1 // SPDX-License-Identifier: GPL-2.0-only
2 /*:
3 * Hibernate support specific for ARM64
4 *
5 * Derived from work on ARM hibernation support by:
6 *
7 * Ubuntu project, hibernation support for mach-dove
8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10 * https://lkml.org/lkml/2010/6/18/4
11 * https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12 * https://patchwork.kernel.org/patch/96442/
13 *
14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15 */
16 #define pr_fmt(x) "hibernate: " x
17 #include <linux/cpu.h>
18 #include <linux/kvm_host.h>
19 #include <linux/pm.h>
20 #include <linux/sched.h>
21 #include <linux/suspend.h>
22 #include <linux/utsname.h>
23
24 #include <asm/barrier.h>
25 #include <asm/cacheflush.h>
26 #include <asm/cputype.h>
27 #include <asm/daifflags.h>
28 #include <asm/irqflags.h>
29 #include <asm/kexec.h>
30 #include <asm/memory.h>
31 #include <asm/mmu_context.h>
32 #include <asm/mte.h>
33 #include <asm/sections.h>
34 #include <asm/smp.h>
35 #include <asm/smp_plat.h>
36 #include <asm/suspend.h>
37 #include <asm/sysreg.h>
38 #include <asm/trans_pgd.h>
39 #include <asm/virt.h>
40
41 /*
42 * Hibernate core relies on this value being 0 on resume, and marks it
43 * __nosavedata assuming it will keep the resume kernel's '0' value. This
44 * doesn't happen with either KASLR.
45 *
46 * defined as "__visible int in_suspend __nosavedata" in
47 * kernel/power/hibernate.c
48 */
49 extern int in_suspend;
50
51 /* Do we need to reset el2? */
52 #define el2_reset_needed() (is_hyp_nvhe())
53
54 /* hyp-stub vectors, used to restore el2 during resume from hibernate. */
55 extern char __hyp_stub_vectors[];
56
57 /*
58 * The logical cpu number we should resume on, initialised to a non-cpu
59 * number.
60 */
61 static int sleep_cpu = -EINVAL;
62
63 /*
64 * Values that may not change over hibernate/resume. We put the build number
65 * and date in here so that we guarantee not to resume with a different
66 * kernel.
67 */
68 struct arch_hibernate_hdr_invariants {
69 char uts_version[__NEW_UTS_LEN + 1];
70 };
71
72 /* These values need to be know across a hibernate/restore. */
73 static struct arch_hibernate_hdr {
74 struct arch_hibernate_hdr_invariants invariants;
75
76 /* These are needed to find the relocated kernel if built with kaslr */
77 phys_addr_t ttbr1_el1;
78 void (*reenter_kernel)(void);
79
80 /*
81 * We need to know where the __hyp_stub_vectors are after restore to
82 * re-configure el2.
83 */
84 phys_addr_t __hyp_stub_vectors;
85
86 u64 sleep_cpu_mpidr;
87 } resume_hdr;
88
arch_hdr_invariants(struct arch_hibernate_hdr_invariants * i)89 static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
90 {
91 memset(i, 0, sizeof(*i));
92 memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
93 }
94
pfn_is_nosave(unsigned long pfn)95 int pfn_is_nosave(unsigned long pfn)
96 {
97 unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
98 unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
99
100 return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
101 crash_is_nosave(pfn);
102 }
103
save_processor_state(void)104 void notrace save_processor_state(void)
105 {
106 WARN_ON(num_online_cpus() != 1);
107 }
108
restore_processor_state(void)109 void notrace restore_processor_state(void)
110 {
111 }
112
arch_hibernation_header_save(void * addr,unsigned int max_size)113 int arch_hibernation_header_save(void *addr, unsigned int max_size)
114 {
115 struct arch_hibernate_hdr *hdr = addr;
116
117 if (max_size < sizeof(*hdr))
118 return -EOVERFLOW;
119
120 arch_hdr_invariants(&hdr->invariants);
121 hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir);
122 hdr->reenter_kernel = _cpu_resume;
123
124 /* We can't use __hyp_get_vectors() because kvm may still be loaded */
125 if (el2_reset_needed())
126 hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
127 else
128 hdr->__hyp_stub_vectors = 0;
129
130 /* Save the mpidr of the cpu we called cpu_suspend() on... */
131 if (sleep_cpu < 0) {
132 pr_err("Failing to hibernate on an unknown CPU.\n");
133 return -ENODEV;
134 }
135 hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
136 pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
137 hdr->sleep_cpu_mpidr);
138
139 return 0;
140 }
141 EXPORT_SYMBOL(arch_hibernation_header_save);
142
arch_hibernation_header_restore(void * addr)143 int arch_hibernation_header_restore(void *addr)
144 {
145 int ret;
146 struct arch_hibernate_hdr_invariants invariants;
147 struct arch_hibernate_hdr *hdr = addr;
148
149 arch_hdr_invariants(&invariants);
150 if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
151 pr_crit("Hibernate image not generated by this kernel!\n");
152 return -EINVAL;
153 }
154
155 sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
156 pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
157 hdr->sleep_cpu_mpidr);
158 if (sleep_cpu < 0) {
159 pr_crit("Hibernated on a CPU not known to this kernel!\n");
160 sleep_cpu = -EINVAL;
161 return -EINVAL;
162 }
163
164 ret = bringup_hibernate_cpu(sleep_cpu);
165 if (ret) {
166 sleep_cpu = -EINVAL;
167 return ret;
168 }
169
170 resume_hdr = *hdr;
171
172 return 0;
173 }
174 EXPORT_SYMBOL(arch_hibernation_header_restore);
175
hibernate_page_alloc(void * arg)176 static void *hibernate_page_alloc(void *arg)
177 {
178 return (void *)get_safe_page((__force gfp_t)(unsigned long)arg);
179 }
180
181 /*
182 * Copies length bytes, starting at src_start into an new page,
183 * perform cache maintenance, then maps it at the specified address low
184 * address as executable.
