1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
4 *
5 * (C) Copyright 2014, 2015 Linaro Ltd.
6 * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
7 *
8 * CPPC describes a few methods for controlling CPU performance using
9 * information from a per CPU table called CPC. This table is described in
10 * the ACPI v5.0+ specification. The table consists of a list of
11 * registers which may be memory mapped or hardware registers and also may
12 * include some static integer values.
13 *
14 * CPU performance is on an abstract continuous scale as against a discretized
15 * P-state scale which is tied to CPU frequency only. In brief, the basic
16 * operation involves:
17 *
18 * - OS makes a CPU performance request. (Can provide min and max bounds)
19 *
20 * - Platform (such as BMC) is free to optimize request within requested bounds
21 * depending on power/thermal budgets etc.
22 *
23 * - Platform conveys its decision back to OS
24 *
25 * The communication between OS and platform occurs through another medium
26 * called (PCC) Platform Communication Channel. This is a generic mailbox like
27 * mechanism which includes doorbell semantics to indicate register updates.
28 * See drivers/mailbox/pcc.c for details on PCC.
29 *
30 * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
31 * above specifications.
32 */
33
34 #define pr_fmt(fmt) "ACPI CPPC: " fmt
35
36 #include <linux/delay.h>
37 #include <linux/iopoll.h>
38 #include <linux/ktime.h>
39 #include <linux/rwsem.h>
40 #include <linux/wait.h>
41 #include <linux/topology.h>
42
43 #include <acpi/cppc_acpi.h>
44
45 struct cppc_pcc_data {
46 struct pcc_mbox_chan *pcc_channel;
47 void __iomem *pcc_comm_addr;
48 bool pcc_channel_acquired;
49 unsigned int deadline_us;
50 unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
51
52 bool pending_pcc_write_cmd; /* Any pending/batched PCC write cmds? */
53 bool platform_owns_pcc; /* Ownership of PCC subspace */
54 unsigned int pcc_write_cnt; /* Running count of PCC write commands */
55
56 /*
57 * Lock to provide controlled access to the PCC channel.
58 *
59 * For performance critical usecases(currently cppc_set_perf)
60 * We need to take read_lock and check if channel belongs to OSPM
61 * before reading or writing to PCC subspace
62 * We need to take write_lock before transferring the channel
63 * ownership to the platform via a Doorbell
64 * This allows us to batch a number of CPPC requests if they happen
65 * to originate in about the same time
66 *
67 * For non-performance critical usecases(init)
68 * Take write_lock for all purposes which gives exclusive access
69 */
70 struct rw_semaphore pcc_lock;
71
72 /* Wait queue for CPUs whose requests were batched */
73 wait_queue_head_t pcc_write_wait_q;
74 ktime_t last_cmd_cmpl_time;
75 ktime_t last_mpar_reset;
76 int mpar_count;
77 int refcount;
78 };
79
80 /* Array to represent the PCC channel per subspace ID */
81 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
82 /* The cpu_pcc_subspace_idx contains per CPU subspace ID */
83 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
84
85 /*
86 * The cpc_desc structure contains the ACPI register details
87 * as described in the per CPU _CPC tables. The details
88 * include the type of register (e.g. PCC, System IO, FFH etc.)
89 * and destination addresses which lets us READ/WRITE CPU performance
90 * information using the appropriate I/O methods.
91 */
92 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
93
94 /* pcc mapped address + header size + offset within PCC subspace */
95 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
96 0x8 + (offs))
97
98 /* Check if a CPC register is in PCC */
99 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER && \
100 (cpc)->cpc_entry.reg.space_id == \
101 ACPI_ADR_SPACE_PLATFORM_COMM)
102
103 /* Evaluates to True if reg is a NULL register descriptor */
104 #define IS_NULL_REG(reg) ((reg)->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY && \
105 (reg)->address == 0 && \
106 (reg)->bit_width == 0 && \
107 (reg)->bit_offset == 0 && \
108 (reg)->access_width == 0)
109
110 /* Evaluates to True if an optional cpc field is supported */
111 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ? \
112 !!(cpc)->cpc_entry.int_value : \
113 !IS_NULL_REG(&(cpc)->cpc_entry.reg))
114 /*
115 * Arbitrary Retries in case the remote processor is slow to respond
116 * to PCC commands. Keeping it high enough to cover emulators where
117 * the processors run painfully slow.
