1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/mman.h>
8 #include <linux/kvm_host.h>
9 #include <linux/io.h>
10 #include <linux/hugetlb.h>
11 #include <linux/sched/signal.h>
12 #include <trace/events/kvm.h>
13 #include <asm/pgalloc.h>
14 #include <asm/cacheflush.h>
15 #include <asm/kvm_arm.h>
16 #include <asm/kvm_mmu.h>
17 #include <asm/kvm_pgtable.h>
18 #include <asm/kvm_ras.h>
19 #include <asm/kvm_asm.h>
20 #include <asm/kvm_emulate.h>
21 #include <asm/virt.h>
22
23 #include "trace.h"
24
25 static struct kvm_pgtable *hyp_pgtable;
26 static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28 static unsigned long hyp_idmap_start;
29 static unsigned long hyp_idmap_end;
30 static phys_addr_t hyp_idmap_vector;
31
32 static unsigned long io_map_base;
33
34
35 /*
36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39 * long will also starve other vCPUs. We have to also make sure that the page
40 * tables are not freed while we released the lock.
41 */
stage2_apply_range(struct kvm * kvm,phys_addr_t addr,phys_addr_t end,int (* fn)(struct kvm_pgtable *,u64,u64),bool resched)42 static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43 phys_addr_t end,
44 int (*fn)(struct kvm_pgtable *, u64, u64),
45 bool resched)
46 {
47 int ret;
48 u64 next;
49
50 do {
51 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52 if (!pgt)
53 return -EINVAL;
54
55 next = stage2_pgd_addr_end(kvm, addr, end);
56 ret = fn(pgt, addr, next - addr);
57 if (ret)
58 break;
59
60 if (resched && next != end)
61 cond_resched_lock(&kvm->mmu_lock);
62 } while (addr = next, addr != end);
63
64 return ret;
65 }
66
67 #define stage2_apply_range_resched(kvm, addr, end, fn) \
68 stage2_apply_range(kvm, addr, end, fn, true)
69
memslot_is_logging(struct kvm_memory_slot * memslot)70 static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71 {
72 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73 }
74
75 /**
76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77 * @kvm: pointer to kvm structure.
78 *
79 * Interface to HYP function to flush all VM TLB entries
80 */
kvm_flush_remote_tlbs(struct kvm * kvm)81 void kvm_flush_remote_tlbs(struct kvm *kvm)
82 {
83 ++kvm->stat.generic.remote_tlb_flush_requests;
84 kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
85 }
86
kvm_is_device_pfn(unsigned long pfn)87 static bool kvm_is_device_pfn(unsigned long pfn)
88 {
89 return !pfn_is_map_memory(pfn);
90 }
91
stage2_memcache_zalloc_page(void * arg)92 static void *stage2_memcache_zalloc_page(void *arg)
93 {
94 struct kvm_mmu_memory_cache *mc = arg;
95
96 /* Allocated with __GFP_ZERO, so no need to zero */
97 return kvm_mmu_memory_cache_alloc(mc);
98 }
99
kvm_host_zalloc_pages_exact(size_t size)100 static void *kvm_host_zalloc_pages_exact(size_t size)
101 {
102 return alloc_pages_exact(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
103 }
104
kvm_host_get_page(void * addr)105 static void kvm_host_get_page(void *addr)
106 {
107 get_page(virt_to_page(addr));
108 }
109
kvm_host_put_page(void * addr)110 static void kvm_host_put_page(void *addr)
111 {
112 put_page(virt_to_page(addr));
113 }
114
kvm_host_page_count(void * addr)115 static int kvm_host_page_count(void *addr)
116 {
117 return page_count(virt_to_page(addr));
118 }
119
kvm_host_pa(void * addr)120 static phys_addr_t kvm_host_pa(void *addr)
121 {
122 return __pa(addr);
123 }
124
kvm_host_va(phys_addr_t phys)125 static void *kvm_host_va(phys_addr_t phys)
126 {
127 return __va(phys);
128 }
129
clean_dcache_guest_page(void * va,size_t size)130 static void clean_dcache_guest_page(void *va, size_t size)
131 {
132 __clean_dcache_guest_page(va, size);
133 }
134
invalidate_icache_guest_page(void * va,size_t size)135 static void invalidate_icache_guest_page(void *va, size_t size)
136 {
137 __invalidate_icache_guest_page(va, size);
138 }
139
140 /*
141 * Unmapping vs dcache management:
142 *
143 * If a guest maps certain memory pages as uncached, all writes will
144 * bypass the data cache and go directly to RAM. However, the CPUs
145 * can still speculate reads (not writes) and fill cache lines with
146 * data.
147 *
148 * Those cache lines will be *clean* cache lines though, so a
149 * clean+invalidate operation is equivalent to an invalidate
150 * operation, because no cache lines are marked dirty.
151 *
152 * Those clean cache lines could be filled prior to an uncached write
153 * by the guest, and the cache coherent IO subsystem would therefore
154 * end up writing old data to disk.
155 *
156 * This is why right after unmapping a page/section and invalidating
157 * the corresponding TLBs, we flush to make sure the IO subsystem will
158 * never hit in the cache.
159 *
160 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
161 * we then fully enforce cacheability of RAM, no matter what the guest
162 * does.
163 */
164 /**
165 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
166 * @mmu: The KVM stage-2 MMU pointer
167 * @start: The intermediate physical base address of the range to unmap
168 * @size: The size of the area to unmap
169 * @may_block: Whether or not we are permitted to block
170 *
171 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
172 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
173 * destroying the VM), otherwise another faulting VCPU may come in and mess
174 * with things behind our backs.
175 */
__unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size,bool may_block)176 static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
177 bool may_block)
178 {
179 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
180 phys_addr_t end = start + size;
181
182 assert_spin_locked(&kvm->mmu_lock);
183 WARN_ON(size & ~PAGE_MASK);
184 WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
185 may_block));
186 }
187
unmap_stage2_range(struct kvm_s2_mmu * mmu,phys_addr_t start,u64 size)188 static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
189 {
190 __unmap_stage2_range(mmu, start, size, true);
191 }
192
stage2_flush_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)193 static void stage2_flush_memslot(struct kvm *kvm,
194 struct kvm_memory_slot *memslot)
195 {
196 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
197 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
198
199 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
200 }
201
202 /**
203 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
204 * @kvm: The struct kvm pointer
205 *
206 * Go through the stage 2 page tables and invalidate any cache lines
207 * backing memory already mapped to the VM.
