1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * verbs.c
44 *
45 * Encapsulates the major functions managing:
46 * o adapters
47 * o endpoints
48 * o connections
49 * o buffer memory
50 */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67 * Globals/Macros
68 */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY RPCDBG_TRANS
72 #endif
73
74 /*
75 * internal functions
76 */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80 struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
89 static struct rpcrdma_regbuf *
90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
91 gfp_t flags);
92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
94
95 /* Wait for outstanding transport work to finish. ib_drain_qp
96 * handles the drains in the wrong order for us, so open code
97 * them here.
98 */
rpcrdma_xprt_drain(struct rpcrdma_xprt * r_xprt)99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
100 {
101 struct rpcrdma_ep *ep = r_xprt->rx_ep;
102 struct rdma_cm_id *id = ep->re_id;
103
104 /* Wait for rpcrdma_post_recvs() to leave its critical
105 * section.
106 */
107 if (atomic_inc_return(&ep->re_receiving) > 1)
108 wait_for_completion(&ep->re_done);
109
110 /* Flush Receives, then wait for deferred Reply work
111 * to complete.
112 */
113 ib_drain_rq(id->qp);
114
115 /* Deferred Reply processing might have scheduled
116 * local invalidations.
117 */
118 ib_drain_sq(id->qp);
119
120 rpcrdma_ep_put(ep);
121 }
122
123 /* Ensure xprt_force_disconnect() is invoked exactly once when a
124 * connection is closed or lost. (The important thing is it needs
125 * to be invoked "at least" once).
126 */
rpcrdma_force_disconnect(struct rpcrdma_ep * ep)127 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
128 {
129 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
130 xprt_force_disconnect(ep->re_xprt);
131 }
132
133 /**
134 * rpcrdma_flush_disconnect - Disconnect on flushed completion
135 * @r_xprt: transport to disconnect
136 * @wc: work completion entry
137 *
138 * Must be called in process context.
139 */
rpcrdma_flush_disconnect(struct rpcrdma_xprt * r_xprt,struct ib_wc * wc)140 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
141 {
142 if (wc->status != IB_WC_SUCCESS)
143 rpcrdma_force_disconnect(r_xprt->rx_ep);
144 }
145
146 /**
147 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
148 * @cq: completion queue
149 * @wc: WCE for a completed Send WR
150 *
151 */
rpcrdma_wc_send(struct ib_cq * cq,struct ib_wc * wc)152 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
153 {
154 struct ib_cqe *cqe = wc->wr_cqe;
155 struct rpcrdma_sendctx *sc =
156 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
157 struct rpcrdma_xprt *r_xprt = cq->cq_context;
158
159 /* WARNING: Only wr_cqe and status are reliable at this point */
160 trace_xprtrdma_wc_send(wc, &sc->sc_cid);
161 rpcrdma_sendctx_put_locked(r_xprt, sc);
162 rpcrdma_flush_disconnect(r_xprt, wc);
163 }
164
165 /**
166 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
167 * @cq: completion queue
168 * @wc: WCE for a completed Receive WR
169 *
170 */
rpcrdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)171 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
172 {
173 struct ib_cqe *cqe = wc->wr_cqe;
174 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
175 rr_cqe);
176 struct rpcrdma_xprt *r_xprt = cq->cq_context;
177
178 /* WARNING: Only wr_cqe and status are reliable at this point */
179 trace_xprtrdma_wc_receive(wc, &rep->rr_cid);
180 --r_xprt->rx_ep->re_receive_count;
181 if (wc->status != IB_WC_SUCCESS)
182 goto out_flushed;
183
184 /* status == SUCCESS means all fields in wc are trustworthy */
185 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
186 rep->rr_wc_flags = wc->wc_flags;
187 rep->rr_inv_rkey = wc->ex.invalidate_rkey;
188
189 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
190 rdmab_addr(rep->rr_rdmabuf),
191 wc->byte_len, DMA_FROM_DEVICE);
192
193 rpcrdma_reply_handler(rep);
194 return;
195
196 out_flushed:
197 rpcrdma_flush_disconnect(r_xprt, wc);
198 rpcrdma_rep_put(&r_xprt->rx_buf, rep);
199 }
200
rpcrdma_update_cm_private(struct rpcrdma_ep * ep,struct rdma_conn_param * param)201 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
202 struct rdma_conn_param *param)
203 {
204 const struct rpcrdma_connect_private *pmsg = param->private_data;
205 unsigned int rsize, wsize;
206
207 /* Default settings for RPC-over-RDMA Version One */
208 rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
209 wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
210
211 if (pmsg &&
212 pmsg->cp_magic == rpcrdma_cmp_magic &&
213 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
214 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
215 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
216 }
217
218 if (rsize < ep->re_inline_recv)
219 ep->re_inline_recv = rsize;
220 if (wsize < ep->re_inline_send)
221 ep->re_inline_send = wsize;
222
223 rpcrdma_set_max_header_sizes(ep);
224 }
225
226 /**
227 * rpcrdma_cm_event_handler - Handle RDMA CM events
228 * @id: rdma_cm_id on which an event has occurred
229 * @event: details of the event
230 *
231 * Called with @id's mutex held. Returns 1 if caller should
232 * destroy @id, otherwise 0.