118 */
119 #define NUM_RETRIES 500ULL
120
121 #define define_one_cppc_ro(_name) \
122 static struct kobj_attribute _name = \
123 __ATTR(_name, 0444, show_##_name, NULL)
124
125 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
126
127 #define show_cppc_data(access_fn, struct_name, member_name) \
128 static ssize_t show_##member_name(struct kobject *kobj, \
129 struct kobj_attribute *attr, char *buf) \
130 { \
131 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj); \
132 struct struct_name st_name = {0}; \
133 int ret; \
134 \
135 ret = access_fn(cpc_ptr->cpu_id, &st_name); \
136 if (ret) \
137 return ret; \
138 \
139 return scnprintf(buf, PAGE_SIZE, "%llu\n", \
140 (u64)st_name.member_name); \
141 } \
142 define_one_cppc_ro(member_name)
143
144 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
145 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
146 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
147 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
148 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
149 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
150
151 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
152 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
153
show_feedback_ctrs(struct kobject * kobj,struct kobj_attribute * attr,char * buf)154 static ssize_t show_feedback_ctrs(struct kobject *kobj,
155 struct kobj_attribute *attr, char *buf)
156 {
157 struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
158 struct cppc_perf_fb_ctrs fb_ctrs = {0};
159 int ret;
160
161 ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
162 if (ret)
163 return ret;
164
165 return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
166 fb_ctrs.reference, fb_ctrs.delivered);
167 }
168 define_one_cppc_ro(feedback_ctrs);
169
170 static struct attribute *cppc_attrs[] = {
171 &feedback_ctrs.attr,
172 &reference_perf.attr,
173 &wraparound_time.attr,
174 &highest_perf.attr,
175 &lowest_perf.attr,
176 &lowest_nonlinear_perf.attr,
177 &nominal_perf.attr,
178 &nominal_freq.attr,
179 &lowest_freq.attr,
180 NULL
181 };
182
183 static struct kobj_type cppc_ktype = {
184 .sysfs_ops = &kobj_sysfs_ops,
185 .default_attrs = cppc_attrs,
186 };
187
check_pcc_chan(int pcc_ss_id,bool chk_err_bit)188 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
189 {
190 int ret, status;
191 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
192 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
193 pcc_ss_data->pcc_comm_addr;
194
195 if (!pcc_ss_data->platform_owns_pcc)
196 return 0;
197
198 /*
199 * Poll PCC status register every 3us(delay_us) for maximum of
200 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
201 */
202 ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
203 status & PCC_CMD_COMPLETE_MASK, 3,
204 pcc_ss_data->deadline_us);
205
206 if (likely(!ret)) {
207 pcc_ss_data->platform_owns_pcc = false;
208 if (chk_err_bit && (status & PCC_ERROR_MASK))
209 ret = -EIO;
210 }
211
212 if (unlikely(ret))
213 pr_err("PCC check channel failed for ss: %d. ret=%d\n",
214 pcc_ss_id, ret);
215
216 return ret;
217 }
218
219 /*
220 * This function transfers the ownership of the PCC to the platform
221 * So it must be called while holding write_lock(pcc_lock)
222 */
send_pcc_cmd(int pcc_ss_id,u16 cmd)223 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
224 {
225 int ret = -EIO, i;
226 struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
227 struct acpi_pcct_shared_memory __iomem *generic_comm_base =
228 pcc_ss_data->pcc_comm_addr;
229 unsigned int time_delta;
230
231 /*
232 * For CMD_WRITE we know for a fact the caller should have checked
233 * the channel before writing to PCC space
234 */
235 if (cmd == CMD_READ) {
236 /*
237 * If there are pending cpc_writes, then we stole the channel
238 * before write completion, so first send a WRITE command to
239 * platform
240 */
241 if (pcc_ss_data->pending_pcc_write_cmd)
242 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
243
244 ret = check_pcc_chan(pcc_ss_id, false);
245 if (ret)
246 goto end;
247 } else /* CMD_WRITE */
248 pcc_ss_data->pending_pcc_write_cmd = FALSE;
249
250 /*
251 * Handle the Minimum Request Turnaround Time(MRTT)
252 * "The minimum amount of time that OSPM must wait after the completion
253 * of a command before issuing the next command, in microseconds"
254 */
255 if (pcc_ss_data->pcc_mrtt) {
256 time_delta = ktime_us_delta(ktime_get(),
257 pcc_ss_data->last_cmd_cmpl_time);
258 if (pcc_ss_data->pcc_mrtt > time_delta)
259 udelay(pcc_ss_data->pcc_mrtt - time_delta);
260 }
261
262 /*
263 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
264 * "The maximum number of periodic requests that the subspace channel can
265 * support, reported in commands per minute. 0 indicates no limitation."
266 *
267 * This parameter should be ideally zero or large enough so that it can
268 * handle maximum number of requests that all the cores in the system can
269 * collectively generate. If it is not, we will follow the spec and just
270 * not send the request to the platform after hitting the MPAR limit in
271 * any 60s window
272 */
273 if (pcc_ss_data->pcc_mpar) {
274 if (pcc_ss_data->mpar_count == 0) {
275 time_delta = ktime_ms_delta(ktime_get(),
276 pcc_ss_data->last_mpar_reset);
277 if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
278 pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
279 pcc_ss_id);
280 ret = -EIO;
281 goto end;
282 }
283 pcc_ss_data->last_mpar_reset = ktime_get();
284 pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
285 }
286 pcc_ss_data->mpar_count--;
287 }
288
289 /* Write to the shared comm region. */
290 writew_relaxed(cmd, &generic_comm_base->command);
291
292 /* Flip CMD COMPLETE bit */
293 writew_relaxed(0, &generic_comm_base->status);
294
295 pcc_ss_data->platform_owns_pcc = true;
296
297 /* Ring doorbell */
298 ret = mbox_send_message(pcc_ss_data->pcc_channel->mchan, &cmd);
299 if (ret < 0) {
300 pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
301 pcc_ss_id, cmd, ret);
302 goto end;
303 }
304
305 /* wait for completion and check for PCC errro bit */