208 */
stage2_flush_vm(struct kvm * kvm)209 static void stage2_flush_vm(struct kvm *kvm)
210 {
211 struct kvm_memslots *slots;
212 struct kvm_memory_slot *memslot;
213 int idx;
214
215 idx = srcu_read_lock(&kvm->srcu);
216 spin_lock(&kvm->mmu_lock);
217
218 slots = kvm_memslots(kvm);
219 kvm_for_each_memslot(memslot, slots)
220 stage2_flush_memslot(kvm, memslot);
221
222 spin_unlock(&kvm->mmu_lock);
223 srcu_read_unlock(&kvm->srcu, idx);
224 }
225
226 /**
227 * free_hyp_pgds - free Hyp-mode page tables
228 */
free_hyp_pgds(void)229 void free_hyp_pgds(void)
230 {
231 mutex_lock(&kvm_hyp_pgd_mutex);
232 if (hyp_pgtable) {
233 kvm_pgtable_hyp_destroy(hyp_pgtable);
234 kfree(hyp_pgtable);
235 hyp_pgtable = NULL;
236 }
237 mutex_unlock(&kvm_hyp_pgd_mutex);
238 }
239
kvm_host_owns_hyp_mappings(void)240 static bool kvm_host_owns_hyp_mappings(void)
241 {
242 if (static_branch_likely(&kvm_protected_mode_initialized))
243 return false;
244
245 /*
246 * This can happen at boot time when __create_hyp_mappings() is called
247 * after the hyp protection has been enabled, but the static key has
248 * not been flipped yet.
249 */
250 if (!hyp_pgtable && is_protected_kvm_enabled())
251 return false;
252
253 WARN_ON(!hyp_pgtable);
254
255 return true;
256 }
257
__create_hyp_mappings(unsigned long start,unsigned long size,unsigned long phys,enum kvm_pgtable_prot prot)258 static int __create_hyp_mappings(unsigned long start, unsigned long size,
259 unsigned long phys, enum kvm_pgtable_prot prot)
260 {
261 int err;
262
263 if (WARN_ON(!kvm_host_owns_hyp_mappings()))
264 return -EINVAL;
265
266 mutex_lock(&kvm_hyp_pgd_mutex);
267 err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
268 mutex_unlock(&kvm_hyp_pgd_mutex);
269
270 return err;
271 }
272
kvm_kaddr_to_phys(void * kaddr)273 static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
274 {
275 if (!is_vmalloc_addr(kaddr)) {
276 BUG_ON(!virt_addr_valid(kaddr));
277 return __pa(kaddr);
278 } else {
279 return page_to_phys(vmalloc_to_page(kaddr)) +
280 offset_in_page(kaddr);
281 }
282 }
283
pkvm_share_hyp(phys_addr_t start,phys_addr_t end)284 static int pkvm_share_hyp(phys_addr_t start, phys_addr_t end)
285 {
286 phys_addr_t addr;
287 int ret;
288
289 for (addr = ALIGN_DOWN(start, PAGE_SIZE); addr < end; addr += PAGE_SIZE) {
290 ret = kvm_call_hyp_nvhe(__pkvm_host_share_hyp,
291 __phys_to_pfn(addr));
292 if (ret)
293 return ret;
294 }
295
296 return 0;
297 }
298
299 /**
300 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
301 * @from: The virtual kernel start address of the range
302 * @to: The virtual kernel end address of the range (exclusive)
303 * @prot: The protection to be applied to this range
304 *
305 * The same virtual address as the kernel virtual address is also used
306 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
307 * physical pages.
308 */
create_hyp_mappings(void * from,void * to,enum kvm_pgtable_prot prot)309 int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
310 {
311 phys_addr_t phys_addr;
312 unsigned long virt_addr;
313 unsigned long start = kern_hyp_va((unsigned long)from);
314 unsigned long end = kern_hyp_va((unsigned long)to);
315
316 if (is_kernel_in_hyp_mode())
317 return 0;
318
319 if (!kvm_host_owns_hyp_mappings()) {
320 if (WARN_ON(prot != PAGE_HYP))
321 return -EPERM;
322 return pkvm_share_hyp(kvm_kaddr_to_phys(from),
323 kvm_kaddr_to_phys(to));
324 }
325
326 start = start & PAGE_MASK;
327 end = PAGE_ALIGN(end);
328
329 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
330 int err;
331
332 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
333 err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
334 prot);
335 if (err)
336 return err;
337 }
338
339 return 0;
340 }
341
__create_hyp_private_mapping(phys_addr_t phys_addr,size_t size,unsigned long * haddr,enum kvm_pgtable_prot prot)342 static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
343 unsigned long *haddr,
344 enum kvm_pgtable_prot prot)
345 {
346 unsigned long base;
347 int ret = 0;
348
349 if (!kvm_host_owns_hyp_mappings()) {
350 base = kvm_call_hyp_nvhe(__pkvm_create_private_mapping,
351 phys_addr, size, prot);
352 if (IS_ERR_OR_NULL((void *)base))
353 return PTR_ERR((void *)base);
354 *haddr = base;
355
356 return 0;
357 }
358
359 mutex_lock(&kvm_hyp_pgd_mutex);
360
361 /*
362 * This assumes that we have enough space below the idmap
363 * page to allocate our VAs. If not, the check below will
364 * kick. A potential alternative would be to detect that
365 * overflow and switch to an allocation above the idmap.
366 *
367 * The allocated size is always a multiple of PAGE_SIZE.
368 */
369 size = PAGE_ALIGN(size + offset_in_page(phys_addr));
370 base = io_map_base - size;
371
372 /*
373 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
374 * allocating the new area, as it would indicate we've
375 * overflowed the idmap/IO address range.
