake_cpuc;
2400 int ret = -EINVAL, n;
2401
2402 /*
2403 * Reject events from different hybrid PMUs.
2404 */
2405 if (is_hybrid()) {
2406 struct perf_event *sibling;
2407 struct pmu *pmu = NULL;
2408
2409 if (is_x86_event(leader))
2410 pmu = leader->pmu;
2411
2412 for_each_sibling_event(sibling, leader) {
2413 if (!is_x86_event(sibling))
2414 continue;
2415 if (!pmu)
2416 pmu = sibling->pmu;
2417 else if (pmu != sibling->pmu)
2418 return ret;
2419 }
2420 }
2421
2422 fake_cpuc = allocate_fake_cpuc(event->pmu);
2423 if (IS_ERR(fake_cpuc))
2424 return PTR_ERR(fake_cpuc);
2425 /*
2426 * the event is not yet connected with its
2427 * siblings therefore we must first collect
2428 * existing siblings, then add the new event
2429 * before we can simulate the scheduling
2430 */
2431 n = collect_events(fake_cpuc, leader, true);
2432 if (n < 0)
2433 goto out;
2434
2435 fake_cpuc->n_events = n;
2436 n = collect_events(fake_cpuc, event, false);
2437 if (n < 0)
2438 goto out;
2439
2440 fake_cpuc->n_events = 0;
2441 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2442
2443 out:
2444 free_fake_cpuc(fake_cpuc);
2445 return ret;
2446 }
2447
x86_pmu_event_init(struct perf_event * event)2448 static int x86_pmu_event_init(struct perf_event *event)
2449 {
2450 struct x86_hybrid_pmu *pmu = NULL;
2451 int err;
2452
2453 if ((event->attr.type != event->pmu->type) &&
2454 (event->attr.type != PERF_TYPE_HARDWARE) &&
2455 (event->attr.type != PERF_TYPE_HW_CACHE))
2456 return -ENOENT;
2457
2458 if (is_hybrid() && (event->cpu != -1)) {
2459 pmu = hybrid_pmu(event->pmu);
2460 if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2461 return -ENOENT;
2462 }
2463
2464 err = __x86_pmu_event_init(event);
2465 if (!err) {
2466 if (event->group_leader != event)
2467 err = validate_group(event);
2468 else
2469 err = validate_event(event);
2470 }
2471 if (err) {
2472 if (event->destroy)
2473 event->destroy(event);
2474 event->destroy = NULL;
2475 }
2476
2477 if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2478 !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2479 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2480
2481 return err;
2482 }
2483
perf_clear_dirty_counters(void)2484 void perf_clear_dirty_counters(void)
2485 {
2486 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2487 int i;
2488
2489 /* Don't need to clear the assigned counter. */
2490 for (i = 0; i < cpuc->n_events; i++)
2491 __clear_bit(cpuc->assign[i], cpuc->dirty);
2492
2493 if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2494 return;
2495
2496 for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2497 if (i >= INTEL_PMC_IDX_FIXED) {
2498 /* Metrics and fake events don't have corresponding HW counters. */
2499 if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2500 continue;
2501
2502 wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2503 } else {
2504 wrmsrl(x86_pmu_event_addr(i), 0);
2505 }
2506 }
2507
2508 bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2509 }
2510
x86_pmu_event_mapped(struct perf_event * event,struct mm_struct * mm)2511 static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2512 {
2513 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2514 return;
2515
2516 /*
2517 * This function relies on not being called concurrently in two
2518 * tasks in the same mm. Otherwise one task could observe
2519 * perf_rdpmc_allowed > 1 and return all the way back to
2520 * userspace with CR4.PCE clear while another task is still
2521 * doing on_each_cpu_mask() to propagate CR4.PCE.
2522 *
2523 * For now, this can't happen because all callers hold mmap_lock
2524 * for write. If this changes, we'll need a different solution.