306 ret = check_pcc_chan(pcc_ss_id, true);
307
308 if (pcc_ss_data->pcc_mrtt)
309 pcc_ss_data->last_cmd_cmpl_time = ktime_get();
310
311 if (pcc_ss_data->pcc_channel->mchan->mbox->txdone_irq)
312 mbox_chan_txdone(pcc_ss_data->pcc_channel->mchan, ret);
313 else
314 mbox_client_txdone(pcc_ss_data->pcc_channel->mchan, ret);
315
316 end:
317 if (cmd == CMD_WRITE) {
318 if (unlikely(ret)) {
319 for_each_possible_cpu(i) {
320 struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
321
322 if (!desc)
323 continue;
324
325 if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
326 desc->write_cmd_status = ret;
327 }
328 }
329 pcc_ss_data->pcc_write_cnt++;
330 wake_up_all(&pcc_ss_data->pcc_write_wait_q);
331 }
332
333 return ret;
334 }
335
cppc_chan_tx_done(struct mbox_client * cl,void * msg,int ret)336 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
337 {
338 if (ret < 0)
339 pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
340 *(u16 *)msg, ret);
341 else
342 pr_debug("TX completed. CMD sent:%x, ret:%d\n",
343 *(u16 *)msg, ret);
344 }
345
346 static struct mbox_client cppc_mbox_cl = {
347 .tx_done = cppc_chan_tx_done,
348 .knows_txdone = true,
349 };
350
acpi_get_psd(struct cpc_desc * cpc_ptr,acpi_handle handle)351 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
352 {
353 int result = -EFAULT;
354 acpi_status status = AE_OK;
355 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
356 struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
357 struct acpi_buffer state = {0, NULL};
358 union acpi_object *psd = NULL;
359 struct acpi_psd_package *pdomain;
360
361 status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
362 &buffer, ACPI_TYPE_PACKAGE);
363 if (status == AE_NOT_FOUND) /* _PSD is optional */
364 return 0;
365 if (ACPI_FAILURE(status))
366 return -ENODEV;
367
368 psd = buffer.pointer;
369 if (!psd || psd->package.count != 1) {
370 pr_debug("Invalid _PSD data\n");
371 goto end;
372 }
373
374 pdomain = &(cpc_ptr->domain_info);
375
376 state.length = sizeof(struct acpi_psd_package);
377 state.pointer = pdomain;
378
379 status = acpi_extract_package(&(psd->package.elements[0]),
380 &format, &state);
381 if (ACPI_FAILURE(status)) {
382 pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
383 goto end;
384 }
385
386 if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
387 pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
388 goto end;
389 }
390
391 if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
392 pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
393 goto end;
394 }
395
396 if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
397 pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
398 pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
399 pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
400 goto end;
401 }
402
403 result = 0;
404 end:
405 kfree(buffer.pointer);
406 return result;
407 }
408
acpi_cpc_valid(void)409 bool acpi_cpc_valid(void)
410 {
411 struct cpc_desc *cpc_ptr;
412 int cpu;
413
414 for_each_possible_cpu(cpu) {
415 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
416 if (!cpc_ptr)
417 return false;
418 }
419
420 return true;
421 }
422 EXPORT_SYMBOL_GPL(acpi_cpc_valid);
423
424 /**
425 * acpi_get_psd_map - Map the CPUs in the freq domain of a given cpu
426 * @cpu: Find all CPUs that share a domain with cpu.
427 * @cpu_data: Pointer to CPU specific CPPC data including PSD info.
428 *
429 * Return: 0 for success or negative value for err.
430 */
acpi_get_psd_map(unsigned int cpu,struct cppc_cpudata * cpu_data)431 int acpi_get_psd_map(unsigned int cpu, struct cppc_cpudata *cpu_data)
432 {
433 struct cpc_desc *cpc_ptr, *match_cpc_ptr;
434 struct acpi_psd_package *match_pdomain;
435 struct acpi_psd_package *pdomain;
436 int count_target, i;
437
438 /*
439 * Now that we have _PSD data from all CPUs, let's setup P-state
440 * domain info.
441 */
442 cpc_ptr = per_cpu(cpc_desc_ptr, cpu);
443 if (!cpc_ptr)
444 return -EFAULT;
445
446 pdomain = &(cpc_ptr->domain_info);
447 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
448 if (pdomain->num_processors <= 1)
449 return 0;
450
451 /* Validate the Domain info */
452 count_target = pdomain->num_processors;
453 if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
454 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ALL;
455 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
456 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_HW;
457 else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
458 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_ANY;
459
460 for_each_possible_cpu(i) {
461 if (i == cpu)
462 continue;
463
464 match_cpc_ptr = per_cpu(cpc_desc_ptr, i);
465 if (!match_cpc_ptr)
466 goto err_fault;
467
468 match_pdomain = &(match_cpc_ptr->domain_info);
469 if (match_pdomain->domain != pdomain->domain)
470 continue;
471
472 /* Here i and cpu are in the same domain */
473 if (match_pdomain->num_processors != count_target)
474 goto err_fault;
475
476 if (pdomain->coord_type != match_pdomain->coord_type)
477 goto err_fault;
478
479 cpumask_set_cpu(i, cpu_data->shared_cpu_map);
480 }
481
482 return 0;
483
484 err_fault:
485 /* Assume no coordination on any error parsing domain info */
486 cpumask_clear(cpu_data->shared_cpu_map);
487 cpumask_set_cpu(cpu, cpu_data->shared_cpu_map);
488 cpu_data->shared_type = CPUFREQ_SHARED_TYPE_NONE;
489
490 return -EFAULT;
491 }
492 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
493
register_pcc_channel(int pcc_ss_idx)494 static int register_pcc_channel(int pcc_ss_idx)
495 {
496 struct pcc_mbox_chan *pcc_chan;
497 u64 usecs_lat;
498
499 if (pcc_ss_idx >= 0) {
500 pcc_chan = pcc_mbox_request_channel(&cppc_mbox_cl, pcc_ss_idx);
501
502 if (IS_ERR(pcc_chan)) {
503 pr_err("Failed to find PCC channel for subspace %d\n",
504 pcc_ss_idx);
505 return -ENODEV;
506 }
507
508 pcc_data[pcc_ss_idx]->pcc_channel = pcc_chan;
509 /*
510 * cppc_ss->latency is just a Nominal value. In reality
511 * the remote processor could be much slower to reply.
512 * So add an arbitrary amount of wait on top of Nominal.