376 */
377 if ((base ^ io_map_base) & BIT(VA_BITS - 1))
378 ret = -ENOMEM;
379 else
380 io_map_base = base;
381
382 mutex_unlock(&kvm_hyp_pgd_mutex);
383
384 if (ret)
385 goto out;
386
387 ret = __create_hyp_mappings(base, size, phys_addr, prot);
388 if (ret)
389 goto out;
390
391 *haddr = base + offset_in_page(phys_addr);
392 out:
393 return ret;
394 }
395
396 /**
397 * create_hyp_io_mappings - Map IO into both kernel and HYP
398 * @phys_addr: The physical start address which gets mapped
399 * @size: Size of the region being mapped
400 * @kaddr: Kernel VA for this mapping
401 * @haddr: HYP VA for this mapping
402 */
create_hyp_io_mappings(phys_addr_t phys_addr,size_t size,void __iomem ** kaddr,void __iomem ** haddr)403 int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
404 void __iomem **kaddr,
405 void __iomem **haddr)
406 {
407 unsigned long addr;
408 int ret;
409
410 *kaddr = ioremap(phys_addr, size);
411 if (!*kaddr)
412 return -ENOMEM;
413
414 if (is_kernel_in_hyp_mode()) {
415 *haddr = *kaddr;
416 return 0;
417 }
418
419 ret = __create_hyp_private_mapping(phys_addr, size,
420 &addr, PAGE_HYP_DEVICE);
421 if (ret) {
422 iounmap(*kaddr);
423 *kaddr = NULL;
424 *haddr = NULL;
425 return ret;
426 }
427
428 *haddr = (void __iomem *)addr;
429 return 0;
430 }
431
432 /**
433 * create_hyp_exec_mappings - Map an executable range into HYP
434 * @phys_addr: The physical start address which gets mapped
435 * @size: Size of the region being mapped
436 * @haddr: HYP VA for this mapping
437 */
create_hyp_exec_mappings(phys_addr_t phys_addr,size_t size,void ** haddr)438 int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
439 void **haddr)
440 {
441 unsigned long addr;
442 int ret;
443
444 BUG_ON(is_kernel_in_hyp_mode());
445
446 ret = __create_hyp_private_mapping(phys_addr, size,
447 &addr, PAGE_HYP_EXEC);
448 if (ret) {
449 *haddr = NULL;
450 return ret;
451 }
452
453 *haddr = (void *)addr;
454 return 0;
455 }
456
457 static struct kvm_pgtable_mm_ops kvm_user_mm_ops = {
458 /* We shouldn't need any other callback to walk the PT */
459 .phys_to_virt = kvm_host_va,
460 };
461
get_user_mapping_size(struct kvm * kvm,u64 addr)462 static int get_user_mapping_size(struct kvm *kvm, u64 addr)
463 {
464 struct kvm_pgtable pgt = {
465 .pgd = (kvm_pte_t *)kvm->mm->pgd,
466 .ia_bits = VA_BITS,
467 .start_level = (KVM_PGTABLE_MAX_LEVELS -
468 CONFIG_PGTABLE_LEVELS),
469 .mm_ops = &kvm_user_mm_ops,
470 };
471 kvm_pte_t pte = 0; /* Keep GCC quiet... */
472 u32 level = ~0;
473 int ret;
474
475 ret = kvm_pgtable_get_leaf(&pgt, addr, &pte, &level);
476 VM_BUG_ON(ret);
477 VM_BUG_ON(level >= KVM_PGTABLE_MAX_LEVELS);
478 VM_BUG_ON(!(pte & PTE_VALID));
479
480 return BIT(ARM64_HW_PGTABLE_LEVEL_SHIFT(level));
481 }
482
483 static struct kvm_pgtable_mm_ops kvm_s2_mm_ops = {
484 .zalloc_page = stage2_memcache_zalloc_page,
485 .zalloc_pages_exact = kvm_host_zalloc_pages_exact,
486 .free_pages_exact = free_pages_exact,
487 .get_page = kvm_host_get_page,
488 .put_page = kvm_host_put_page,
489 .page_count = kvm_host_page_count,
490 .phys_to_virt = kvm_host_va,
491 .virt_to_phys = kvm_host_pa,
492 .dcache_clean_inval_poc = clean_dcache_guest_page,
493 .icache_inval_pou = invalidate_icache_guest_page,
494 };
495
496 /**
497 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
498 * @kvm: The pointer to the KVM structure
499 * @mmu: The pointer to the s2 MMU structure
500 *
501 * Allocates only the stage-2 HW PGD level table(s).
502 * Note we don't need locking here as this is only called when the VM is
503 * created, which can only be done once.
504 */
kvm_init_stage2_mmu(struct kvm * kvm,struct kvm_s2_mmu * mmu)505 int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
506 {
507 int cpu, err;
508 struct kvm_pgtable *pgt;
509
510 if (mmu->pgt != NULL) {
511 kvm_err("kvm_arch already initialized?\n");
512 return -EINVAL;
513 }
514
515 pgt = kzalloc(sizeof(*pgt), GFP_KERNEL_ACCOUNT);
516 if (!pgt)
517 return -ENOMEM;
518
519 err = kvm_pgtable_stage2_init(pgt, &kvm->arch, &kvm_s2_mm_ops);
520 if (err)
521 goto out_free_pgtable;
522
523 mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
524 if (!mmu->last_vcpu_ran) {
525 err = -ENOMEM;
526 goto out_destroy_pgtable;
527 }
528
529 for_each_possible_cpu(cpu)
530 *per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
531
532 mmu->arch = &kvm->arch;
533 mmu->pgt = pgt;
534 mmu->pgd_phys = __pa(pgt->pgd);
535 WRITE_ONCE(mmu->vmid.vmid_gen, 0);
536 return 0;
537
538 out_destroy_pgtable:
539 kvm_pgtable_stage2_destroy(pgt);
540 out_free_pgtable:
541 kfree(pgt);
542 return err;
543 }
544
stage2_unmap_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)545 static void stage2_unmap_memslot(struct kvm *kvm,
546 struct kvm_memory_slot *memslot)
547 {
548 hva_t hva = memslot->userspace_addr;
549 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
550 phys_addr_t size = PAGE_SIZE * memslot->npages;
551 hva_t reg_end = hva + size;
552
553 /*
554 * A memory region could potentially cover multiple VMAs, and any holes
555 * between them, so iterate over all of them to find out if we should
556 * unmap any of them.
557 *
558 * +--------------------------------------------+
559 * +---------------+----------------+ +----------------+
560 * | : VMA 1 | VMA 2 | | VMA 3 : |
561 * +---------------+----------------+ +----------------+
562 * | memory region |
563 * +--------------------------------------------+
564 */
565 do {
566 struct vm_area_struct *vma;
567 hva_t vm_start, vm_end;
568
569 vma = find_vma_intersection(current->mm, hva, reg_end);
570 if (!vma)
571 break;
572
573 /*
574 * Take the intersection of this VMA with the memory region
575 */
576 vm_start = max(hva, vma->vm_start);
577 vm_end = min(reg_end, vma->vm_end);
578
579 if (!(vma->vm_flags & VM_PFNMAP)) {
580 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
581 unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
582 }
583 hva = vm_end;
584 } while (hva < reg_end);
585 }
586
587 /**
588 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
589 * @kvm: The struct kvm pointer
590 *
591 * Go through the memregions and unmap any regular RAM
592 * backing memory already mapped to the VM.