233 */
234 static int
rpcrdma_cm_event_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)235 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
236 {
237 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
238 struct rpcrdma_ep *ep = id->context;
239
240 might_sleep();
241
242 switch (event->event) {
243 case RDMA_CM_EVENT_ADDR_RESOLVED:
244 case RDMA_CM_EVENT_ROUTE_RESOLVED:
245 ep->re_async_rc = 0;
246 complete(&ep->re_done);
247 return 0;
248 case RDMA_CM_EVENT_ADDR_ERROR:
249 ep->re_async_rc = -EPROTO;
250 complete(&ep->re_done);
251 return 0;
252 case RDMA_CM_EVENT_ROUTE_ERROR:
253 ep->re_async_rc = -ENETUNREACH;
254 complete(&ep->re_done);
255 return 0;
256 case RDMA_CM_EVENT_DEVICE_REMOVAL:
257 pr_info("rpcrdma: removing device %s for %pISpc\n",
258 ep->re_id->device->name, sap);
259 fallthrough;
260 case RDMA_CM_EVENT_ADDR_CHANGE:
261 ep->re_connect_status = -ENODEV;
262 goto disconnected;
263 case RDMA_CM_EVENT_ESTABLISHED:
264 rpcrdma_ep_get(ep);
265 ep->re_connect_status = 1;
266 rpcrdma_update_cm_private(ep, &event->param.conn);
267 trace_xprtrdma_inline_thresh(ep);
268 wake_up_all(&ep->re_connect_wait);
269 break;
270 case RDMA_CM_EVENT_CONNECT_ERROR:
271 ep->re_connect_status = -ENOTCONN;
272 goto wake_connect_worker;
273 case RDMA_CM_EVENT_UNREACHABLE:
274 ep->re_connect_status = -ENETUNREACH;
275 goto wake_connect_worker;
276 case RDMA_CM_EVENT_REJECTED:
277 dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
278 sap, rdma_reject_msg(id, event->status));
279 ep->re_connect_status = -ECONNREFUSED;
280 if (event->status == IB_CM_REJ_STALE_CONN)
281 ep->re_connect_status = -ENOTCONN;
282 wake_connect_worker:
283 wake_up_all(&ep->re_connect_wait);
284 return 0;
285 case RDMA_CM_EVENT_DISCONNECTED:
286 ep->re_connect_status = -ECONNABORTED;
287 disconnected:
288 rpcrdma_force_disconnect(ep);
289 return rpcrdma_ep_put(ep);
290 default:
291 break;
292 }
293
294 dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap,
295 ep->re_id->device->name, rdma_event_msg(event->event));
296 return 0;
297 }
298
rpcrdma_create_id(struct rpcrdma_xprt * r_xprt,struct rpcrdma_ep * ep)299 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
300 struct rpcrdma_ep *ep)
301 {
302 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
303 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
304 struct rdma_cm_id *id;
305 int rc;
306
307 init_completion(&ep->re_done);
308
309 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
310 RDMA_PS_TCP, IB_QPT_RC);
311 if (IS_ERR(id))
312 return id;
313
314 ep->re_async_rc = -ETIMEDOUT;
315 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
316 RDMA_RESOLVE_TIMEOUT);
317 if (rc)
318 goto out;
319 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
320 if (rc < 0)
321 goto out;
322
323 rc = ep->re_async_rc;
324 if (rc)
325 goto out;
326
327 ep->re_async_rc = -ETIMEDOUT;
328 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
329 if (rc)
330 goto out;
331 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
332 if (rc < 0)
333 goto out;
334 rc = ep->re_async_rc;
335 if (rc)
336 goto out;
337
338 return id;
339
340 out:
341 rdma_destroy_id(id);
342 return ERR_PTR(rc);
343 }
344
rpcrdma_ep_destroy(struct kref * kref)345 static void rpcrdma_ep_destroy(struct kref *kref)
346 {
347 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
348
349 if (ep->re_id->qp) {
350 rdma_destroy_qp(ep->re_id);
351 ep->re_id->qp = NULL;
352 }
353
354 if (ep->re_attr.recv_cq)
355 ib_free_cq(ep->re_attr.recv_cq);
356 ep->re_attr.recv_cq = NULL;
357 if (ep->re_attr.send_cq)
358 ib_free_cq(ep->re_attr.send_cq);
359 ep->re_attr.send_cq = NULL;
360
361 if (ep->re_pd)
362 ib_dealloc_pd(ep->re_pd);
363 ep->re_pd = NULL;
364
365 kfree(ep);
366 module_put(THIS_MODULE);
367 }
368
rpcrdma_ep_get(struct rpcrdma_ep * ep)369 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
370 {
371 kref_get(&ep->re_kref);
372 }
373
374 /* Returns:
375 * %0 if @ep still has a positive kref count, or
376 * %1 if @ep was destroyed successfully.