2525 */
2526 mmap_assert_write_locked(mm);
2527
2528 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2529 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2530 }
2531
x86_pmu_event_unmapped(struct perf_event * event,struct mm_struct * mm)2532 static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2533 {
2534 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2535 return;
2536
2537 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2538 on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2539 }
2540
x86_pmu_event_idx(struct perf_event * event)2541 static int x86_pmu_event_idx(struct perf_event *event)
2542 {
2543 struct hw_perf_event *hwc = &event->hw;
2544
2545 if (!(hwc->flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2546 return 0;
2547
2548 if (is_metric_idx(hwc->idx))
2549 return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2550 else
2551 return hwc->event_base_rdpmc + 1;
2552 }
2553
get_attr_rdpmc(struct device * cdev,struct device_attribute * attr,char * buf)2554 static ssize_t get_attr_rdpmc(struct device *cdev,
2555 struct device_attribute *attr,
2556 char *buf)
2557 {
2558 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2559 }
2560
set_attr_rdpmc(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)2561 static ssize_t set_attr_rdpmc(struct device *cdev,
2562 struct device_attribute *attr,
2563 const char *buf, size_t count)
2564 {
2565 unsigned long val;
2566 ssize_t ret;
2567
2568 ret = kstrtoul(buf, 0, &val);
2569 if (ret)
2570 return ret;
2571
2572 if (val > 2)
2573 return -EINVAL;
2574
2575 if (x86_pmu.attr_rdpmc_broken)
2576 return -ENOTSUPP;
2577
2578 if (val != x86_pmu.attr_rdpmc) {
2579 /*
2580 * Changing into or out of never available or always available,
2581 * aka perf-event-bypassing mode. This path is extremely slow,
2582 * but only root can trigger it, so it's okay.
2583 */
2584 if (val == 0)
2585 static_branch_inc(&rdpmc_never_available_key);
2586 else if (x86_pmu.attr_rdpmc == 0)
2587 static_branch_dec(&rdpmc_never_available_key);
2588
2589 if (val == 2)
2590 static_branch_inc(&rdpmc_always_available_key);
2591 else if (x86_pmu.attr_rdpmc == 2)
2592 static_branch_dec(&rdpmc_always_available_key);
2593
2594 on_each_cpu(cr4_update_pce, NULL, 1);
2595 x86_pmu.attr_rdpmc = val;
2596 }
2597
2598 return count;
2599 }
2600
2601 static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2602
2603 static struct attribute *x86_pmu_attrs[] = {
2604 &dev_attr_rdpmc.attr,
2605 NULL,
2606 };
2607
2608 static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2609 .attrs = x86_pmu_attrs,
2610 };
2611
max_precise_show(struct device * cdev,struct device_attribute * attr,char * buf)2612 static ssize_t max_precise_show(struct device *cdev,
2613 struct device_attribute *attr,
2614 char *buf)
2615 {
2616 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2617 }
2618
2619 static DEVICE_ATTR_RO(max_precise);
2620
2621 static struct attribute *x86_pmu_caps_attrs[] = {
2622 &dev_attr_max_precise.attr,
2623 NULL
2624 };
2625
2626 static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2627 .name = "caps",
2628 .attrs = x86_pmu_caps_attrs,
2629 };
2630
2631 static const struct attribute_group *x86_pmu_attr_groups[] = {
2632 &x86_pmu_attr_group,
2633 &x86_pmu_format_group,
2634 &x86_pmu_events_group,
2635 &x86_pmu_caps_group,
2636 NULL,
2637 };
2638