593 */
stage2_unmap_vm(struct kvm * kvm)594 void stage2_unmap_vm(struct kvm *kvm)
595 {
596 struct kvm_memslots *slots;
597 struct kvm_memory_slot *memslot;
598 int idx;
599
600 idx = srcu_read_lock(&kvm->srcu);
601 mmap_read_lock(current->mm);
602 spin_lock(&kvm->mmu_lock);
603
604 slots = kvm_memslots(kvm);
605 kvm_for_each_memslot(memslot, slots)
606 stage2_unmap_memslot(kvm, memslot);
607
608 spin_unlock(&kvm->mmu_lock);
609 mmap_read_unlock(current->mm);
610 srcu_read_unlock(&kvm->srcu, idx);
611 }
612
kvm_free_stage2_pgd(struct kvm_s2_mmu * mmu)613 void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
614 {
615 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
616 struct kvm_pgtable *pgt = NULL;
617
618 spin_lock(&kvm->mmu_lock);
619 pgt = mmu->pgt;
620 if (pgt) {
621 mmu->pgd_phys = 0;
622 mmu->pgt = NULL;
623 free_percpu(mmu->last_vcpu_ran);
624 }
625 spin_unlock(&kvm->mmu_lock);
626
627 if (pgt) {
628 kvm_pgtable_stage2_destroy(pgt);
629 kfree(pgt);
630 }
631 }
632
633 /**
634 * kvm_phys_addr_ioremap - map a device range to guest IPA
635 *
636 * @kvm: The KVM pointer
637 * @guest_ipa: The IPA at which to insert the mapping
638 * @pa: The physical address of the device
639 * @size: The size of the mapping
640 * @writable: Whether or not to create a writable mapping
641 */
kvm_phys_addr_ioremap(struct kvm * kvm,phys_addr_t guest_ipa,phys_addr_t pa,unsigned long size,bool writable)642 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
643 phys_addr_t pa, unsigned long size, bool writable)
644 {
645 phys_addr_t addr;
646 int ret = 0;
647 struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
648 struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
649 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
650 KVM_PGTABLE_PROT_R |
651 (writable ? KVM_PGTABLE_PROT_W : 0);
652
653 size += offset_in_page(guest_ipa);
654 guest_ipa &= PAGE_MASK;
655
656 for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
657 ret = kvm_mmu_topup_memory_cache(&cache,
658 kvm_mmu_cache_min_pages(kvm));
659 if (ret)
660 break;
661
662 spin_lock(&kvm->mmu_lock);
663 ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
664 &cache);
665 spin_unlock(&kvm->mmu_lock);
666 if (ret)
667 break;
668
669 pa += PAGE_SIZE;
670 }
671
672 kvm_mmu_free_memory_cache(&cache);
673 return ret;
674 }
675
676 /**
677 * stage2_wp_range() - write protect stage2 memory region range
678 * @mmu: The KVM stage-2 MMU pointer
679 * @addr: Start address of range
680 * @end: End address of range
681 */
stage2_wp_range(struct kvm_s2_mmu * mmu,phys_addr_t addr,phys_addr_t end)682 static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
683 {
684 struct kvm *kvm = kvm_s2_mmu_to_kvm(mmu);
685 stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
686 }
687
688 /**
689 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
690 * @kvm: The KVM pointer
691 * @slot: The memory slot to write protect
692 *
693 * Called to start logging dirty pages after memory region
694 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
695 * all present PUD, PMD and PTEs are write protected in the memory region.
696 * Afterwards read of dirty page log can be called.
697 *
698 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
699 * serializing operations for VM memory regions.
700 */
kvm_mmu_wp_memory_region(struct kvm * kvm,int slot)701 static void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
702 {
703 struct kvm_memslots *slots = kvm_memslots(kvm);
704 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
705 phys_addr_t start, end;
706
707 if (WARN_ON_ONCE(!memslot))
708 return;
709
710 start = memslot->base_gfn << PAGE_SHIFT;
711 end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
712
713 spin_lock(&kvm->mmu_lock);
714 stage2_wp_range(&kvm->arch.mmu, start, end);
715 spin_unlock(&kvm->mmu_lock);
716 kvm_flush_remote_tlbs(kvm);
717 }
718
719 /**
720 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
721 * @kvm: The KVM pointer
722 * @slot: The memory slot associated with mask
723 * @gfn_offset: The gfn offset in memory slot
724 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
725 * slot to be write protected
726 *
727 * Walks bits set in mask write protects the associated pte's. Caller must
728 * acquire kvm_mmu_lock.
729 */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)730 static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
731 struct kvm_memory_slot *slot,
732 gfn_t gfn_offset, unsigned long mask)
733 {
734 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
735 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
736 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
737
738 stage2_wp_range(&kvm->arch.mmu, start, end);
739 }
740
741 /*
742 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
743 * dirty pages.
744 *
745 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
746 * enable dirty logging for them.
747 */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)748 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
749 struct kvm_memory_slot *slot,
750 gfn_t gfn_offset, unsigned long mask)
751 {
752 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
753 }
754
kvm_send_hwpoison_signal(unsigned long address,short lsb)755 static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
756 {
757 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
758 }
759
fault_supports_stage2_huge_mapping(struct kvm_memory_slot * memslot,unsigned long hva,unsigned long map_size)760 static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
761 unsigned long hva,
762 unsigned long map_size)
763 {
764 gpa_t gpa_start;
765 hva_t uaddr_start, uaddr_end;
766 size_t size;
767
768 /* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
769 if (map_size == PAGE_SIZE)
770 return true;
771
772 size = memslot->npages * PAGE_SIZE;
773
774 gpa_start = memslot->base_gfn << PAGE_SHIFT;
775
776 uaddr_start = memslot->userspace_addr;
777 uaddr_end = uaddr_start + size;
778
779 /*
780 * Pages belonging to memslots that don't have the same alignment
781 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
782 * PMD/PUD entries, because we'll end up mapping the wrong pages.
783 *
784 * Consider a layout like the following:
785 *
786 * memslot->userspace_addr:
787 * +-----+--------------------+--------------------+---+
788 * |abcde|fgh Stage-1 block | Stage-1 block tv|xyz|
789 * +-----+--------------------+--------------------+---+
790 *
791 * memslot->base_gfn << PAGE_SHIFT:
792 * +---+--------------------+--------------------+-----+
793 * |abc|def Stage-2 block | Stage-2 block |tvxyz|
794 * +---+--------------------+--------------------+-----+
795 *
796 * If we create those stage-2 blocks, we'll end up with this incorrect
797 * mapping:
798 * d -> f
799 * e -> g
800 * f -> h
801 */
802 if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
803 return false;
804
805 /*
806 * Next, let's make sure we're not trying to map anything not covered
807 * by the memslot. This means we have to prohibit block size mappings
808 * for the beginning and end of a non-block aligned and non-block sized
809 * memory slot (illustrated by the head and tail parts of the
810 * userspace view above containing pages 'abcde' and 'xyz',
811 * respectively).
812 *
813 * Note that it doesn't matter if we do the check using the
814 * userspace_addr or the base_gfn, as both are equally aligned (per
815 * the check above) and equally sized.
816 */
817 return (hva & ~(map_size - 1)) >= uaddr_start &&
818 (hva & ~(map_size - 1)) + map_size <= uaddr_end;
819 }
820
821 /*
822 * Check if the given hva is backed by a transparent huge page (THP) and
823 * whether it can be mapped using block mapping in stage2. If so, adjust
824 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
825 * supported. This will need to be updated to support other THP sizes.
826 *
827 * Returns the size of the mapping.
828 */
829 static unsigned long
transparent_hugepage_adjust(struct kvm * kvm,struct kvm_memory_slot * memslot,unsigned long hva,kvm_pfn_t * pfnp,phys_addr_t * ipap)830 transparent_hugepage_adjust(struct kvm *kvm, struct kvm_memory_slot *memslot,
831 unsigned long hva, kvm_pfn_t *pfnp,
832 phys_addr_t *ipap)
833 {
834 kvm_pfn_t pfn = *pfnp;
835
836 /*
837 * Make sure the adjustment is done only for THP pages. Also make
838 * sure that the HVA and IPA are sufficiently aligned and that the
839 * block map is contained within the memslot.