377 */
rpcrdma_ep_put(struct rpcrdma_ep * ep)378 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
379 {
380 return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
381 }
382
rpcrdma_ep_create(struct rpcrdma_xprt * r_xprt)383 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
384 {
385 struct rpcrdma_connect_private *pmsg;
386 struct ib_device *device;
387 struct rdma_cm_id *id;
388 struct rpcrdma_ep *ep;
389 int rc;
390
391 ep = kzalloc(sizeof(*ep), GFP_NOFS);
392 if (!ep)
393 return -ENOTCONN;
394 ep->re_xprt = &r_xprt->rx_xprt;
395 kref_init(&ep->re_kref);
396
397 id = rpcrdma_create_id(r_xprt, ep);
398 if (IS_ERR(id)) {
399 kfree(ep);
400 return PTR_ERR(id);
401 }
402 __module_get(THIS_MODULE);
403 device = id->device;
404 ep->re_id = id;
405 reinit_completion(&ep->re_done);
406
407 ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
408 ep->re_inline_send = xprt_rdma_max_inline_write;
409 ep->re_inline_recv = xprt_rdma_max_inline_read;
410 rc = frwr_query_device(ep, device);
411 if (rc)
412 goto out_destroy;
413
414 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
415
416 ep->re_attr.srq = NULL;
417 ep->re_attr.cap.max_inline_data = 0;
418 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
419 ep->re_attr.qp_type = IB_QPT_RC;
420 ep->re_attr.port_num = ~0;
421
422 dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
423 "iovs: send %d recv %d\n",
424 __func__,
425 ep->re_attr.cap.max_send_wr,
426 ep->re_attr.cap.max_recv_wr,
427 ep->re_attr.cap.max_send_sge,
428 ep->re_attr.cap.max_recv_sge);
429
430 ep->re_send_batch = ep->re_max_requests >> 3;
431 ep->re_send_count = ep->re_send_batch;
432 init_waitqueue_head(&ep->re_connect_wait);
433
434 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
435 ep->re_attr.cap.max_send_wr,
436 IB_POLL_WORKQUEUE);
437 if (IS_ERR(ep->re_attr.send_cq)) {
438 rc = PTR_ERR(ep->re_attr.send_cq);
439 goto out_destroy;
440 }
441
442 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
443 ep->re_attr.cap.max_recv_wr,
444 IB_POLL_WORKQUEUE);
445 if (IS_ERR(ep->re_attr.recv_cq)) {
446 rc = PTR_ERR(ep->re_attr.recv_cq);
447 goto out_destroy;
448 }
449 ep->re_receive_count = 0;
450
451 /* Initialize cma parameters */
452 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
453
454 /* Prepare RDMA-CM private message */
455 pmsg = &ep->re_cm_private;
456 pmsg->cp_magic = rpcrdma_cmp_magic;
457 pmsg->cp_version = RPCRDMA_CMP_VERSION;
458 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
459 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
460 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
461 ep->re_remote_cma.private_data = pmsg;
462 ep->re_remote_cma.private_data_len = sizeof(*pmsg);
463
464 /* Client offers RDMA Read but does not initiate */
465 ep->re_remote_cma.initiator_depth = 0;
466 ep->re_remote_cma.responder_resources =
467 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
468
469 /* Limit transport retries so client can detect server
470 * GID changes quickly. RPC layer handles re-establishing
471 * transport connection and retransmission.
472 */
473 ep->re_remote_cma.retry_count = 6;
474
475 /* RPC-over-RDMA handles its own flow control. In addition,
476 * make all RNR NAKs visible so we know that RPC-over-RDMA
477 * flow control is working correctly (no NAKs should be seen).
478 */
479 ep->re_remote_cma.flow_control = 0;
480 ep->re_remote_cma.rnr_retry_count = 0;
481
482 ep->re_pd = ib_alloc_pd(device, 0);
483 if (IS_ERR(ep->re_pd)) {
484 rc = PTR_ERR(ep->re_pd);
485 goto out_destroy;
486 }
487
488 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
489 if (rc)
490 goto out_destroy;
491
492 r_xprt->rx_ep = ep;
493 return 0;
494
495 out_destroy:
496 rpcrdma_ep_put(ep);
497 rdma_destroy_id(id);
498 return rc;
499 }
500
501 /**
502 * rpcrdma_xprt_connect - Connect an unconnected transport
503 * @r_xprt: controlling transport instance
504 *
505 * Returns 0 on success or a negative errno.
506 */
rpcrdma_xprt_connect(struct rpcrdma_xprt * r_xprt)507 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
508 {
509 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
510 struct rpcrdma_ep *ep;
511 int rc;
512
513 rc = rpcrdma_ep_create(r_xprt);
514 if (rc)
515 return rc;
516 ep = r_xprt->rx_ep;
517
518 xprt_clear_connected(xprt);
519 rpcrdma_reset_cwnd(r_xprt);
520
521 /* Bump the ep's reference count while there are
522 * outstanding Receives.
523 */
524 rpcrdma_ep_get(ep);
525 rpcrdma_post_recvs(r_xprt, 1, true);
526
527 rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
528 if (rc)
529 goto out;
530
531 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
532 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
533 wait_event_interruptible(ep->re_connect_wait,
534 ep->re_connect_status != 0);
535 if (ep->re_connect_status <= 0) {
536 rc = ep->re_connect_status;
537 goto out;
538 }
539
540 rc = rpcrdma_sendctxs_create(r_xprt);
541 if (rc) {
542 rc = -ENOTCONN;
543 goto out;
544 }
545
546 rc = rpcrdma_reqs_setup(r_xprt);
547 if (rc) {
548 rc = -ENOTCONN;
549 goto out;
550 }
551 rpcrdma_mrs_create(r_xprt);
552 frwr_wp_create(r_xprt);
553
554 out:
555 trace_xprtrdma_connect(r_xprt, rc);
556 return rc;
557 }
558
559 /**
560 * rpcrdma_xprt_disconnect - Disconnect underlying transport
561 * @r_xprt: controlling transport instance
562 *
563 * Caller serializes. Either the transport send lock is held,
564 * or we're being called to destroy the transport.
565 *
566 * On return, @r_xprt is completely divested of all hardware
567 * resources and prepared for the next ->connect operation.
