1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * drivers/pwm/pwm-tegra.c
4   *
5   * Tegra pulse-width-modulation controller driver
6   *
7   * Copyright (c) 2010-2020, NVIDIA Corporation.
8   * Based on arch/arm/plat-mxc/pwm.c by Sascha Hauer <s.hauer@pengutronix.de>
9   *
10   * Overview of Tegra Pulse Width Modulator Register:
11   * 1. 13-bit: Frequency division (SCALE)
12   * 2. 8-bit : Pulse division (DUTY)
13   * 3. 1-bit : Enable bit
14   *
15   * The PWM clock frequency is divided by 256 before subdividing it based
16   * on the programmable frequency division value to generate the required
17   * frequency for PWM output. The maximum output frequency that can be
18   * achieved is (max rate of source clock) / 256.
19   * e.g. if source clock rate is 408 MHz, maximum output frequency can be:
20   * 408 MHz/256 = 1.6 MHz.
21   * This 1.6 MHz frequency can further be divided using SCALE value in PWM.
22   *
23   * PWM pulse width: 8 bits are usable [23:16] for varying pulse width.
24   * To achieve 100% duty cycle, program Bit [24] of this register to
25   * 1’b1. In which case the other bits [23:16] are set to don't care.
26   *
27   * Limitations:
28   * -	When PWM is disabled, the output is driven to inactive.
29   * -	It does not allow the current PWM period to complete and
30   *	stops abruptly.
31   *
32   * -	If the register is reconfigured while PWM is running,
33   *	it does not complete the currently running period.
34   *
35   * -	If the user input duty is beyond acceptible limits,
36   *	-EINVAL is returned.
37   */
38  
39  #include <linux/clk.h>
40  #include <linux/err.h>
41  #include <linux/io.h>
42  #include <linux/module.h>
43  #include <linux/of.h>
44  #include <linux/of_device.h>
45  #include <linux/pwm.h>
46  #include <linux/platform_device.h>
47  #include <linux/pinctrl/consumer.h>
48  #include <linux/slab.h>
49  #include <linux/reset.h>
50  
51  #define PWM_ENABLE	(1 << 31)
52  #define PWM_DUTY_WIDTH	8
53  #define PWM_DUTY_SHIFT	16
54  #define PWM_SCALE_WIDTH	13
55  #define PWM_SCALE_SHIFT	0
56  
57  struct tegra_pwm_soc {
58  	unsigned int num_channels;
59  
60  	/* Maximum IP frequency for given SoCs */
61  	unsigned long max_frequency;
62  };
63  
64  struct tegra_pwm_chip {
65  	struct pwm_chip chip;
66  	struct device *dev;
67  
68  	struct clk *clk;
69  	struct reset_control*rst;
70  
71  	unsigned long clk_rate;
72  	unsigned long min_period_ns;
73  
74  	void __iomem *regs;
75  
76  	const struct tegra_pwm_soc *soc;
77  };
78  
to_tegra_pwm_chip(struct pwm_chip * chip)79  static inline struct tegra_pwm_chip *to_tegra_pwm_chip(struct pwm_chip *chip)
80  {
81  	return container_of(chip, struct tegra_pwm_chip, chip);
82  }
83  
pwm_readl(struct tegra_pwm_chip * chip,unsigned int num)84  static inline u32 pwm_readl(struct tegra_pwm_chip *chip, unsigned int num)
85  {
86  	return readl(chip->regs + (num << 4));
87  }
88  
pwm_writel(struct tegra_pwm_chip * chip,unsigned int num,unsigned long val)89  static inline void pwm_writel(struct tegra_pwm_chip *chip, unsigned int num,
90  			     unsigned long val)
91  {
92  	writel(val, chip->regs + (num << 4));
93  }
94  
tegra_pwm_config(struct pwm_chip * chip,struct pwm_device * pwm,int duty_ns,int period_ns)95  static int tegra_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
96  			    int duty_ns, int period_ns)
97  {
98  	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
99  	unsigned long long c = duty_ns, hz;
100  	unsigned long rate, required_clk_rate;
101  	u32 val = 0;
102  	int err;
103  
104  	/*
105  	 * Convert from duty_ns / period_ns to a fixed number of duty ticks
106  	 * per (1 << PWM_DUTY_WIDTH) cycles and make sure to round to the
107  	 * nearest integer during division.
108  	 */
109  	c *= (1 << PWM_DUTY_WIDTH);
110  	c = DIV_ROUND_CLOSEST_ULL(c, period_ns);
111  
112  	val = (u32)c << PWM_DUTY_SHIFT;
113  
114  	/*
115  	 *  min period = max clock limit >> PWM_DUTY_WIDTH
116  	 */
117  	if (period_ns < pc->min_period_ns)
118  		return -EINVAL;
119  
120  	/*
121  	 * Compute the prescaler value for which (1 << PWM_DUTY_WIDTH)
122  	 * cycles at the PWM clock rate will take period_ns nanoseconds.