513 */
514 usecs_lat = NUM_RETRIES * pcc_chan->latency;
515 pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
516 pcc_data[pcc_ss_idx]->pcc_mrtt = pcc_chan->min_turnaround_time;
517 pcc_data[pcc_ss_idx]->pcc_mpar = pcc_chan->max_access_rate;
518 pcc_data[pcc_ss_idx]->pcc_nominal = pcc_chan->latency;
519
520 pcc_data[pcc_ss_idx]->pcc_comm_addr =
521 acpi_os_ioremap(pcc_chan->shmem_base_addr,
522 pcc_chan->shmem_size);
523 if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
524 pr_err("Failed to ioremap PCC comm region mem for %d\n",
525 pcc_ss_idx);
526 return -ENOMEM;
527 }
528
529 /* Set flag so that we don't come here for each CPU. */
530 pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
531 }
532
533 return 0;
534 }
535
536 /**
537 * cpc_ffh_supported() - check if FFH reading supported
538 *
539 * Check if the architecture has support for functional fixed hardware
540 * read/write capability.
541 *
542 * Return: true for supported, false for not supported
543 */
cpc_ffh_supported(void)544 bool __weak cpc_ffh_supported(void)
545 {
546 return false;
547 }
548
549 /**
550 * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
551 *
552 * Check and allocate the cppc_pcc_data memory.
553 * In some processor configurations it is possible that same subspace
554 * is shared between multiple CPUs. This is seen especially in CPUs
555 * with hardware multi-threading support.
556 *
557 * Return: 0 for success, errno for failure
558 */
pcc_data_alloc(int pcc_ss_id)559 static int pcc_data_alloc(int pcc_ss_id)
560 {
561 if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
562 return -EINVAL;
563
564 if (pcc_data[pcc_ss_id]) {
565 pcc_data[pcc_ss_id]->refcount++;
566 } else {
567 pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
568 GFP_KERNEL);
569 if (!pcc_data[pcc_ss_id])
570 return -ENOMEM;
571 pcc_data[pcc_ss_id]->refcount++;
572 }
573
574 return 0;
575 }
576
577 /* Check if CPPC revision + num_ent combination is supported */
is_cppc_supported(int revision,int num_ent)578 static bool is_cppc_supported(int revision, int num_ent)
579 {
580 int expected_num_ent;
581
582 switch (revision) {
583 case CPPC_V2_REV:
584 expected_num_ent = CPPC_V2_NUM_ENT;
585 break;
586 case CPPC_V3_REV:
587 expected_num_ent = CPPC_V3_NUM_ENT;
588 break;
589 default:
590 pr_debug("Firmware exports unsupported CPPC revision: %d\n",
591 revision);
592 return false;
593 }
594
595 if (expected_num_ent != num_ent) {
596 pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
597 num_ent, expected_num_ent, revision);
598 return false;
599 }
600
601 return true;
602 }
603
604 /*
605 * An example CPC table looks like the following.
606 *
607 * Name(_CPC, Package()
608 * {
609 * 17,
610 * NumEntries
611 * 1,
612 * // Revision
613 * ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
614 * // Highest Performance
615 * ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
616 * // Nominal Performance
617 * ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
618 * // Lowest Nonlinear Performance
619 * ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
620 * // Lowest Performance
621 * ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
622 * // Guaranteed Performance Register
623 * ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
624 * // Desired Performance Register
625 * ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
626 * ..
627 * ..
628 * ..
629 *
630 * }
631 * Each Register() encodes how to access that specific register.
632 * e.g. a sample PCC entry has the following encoding:
633 *
634 * Register (
635 * PCC,
636 * AddressSpaceKeyword
637 * 8,
638 * //RegisterBitWidth
639 * 8,
640 * //RegisterBitOffset
641 * 0x30,
642 * //RegisterAddress
643 * 9
644 * //AccessSize (subspace ID)
645 * 0
646 * )
647 * }
648 */
649
650 #ifndef init_freq_invariance_cppc
init_freq_invariance_cppc(void)651 static inline void init_freq_invariance_cppc(void) { }
652 #endif
653
654 /**
655 * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
656 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
657 *
658 * Return: 0 for success or negative value for err.
659 */
acpi_cppc_processor_probe(struct acpi_processor * pr)660 int acpi_cppc_processor_probe(struct acpi_processor *pr)
661 {
662 struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
663 union acpi_object *out_obj, *cpc_obj;
664 struct cpc_desc *cpc_ptr;
665 struct cpc_reg *gas_t;
666 struct device *cpu_dev;
667 acpi_handle handle = pr->handle;
668 unsigned int num_ent, i, cpc_rev;
669 int pcc_subspace_id = -1;
670 acpi_status status;
671 int ret = -EFAULT;
672
673 /* Parse the ACPI _CPC table for this CPU. */
674 status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
675 ACPI_TYPE_PACKAGE);
676 if (ACPI_FAILURE(status)) {
677 ret = -ENODEV;
678 goto out_buf_free;
679 }
680
681 out_obj = (union acpi_object *) output.pointer;
682
683 cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
684 if (!cpc_ptr) {
685 ret = -ENOMEM;
686 goto out_buf_free;
687 }
688
689 /* First entry is NumEntries. */
690 cpc_obj = &out_obj->package.elements[0];
691 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
692 num_ent = cpc_obj->integer.value;
693 } else {
694 pr_debug("Unexpected entry type(%d) for NumEntries\n",
695 cpc_obj->type);
696 goto out_free;
697 }
698 cpc_ptr->num_entries = num_ent;
699
700 /* Second entry should be revision. */
701 cpc_obj = &out_obj->package.elements[1];
702 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
703 cpc_rev = cpc_obj->integer.value;
704 } else {
705 pr_debug("Unexpected entry type(%d) for Revision\n",
706 cpc_obj->type);
707 goto out_free;
708 }
709 cpc_ptr->version = cpc_rev;
710
711 if (!is_cppc_supported(cpc_rev, num_ent))
712 goto out_free;
713
714 /* Iterate through remaining entries in _CPC */
715 for (i = 2; i < num_ent; i++) {
716 cpc_obj = &out_obj->package.elements[i];
717
718 if (cpc_obj->type == ACPI_TYPE_INTEGER) {
719 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
720 cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
721 } else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
722 gas_t = (struct cpc_reg *)
723 cpc_obj->buffer.pointer;
724
725 /*
726 * The PCC Subspace index is encoded inside
727 * the CPC table entries. The same PCC index
728 * will be used for all the PCC entries,
729 * so extract it only once.