568 */
rpcrdma_xprt_disconnect(struct rpcrdma_xprt * r_xprt)569 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
570 {
571 struct rpcrdma_ep *ep = r_xprt->rx_ep;
572 struct rdma_cm_id *id;
573 int rc;
574
575 if (!ep)
576 return;
577
578 id = ep->re_id;
579 rc = rdma_disconnect(id);
580 trace_xprtrdma_disconnect(r_xprt, rc);
581
582 rpcrdma_xprt_drain(r_xprt);
583 rpcrdma_reps_unmap(r_xprt);
584 rpcrdma_reqs_reset(r_xprt);
585 rpcrdma_mrs_destroy(r_xprt);
586 rpcrdma_sendctxs_destroy(r_xprt);
587
588 if (rpcrdma_ep_put(ep))
589 rdma_destroy_id(id);
590
591 r_xprt->rx_ep = NULL;
592 }
593
594 /* Fixed-size circular FIFO queue. This implementation is wait-free and
595 * lock-free.
596 *
597 * Consumer is the code path that posts Sends. This path dequeues a
598 * sendctx for use by a Send operation. Multiple consumer threads
599 * are serialized by the RPC transport lock, which allows only one
600 * ->send_request call at a time.
601 *
602 * Producer is the code path that handles Send completions. This path
603 * enqueues a sendctx that has been completed. Multiple producer
604 * threads are serialized by the ib_poll_cq() function.
605 */
606
607 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
608 * queue activity, and rpcrdma_xprt_drain has flushed all remaining
609 * Send requests.
610 */
rpcrdma_sendctxs_destroy(struct rpcrdma_xprt * r_xprt)611 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
612 {
613 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
614 unsigned long i;
615
616 if (!buf->rb_sc_ctxs)
617 return;
618 for (i = 0; i <= buf->rb_sc_last; i++)
619 kfree(buf->rb_sc_ctxs[i]);
620 kfree(buf->rb_sc_ctxs);
621 buf->rb_sc_ctxs = NULL;
622 }
623
rpcrdma_sendctx_create(struct rpcrdma_ep * ep)624 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
625 {
626 struct rpcrdma_sendctx *sc;
627
628 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
629 GFP_KERNEL);
630 if (!sc)
631 return NULL;
632
633 sc->sc_cqe.done = rpcrdma_wc_send;
634 sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id;
635 sc->sc_cid.ci_completion_id =
636 atomic_inc_return(&ep->re_completion_ids);
637 return sc;
638 }
639
rpcrdma_sendctxs_create(struct rpcrdma_xprt * r_xprt)640 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
641 {
642 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
643 struct rpcrdma_sendctx *sc;
644 unsigned long i;
645
646 /* Maximum number of concurrent outstanding Send WRs. Capping
647 * the circular queue size stops Send Queue overflow by causing
648 * the ->send_request call to fail temporarily before too many
649 * Sends are posted.
650 */
651 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
652 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
653 if (!buf->rb_sc_ctxs)
654 return -ENOMEM;
655
656 buf->rb_sc_last = i - 1;
657 for (i = 0; i <= buf->rb_sc_last; i++) {
658 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
659 if (!sc)
660 return -ENOMEM;
661
662 buf->rb_sc_ctxs[i] = sc;
663 }
664
665 buf->rb_sc_head = 0;
666 buf->rb_sc_tail = 0;
667 return 0;
668 }
669
670 /* The sendctx queue is not guaranteed to have a size that is a
671 * power of two, thus the helpers in circ_buf.h cannot be used.
672 * The other option is to use modulus (%), which can be expensive.
673 */
rpcrdma_sendctx_next(struct rpcrdma_buffer * buf,unsigned long item)674 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
675 unsigned long item)
676 {
677 return likely(item < buf->rb_sc_last) ? item + 1 : 0;
678 }
679
680 /**
681 * rpcrdma_sendctx_get_locked - Acquire a send context
682 * @r_xprt: controlling transport instance
683 *
684 * Returns pointer to a free send completion context; or NULL if
685 * the queue is empty.
686 *
687 * Usage: Called to acquire an SGE array before preparing a Send WR.
688 *
689 * The caller serializes calls to this function (per transport), and
690 * provides an effective memory barrier that flushes the new value
691 * of rb_sc_head.
692 */
rpcrdma_sendctx_get_locked(struct rpcrdma_xprt * r_xprt)693 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
694 {
695 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
696 struct rpcrdma_sendctx *sc;
697 unsigned long next_head;
698
699 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
700
701 if (next_head == READ_ONCE(buf->rb_sc_tail))
702 goto out_emptyq;
703
704 /* ORDER: item must be accessed _before_ head is updated */
705 sc = buf->rb_sc_ctxs[next_head];
706
707 /* Releasing the lock in the caller acts as a memory
708 * barrier that flushes rb_sc_head.
709 */
710 buf->rb_sc_head = next_head;
711
712 return sc;
713
714 out_emptyq:
715 /* The queue is "empty" if there have not been enough Send
716 * completions recently. This is a sign the Send Queue is
717 * backing up. Cause the caller to pause and try again.
718 */
719 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
720 r_xprt->rx_stats.empty_sendctx_q++;
721 return NULL;
722 }
723
724 /**
725 * rpcrdma_sendctx_put_locked - Release a send context
726 * @r_xprt: controlling transport instance
727 * @sc: send context to release
728 *
729 * Usage: Called from Send completion to return a sendctxt
730 * to the queue.
731 *
732 * The caller serializes calls to this function (per transport).
733 */
rpcrdma_sendctx_put_locked(struct rpcrdma_xprt * r_xprt,struct rpcrdma_sendctx * sc)734 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
735 struct rpcrdma_sendctx *sc)
736 {
737 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
738 unsigned long next_tail;
739
740 /* Unmap SGEs of previously completed but unsignaled
741 * Sends by walking up the queue until @sc is found.