185 *
186 * This is used by hibernate to copy the code it needs to execute when
187 * overwriting the kernel text. This function generates a new set of page
188 * tables, which it loads into ttbr0.
189 *
190 * Length is provided as we probably only want 4K of data, even on a 64K
191 * page system.
192 */
create_safe_exec_page(void * src_start,size_t length,phys_addr_t * phys_dst_addr)193 static int create_safe_exec_page(void *src_start, size_t length,
194 phys_addr_t *phys_dst_addr)
195 {
196 struct trans_pgd_info trans_info = {
197 .trans_alloc_page = hibernate_page_alloc,
198 .trans_alloc_arg = (__force void *)GFP_ATOMIC,
199 };
200
201 void *page = (void *)get_safe_page(GFP_ATOMIC);
202 phys_addr_t trans_ttbr0;
203 unsigned long t0sz;
204 int rc;
205
206 if (!page)
207 return -ENOMEM;
208
209 memcpy(page, src_start, length);
210 caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length);
211 rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page);
212 if (rc)
213 return rc;
214
215 cpu_install_ttbr0(trans_ttbr0, t0sz);
216 *phys_dst_addr = virt_to_phys(page);
217
218 return 0;
219 }
220
221 #ifdef CONFIG_ARM64_MTE
222
223 static DEFINE_XARRAY(mte_pages);
224
save_tags(struct page * page,unsigned long pfn)225 static int save_tags(struct page *page, unsigned long pfn)
226 {
227 void *tag_storage, *ret;
228
229 tag_storage = mte_allocate_tag_storage();
230 if (!tag_storage)
231 return -ENOMEM;
232
233 mte_save_page_tags(page_address(page), tag_storage);
234
235 ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
236 if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
237 mte_free_tag_storage(tag_storage);
238 return xa_err(ret);
239 } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
240 mte_free_tag_storage(ret);
241 }
242
243 return 0;
244 }
245
swsusp_mte_free_storage(void)246 static void swsusp_mte_free_storage(void)
247 {
248 XA_STATE(xa_state, &mte_pages, 0);
249 void *tags;
250
251 xa_lock(&mte_pages);
252 xas_for_each(&xa_state, tags, ULONG_MAX) {
253 mte_free_tag_storage(tags);
254 }
255 xa_unlock(&mte_pages);
256
257 xa_destroy(&mte_pages);
258 }
259
swsusp_mte_save_tags(void)260 static int swsusp_mte_save_tags(void)
261 {
262 struct zone *zone;
263 unsigned long pfn, max_zone_pfn;
264 int ret = 0;
265 int n = 0;
266
267 if (!system_supports_mte())
268 return 0;
269
270 for_each_populated_zone(zone) {
271 max_zone_pfn = zone_end_pfn(zone);
272 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
273 struct page *page = pfn_to_online_page(pfn);
274
275 if (!page)
276 continue;
277
278 if (!test_bit(PG_mte_tagged, &page->flags))
279 continue;
280
281 ret = save_tags(page, pfn);
282 if (ret) {
283 swsusp_mte_free_storage();
284 goto out;
285 }
286
287 n++;
288 }
289 }
290 pr_info("Saved %d MTE pages\n", n);
291
292 out:
293 return ret;
294 }
295
swsusp_mte_restore_tags(void)296 static void swsusp_mte_restore_tags(void)
297 {
298 XA_STATE(xa_state, &mte_pages, 0);
299 int n = 0;
300 void *tags;
301
302 xa_lock(&mte_pages);
303 xas_for_each(&xa_state, tags, ULONG_MAX) {
304 unsigned long pfn = xa_state.xa_index;
305 struct page *page = pfn_to_online_page(pfn);
306
307 /*
308 * It is not required to invoke page_kasan_tag_reset(page)
309 * at this point since the tags stored in page->flags are
310 * already restored.
