1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
4 *
5 * Authors:
6 * Anup Patel <anup.patel@wdc.com>
7 */
8
9 #include <linux/bitops.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/hugetlb.h>
13 #include <linux/module.h>
14 #include <linux/uaccess.h>
15 #include <linux/vmalloc.h>
16 #include <linux/kvm_host.h>
17 #include <linux/sched/signal.h>
18 #include <asm/csr.h>
19 #include <asm/page.h>
20 #include <asm/pgtable.h>
21 #include <asm/sbi.h>
22
23 #ifdef CONFIG_64BIT
24 static unsigned long stage2_mode = (HGATP_MODE_SV39X4 << HGATP_MODE_SHIFT);
25 static unsigned long stage2_pgd_levels = 3;
26 #define stage2_index_bits 9
27 #else
28 static unsigned long stage2_mode = (HGATP_MODE_SV32X4 << HGATP_MODE_SHIFT);
29 static unsigned long stage2_pgd_levels = 2;
30 #define stage2_index_bits 10
31 #endif
32
33 #define stage2_pgd_xbits 2
34 #define stage2_pgd_size (1UL << (HGATP_PAGE_SHIFT + stage2_pgd_xbits))
35 #define stage2_gpa_bits (HGATP_PAGE_SHIFT + \
36 (stage2_pgd_levels * stage2_index_bits) + \
37 stage2_pgd_xbits)
38 #define stage2_gpa_size ((gpa_t)(1ULL << stage2_gpa_bits))
39
40 #define stage2_pte_leaf(__ptep) \
41 (pte_val(*(__ptep)) & (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC))
42
stage2_pte_index(gpa_t addr,u32 level)43 static inline unsigned long stage2_pte_index(gpa_t addr, u32 level)
44 {
45 unsigned long mask;
46 unsigned long shift = HGATP_PAGE_SHIFT + (stage2_index_bits * level);
47
48 if (level == (stage2_pgd_levels - 1))
49 mask = (PTRS_PER_PTE * (1UL << stage2_pgd_xbits)) - 1;
50 else
51 mask = PTRS_PER_PTE - 1;
52
53 return (addr >> shift) & mask;
54 }
55
stage2_pte_page_vaddr(pte_t pte)56 static inline unsigned long stage2_pte_page_vaddr(pte_t pte)
57 {
58 return (unsigned long)pfn_to_virt(pte_val(pte) >> _PAGE_PFN_SHIFT);
59 }
60
stage2_page_size_to_level(unsigned long page_size,u32 * out_level)61 static int stage2_page_size_to_level(unsigned long page_size, u32 *out_level)
62 {
63 u32 i;
64 unsigned long psz = 1UL << 12;
65
66 for (i = 0; i < stage2_pgd_levels; i++) {
67 if (page_size == (psz << (i * stage2_index_bits))) {
68 *out_level = i;
69 return 0;
70 }
71 }
72
73 return -EINVAL;
74 }
75
stage2_level_to_page_size(u32 level,unsigned long * out_pgsize)76 static int stage2_level_to_page_size(u32 level, unsigned long *out_pgsize)
77 {
78 if (stage2_pgd_levels < level)
79 return -EINVAL;
80
81 *out_pgsize = 1UL << (12 + (level * stage2_index_bits));
82
83 return 0;
84 }
85
stage2_cache_topup(struct kvm_mmu_page_cache * pcache,int min,int max)86 static int stage2_cache_topup(struct kvm_mmu_page_cache *pcache,
87 int min, int max)
88 {
89 void *page;
90
91 BUG_ON(max > KVM_MMU_PAGE_CACHE_NR_OBJS);
92 if (pcache->nobjs >= min)
93 return 0;
94 while (pcache->nobjs < max) {
95 page = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
96 if (!page)
97 return -ENOMEM;
98 pcache->objects[pcache->nobjs++] = page;
99 }
100
101 return 0;
102 }
103
stage2_cache_flush(struct kvm_mmu_page_cache * pcache)104 static void stage2_cache_flush(struct kvm_mmu_page_cache *pcache)
105 {
106 while (pcache && pcache->nobjs)
107 free_page((unsigned long)pcache->objects[--pcache->nobjs]);
108 }
109
stage2_cache_alloc(struct kvm_mmu_page_cache * pcache)110 static void *stage2_cache_alloc(struct kvm_mmu_page_cache *pcache)
111 {
112 void *p;
113