742 */
743 next_tail = buf->rb_sc_tail;
744 do {
745 next_tail = rpcrdma_sendctx_next(buf, next_tail);
746
747 /* ORDER: item must be accessed _before_ tail is updated */
748 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
749
750 } while (buf->rb_sc_ctxs[next_tail] != sc);
751
752 /* Paired with READ_ONCE */
753 smp_store_release(&buf->rb_sc_tail, next_tail);
754
755 xprt_write_space(&r_xprt->rx_xprt);
756 }
757
758 static void
rpcrdma_mrs_create(struct rpcrdma_xprt * r_xprt)759 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
760 {
761 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
762 struct rpcrdma_ep *ep = r_xprt->rx_ep;
763 unsigned int count;
764
765 for (count = 0; count < ep->re_max_rdma_segs; count++) {
766 struct rpcrdma_mr *mr;
767 int rc;
768
769 mr = kzalloc(sizeof(*mr), GFP_NOFS);
770 if (!mr)
771 break;
772
773 rc = frwr_mr_init(r_xprt, mr);
774 if (rc) {
775 kfree(mr);
776 break;
777 }
778
779 spin_lock(&buf->rb_lock);
780 rpcrdma_mr_push(mr, &buf->rb_mrs);
781 list_add(&mr->mr_all, &buf->rb_all_mrs);
782 spin_unlock(&buf->rb_lock);
783 }
784
785 r_xprt->rx_stats.mrs_allocated += count;
786 trace_xprtrdma_createmrs(r_xprt, count);
787 }
788
789 static void
rpcrdma_mr_refresh_worker(struct work_struct * work)790 rpcrdma_mr_refresh_worker(struct work_struct *work)
791 {
792 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
793 rb_refresh_worker);
794 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
795 rx_buf);
796
797 rpcrdma_mrs_create(r_xprt);
798 xprt_write_space(&r_xprt->rx_xprt);
799 }
800
801 /**
802 * rpcrdma_mrs_refresh - Wake the MR refresh worker
803 * @r_xprt: controlling transport instance
804 *
805 */
rpcrdma_mrs_refresh(struct rpcrdma_xprt * r_xprt)806 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
807 {
808 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
809 struct rpcrdma_ep *ep = r_xprt->rx_ep;
810
811 /* If there is no underlying connection, it's no use
812 * to wake the refresh worker.
813 */
814 if (ep->re_connect_status == 1) {
815 /* The work is scheduled on a WQ_MEM_RECLAIM
816 * workqueue in order to prevent MR allocation
817 * from recursing into NFS during direct reclaim.
818 */
819 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
820 }
821 }
822
823 /**
824 * rpcrdma_req_create - Allocate an rpcrdma_req object
825 * @r_xprt: controlling r_xprt
826 * @size: initial size, in bytes, of send and receive buffers
827 * @flags: GFP flags passed to memory allocators
828 *
829 * Returns an allocated and fully initialized rpcrdma_req or NULL.
830 */
rpcrdma_req_create(struct rpcrdma_xprt * r_xprt,size_t size,gfp_t flags)831 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
832 gfp_t flags)
833 {
834 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
835 struct rpcrdma_req *req;
836
837 req = kzalloc(sizeof(*req), flags);
838 if (req == NULL)
839 goto out1;
840
841 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
842 if (!req->rl_sendbuf)
843 goto out2;
844
845 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
846 if (!req->rl_recvbuf)
847 goto out3;
848
849 INIT_LIST_HEAD(&req->rl_free_mrs);
850 INIT_LIST_HEAD(&req->rl_registered);
851 spin_lock(&buffer->rb_lock);
852 list_add(&req->rl_all, &buffer->rb_allreqs);
853 spin_unlock(&buffer->rb_lock);
854 return req;
855
856 out3:
857 kfree(req->rl_sendbuf);
858 out2:
859 kfree(req);
860 out1:
861 return NULL;
862 }
863
864 /**
865 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
866 * @r_xprt: controlling transport instance
867 * @req: rpcrdma_req object to set up
868 *
869 * Returns zero on success, and a negative errno on failure.
870 */
rpcrdma_req_setup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)871 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
872 {
873 struct rpcrdma_regbuf *rb;
874 size_t maxhdrsize;
875
876 /* Compute maximum header buffer size in bytes */
877 maxhdrsize = rpcrdma_fixed_maxsz + 3 +
878 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
879 maxhdrsize *= sizeof(__be32);
880 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
881 DMA_TO_DEVICE, GFP_KERNEL);
882 if (!rb)
883 goto out;
884
885 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
886 goto out_free;
887
888 req->rl_rdmabuf = rb;
889 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
890 return 0;
891
892 out_free:
893 rpcrdma_regbuf_free(rb);
894 out:
895 return -ENOMEM;
896 }
897
898 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
899 * and thus can be walked without holding rb_lock. Eg. the
900 * caller is holding the transport send lock to exclude
901 * device removal or disconnection.