730 */
731 if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
732 if (pcc_subspace_id < 0) {
733 pcc_subspace_id = gas_t->access_width;
734 if (pcc_data_alloc(pcc_subspace_id))
735 goto out_free;
736 } else if (pcc_subspace_id != gas_t->access_width) {
737 pr_debug("Mismatched PCC ids.\n");
738 goto out_free;
739 }
740 } else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
741 if (gas_t->address) {
742 void __iomem *addr;
743
744 addr = ioremap(gas_t->address, gas_t->bit_width/8);
745 if (!addr)
746 goto out_free;
747 cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
748 }
749 } else {
750 if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
751 /* Support only PCC ,SYS MEM and FFH type regs */
752 pr_debug("Unsupported register type: %d\n", gas_t->space_id);
753 goto out_free;
754 }
755 }
756
757 cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
758 memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
759 } else {
760 pr_debug("Err in entry:%d in CPC table of CPU:%d\n", i, pr->id);
761 goto out_free;
762 }
763 }
764 per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
765
766 /*
767 * Initialize the remaining cpc_regs as unsupported.
768 * Example: In case FW exposes CPPC v2, the below loop will initialize
769 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
770 */
771 for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
772 cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
773 cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
774 }
775
776
777 /* Store CPU Logical ID */
778 cpc_ptr->cpu_id = pr->id;
779
780 /* Parse PSD data for this CPU */
781 ret = acpi_get_psd(cpc_ptr, handle);
782 if (ret)
783 goto out_free;
784
785 /* Register PCC channel once for all PCC subspace ID. */
786 if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
787 ret = register_pcc_channel(pcc_subspace_id);
788 if (ret)
789 goto out_free;
790
791 init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
792 init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
793 }
794
795 /* Everything looks okay */
796 pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
797
798 /* Add per logical CPU nodes for reading its feedback counters. */
799 cpu_dev = get_cpu_device(pr->id);
800 if (!cpu_dev) {
801 ret = -EINVAL;
802 goto out_free;
803 }
804
805 /* Plug PSD data into this CPU's CPC descriptor. */
806 per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
807
808 ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
809 "acpi_cppc");
810 if (ret) {
811 per_cpu(cpc_desc_ptr, pr->id) = NULL;
812 kobject_put(&cpc_ptr->kobj);
813 goto out_free;
814 }
815
816 init_freq_invariance_cppc();
817
818 kfree(output.pointer);
819 return 0;
820
821 out_free:
822 /* Free all the mapped sys mem areas for this CPU */
823 for (i = 2; i < cpc_ptr->num_entries; i++) {
824 void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
825
826 if (addr)
827 iounmap(addr);
828 }
829 kfree(cpc_ptr);
830
831 out_buf_free:
832 kfree(output.pointer);
833 return ret;
834 }
835 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
836
837 /**
838 * acpi_cppc_processor_exit - Cleanup CPC structs.
839 * @pr: Ptr to acpi_processor containing this CPU's logical ID.
840 *
841 * Return: Void
842 */
acpi_cppc_processor_exit(struct acpi_processor * pr)843 void acpi_cppc_processor_exit(struct acpi_processor *pr)
844 {
845 struct cpc_desc *cpc_ptr;
846 unsigned int i;
847 void __iomem *addr;
848 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
849
850 if (pcc_ss_id >= 0 && pcc_data[pcc_ss_id]) {
851 if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
852 pcc_data[pcc_ss_id]->refcount--;
853 if (!pcc_data[pcc_ss_id]->refcount) {
854 pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
855 kfree(pcc_data[pcc_ss_id]);
856 pcc_data[pcc_ss_id] = NULL;
857 }
858 }
859 }
860
861 cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
862 if (!cpc_ptr)
863 return;
864
865 /* Free all the mapped sys mem areas for this CPU */
866 for (i = 2; i < cpc_ptr->num_entries; i++) {
867 addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
868 if (addr)
869 iounmap(addr);
870 }
871
872 kobject_put(&cpc_ptr->kobj);
873 kfree(cpc_ptr);
874 }
875 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
876
877 /**
878 * cpc_read_ffh() - Read FFH register
879 * @cpunum: CPU number to read
880 * @reg: cppc register information
881 * @val: place holder for return value
882 *
883 * Read bit_width bits from a specified address and bit_offset
884 *
885 * Return: 0 for success and error code
886 */
cpc_read_ffh(int cpunum,struct cpc_reg * reg,u64 * val)887 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
888 {
889 return -ENOTSUPP;
890 }
891
892 /**
893 * cpc_write_ffh() - Write FFH register
894 * @cpunum: CPU number to write
895 * @reg: cppc register information
896 * @val: value to write
897 *
898 * Write value of bit_width bits to a specified address and bit_offset
899 *
900 * Return: 0 for success and error code
901 */
cpc_write_ffh(int cpunum,struct cpc_reg * reg,u64 val)902 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
903 {
904 return -ENOTSUPP;
905 }
906
907 /*
908 * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
909 * as fast as possible. We have already mapped the PCC subspace during init, so
910 * we can directly write to it.