840 */
841 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE) &&
842 get_user_mapping_size(kvm, hva) >= PMD_SIZE) {
843 /*
844 * The address we faulted on is backed by a transparent huge
845 * page. However, because we map the compound huge page and
846 * not the individual tail page, we need to transfer the
847 * refcount to the head page. We have to be careful that the
848 * THP doesn't start to split while we are adjusting the
849 * refcounts.
850 *
851 * We are sure this doesn't happen, because mmu_notifier_retry
852 * was successful and we are holding the mmu_lock, so if this
853 * THP is trying to split, it will be blocked in the mmu
854 * notifier before touching any of the pages, specifically
855 * before being able to call __split_huge_page_refcount().
856 *
857 * We can therefore safely transfer the refcount from PG_tail
858 * to PG_head and switch the pfn from a tail page to the head
859 * page accordingly.
860 */
861 *ipap &= PMD_MASK;
862 kvm_release_pfn_clean(pfn);
863 pfn &= ~(PTRS_PER_PMD - 1);
864 get_page(pfn_to_page(pfn));
865 *pfnp = pfn;
866
867 return PMD_SIZE;
868 }
869
870 /* Use page mapping if we cannot use block mapping. */
871 return PAGE_SIZE;
872 }
873
get_vma_page_shift(struct vm_area_struct * vma,unsigned long hva)874 static int get_vma_page_shift(struct vm_area_struct *vma, unsigned long hva)
875 {
876 unsigned long pa;
877
878 if (is_vm_hugetlb_page(vma) && !(vma->vm_flags & VM_PFNMAP))
879 return huge_page_shift(hstate_vma(vma));
880
881 if (!(vma->vm_flags & VM_PFNMAP))
882 return PAGE_SHIFT;
883
884 VM_BUG_ON(is_vm_hugetlb_page(vma));
885
886 pa = (vma->vm_pgoff << PAGE_SHIFT) + (hva - vma->vm_start);
887
888 #ifndef __PAGETABLE_PMD_FOLDED
889 if ((hva & (PUD_SIZE - 1)) == (pa & (PUD_SIZE - 1)) &&
890 ALIGN_DOWN(hva, PUD_SIZE) >= vma->vm_start &&
891 ALIGN(hva, PUD_SIZE) <= vma->vm_end)
892 return PUD_SHIFT;
893 #endif
894
895 if ((hva & (PMD_SIZE - 1)) == (pa & (PMD_SIZE - 1)) &&
896 ALIGN_DOWN(hva, PMD_SIZE) >= vma->vm_start &&
897 ALIGN(hva, PMD_SIZE) <= vma->vm_end)
898 return PMD_SHIFT;
899
900 return PAGE_SHIFT;
901 }
902
903 /*
904 * The page will be mapped in stage 2 as Normal Cacheable, so the VM will be
905 * able to see the page's tags and therefore they must be initialised first. If
906 * PG_mte_tagged is set, tags have already been initialised.
907 *
908 * The race in the test/set of the PG_mte_tagged flag is handled by:
909 * - preventing VM_SHARED mappings in a memslot with MTE preventing two VMs
910 * racing to santise the same page
911 * - mmap_lock protects between a VM faulting a page in and the VMM performing
912 * an mprotect() to add VM_MTE
913 */
sanitise_mte_tags(struct kvm * kvm,kvm_pfn_t pfn,unsigned long size)914 static int sanitise_mte_tags(struct kvm *kvm, kvm_pfn_t pfn,
915 unsigned long size)
916 {
917 unsigned long i, nr_pages = size >> PAGE_SHIFT;
918 struct page *page;
919
920 if (!kvm_has_mte(kvm))
921 return 0;
922
923 /*
924 * pfn_to_online_page() is used to reject ZONE_DEVICE pages
925 * that may not support tags.
926 */
927 page = pfn_to_online_page(pfn);
928
929 if (!page)
930 return -EFAULT;
931
932 for (i = 0; i < nr_pages; i++, page++) {
933 if (!test_bit(PG_mte_tagged, &page->flags)) {
934 mte_clear_page_tags(page_address(page));
935 set_bit(PG_mte_tagged, &page->flags);
936 }
937 }
938
939 return 0;
940 }
941
user_mem_abort(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa,struct kvm_memory_slot * memslot,unsigned long hva,unsigned long fault_status)942 static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
943 struct kvm_memory_slot *memslot, unsigned long hva,
944 unsigned long fault_status)
945 {
946 int ret = 0;
947 bool write_fault, writable, force_pte = false;
948 bool exec_fault;
949 bool device = false;
950 bool shared;
951 unsigned long mmu_seq;
952 struct kvm *kvm = vcpu->kvm;
953 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
954 struct vm_area_struct *vma;
955 short vma_shift;
956 gfn_t gfn;
957 kvm_pfn_t pfn;
958 bool logging_active = memslot_is_logging(memslot);
959 unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
960 unsigned long vma_pagesize, fault_granule;
961 enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
962 struct kvm_pgtable *pgt;
963
964 fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
965 write_fault = kvm_is_write_fault(vcpu);
966 exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
967 VM_BUG_ON(write_fault && exec_fault);
968
969 if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
970 kvm_err("Unexpected L2 read permission error\n");
971 return -EFAULT;
972 }
973
974 /*
975 * Let's check if we will get back a huge page backed by hugetlbfs, or
976 * get block mapping for device MMIO region.
977 */
978 mmap_read_lock(current->mm);
979 vma = vma_lookup(current->mm, hva);
980 if (unlikely(!vma)) {
981 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
982 mmap_read_unlock(current->mm);
983 return -EFAULT;
984 }
985
986 /*
987 * logging_active is guaranteed to never be true for VM_PFNMAP
988 * memslots.
989 */
990 if (logging_active) {
991 force_pte = true;
992 vma_shift = PAGE_SHIFT;
993 } else {
994 vma_shift = get_vma_page_shift(vma, hva);
995 }
996
997 shared = (vma->vm_flags & VM_SHARED);
998
999 switch (vma_shift) {
1000 #ifndef __PAGETABLE_PMD_FOLDED
1001 case PUD_SHIFT:
1002 if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
1003 break;
1004 fallthrough;
1005 #endif
1006 case CONT_PMD_SHIFT:
1007 vma_shift = PMD_SHIFT;
1008 fallthrough;
1009 case PMD_SHIFT:
1010 if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
1011 break;
1012 fallthrough;
1013 case CONT_PTE_SHIFT:
1014 vma_shift = PAGE_SHIFT;
1015 force_pte = true;
1016 fallthrough;
1017 case PAGE_SHIFT:
1018 break;
1019 default:
1020 WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
1021 }
1022
1023 vma_pagesize = 1UL << vma_shift;
1024 if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
1025 fault_ipa &= ~(vma_pagesize - 1);
1026
1027 gfn = fault_ipa >> PAGE_SHIFT;
1028 mmap_read_unlock(current->mm);
1029
1030 /*
1031 * Permission faults just need to update the existing leaf entry,
1032 * and so normally don't require allocations from the memcache. The
1033 * only exception to this is when dirty logging is enabled at runtime
1034 * and a write fault needs to collapse a block entry into a table.