902 */
rpcrdma_reqs_setup(struct rpcrdma_xprt * r_xprt)903 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
904 {
905 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
906 struct rpcrdma_req *req;
907 int rc;
908
909 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
910 rc = rpcrdma_req_setup(r_xprt, req);
911 if (rc)
912 return rc;
913 }
914 return 0;
915 }
916
rpcrdma_req_reset(struct rpcrdma_req * req)917 static void rpcrdma_req_reset(struct rpcrdma_req *req)
918 {
919 /* Credits are valid for only one connection */
920 req->rl_slot.rq_cong = 0;
921
922 rpcrdma_regbuf_free(req->rl_rdmabuf);
923 req->rl_rdmabuf = NULL;
924
925 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
926 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
927
928 frwr_reset(req);
929 }
930
931 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
932 * and thus can be walked without holding rb_lock. Eg. the
933 * caller is holding the transport send lock to exclude
934 * device removal or disconnection.
935 */
rpcrdma_reqs_reset(struct rpcrdma_xprt * r_xprt)936 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
937 {
938 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
939 struct rpcrdma_req *req;
940
941 list_for_each_entry(req, &buf->rb_allreqs, rl_all)
942 rpcrdma_req_reset(req);
943 }
944
945 static noinline
rpcrdma_rep_create(struct rpcrdma_xprt * r_xprt,bool temp)946 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
947 bool temp)
948 {
949 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
950 struct rpcrdma_rep *rep;
951
952 rep = kzalloc(sizeof(*rep), GFP_KERNEL);
953 if (rep == NULL)
954 goto out;
955
956 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
957 DMA_FROM_DEVICE, GFP_KERNEL);
958 if (!rep->rr_rdmabuf)
959 goto out_free;
960
961 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf))
962 goto out_free_regbuf;
963
964 rep->rr_cid.ci_completion_id =
965 atomic_inc_return(&r_xprt->rx_ep->re_completion_ids);
966
967 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
968 rdmab_length(rep->rr_rdmabuf));
969 rep->rr_cqe.done = rpcrdma_wc_receive;
970 rep->rr_rxprt = r_xprt;
971 rep->rr_recv_wr.next = NULL;
972 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
973 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
974 rep->rr_recv_wr.num_sge = 1;
975 rep->rr_temp = temp;
976
977 spin_lock(&buf->rb_lock);
978 list_add(&rep->rr_all, &buf->rb_all_reps);
979 spin_unlock(&buf->rb_lock);
980 return rep;
981
982 out_free_regbuf:
983 rpcrdma_regbuf_free(rep->rr_rdmabuf);
984 out_free:
985 kfree(rep);
986 out:
987 return NULL;
988 }
989
rpcrdma_rep_free(struct rpcrdma_rep * rep)990 static void rpcrdma_rep_free(struct rpcrdma_rep *rep)
991 {
992 rpcrdma_regbuf_free(rep->rr_rdmabuf);
993 kfree(rep);
994 }
995
rpcrdma_rep_destroy(struct rpcrdma_rep * rep)996 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
997 {
998 struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf;
999
1000 spin_lock(&buf->rb_lock);
1001 list_del(&rep->rr_all);
1002 spin_unlock(&buf->rb_lock);
1003
1004 rpcrdma_rep_free(rep);
1005 }
1006
rpcrdma_rep_get_locked(struct rpcrdma_buffer * buf)1007 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1008 {
1009 struct llist_node *node;
1010
1011 /* Calls to llist_del_first are required to be serialized */
1012 node = llist_del_first(&buf->rb_free_reps);
1013 if (!node)
1014 return NULL;
1015 return llist_entry(node, struct rpcrdma_rep, rr_node);
1016 }
1017
1018 /**
1019 * rpcrdma_rep_put - Release rpcrdma_rep back to free list
1020 * @buf: buffer pool
1021 * @rep: rep to release
1022 *
1023 */
rpcrdma_rep_put(struct rpcrdma_buffer * buf,struct rpcrdma_rep * rep)1024 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep)
1025 {
1026 llist_add(&rep->rr_node, &buf->rb_free_reps);
1027 }
1028
1029 /* Caller must ensure the QP is quiescent (RQ is drained) before
1030 * invoking this function, to guarantee rb_all_reps is not
1031 * changing.
1032 */
rpcrdma_reps_unmap(struct rpcrdma_xprt * r_xprt)1033 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1034 {
1035 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1036 struct rpcrdma_rep *rep;
1037
1038 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1039 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1040 rep->rr_temp = true; /* Mark this rep for destruction */
1041 }
1042 }
1043
rpcrdma_reps_destroy(struct rpcrdma_buffer * buf)1044 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1045 {
1046 struct rpcrdma_rep *rep;
1047
1048 spin_lock(&buf->rb_lock);
1049 while ((rep = list_first_entry_or_null(&buf->rb_all_reps,
1050 struct rpcrdma_rep,
1051 rr_all)) != NULL) {
1052 list_del(&rep->rr_all);
1053 spin_unlock(&buf->rb_lock);
1054
1055 rpcrdma_rep_free(rep);
1056
1057 spin_lock(&buf->rb_lock);
1058 }
1059 spin_unlock(&buf->rb_lock);
1060 }
1061
1062 /**
1063 * rpcrdma_buffer_create - Create initial set of req/rep objects
1064 * @r_xprt: transport instance to (re)initialize
1065 *
1066 * Returns zero on success, otherwise a negative errno.