123  	 *
124  	 * num_channels: If single instance of PWM controller has multiple
125  	 * channels (e.g. Tegra210 or older) then it is not possible to
126  	 * configure separate clock rates to each of the channels, in such
127  	 * case the value stored during probe will be referred.
128  	 *
129  	 * If every PWM controller instance has one channel respectively, i.e.
130  	 * nums_channels == 1 then only the clock rate can be modified
131  	 * dynamically (e.g. Tegra186 or Tegra194).
132  	 */
133  	if (pc->soc->num_channels == 1) {
134  		/*
135  		 * Rate is multiplied with 2^PWM_DUTY_WIDTH so that it matches
136  		 * with the maximum possible rate that the controller can
137  		 * provide. Any further lower value can be derived by setting
138  		 * PFM bits[0:12].
139  		 *
140  		 * required_clk_rate is a reference rate for source clock and
141  		 * it is derived based on user requested period. By setting the
142  		 * source clock rate as required_clk_rate, PWM controller will
143  		 * be able to configure the requested period.
144  		 */
145  		required_clk_rate =
146  			(NSEC_PER_SEC / period_ns) << PWM_DUTY_WIDTH;
147  
148  		err = clk_set_rate(pc->clk, required_clk_rate);
149  		if (err < 0)
150  			return -EINVAL;
151  
152  		/* Store the new rate for further references */
153  		pc->clk_rate = clk_get_rate(pc->clk);
154  	}
155  
156  	rate = pc->clk_rate >> PWM_DUTY_WIDTH;
157  
158  	/* Consider precision in PWM_SCALE_WIDTH rate calculation */
159  	hz = DIV_ROUND_CLOSEST_ULL(100ULL * NSEC_PER_SEC, period_ns);
160  	rate = DIV_ROUND_CLOSEST_ULL(100ULL * rate, hz);
161  
162  	/*
163  	 * Since the actual PWM divider is the register's frequency divider
164  	 * field plus 1, we need to decrement to get the correct value to
165  	 * write to the register.
166  	 */
167  	if (rate > 0)
168  		rate--;
169  
170  	/*
171  	 * Make sure that the rate will fit in the register's frequency
172  	 * divider field.
173  	 */
174  	if (rate >> PWM_SCALE_WIDTH)
175  		return -EINVAL;
176  
177  	val |= rate << PWM_SCALE_SHIFT;
178  
179  	/*
180  	 * If the PWM channel is disabled, make sure to turn on the clock
181  	 * before writing the register. Otherwise, keep it enabled.
182  	 */
183  	if (!pwm_is_enabled(pwm)) {
184  		err = clk_prepare_enable(pc->clk);
185  		if (err < 0)
186  			return err;
187  	} else
188  		val |= PWM_ENABLE;
189  
190  	pwm_writel(pc, pwm->hwpwm, val);
191  
192  	/*
193  	 * If the PWM is not enabled, turn the clock off again to save power.
194  	 */
195  	if (!pwm_is_enabled(pwm))
196  		clk_disable_unprepare(pc->clk);
197  
198  	return 0;
199  }
200  
tegra_pwm_enable(struct pwm_chip * chip,struct pwm_device * pwm)201  static int tegra_pwm_enable(struct pwm_chip *chip, struct pwm_device *pwm)
202  {
203  	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
204  	int rc = 0;
205  	u32 val;
206  
207  	rc = clk_prepare_enable(pc->clk);
208  	if (rc < 0)
209  		return rc;
210  
211  	val = pwm_readl(pc, pwm->hwpwm);
212  	val |= PWM_ENABLE;
213  	pwm_writel(pc, pwm->hwpwm, val);
214  
215  	return 0;
216  }
217  
tegra_pwm_disable(struct pwm_chip * chip,struct pwm_device * pwm)218  static void tegra_pwm_disable(struct pwm_chip *chip, struct pwm_device *pwm)
219  {
220  	struct tegra_pwm_chip *pc = to_tegra_pwm_chip(chip);
221  	u32 val;
222  
223  	val = pwm_readl(pc, pwm->hwpwm);
224  	val &= ~PWM_ENABLE;
225  	pwm_writel(pc, pwm->hwpwm, val);
226  
227  	clk_disable_unprepare(pc->clk);
228  }
229  
230  static const struct pwm_ops tegra_pwm_ops = {
231  	.config = tegra_pwm_config,
232  	.enable = tegra_pwm_enable,
233  	.disable = tegra_pwm_disable,
234  	.owner = THIS_MODULE,
235  };
236  
tegra_pwm_probe(struct platform_device * pdev)237  static int tegra_pwm_probe(struct platform_device *pdev)
238  {
239  	struct tegra_pwm_chip *pwm;
240  	int ret;
241  
242  	pwm = devm_kzalloc(&pdev->dev, sizeof(*pwm), GFP_KERNEL);
243  	if (!pwm)
244  		return -ENOMEM;
245  
246  	pwm->soc = of_device_get_match_data(&pdev->dev);
247  	pwm->dev = &pdev->dev;
248  
249  	pwm->regs = devm_platform_ioremap_resource(pdev, 0);
250  	if (IS_ERR(pwm->regs))
251  		return PTR_ERR(pwm->regs);
252  
253  	platform_set_drvdata(pdev, pwm);
254  
255  	pwm->clk = devm_clk_get(&pdev->dev, NULL);
256  	if (IS_ERR(pwm->clk))
257  		return PTR_ERR(pwm->clk);
258  
259  	/* Set maximum frequency of the IP */
260  	ret = clk_set_rate(pwm->clk, pwm->soc->max_frequency);
261  	if (ret < 0) {
262  		dev_err(&pdev->dev, "Failed to set max frequency: %d\n", ret);
263  		return ret;
264  	}
265  
266  	/*
267  	 * The requested and configured frequency may differ due to
268  	 * clock register resolutions. Get the configured frequency
269  	 * so that PWM period can be calculated more accurately.