1035 */
1036 if (fault_status != FSC_PERM || (logging_active && write_fault)) {
1037 ret = kvm_mmu_topup_memory_cache(memcache,
1038 kvm_mmu_cache_min_pages(kvm));
1039 if (ret)
1040 return ret;
1041 }
1042
1043 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1044 /*
1045 * Ensure the read of mmu_notifier_seq happens before we call
1046 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1047 * the page we just got a reference to gets unmapped before we have a
1048 * chance to grab the mmu_lock, which ensure that if the page gets
1049 * unmapped afterwards, the call to kvm_unmap_gfn will take it away
1050 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1051 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1052 *
1053 * Besides, __gfn_to_pfn_memslot() instead of gfn_to_pfn_prot() is
1054 * used to avoid unnecessary overhead introduced to locate the memory
1055 * slot because it's always fixed even @gfn is adjusted for huge pages.
1056 */
1057 smp_rmb();
1058
1059 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
1060 write_fault, &writable, NULL);
1061 if (pfn == KVM_PFN_ERR_HWPOISON) {
1062 kvm_send_hwpoison_signal(hva, vma_shift);
1063 return 0;
1064 }
1065 if (is_error_noslot_pfn(pfn))
1066 return -EFAULT;
1067
1068 if (kvm_is_device_pfn(pfn)) {
1069 /*
1070 * If the page was identified as device early by looking at
1071 * the VMA flags, vma_pagesize is already representing the
1072 * largest quantity we can map. If instead it was mapped
1073 * via gfn_to_pfn_prot(), vma_pagesize is set to PAGE_SIZE
1074 * and must not be upgraded.
1075 *
1076 * In both cases, we don't let transparent_hugepage_adjust()
1077 * change things at the last minute.
1078 */
1079 device = true;
1080 } else if (logging_active && !write_fault) {
1081 /*
1082 * Only actually map the page as writable if this was a write
1083 * fault.
1084 */
1085 writable = false;
1086 }
1087
1088 if (exec_fault && device)
1089 return -ENOEXEC;
1090
1091 spin_lock(&kvm->mmu_lock);
1092 pgt = vcpu->arch.hw_mmu->pgt;
1093 if (mmu_notifier_retry(kvm, mmu_seq))
1094 goto out_unlock;
1095
1096 /*
1097 * If we are not forced to use page mapping, check if we are
1098 * backed by a THP and thus use block mapping if possible.
1099 */
1100 if (vma_pagesize == PAGE_SIZE && !(force_pte || device)) {
1101 if (fault_status == FSC_PERM && fault_granule > PAGE_SIZE)
1102 vma_pagesize = fault_granule;
1103 else
1104 vma_pagesize = transparent_hugepage_adjust(kvm, memslot,
1105 hva, &pfn,
1106 &fault_ipa);
1107 }
1108
1109 if (fault_status != FSC_PERM && !device && kvm_has_mte(kvm)) {
1110 /* Check the VMM hasn't introduced a new VM_SHARED VMA */
1111 if (!shared)
1112 ret = sanitise_mte_tags(kvm, pfn, vma_pagesize);
1113 else
1114 ret = -EFAULT;
1115 if (ret)
1116 goto out_unlock;
1117 }
1118
1119 if (writable)
1120 prot |= KVM_PGTABLE_PROT_W;
1121
1122 if (exec_fault)
1123 prot |= KVM_PGTABLE_PROT_X;
1124
1125 if (device)
1126 prot |= KVM_PGTABLE_PROT_DEVICE;
1127 else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
1128 prot |= KVM_PGTABLE_PROT_X;
1129
1130 /*
1131 * Under the premise of getting a FSC_PERM fault, we just need to relax
1132 * permissions only if vma_pagesize equals fault_granule. Otherwise,
1133 * kvm_pgtable_stage2_map() should be called to change block size.
1134 */
1135 if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
1136 ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
1137 } else {
1138 ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
1139 __pfn_to_phys(pfn), prot,
1140 memcache);
1141 }
1142
1143 /* Mark the page dirty only if the fault is handled successfully */
1144 if (writable && !ret) {
1145 kvm_set_pfn_dirty(pfn);
1146 mark_page_dirty_in_slot(kvm, memslot, gfn);
1147 }
1148
1149 out_unlock:
1150 spin_unlock(&kvm->mmu_lock);
1151 kvm_set_pfn_accessed(pfn);
1152 kvm_release_pfn_clean(pfn);
1153 return ret != -EAGAIN ? ret : 0;
1154 }
1155
1156 /* Resolve the access fault by making the page young again. */
handle_access_fault(struct kvm_vcpu * vcpu,phys_addr_t fault_ipa)1157 static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
1158 {
1159 pte_t pte;
1160 kvm_pte_t kpte;
1161 struct kvm_s2_mmu *mmu;
1162
1163 trace_kvm_access_fault(fault_ipa);
1164
1165 spin_lock(&vcpu->kvm->mmu_lock);
1166 mmu = vcpu->arch.hw_mmu;
1167 kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
1168 spin_unlock(&vcpu->kvm->mmu_lock);
1169
1170 pte = __pte(kpte);
1171 if (pte_valid(pte))
1172 kvm_set_pfn_accessed(pte_pfn(pte));
1173 }
1174
1175 /**
1176 * kvm_handle_guest_abort - handles all 2nd stage aborts
1177 * @vcpu: the VCPU pointer
1178 *
1179 * Any abort that gets to the host is almost guaranteed to be caused by a
1180 * missing second stage translation table entry, which can mean that either the
1181 * guest simply needs more memory and we must allocate an appropriate page or it
1182 * can mean that the guest tried to access I/O memory, which is emulated by user
1183 * space. The distinction is based on the IPA causing the fault and whether this
1184 * memory region has been registered as standard RAM by user space.
1185 */
kvm_handle_guest_abort(struct kvm_vcpu * vcpu)1186 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
1187 {
1188 unsigned long fault_status;
1189 phys_addr_t fault_ipa;
1190 struct kvm_memory_slot *memslot;
1191 unsigned long hva;
1192 bool is_iabt, write_fault, writable;
1193 gfn_t gfn;
1194 int ret, idx;
1195
1196 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
1197
1198 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
1199 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
1200
1201 /* Synchronous External Abort? */
1202 if (kvm_vcpu_abt_issea(vcpu)) {
1203 /*
1204 * For RAS the host kernel may handle this abort.
1205 * There is no need to pass the error into the guest.