x86_pmu_sched_task(struct perf_event_context * ctx,bool sched_in)2639 static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
2640 {
2641 static_call_cond(x86_pmu_sched_task)(ctx, sched_in);
2642 }
2643
x86_pmu_swap_task_ctx(struct perf_event_context * prev,struct perf_event_context * next)2644 static void x86_pmu_swap_task_ctx(struct perf_event_context *prev,
2645 struct perf_event_context *next)
2646 {
2647 static_call_cond(x86_pmu_swap_task_ctx)(prev, next);
2648 }
2649
perf_check_microcode(void)2650 void perf_check_microcode(void)
2651 {
2652 if (x86_pmu.check_microcode)
2653 x86_pmu.check_microcode();
2654 }
2655
x86_pmu_check_period(struct perf_event * event,u64 value)2656 static int x86_pmu_check_period(struct perf_event *event, u64 value)
2657 {
2658 if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2659 return -EINVAL;
2660
2661 if (value && x86_pmu.limit_period) {
2662 if (x86_pmu.limit_period(event, value) > value)
2663 return -EINVAL;
2664 }
2665
2666 return 0;
2667 }
2668
x86_pmu_aux_output_match(struct perf_event * event)2669 static int x86_pmu_aux_output_match(struct perf_event *event)
2670 {
2671 if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2672 return 0;
2673
2674 if (x86_pmu.aux_output_match)
2675 return x86_pmu.aux_output_match(event);
2676
2677 return 0;
2678 }
2679
x86_pmu_filter_match(struct perf_event * event)2680 static int x86_pmu_filter_match(struct perf_event *event)
2681 {
2682 if (x86_pmu.filter_match)
2683 return x86_pmu.filter_match(event);
2684
2685 return 1;
2686 }
2687
2688 static struct pmu pmu = {
2689 .pmu_enable = x86_pmu_enable,
2690 .pmu_disable = x86_pmu_disable,
2691
2692 .attr_groups = x86_pmu_attr_groups,
2693
2694 .event_init = x86_pmu_event_init,
2695
2696 .event_mapped = x86_pmu_event_mapped,
2697 .event_unmapped = x86_pmu_event_unmapped,
2698
2699 .add = x86_pmu_add,
2700 .del = x86_pmu_del,
2701 .start = x86_pmu_start,
2702 .stop = x86_pmu_stop,
2703 .read = x86_pmu_read,
2704
2705 .start_txn = x86_pmu_start_txn,
2706 .cancel_txn = x86_pmu_cancel_txn,
2707 .commit_txn = x86_pmu_commit_txn,
2708
2709 .event_idx = x86_pmu_event_idx,
2710 .sched_task = x86_pmu_sched_task,
2711 .swap_task_ctx = x86_pmu_swap_task_ctx,
2712 .check_period = x86_pmu_check_period,
2713
2714 .aux_output_match = x86_pmu_aux_output_match,
2715
2716 .filter_match = x86_pmu_filter_match,
2717 };
2718
arch_perf_update_userpage(struct perf_event * event,struct perf_event_mmap_page * userpg,u64 now)2719 void arch_perf_update_userpage(struct perf_event *event,
2720 struct perf_event_mmap_page *userpg, u64 now)
2721 {
2722 struct cyc2ns_data data;
2723 u64 offset;
2724
2725 userpg->cap_user_time = 0;
2726 userpg->cap_user_time_zero = 0;
2727 userpg->cap_user_rdpmc =
2728 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
2729 userpg->pmc_width = x86_pmu.cntval_bits;
2730
2731 if (!using_native_sched_clock() || !sched_clock_stable())
2732 return;
2733
2734 cyc2ns_read_begin(&data);
2735
2736 offset = data.cyc2ns_offset + __sched_clock_offset;
2737
2738 /*
2739 * Internal timekeeping for enabled/running/stopped times
2740 * is always in the local_clock domain.
2741 */
2742 userpg->cap_user_time = 1;
2743 userpg->time_mult = data.cyc2ns_mul;
2744 userpg->time_shift = data.cyc2ns_shift;
2745 userpg->time_offset = offset - now;
2746
2747 /*
2748 * cap_user_time_zero doesn't make sense when we're using a different
2749 * time base for the records.