911 */
912
cpc_read(int cpu,struct cpc_register_resource * reg_res,u64 * val)913 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
914 {
915 int ret_val = 0;
916 void __iomem *vaddr = NULL;
917 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
918 struct cpc_reg *reg = ®_res->cpc_entry.reg;
919
920 if (reg_res->type == ACPI_TYPE_INTEGER) {
921 *val = reg_res->cpc_entry.int_value;
922 return ret_val;
923 }
924
925 *val = 0;
926 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
927 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
928 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
929 vaddr = reg_res->sys_mem_vaddr;
930 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
931 return cpc_read_ffh(cpu, reg, val);
932 else
933 return acpi_os_read_memory((acpi_physical_address)reg->address,
934 val, reg->bit_width);
935
936 switch (reg->bit_width) {
937 case 8:
938 *val = readb_relaxed(vaddr);
939 break;
940 case 16:
941 *val = readw_relaxed(vaddr);
942 break;
943 case 32:
944 *val = readl_relaxed(vaddr);
945 break;
946 case 64:
947 *val = readq_relaxed(vaddr);
948 break;
949 default:
950 pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
951 reg->bit_width, pcc_ss_id);
952 ret_val = -EFAULT;
953 }
954
955 return ret_val;
956 }
957
cpc_write(int cpu,struct cpc_register_resource * reg_res,u64 val)958 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
959 {
960 int ret_val = 0;
961 void __iomem *vaddr = NULL;
962 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
963 struct cpc_reg *reg = ®_res->cpc_entry.reg;
964
965 if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
966 vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
967 else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
968 vaddr = reg_res->sys_mem_vaddr;
969 else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
970 return cpc_write_ffh(cpu, reg, val);
971 else
972 return acpi_os_write_memory((acpi_physical_address)reg->address,
973 val, reg->bit_width);
974
975 switch (reg->bit_width) {
976 case 8:
977 writeb_relaxed(val, vaddr);
978 break;
979 case 16:
980 writew_relaxed(val, vaddr);
981 break;
982 case 32:
983 writel_relaxed(val, vaddr);
984 break;
985 case 64:
986 writeq_relaxed(val, vaddr);
987 break;
988 default:
989 pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
990 reg->bit_width, pcc_ss_id);
991 ret_val = -EFAULT;
992 break;
993 }
994
995 return ret_val;
996 }
997
cppc_get_perf(int cpunum,enum cppc_regs reg_idx,u64 * perf)998 static int cppc_get_perf(int cpunum, enum cppc_regs reg_idx, u64 *perf)
999 {
1000 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1001 struct cpc_register_resource *reg;
1002
1003 if (!cpc_desc) {
1004 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1005 return -ENODEV;
1006 }
1007
1008 reg = &cpc_desc->cpc_regs[reg_idx];
1009
1010 if (CPC_IN_PCC(reg)) {
1011 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1012 struct cppc_pcc_data *pcc_ss_data = NULL;
1013 int ret = 0;
1014
1015 if (pcc_ss_id < 0)
1016 return -EIO;
1017
1018 pcc_ss_data = pcc_data[pcc_ss_id];
1019
1020 down_write(&pcc_ss_data->pcc_lock);
1021
1022 if (send_pcc_cmd(pcc_ss_id, CMD_READ) >= 0)
1023 cpc_read(cpunum, reg, perf);
1024 else
1025 ret = -EIO;
1026
1027 up_write(&pcc_ss_data->pcc_lock);
1028
1029 return ret;
1030 }
1031
1032 cpc_read(cpunum, reg, perf);
1033
1034 return 0;
1035 }
1036
1037 /**
1038 * cppc_get_desired_perf - Get the desired performance register value.
1039 * @cpunum: CPU from which to get desired performance.
1040 * @desired_perf: Return address.
1041 *
1042 * Return: 0 for success, -EIO otherwise.
1043 */
cppc_get_desired_perf(int cpunum,u64 * desired_perf)1044 int cppc_get_desired_perf(int cpunum, u64 *desired_perf)
1045 {
1046 return cppc_get_perf(cpunum, DESIRED_PERF, desired_perf);
1047 }
1048 EXPORT_SYMBOL_GPL(cppc_get_desired_perf);
1049
1050 /**
1051 * cppc_get_nominal_perf - Get the nominal performance register value.
1052 * @cpunum: CPU from which to get nominal performance.
1053 * @nominal_perf: Return address.
1054 *
1055 * Return: 0 for success, -EIO otherwise.
1056 */
cppc_get_nominal_perf(int cpunum,u64 * nominal_perf)1057 int cppc_get_nominal_perf(int cpunum, u64 *nominal_perf)
1058 {
1059 return cppc_get_perf(cpunum, NOMINAL_PERF, nominal_perf);
1060 }
1061
1062 /**
1063 * cppc_get_perf_caps - Get a CPU's performance capabilities.
1064 * @cpunum: CPU from which to get capabilities info.
1065 * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1066 *
1067 * Return: 0 for success with perf_caps populated else -ERRNO.