311 */
312 mte_restore_page_tags(page_address(page), tags);
313
314 mte_free_tag_storage(tags);
315 n++;
316 }
317 xa_unlock(&mte_pages);
318
319 pr_info("Restored %d MTE pages\n", n);
320
321 xa_destroy(&mte_pages);
322 }
323
324 #else /* CONFIG_ARM64_MTE */
325
swsusp_mte_save_tags(void)326 static int swsusp_mte_save_tags(void)
327 {
328 return 0;
329 }
330
swsusp_mte_restore_tags(void)331 static void swsusp_mte_restore_tags(void)
332 {
333 }
334
335 #endif /* CONFIG_ARM64_MTE */
336
swsusp_arch_suspend(void)337 int swsusp_arch_suspend(void)
338 {
339 int ret = 0;
340 unsigned long flags;
341 struct sleep_stack_data state;
342
343 if (cpus_are_stuck_in_kernel()) {
344 pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
345 return -EBUSY;
346 }
347
348 flags = local_daif_save();
349
350 if (__cpu_suspend_enter(&state)) {
351 /* make the crash dump kernel image visible/saveable */
352 crash_prepare_suspend();
353
354 ret = swsusp_mte_save_tags();
355 if (ret)
356 return ret;
357
358 sleep_cpu = smp_processor_id();
359 ret = swsusp_save();
360 } else {
361 /* Clean kernel core startup/idle code to PoC*/
362 dcache_clean_inval_poc((unsigned long)__mmuoff_data_start,
363 (unsigned long)__mmuoff_data_end);
364 dcache_clean_inval_poc((unsigned long)__idmap_text_start,
365 (unsigned long)__idmap_text_end);
366
367 /* Clean kvm setup code to PoC? */
368 if (el2_reset_needed()) {
369 dcache_clean_inval_poc(
370 (unsigned long)__hyp_idmap_text_start,
371 (unsigned long)__hyp_idmap_text_end);
372 dcache_clean_inval_poc((unsigned long)__hyp_text_start,
373 (unsigned long)__hyp_text_end);
374 }
375
376 swsusp_mte_restore_tags();
377
378 /* make the crash dump kernel image protected again */
379 crash_post_resume();
380
381 /*
382 * Tell the hibernation core that we've just restored
383 * the memory
384 */
385 in_suspend = 0;
386
387 sleep_cpu = -EINVAL;
388 __cpu_suspend_exit();
389
390 /*
391 * Just in case the boot kernel did turn the SSBD
392 * mitigation off behind our back, let's set the state
393 * to what we expect it to be.
394 */
395 spectre_v4_enable_mitigation(NULL);
396 }
397
398 local_daif_restore(flags);
399
400 return ret;
401 }
402
403 /*
404 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
405 *
406 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
407 * we don't need to free it here.
408 */
swsusp_arch_resume(void)409 int swsusp_arch_resume(void)
410 {
411 int rc;
412 void *zero_page;
413 size_t exit_size;
414 pgd_t *tmp_pg_dir;
415 phys_addr_t el2_vectors;
416 void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
417 void *, phys_addr_t, phys_addr_t);
418 struct trans_pgd_info trans_info = {
419 .trans_alloc_page = hibernate_page_alloc,
420 .trans_alloc_arg = (void *)GFP_ATOMIC,
421 };
422
423 /*
424 * Restoring the memory image will overwrite the ttbr1 page tables.
425 * Create a second copy of just the linear map, and use this when
426 * restoring.
427 */
428 rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET,
429 PAGE_END);
430 if (rc)
431 return rc;
432
433 /*
434 * We need a zero page that is zero before & after resume in order to
435 * to break before make on the ttbr1 page tables.
436 */
437 zero_page = (void *)get_safe_page(GFP_ATOMIC);
438 if (!zero_page) {
439 pr_err("Failed to allocate zero page.\n");
440 return -ENOMEM;
441 }
442
443 if (el2_reset_needed()) {
444 rc = trans_pgd_copy_el2_vectors(&trans_info, &el2_vectors);
445 if (rc) {
446 pr_err("Failed to setup el2 vectors\n");
447 return rc;
448 }
449 }
450
451 exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
452 /*
453 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
454 * a new set of ttbr0 page tables and load them.
455 */
456 rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
457 (phys_addr_t *)&hibernate_exit);
458 if (rc) {
459 pr_err("Failed to create safe executable page for hibernate_exit code.\n");
460 return rc;
461 }
462
463 /*
464 * KASLR will cause the el2 vectors to be in a different location in
465 * the resumed kernel. Load hibernate's temporary copy into el2.
466 *
467 * We can skip this step if we booted at EL1, or are running with VHE.
468 */
469 if (el2_reset_needed())
470 __hyp_set_vectors(el2_vectors);
471
472 hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
473 resume_hdr.reenter_kernel, restore_pblist,
474 resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
475
476 return 0;
477 }
478
hibernate_resume_nonboot_cpu_disable(void)479 int hibernate_resume_nonboot_cpu_disable(void)
480 {
481 if (sleep_cpu < 0) {
482 pr_err("Failing to resume from hibernate on an unknown CPU.\n");
483 return -ENODEV;
484 }
485
486 return freeze_secondary_cpus(sleep_cpu);
487 }
488