2750 */
2751 if (!event->attr.use_clockid) {
2752 userpg->cap_user_time_zero = 1;
2753 userpg->time_zero = offset;
2754 }
2755
2756 cyc2ns_read_end();
2757 }
2758
2759 /*
2760 * Determine whether the regs were taken from an irq/exception handler rather
2761 * than from perf_arch_fetch_caller_regs().
2762 */
perf_hw_regs(struct pt_regs * regs)2763 static bool perf_hw_regs(struct pt_regs *regs)
2764 {
2765 return regs->flags & X86_EFLAGS_FIXED;
2766 }
2767
2768 void
perf_callchain_kernel(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2769 perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2770 {
2771 struct unwind_state state;
2772 unsigned long addr;
2773
2774 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2775 /* TODO: We don't support guest os callchain now */
2776 return;
2777 }
2778
2779 if (perf_callchain_store(entry, regs->ip))
2780 return;
2781
2782 if (perf_hw_regs(regs))
2783 unwind_start(&state, current, regs, NULL);
2784 else
2785 unwind_start(&state, current, NULL, (void *)regs->sp);
2786
2787 for (; !unwind_done(&state); unwind_next_frame(&state)) {
2788 addr = unwind_get_return_address(&state);
2789 if (!addr || perf_callchain_store(entry, addr))
2790 return;
2791 }
2792 }
2793
2794 static inline int
valid_user_frame(const void __user * fp,unsigned long size)2795 valid_user_frame(const void __user *fp, unsigned long size)
2796 {
2797 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2798 }
2799
get_segment_base(unsigned int segment)2800 static unsigned long get_segment_base(unsigned int segment)
2801 {
2802 struct desc_struct *desc;
2803 unsigned int idx = segment >> 3;
2804
2805 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2806 #ifdef CONFIG_MODIFY_LDT_SYSCALL
2807 struct ldt_struct *ldt;
2808
2809 /* IRQs are off, so this synchronizes with smp_store_release */
2810 ldt = READ_ONCE(current->active_mm->context.ldt);
2811 if (!ldt || idx >= ldt->nr_entries)
2812 return 0;
2813
2814 desc = &ldt->entries[idx];
2815 #else
2816 return 0;
2817 #endif
2818 } else {
2819 if (idx >= GDT_ENTRIES)
2820 return 0;
2821
2822 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2823 }
2824
2825 return get_desc_base(desc);
2826 }
2827
2828 #ifdef CONFIG_IA32_EMULATION
2829
2830 #include <linux/compat.h>
2831
2832 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2833 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2834 {
2835 /* 32-bit process in 64-bit kernel. */
2836 unsigned long ss_base, cs_base;
2837 struct stack_frame_ia32 frame;
2838 const struct stack_frame_ia32 __user *fp;
2839
2840 if (user_64bit_mode(regs))
2841 return 0;
2842
2843 cs_base = get_segment_base(regs->cs);
2844 ss_base = get_segment_base(regs->ss);
2845
2846 fp = compat_ptr(ss_base + regs->bp);
2847 pagefault_disable();
2848 while (entry->nr < entry->max_stack) {
2849 if (!valid_user_frame(fp, sizeof(frame)))
2850 break;
2851
2852 if (__get_user(frame.next_frame, &fp->next_frame))
2853 break;
2854 if (__get_user(frame.return_address, &fp->return_address))
2855 break;
2856
2857 perf_callchain_store(entry, cs_base + frame.return_address);
2858 fp = compat_ptr(ss_base + frame.next_frame);
2859 }
2860 pagefault_enable();
2861 return 1;
2862 }
2863 #else
2864 static inline int
perf_callchain_user32(struct pt_regs * regs,struct perf_callchain_entry_ctx * entry)2865 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2866 {
2867 return 0;
2868 }
2869 #endif
2870
2871 void
perf_callchain_user(struct perf_callchain_entry_ctx * entry,struct pt_regs * regs)2872 perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2873 {
2874 struct stack_frame frame;
2875 const struct stack_frame __user *fp;
2876
2877 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2878 /* TODO: We don't support guest os callchain now */
2879 return;
2880 }
2881
2882 /*
2883 * We don't know what to do with VM86 stacks.. ignore them for now.