1067 */
rpcrdma_buffer_create(struct rpcrdma_xprt * r_xprt)1068 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1069 {
1070 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1071 int i, rc;
1072
1073 buf->rb_bc_srv_max_requests = 0;
1074 spin_lock_init(&buf->rb_lock);
1075 INIT_LIST_HEAD(&buf->rb_mrs);
1076 INIT_LIST_HEAD(&buf->rb_all_mrs);
1077 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1078
1079 INIT_LIST_HEAD(&buf->rb_send_bufs);
1080 INIT_LIST_HEAD(&buf->rb_allreqs);
1081 INIT_LIST_HEAD(&buf->rb_all_reps);
1082
1083 rc = -ENOMEM;
1084 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1085 struct rpcrdma_req *req;
1086
1087 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1088 GFP_KERNEL);
1089 if (!req)
1090 goto out;
1091 list_add(&req->rl_list, &buf->rb_send_bufs);
1092 }
1093
1094 init_llist_head(&buf->rb_free_reps);
1095
1096 return 0;
1097 out:
1098 rpcrdma_buffer_destroy(buf);
1099 return rc;
1100 }
1101
1102 /**
1103 * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1104 * @req: unused object to be destroyed
1105 *
1106 * Relies on caller holding the transport send lock to protect
1107 * removing req->rl_all from buf->rb_all_reqs safely.
1108 */
rpcrdma_req_destroy(struct rpcrdma_req * req)1109 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1110 {
1111 struct rpcrdma_mr *mr;
1112
1113 list_del(&req->rl_all);
1114
1115 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1116 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1117
1118 spin_lock(&buf->rb_lock);
1119 list_del(&mr->mr_all);
1120 spin_unlock(&buf->rb_lock);
1121
1122 frwr_mr_release(mr);
1123 }
1124
1125 rpcrdma_regbuf_free(req->rl_recvbuf);
1126 rpcrdma_regbuf_free(req->rl_sendbuf);
1127 rpcrdma_regbuf_free(req->rl_rdmabuf);
1128 kfree(req);
1129 }
1130
1131 /**
1132 * rpcrdma_mrs_destroy - Release all of a transport's MRs
1133 * @r_xprt: controlling transport instance
1134 *
1135 * Relies on caller holding the transport send lock to protect
1136 * removing mr->mr_list from req->rl_free_mrs safely.
1137 */
rpcrdma_mrs_destroy(struct rpcrdma_xprt * r_xprt)1138 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1139 {
1140 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1141 struct rpcrdma_mr *mr;
1142
1143 cancel_work_sync(&buf->rb_refresh_worker);
1144
1145 spin_lock(&buf->rb_lock);
1146 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1147 struct rpcrdma_mr,
1148 mr_all)) != NULL) {
1149 list_del(&mr->mr_list);
1150 list_del(&mr->mr_all);
1151 spin_unlock(&buf->rb_lock);
1152
1153 frwr_mr_release(mr);
1154
1155 spin_lock(&buf->rb_lock);
1156 }
1157 spin_unlock(&buf->rb_lock);
1158 }
1159
1160 /**
1161 * rpcrdma_buffer_destroy - Release all hw resources
1162 * @buf: root control block for resources
1163 *
1164 * ORDERING: relies on a prior rpcrdma_xprt_drain :
1165 * - No more Send or Receive completions can occur
1166 * - All MRs, reps, and reqs are returned to their free lists
1167 */
1168 void
rpcrdma_buffer_destroy(struct rpcrdma_buffer * buf)1169 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1170 {
1171 rpcrdma_reps_destroy(buf);
1172
1173 while (!list_empty(&buf->rb_send_bufs)) {
1174 struct rpcrdma_req *req;
1175
1176 req = list_first_entry(&buf->rb_send_bufs,
1177 struct rpcrdma_req, rl_list);
1178 list_del(&req->rl_list);
1179 rpcrdma_req_destroy(req);
1180 }
1181 }
1182
1183 /**
1184 * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1185 * @r_xprt: controlling transport
1186 *
1187 * Returns an initialized rpcrdma_mr or NULL if no free
1188 * rpcrdma_mr objects are available.
1189 */
1190 struct rpcrdma_mr *
rpcrdma_mr_get(struct rpcrdma_xprt * r_xprt)1191 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1192 {
1193 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1194 struct rpcrdma_mr *mr;
1195
1196 spin_lock(&buf->rb_lock);
1197 mr = rpcrdma_mr_pop(&buf->rb_mrs);
1198 spin_unlock(&buf->rb_lock);
1199 return mr;
1200 }
1201
1202 /**
1203 * rpcrdma_reply_put - Put reply buffers back into pool
1204 * @buffers: buffer pool
1205 * @req: object to return
1206 *
1207 */
rpcrdma_reply_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1208 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1209 {
1210 if (req->rl_reply) {
1211 rpcrdma_rep_put(buffers, req->rl_reply);
1212 req->rl_reply = NULL;
1213 }
1214 }
1215
1216 /**
1217 * rpcrdma_buffer_get - Get a request buffer
1218 * @buffers: Buffer pool from which to obtain a buffer
1219 *
1220 * Returns a fresh rpcrdma_req, or NULL if none are available.
1221 */
1222 struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer * buffers)1223 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1224 {
1225 struct rpcrdma_req *req;
1226
1227 spin_lock(&buffers->rb_lock);
1228 req = list_first_entry_or_null(&buffers->rb_send_bufs,
1229 struct rpcrdma_req, rl_list);
1230 if (req)
1231 list_del_init(&req->rl_list);
1232 spin_unlock(&buffers->rb_lock);
1233 return req;
1234 }
1235
1236 /**
1237 * rpcrdma_buffer_put - Put request/reply buffers back into pool
1238 * @buffers: buffer pool
1239 * @req: object to return
1240 *
1241 */
rpcrdma_buffer_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1242 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1243 {
1244 rpcrdma_reply_put(buffers, req);
1245
1246 spin_lock(&buffers->rb_lock);
1247 list_add(&req->rl_list, &buffers->rb_send_bufs);
1248 spin_unlock(&buffers->rb_lock);
1249 }
1250
1251 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1252 *
1253 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1254 * receiving the payload of RDMA RECV operations. During Long Calls
1255 * or Replies they may be registered externally via frwr_map.