1068 */
cppc_get_perf_caps(int cpunum,struct cppc_perf_caps * perf_caps)1069 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1070 {
1071 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1072 struct cpc_register_resource *highest_reg, *lowest_reg,
1073 *lowest_non_linear_reg, *nominal_reg, *guaranteed_reg,
1074 *low_freq_reg = NULL, *nom_freq_reg = NULL;
1075 u64 high, low, guaranteed, nom, min_nonlinear, low_f = 0, nom_f = 0;
1076 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1077 struct cppc_pcc_data *pcc_ss_data = NULL;
1078 int ret = 0, regs_in_pcc = 0;
1079
1080 if (!cpc_desc) {
1081 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1082 return -ENODEV;
1083 }
1084
1085 highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1086 lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1087 lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1088 nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1089 low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1090 nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1091 guaranteed_reg = &cpc_desc->cpc_regs[GUARANTEED_PERF];
1092
1093 /* Are any of the regs PCC ?*/
1094 if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1095 CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1096 CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1097 if (pcc_ss_id < 0) {
1098 pr_debug("Invalid pcc_ss_id\n");
1099 return -ENODEV;
1100 }
1101 pcc_ss_data = pcc_data[pcc_ss_id];
1102 regs_in_pcc = 1;
1103 down_write(&pcc_ss_data->pcc_lock);
1104 /* Ring doorbell once to update PCC subspace */
1105 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1106 ret = -EIO;
1107 goto out_err;
1108 }
1109 }
1110
1111 cpc_read(cpunum, highest_reg, &high);
1112 perf_caps->highest_perf = high;
1113
1114 cpc_read(cpunum, lowest_reg, &low);
1115 perf_caps->lowest_perf = low;
1116
1117 cpc_read(cpunum, nominal_reg, &nom);
1118 perf_caps->nominal_perf = nom;
1119
1120 if (guaranteed_reg->type != ACPI_TYPE_BUFFER ||
1121 IS_NULL_REG(&guaranteed_reg->cpc_entry.reg)) {
1122 perf_caps->guaranteed_perf = 0;
1123 } else {
1124 cpc_read(cpunum, guaranteed_reg, &guaranteed);
1125 perf_caps->guaranteed_perf = guaranteed;
1126 }
1127
1128 cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1129 perf_caps->lowest_nonlinear_perf = min_nonlinear;
1130
1131 if (!high || !low || !nom || !min_nonlinear)
1132 ret = -EFAULT;
1133
1134 /* Read optional lowest and nominal frequencies if present */
1135 if (CPC_SUPPORTED(low_freq_reg))
1136 cpc_read(cpunum, low_freq_reg, &low_f);
1137
1138 if (CPC_SUPPORTED(nom_freq_reg))
1139 cpc_read(cpunum, nom_freq_reg, &nom_f);
1140
1141 perf_caps->lowest_freq = low_f;
1142 perf_caps->nominal_freq = nom_f;
1143
1144
1145 out_err:
1146 if (regs_in_pcc)
1147 up_write(&pcc_ss_data->pcc_lock);
1148 return ret;
1149 }
1150 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1151
1152 /**
1153 * cppc_get_perf_ctrs - Read a CPU's performance feedback counters.
1154 * @cpunum: CPU from which to read counters.
1155 * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1156 *
1157 * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1158 */
cppc_get_perf_ctrs(int cpunum,struct cppc_perf_fb_ctrs * perf_fb_ctrs)1159 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1160 {
1161 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1162 struct cpc_register_resource *delivered_reg, *reference_reg,
1163 *ref_perf_reg, *ctr_wrap_reg;
1164 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1165 struct cppc_pcc_data *pcc_ss_data = NULL;
1166 u64 delivered, reference, ref_perf, ctr_wrap_time;
1167 int ret = 0, regs_in_pcc = 0;
1168
1169 if (!cpc_desc) {
1170 pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1171 return -ENODEV;
1172 }
1173
1174 delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1175 reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1176 ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1177 ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1178
1179 /*
1180 * If reference perf register is not supported then we should
1181 * use the nominal perf value
1182 */
1183 if (!CPC_SUPPORTED(ref_perf_reg))
1184 ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1185
1186 /* Are any of the regs PCC ?*/
1187 if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1188 CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1189 if (pcc_ss_id < 0) {
1190 pr_debug("Invalid pcc_ss_id\n");
1191 return -ENODEV;
1192 }
1193 pcc_ss_data = pcc_data[pcc_ss_id];
1194 down_write(&pcc_ss_data->pcc_lock);
1195 regs_in_pcc = 1;
1196 /* Ring doorbell once to update PCC subspace */
1197 if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1198 ret = -EIO;
1199 goto out_err;
1200 }
1201 }
1202
1203 cpc_read(cpunum, delivered_reg, &delivered);
1204 cpc_read(cpunum, reference_reg, &reference);
1205 cpc_read(cpunum, ref_perf_reg, &ref_perf);
1206
1207 /*
1208 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1209 * performance counters are assumed to never wrap during the lifetime of
1210 * platform
1211 */
1212 ctr_wrap_time = (u64)(~((u64)0));
1213 if (CPC_SUPPORTED(ctr_wrap_reg))
1214 cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1215
1216 if (!delivered || !reference || !ref_perf) {
1217 ret = -EFAULT;
1218 goto out_err;
1219 }
1220
1221 perf_fb_ctrs->delivered = delivered;
1222 perf_fb_ctrs->reference = reference;
1223 perf_fb_ctrs->reference_perf = ref_perf;
1224 perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1225 out_err:
1226 if (regs_in_pcc)
1227 up_write(&pcc_ss_data->pcc_lock);
1228 return ret;
1229 }
1230 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1231
1232 /**
1233 * cppc_set_perf - Set a CPU's performance controls.
1234 * @cpu: CPU for which to set performance controls.
1235 * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1236 *
1237 * Return: 0 for success, -ERRNO otherwise.
1238 */
cppc_set_perf(int cpu,struct cppc_perf_ctrls * perf_ctrls)1239 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1240 {
1241 struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1242 struct cpc_register_resource *desired_reg;
1243 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1244 struct cppc_pcc_data *pcc_ss_data = NULL;
1245 int ret = 0;
1246
1247 if (!cpc_desc) {
1248 pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1249 return -ENODEV;
1250 }
1251
1252 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1253
1254 /*
1255 * This is Phase-I where we want to write to CPC registers
1256 * -> We want all CPUs to be able to execute this phase in parallel
1257 *
1258 * Since read_lock can be acquired by multiple CPUs simultaneously we
1259 * achieve that goal here
1260 */
1261 if (CPC_IN_PCC(desired_reg)) {
1262 if (pcc_ss_id < 0) {
1263 pr_debug("Invalid pcc_ss_id\n");
1264 return -ENODEV;
1265 }
1266 pcc_ss_data = pcc_data[pcc_ss_id];
1267 down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1268 if (pcc_ss_data->platform_owns_pcc) {
1269 ret = check_pcc_chan(pcc_ss_id, false);
1270 if (ret) {
1271 up_read(&pcc_ss_data->pcc_lock);
1272 return ret;
1273 }
1274 }
1275 /*
1276 * Update the pending_write to make sure a PCC CMD_READ will not
1277 * arrive and steal the channel during the switch to write lock
1278 */
1279 pcc_ss_data->pending_pcc_write_cmd = true;
1280 cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1281 cpc_desc->write_cmd_status = 0;
1282 }
1283
1284 /*
1285 * Skip writing MIN/MAX until Linux knows how to come up with
1286 * useful values.