2884 */
2885 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2886 return;
2887
2888 fp = (void __user *)regs->bp;
2889
2890 perf_callchain_store(entry, regs->ip);
2891
2892 if (!nmi_uaccess_okay())
2893 return;
2894
2895 if (perf_callchain_user32(regs, entry))
2896 return;
2897
2898 pagefault_disable();
2899 while (entry->nr < entry->max_stack) {
2900 if (!valid_user_frame(fp, sizeof(frame)))
2901 break;
2902
2903 if (__get_user(frame.next_frame, &fp->next_frame))
2904 break;
2905 if (__get_user(frame.return_address, &fp->return_address))
2906 break;
2907
2908 perf_callchain_store(entry, frame.return_address);
2909 fp = (void __user *)frame.next_frame;
2910 }
2911 pagefault_enable();
2912 }
2913
2914 /*
2915 * Deal with code segment offsets for the various execution modes:
2916 *
2917 * VM86 - the good olde 16 bit days, where the linear address is
2918 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2919 *
2920 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2921 * to figure out what the 32bit base address is.
2922 *
2923 * X32 - has TIF_X32 set, but is running in x86_64
2924 *
2925 * X86_64 - CS,DS,SS,ES are all zero based.
2926 */
code_segment_base(struct pt_regs * regs)2927 static unsigned long code_segment_base(struct pt_regs *regs)
2928 {
2929 /*
2930 * For IA32 we look at the GDT/LDT segment base to convert the
2931 * effective IP to a linear address.
2932 */
2933
2934 #ifdef CONFIG_X86_32
2935 /*
2936 * If we are in VM86 mode, add the segment offset to convert to a
2937 * linear address.
2938 */
2939 if (regs->flags & X86_VM_MASK)
2940 return 0x10 * regs->cs;
2941
2942 if (user_mode(regs) && regs->cs != __USER_CS)
2943 return get_segment_base(regs->cs);
2944 #else
2945 if (user_mode(regs) && !user_64bit_mode(regs) &&
2946 regs->cs != __USER32_CS)
2947 return get_segment_base(regs->cs);
2948 #endif
2949 return 0;
2950 }
2951
perf_instruction_pointer(struct pt_regs * regs)2952 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2953 {
2954 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
2955 return perf_guest_cbs->get_guest_ip();
2956
2957 return regs->ip + code_segment_base(regs);
2958 }
2959
perf_misc_flags(struct pt_regs * regs)2960 unsigned long perf_misc_flags(struct pt_regs *regs)
2961 {
2962 int misc = 0;
2963
2964 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2965 if (perf_guest_cbs->is_user_mode())
2966 misc |= PERF_RECORD_MISC_GUEST_USER;
2967 else
2968 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2969 } else {
2970 if (user_mode(regs))
2971 misc |= PERF_RECORD_MISC_USER;
2972 else
2973 misc |= PERF_RECORD_MISC_KERNEL;
2974 }
2975
2976 if (regs->flags & PERF_EFLAGS_EXACT)
2977 misc |= PERF_RECORD_MISC_EXACT_IP;
2978
2979 return misc;
2980 }
2981
perf_get_x86_pmu_capability(struct x86_pmu_capability * cap)2982 void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2983 {
2984 cap->version = x86_pmu.version;
2985 /*
2986 * KVM doesn't support the hybrid PMU yet.
2987 * Return the common value in global x86_pmu,
2988 * which available for all cores.
2989 */
2990 cap->num_counters_gp = x86_pmu.num_counters;
2991 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2992 cap->bit_width_gp = x86_pmu.cntval_bits;
2993 cap->bit_width_fixed = x86_pmu.cntval_bits;
2994 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2995 cap->events_mask_len = x86_pmu.events_mask_len;
2996 }
2997 EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2998