1256 */
1257 static struct rpcrdma_regbuf *
rpcrdma_regbuf_alloc(size_t size,enum dma_data_direction direction,gfp_t flags)1258 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1259 gfp_t flags)
1260 {
1261 struct rpcrdma_regbuf *rb;
1262
1263 rb = kmalloc(sizeof(*rb), flags);
1264 if (!rb)
1265 return NULL;
1266 rb->rg_data = kmalloc(size, flags);
1267 if (!rb->rg_data) {
1268 kfree(rb);
1269 return NULL;
1270 }
1271
1272 rb->rg_device = NULL;
1273 rb->rg_direction = direction;
1274 rb->rg_iov.length = size;
1275 return rb;
1276 }
1277
1278 /**
1279 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1280 * @rb: regbuf to reallocate
1281 * @size: size of buffer to be allocated, in bytes
1282 * @flags: GFP flags
1283 *
1284 * Returns true if reallocation was successful. If false is
1285 * returned, @rb is left untouched.
1286 */
rpcrdma_regbuf_realloc(struct rpcrdma_regbuf * rb,size_t size,gfp_t flags)1287 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1288 {
1289 void *buf;
1290
1291 buf = kmalloc(size, flags);
1292 if (!buf)
1293 return false;
1294
1295 rpcrdma_regbuf_dma_unmap(rb);
1296 kfree(rb->rg_data);
1297
1298 rb->rg_data = buf;
1299 rb->rg_iov.length = size;
1300 return true;
1301 }
1302
1303 /**
1304 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1305 * @r_xprt: controlling transport instance
1306 * @rb: regbuf to be mapped
1307 *
1308 * Returns true if the buffer is now DMA mapped to @r_xprt's device
1309 */
__rpcrdma_regbuf_dma_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_regbuf * rb)1310 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1311 struct rpcrdma_regbuf *rb)
1312 {
1313 struct ib_device *device = r_xprt->rx_ep->re_id->device;
1314
1315 if (rb->rg_direction == DMA_NONE)
1316 return false;
1317
1318 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1319 rdmab_length(rb), rb->rg_direction);
1320 if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1321 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1322 return false;
1323 }
1324
1325 rb->rg_device = device;
1326 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1327 return true;
1328 }
1329
rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf * rb)1330 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1331 {
1332 if (!rb)
1333 return;
1334
1335 if (!rpcrdma_regbuf_is_mapped(rb))
1336 return;
1337
1338 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1339 rb->rg_direction);
1340 rb->rg_device = NULL;
1341 }
1342
rpcrdma_regbuf_free(struct rpcrdma_regbuf * rb)1343 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1344 {
1345 rpcrdma_regbuf_dma_unmap(rb);
1346 if (rb)
1347 kfree(rb->rg_data);
1348 kfree(rb);
1349 }
1350
1351 /**
1352 * rpcrdma_post_recvs - Refill the Receive Queue
1353 * @r_xprt: controlling transport instance
1354 * @needed: current credit grant
1355 * @temp: mark Receive buffers to be deleted after one use
1356 *
1357 */
rpcrdma_post_recvs(struct rpcrdma_xprt * r_xprt,int needed,bool temp)1358 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1359 {
1360 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1361 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1362 struct ib_recv_wr *wr, *bad_wr;
1363 struct rpcrdma_rep *rep;
1364 int count, rc;
1365
1366 rc = 0;
1367 count = 0;
1368
1369 if (likely(ep->re_receive_count > needed))
1370 goto out;
1371 needed -= ep->re_receive_count;
1372 if (!temp)
1373 needed += RPCRDMA_MAX_RECV_BATCH;
1374
1375 if (atomic_inc_return(&ep->re_receiving) > 1)
1376 goto out;
1377
1378 /* fast path: all needed reps can be found on the free list */
1379 wr = NULL;
1380 while (needed) {
1381 rep = rpcrdma_rep_get_locked(buf);
1382 if (rep && rep->rr_temp) {
1383 rpcrdma_rep_destroy(rep);
1384 continue;
1385 }
1386 if (!rep)
1387 rep = rpcrdma_rep_create(r_xprt, temp);
1388 if (!rep)
1389 break;
1390
1391 rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id;
1392 trace_xprtrdma_post_recv(rep);
1393 rep->rr_recv_wr.next = wr;
1394 wr = &rep->rr_recv_wr;
1395 --needed;
1396 ++count;
1397 }
1398 if (!wr)
1399 goto out;
1400
1401 rc = ib_post_recv(ep->re_id->qp, wr,
1402 (const struct ib_recv_wr **)&bad_wr);
1403 if (rc) {
1404 trace_xprtrdma_post_recvs_err(r_xprt, rc);
1405 for (wr = bad_wr; wr;) {
1406 struct rpcrdma_rep *rep;
1407
1408 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1409 wr = wr->next;
1410 rpcrdma_rep_put(buf, rep);
1411 --count;
1412 }
1413 }
1414 if (atomic_dec_return(&ep->re_receiving) > 0)
1415 complete(&ep->re_done);
1416
1417 out:
1418 trace_xprtrdma_post_recvs(r_xprt, count);
1419 ep->re_receive_count += count;
1420 return;
1421 }
1422