1206 */
1207 if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
1208 kvm_inject_vabt(vcpu);
1209
1210 return 1;
1211 }
1212
1213 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
1214 kvm_vcpu_get_hfar(vcpu), fault_ipa);
1215
1216 /* Check the stage-2 fault is trans. fault or write fault */
1217 if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
1218 fault_status != FSC_ACCESS) {
1219 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1220 kvm_vcpu_trap_get_class(vcpu),
1221 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1222 (unsigned long)kvm_vcpu_get_esr(vcpu));
1223 return -EFAULT;
1224 }
1225
1226 idx = srcu_read_lock(&vcpu->kvm->srcu);
1227
1228 gfn = fault_ipa >> PAGE_SHIFT;
1229 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1230 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
1231 write_fault = kvm_is_write_fault(vcpu);
1232 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
1233 /*
1234 * The guest has put either its instructions or its page-tables
1235 * somewhere it shouldn't have. Userspace won't be able to do
1236 * anything about this (there's no syndrome for a start), so
1237 * re-inject the abort back into the guest.
1238 */
1239 if (is_iabt) {
1240 ret = -ENOEXEC;
1241 goto out;
1242 }
1243
1244 if (kvm_vcpu_abt_iss1tw(vcpu)) {
1245 kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1246 ret = 1;
1247 goto out_unlock;
1248 }
1249
1250 /*
1251 * Check for a cache maintenance operation. Since we
1252 * ended-up here, we know it is outside of any memory
1253 * slot. But we can't find out if that is for a device,
1254 * or if the guest is just being stupid. The only thing
1255 * we know for sure is that this range cannot be cached.
1256 *
1257 * So let's assume that the guest is just being
1258 * cautious, and skip the instruction.
1259 */
1260 if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1261 kvm_incr_pc(vcpu);
1262 ret = 1;
1263 goto out_unlock;
1264 }
1265
1266 /*
1267 * The IPA is reported as [MAX:12], so we need to
1268 * complement it with the bottom 12 bits from the
1269 * faulting VA. This is always 12 bits, irrespective
1270 * of the page size.
1271 */
1272 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1273 ret = io_mem_abort(vcpu, fault_ipa);
1274 goto out_unlock;
1275 }
1276
1277 /* Userspace should not be able to register out-of-bounds IPAs */
1278 VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1279
1280 if (fault_status == FSC_ACCESS) {
1281 handle_access_fault(vcpu, fault_ipa);
1282 ret = 1;
1283 goto out_unlock;
1284 }
1285
1286 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1287 if (ret == 0)
1288 ret = 1;
1289 out:
1290 if (ret == -ENOEXEC) {
1291 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1292 ret = 1;
1293 }
1294 out_unlock:
1295 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1296 return ret;
1297 }
1298
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)1299 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1300 {
1301 if (!kvm->arch.mmu.pgt)
1302 return false;
1303
1304 __unmap_stage2_range(&kvm->arch.mmu, range->start << PAGE_SHIFT,
1305 (range->end - range->start) << PAGE_SHIFT,
1306 range->may_block);
1307
1308 return false;
1309 }
1310
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1311 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1312 {
1313 kvm_pfn_t pfn = pte_pfn(range->pte);
1314 int ret;
1315
1316 if (!kvm->arch.mmu.pgt)
1317 return false;
1318
1319 WARN_ON(range->end - range->start != 1);
1320
1321 ret = sanitise_mte_tags(kvm, pfn, PAGE_SIZE);
1322 if (ret)
1323 return false;
1324
1325 /*
1326 * We've moved a page around, probably through CoW, so let's treat
1327 * it just like a translation fault and the map handler will clean
1328 * the cache to the PoC.
1329 *
1330 * The MMU notifiers will have unmapped a huge PMD before calling
1331 * ->change_pte() (which in turn calls kvm_set_spte_gfn()) and
1332 * therefore we never need to clear out a huge PMD through this
1333 * calling path and a memcache is not required.
1334 */
1335 kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, range->start << PAGE_SHIFT,
1336 PAGE_SIZE, __pfn_to_phys(pfn),
1337 KVM_PGTABLE_PROT_R, NULL);
1338
1339 return false;
1340 }
1341
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1342 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1343 {
1344 u64 size = (range->end - range->start) << PAGE_SHIFT;
1345 kvm_pte_t kpte;
1346 pte_t pte;
1347
1348 if (!kvm->arch.mmu.pgt)
1349 return false;
1350
1351 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1352
1353 kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt,
1354 range->start << PAGE_SHIFT);
1355 pte = __pte(kpte);
1356 return pte_valid(pte) && pte_young(pte);
1357 }
1358
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)1359 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1360 {
1361 if (!kvm->arch.mmu.pgt)
1362 return false;
1363
1364 return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt,
1365 range->start << PAGE_SHIFT);
1366 }
1367
kvm_mmu_get_httbr(void)1368 phys_addr_t kvm_mmu_get_httbr(void)
1369 {
1370 return __pa(hyp_pgtable->pgd);
1371 }
1372
kvm_get_idmap_vector(void)1373 phys_addr_t kvm_get_idmap_vector(void)
1374 {
1375 return hyp_idmap_vector;
1376 }
1377
kvm_map_idmap_text(void)1378 static int kvm_map_idmap_text(void)
1379 {
1380 unsigned long size = hyp_idmap_end - hyp_idmap_start;
1381 int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1382 PAGE_HYP_EXEC);
1383 if (err)
1384 kvm_err("Failed to idmap %lx-%lx\n",
1385 hyp_idmap_start, hyp_idmap_end);
1386
1387 return err;
1388 }
1389
kvm_hyp_zalloc_page(void * arg)1390 static void *kvm_hyp_zalloc_page(void *arg)
1391 {
1392 return (void *)get_zeroed_page(GFP_KERNEL);
1393 }
1394
1395 static struct kvm_pgtable_mm_ops kvm_hyp_mm_ops = {
1396 .zalloc_page = kvm_hyp_zalloc_page,
1397 .get_page = kvm_host_get_page,
1398 .put_page = kvm_host_put_page,
1399 .phys_to_virt = kvm_host_va,
1400 .virt_to_phys = kvm_host_pa,
1401 };
1402
kvm_mmu_init(u32 * hyp_va_bits)1403 int kvm_mmu_init(u32 *hyp_va_bits)
1404 {
1405 int err;
1406
1407 hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1408 hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1409 hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1410 hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1411 hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1412
1413 /*
1414 * We rely on the linker script to ensure at build time that the HYP
1415 * init code does not cross a page boundary.
1416 */
1417 BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1418
1419 *hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1420 kvm_debug("Using %u-bit virtual addresses at EL2\n", *hyp_va_bits);
1421 kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1422 kvm_debug("HYP VA range: %lx:%lx\n",
1423 kern_hyp_va(PAGE_OFFSET),
1424 kern_hyp_va((unsigned long)high_memory - 1));
1425
1426 if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1427 hyp_idmap_start < kern_hyp_va((unsigned long)high_memory - 1) &&
1428 hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1429 /*
1430 * The idmap page is intersecting with the VA space,
1431 * it is not safe to continue further.