1287 */
1288 cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1289
1290 if (CPC_IN_PCC(desired_reg))
1291 up_read(&pcc_ss_data->pcc_lock); /* END Phase-I */
1292 /*
1293 * This is Phase-II where we transfer the ownership of PCC to Platform
1294 *
1295 * Short Summary: Basically if we think of a group of cppc_set_perf
1296 * requests that happened in short overlapping interval. The last CPU to
1297 * come out of Phase-I will enter Phase-II and ring the doorbell.
1298 *
1299 * We have the following requirements for Phase-II:
1300 * 1. We want to execute Phase-II only when there are no CPUs
1301 * currently executing in Phase-I
1302 * 2. Once we start Phase-II we want to avoid all other CPUs from
1303 * entering Phase-I.
1304 * 3. We want only one CPU among all those who went through Phase-I
1305 * to run phase-II
1306 *
1307 * If write_trylock fails to get the lock and doesn't transfer the
1308 * PCC ownership to the platform, then one of the following will be TRUE
1309 * 1. There is at-least one CPU in Phase-I which will later execute
1310 * write_trylock, so the CPUs in Phase-I will be responsible for
1311 * executing the Phase-II.
1312 * 2. Some other CPU has beaten this CPU to successfully execute the
1313 * write_trylock and has already acquired the write_lock. We know for a
1314 * fact it (other CPU acquiring the write_lock) couldn't have happened
1315 * before this CPU's Phase-I as we held the read_lock.
1316 * 3. Some other CPU executing pcc CMD_READ has stolen the
1317 * down_write, in which case, send_pcc_cmd will check for pending
1318 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1319 * So this CPU can be certain that its request will be delivered
1320 * So in all cases, this CPU knows that its request will be delivered
1321 * by another CPU and can return
1322 *
1323 * After getting the down_write we still need to check for
1324 * pending_pcc_write_cmd to take care of the following scenario
1325 * The thread running this code could be scheduled out between
1326 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1327 * could have delivered the request to Platform by triggering the
1328 * doorbell and transferred the ownership of PCC to platform. So this
1329 * avoids triggering an unnecessary doorbell and more importantly before
1330 * triggering the doorbell it makes sure that the PCC channel ownership
1331 * is still with OSPM.
1332 * pending_pcc_write_cmd can also be cleared by a different CPU, if
1333 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1334 * before the pcc CMD_WRITE is completed. send_pcc_cmd checks for this
1335 * case during a CMD_READ and if there are pending writes it delivers
1336 * the write command before servicing the read command
1337 */
1338 if (CPC_IN_PCC(desired_reg)) {
1339 if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1340 /* Update only if there are pending write commands */
1341 if (pcc_ss_data->pending_pcc_write_cmd)
1342 send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1343 up_write(&pcc_ss_data->pcc_lock); /* END Phase-II */
1344 } else
1345 /* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1346 wait_event(pcc_ss_data->pcc_write_wait_q,
1347 cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1348
1349 /* send_pcc_cmd updates the status in case of failure */
1350 ret = cpc_desc->write_cmd_status;
1351 }
1352 return ret;
1353 }
1354 EXPORT_SYMBOL_GPL(cppc_set_perf);
1355
1356 /**
1357 * cppc_get_transition_latency - returns frequency transition latency in ns
1358 *
1359 * ACPI CPPC does not explicitly specify how a platform can specify the
1360 * transition latency for performance change requests. The closest we have
1361 * is the timing information from the PCCT tables which provides the info
1362 * on the number and frequency of PCC commands the platform can handle.
1363 */
cppc_get_transition_latency(int cpu_num)1364 unsigned int cppc_get_transition_latency(int cpu_num)
1365 {
1366 /*
1367 * Expected transition latency is based on the PCCT timing values
1368 * Below are definition from ACPI spec:
1369 * pcc_nominal- Expected latency to process a command, in microseconds
1370 * pcc_mpar - The maximum number of periodic requests that the subspace
1371 * channel can support, reported in commands per minute. 0
1372 * indicates no limitation.
1373 * pcc_mrtt - The minimum amount of time that OSPM must wait after the
1374 * completion of a command before issuing the next command,
1375 * in microseconds.
1376 */
1377 unsigned int latency_ns = 0;
1378 struct cpc_desc *cpc_desc;
1379 struct cpc_register_resource *desired_reg;
1380 int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1381 struct cppc_pcc_data *pcc_ss_data;
1382
1383 cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1384 if (!cpc_desc)
1385 return CPUFREQ_ETERNAL;
1386
1387 desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1388 if (!CPC_IN_PCC(desired_reg))
1389 return CPUFREQ_ETERNAL;
1390
1391 if (pcc_ss_id < 0)
1392 return CPUFREQ_ETERNAL;
1393
1394 pcc_ss_data = pcc_data[pcc_ss_id];
1395 if (pcc_ss_data->pcc_mpar)
1396 latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1397
1398 latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1399 latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1400
1401 return latency_ns;
1402 }
1403 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1404