270  	 */
271  	pwm->clk_rate = clk_get_rate(pwm->clk);
272  
273  	/* Set minimum limit of PWM period for the IP */
274  	pwm->min_period_ns =
275  	    (NSEC_PER_SEC / (pwm->soc->max_frequency >> PWM_DUTY_WIDTH)) + 1;
276  
277  	pwm->rst = devm_reset_control_get_exclusive(&pdev->dev, "pwm");
278  	if (IS_ERR(pwm->rst)) {
279  		ret = PTR_ERR(pwm->rst);
280  		dev_err(&pdev->dev, "Reset control is not found: %d\n", ret);
281  		return ret;
282  	}
283  
284  	reset_control_deassert(pwm->rst);
285  
286  	pwm->chip.dev = &pdev->dev;
287  	pwm->chip.ops = &tegra_pwm_ops;
288  	pwm->chip.npwm = pwm->soc->num_channels;
289  
290  	ret = pwmchip_add(&pwm->chip);
291  	if (ret < 0) {
292  		dev_err(&pdev->dev, "pwmchip_add() failed: %d\n", ret);
293  		reset_control_assert(pwm->rst);
294  		return ret;
295  	}
296  
297  	return 0;
298  }
299  
tegra_pwm_remove(struct platform_device * pdev)300  static int tegra_pwm_remove(struct platform_device *pdev)
301  {
302  	struct tegra_pwm_chip *pc = platform_get_drvdata(pdev);
303  
304  	pwmchip_remove(&pc->chip);
305  
306  	reset_control_assert(pc->rst);
307  
308  	return 0;
309  }
310  
311  #ifdef CONFIG_PM_SLEEP
tegra_pwm_suspend(struct device * dev)312  static int tegra_pwm_suspend(struct device *dev)
313  {
314  	return pinctrl_pm_select_sleep_state(dev);
315  }
316  
tegra_pwm_resume(struct device * dev)317  static int tegra_pwm_resume(struct device *dev)
318  {
319  	return pinctrl_pm_select_default_state(dev);
320  }
321  #endif
322  
323  static const struct tegra_pwm_soc tegra20_pwm_soc = {
324  	.num_channels = 4,
325  	.max_frequency = 48000000UL,
326  };
327  
328  static const struct tegra_pwm_soc tegra186_pwm_soc = {
329  	.num_channels = 1,
330  	.max_frequency = 102000000UL,
331  };
332  
333  static const struct tegra_pwm_soc tegra194_pwm_soc = {
334  	.num_channels = 1,
335  	.max_frequency = 408000000UL,
336  };
337  
338  static const struct of_device_id tegra_pwm_of_match[] = {
339  	{ .compatible = "nvidia,tegra20-pwm", .data = &tegra20_pwm_soc },
340  	{ .compatible = "nvidia,tegra186-pwm", .data = &tegra186_pwm_soc },
341  	{ .compatible = "nvidia,tegra194-pwm", .data = &tegra194_pwm_soc },
342  	{ }
343  };
344  MODULE_DEVICE_TABLE(of, tegra_pwm_of_match);
345  
346  static const struct dev_pm_ops tegra_pwm_pm_ops = {
347  	SET_SYSTEM_SLEEP_PM_OPS(tegra_pwm_suspend, tegra_pwm_resume)
348  };
349  
350  static struct platform_driver tegra_pwm_driver = {
351  	.driver = {
352  		.name = "tegra-pwm",
353  		.of_match_table = tegra_pwm_of_match,
354  		.pm = &tegra_pwm_pm_ops,
355  	},
356  	.probe = tegra_pwm_probe,
357  	.remove = tegra_pwm_remove,
358  };
359  
360  module_platform_driver(tegra_pwm_driver);
361  
362  MODULE_LICENSE("GPL");
363  MODULE_AUTHOR("Sandipan Patra <spatra@nvidia.com>");
364  MODULE_DESCRIPTION("Tegra PWM controller driver");
365  MODULE_ALIAS("platform:tegra-pwm");
366