1432 */
1433 kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1434 err = -EINVAL;
1435 goto out;
1436 }
1437
1438 hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1439 if (!hyp_pgtable) {
1440 kvm_err("Hyp mode page-table not allocated\n");
1441 err = -ENOMEM;
1442 goto out;
1443 }
1444
1445 err = kvm_pgtable_hyp_init(hyp_pgtable, *hyp_va_bits, &kvm_hyp_mm_ops);
1446 if (err)
1447 goto out_free_pgtable;
1448
1449 err = kvm_map_idmap_text();
1450 if (err)
1451 goto out_destroy_pgtable;
1452
1453 io_map_base = hyp_idmap_start;
1454 return 0;
1455
1456 out_destroy_pgtable:
1457 kvm_pgtable_hyp_destroy(hyp_pgtable);
1458 out_free_pgtable:
1459 kfree(hyp_pgtable);
1460 hyp_pgtable = NULL;
1461 out:
1462 return err;
1463 }
1464
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)1465 void kvm_arch_commit_memory_region(struct kvm *kvm,
1466 const struct kvm_userspace_memory_region *mem,
1467 struct kvm_memory_slot *old,
1468 const struct kvm_memory_slot *new,
1469 enum kvm_mr_change change)
1470 {
1471 /*
1472 * At this point memslot has been committed and there is an
1473 * allocated dirty_bitmap[], dirty pages will be tracked while the
1474 * memory slot is write protected.
1475 */
1476 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1477 /*
1478 * If we're with initial-all-set, we don't need to write
1479 * protect any pages because they're all reported as dirty.
1480 * Huge pages and normal pages will be write protect gradually.
1481 */
1482 if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1483 kvm_mmu_wp_memory_region(kvm, mem->slot);
1484 }
1485 }
1486 }
1487
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)1488 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1489 struct kvm_memory_slot *memslot,
1490 const struct kvm_userspace_memory_region *mem,
1491 enum kvm_mr_change change)
1492 {
1493 hva_t hva = mem->userspace_addr;
1494 hva_t reg_end = hva + mem->memory_size;
1495 int ret = 0;
1496
1497 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1498 change != KVM_MR_FLAGS_ONLY)
1499 return 0;
1500
1501 /*
1502 * Prevent userspace from creating a memory region outside of the IPA
1503 * space addressable by the KVM guest IPA space.
1504 */
1505 if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1506 return -EFAULT;
1507
1508 mmap_read_lock(current->mm);
1509 /*
1510 * A memory region could potentially cover multiple VMAs, and any holes
1511 * between them, so iterate over all of them.
1512 *
1513 * +--------------------------------------------+
1514 * +---------------+----------------+ +----------------+
1515 * | : VMA 1 | VMA 2 | | VMA 3 : |
1516 * +---------------+----------------+ +----------------+
1517 * | memory region |
1518 * +--------------------------------------------+
1519 */
1520 do {
1521 struct vm_area_struct *vma;
1522
1523 vma = find_vma_intersection(current->mm, hva, reg_end);
1524 if (!vma)
1525 break;
1526
1527 /*
1528 * VM_SHARED mappings are not allowed with MTE to avoid races
1529 * when updating the PG_mte_tagged page flag, see
1530 * sanitise_mte_tags for more details.
1531 */
1532 if (kvm_has_mte(kvm) && vma->vm_flags & VM_SHARED) {
1533 ret = -EINVAL;
1534 break;
1535 }
1536
1537 if (vma->vm_flags & VM_PFNMAP) {
1538 /* IO region dirty page logging not allowed */
1539 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1540 ret = -EINVAL;
1541 break;
1542 }
1543 }
1544 hva = min(reg_end, vma->vm_end);
1545 } while (hva < reg_end);
1546
1547 mmap_read_unlock(current->mm);
1548 return ret;
1549 }
1550
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1551 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1552 {
1553 }
1554
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)1555 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1556 {
1557 }
1558
kvm_arch_flush_shadow_all(struct kvm * kvm)1559 void kvm_arch_flush_shadow_all(struct kvm *kvm)
1560 {
1561 kvm_free_stage2_pgd(&kvm->arch.mmu);
1562 }
1563
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)1564 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1565 struct kvm_memory_slot *slot)
1566 {
1567 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1568 phys_addr_t size = slot->npages << PAGE_SHIFT;
1569
1570 spin_lock(&kvm->mmu_lock);
1571 unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1572 spin_unlock(&kvm->mmu_lock);
1573 }
1574
1575 /*
1576 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1577 *
1578 * Main problems:
1579 * - S/W ops are local to a CPU (not broadcast)
1580 * - We have line migration behind our back (speculation)
1581 * - System caches don't support S/W at all (damn!)
1582 *
1583 * In the face of the above, the best we can do is to try and convert
1584 * S/W ops to VA ops. Because the guest is not allowed to infer the
1585 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1586 * which is a rather good thing for us.
1587 *
1588 * Also, it is only used when turning caches on/off ("The expected
1589 * usage of the cache maintenance instructions that operate by set/way
1590 * is associated with the cache maintenance instructions associated
1591 * with the powerdown and powerup of caches, if this is required by
1592 * the implementation.").
1593 *
1594 * We use the following policy:
1595 *
1596 * - If we trap a S/W operation, we enable VM trapping to detect
1597 * caches being turned on/off, and do a full clean.
1598 *
1599 * - We flush the caches on both caches being turned on and off.
1600 *
1601 * - Once the caches are enabled, we stop trapping VM ops.
1602 */
kvm_set_way_flush(struct kvm_vcpu * vcpu)1603 void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1604 {
1605 unsigned long hcr = *vcpu_hcr(vcpu);
1606
1607 /*
1608 * If this is the first time we do a S/W operation
1609 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1610 * VM trapping.
1611 *
1612 * Otherwise, rely on the VM trapping to wait for the MMU +
1613 * Caches to be turned off. At that point, we'll be able to
1614 * clean the caches again.
1615 */
1616 if (!(hcr & HCR_TVM)) {
1617 trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1618 vcpu_has_cache_enabled(vcpu));
1619 stage2_flush_vm(vcpu->kvm);
1620 *vcpu_hcr(vcpu) = hcr | HCR_TVM;
1621 }
1622 }
1623
kvm_toggle_cache(struct kvm_vcpu * vcpu,bool was_enabled)1624 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1625 {
1626 bool now_enabled = vcpu_has_cache_enabled(vcpu);
1627
1628 /*
1629 * If switching the MMU+caches on, need to invalidate the caches.
1630 * If switching it off, need to clean the caches.
1631 * Clean + invalidate does the trick always.
1632 */
1633 if (now_enabled != was_enabled)
1634 stage2_flush_vm(vcpu->kvm);
1635
1636 /* Caches are now on, stop trapping VM ops (until a S/W op) */
1637 if (now_enabled)
1638 *vcpu_hcr(vcpu) &= ~HCR_TVM;
1639
1640 trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1641 }
1642