114 if (!pcache)
115 return NULL;
116
117 BUG_ON(!pcache->nobjs);
118 p = pcache->objects[--pcache->nobjs];
119
120 return p;
121 }
122
stage2_get_leaf_entry(struct kvm * kvm,gpa_t addr,pte_t ** ptepp,u32 * ptep_level)123 static bool stage2_get_leaf_entry(struct kvm *kvm, gpa_t addr,
124 pte_t **ptepp, u32 *ptep_level)
125 {
126 pte_t *ptep;
127 u32 current_level = stage2_pgd_levels - 1;
128
129 *ptep_level = current_level;
130 ptep = (pte_t *)kvm->arch.pgd;
131 ptep = &ptep[stage2_pte_index(addr, current_level)];
132 while (ptep && pte_val(*ptep)) {
133 if (stage2_pte_leaf(ptep)) {
134 *ptep_level = current_level;
135 *ptepp = ptep;
136 return true;
137 }
138
139 if (current_level) {
140 current_level--;
141 *ptep_level = current_level;
142 ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
143 ptep = &ptep[stage2_pte_index(addr, current_level)];
144 } else {
145 ptep = NULL;
146 }
147 }
148
149 return false;
150 }
151
stage2_remote_tlb_flush(struct kvm * kvm,u32 level,gpa_t addr)152 static void stage2_remote_tlb_flush(struct kvm *kvm, u32 level, gpa_t addr)
153 {
154 struct cpumask hmask;
155 unsigned long size = PAGE_SIZE;
156 struct kvm_vmid *vmid = &kvm->arch.vmid;
157
158 if (stage2_level_to_page_size(level, &size))
159 return;
160 addr &= ~(size - 1);
161
162 /*
163 * TODO: Instead of cpu_online_mask, we should only target CPUs
164 * where the Guest/VM is running.
165 */
166 preempt_disable();
167 riscv_cpuid_to_hartid_mask(cpu_online_mask, &hmask);
168 sbi_remote_hfence_gvma_vmid(cpumask_bits(&hmask), addr, size,
169 READ_ONCE(vmid->vmid));
170 preempt_enable();
171 }
172
stage2_set_pte(struct kvm * kvm,u32 level,struct kvm_mmu_page_cache * pcache,gpa_t addr,const pte_t * new_pte)173 static int stage2_set_pte(struct kvm *kvm, u32 level,
174 struct kvm_mmu_page_cache *pcache,
175 gpa_t addr, const pte_t *new_pte)
176 {
177 u32 current_level = stage2_pgd_levels - 1;
178 pte_t *next_ptep = (pte_t *)kvm->arch.pgd;
179 pte_t *ptep = &next_ptep[stage2_pte_index(addr, current_level)];
180
181 if (current_level < level)
182 return -EINVAL;
183
184 while (current_level != level) {
185 if (stage2_pte_leaf(ptep))
186 return -EEXIST;
187
188 if (!pte_val(*ptep)) {
189 next_ptep = stage2_cache_alloc(pcache);
190 if (!next_ptep)
191 return -ENOMEM;
192 *ptep = pfn_pte(PFN_DOWN(__pa(next_ptep)),
193 __pgprot(_PAGE_TABLE));
194 } else {
195 if (stage2_pte_leaf(ptep))
196 return -EEXIST;
197 next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
198 }
199
200 current_level--;
201 ptep = &next_ptep[stage2_pte_index(addr, current_level)];
202 }
203
204 *ptep = *new_pte;
205 if (stage2_pte_leaf(ptep))
206 stage2_remote_tlb_flush(kvm, current_level, addr);
207
208 return 0;
209 }
210
stage2_map_page(struct kvm * kvm,struct kvm_mmu_page_cache * pcache,gpa_t gpa,phys_addr_t hpa,unsigned long page_size,bool page_rdonly,bool page_exec)211 static int stage2_map_page(struct kvm *kvm,
212 struct kvm_mmu_page_cache *pcache,
213 gpa_t gpa, phys_addr_t hpa,
214 unsigned long page_size,
215 bool page_rdonly, bool page_exec)
216 {
217 int ret;
218 u32 level = 0;
219 pte_t new_pte;
220 pgprot_t prot;
221
222 ret = stage2_page_size_to_level(page_size, &level);
223 if (ret)
224 return ret;
225
226 /*
227 * A RISC-V implementation can choose to either:
228 * 1) Update 'A' and 'D' PTE bits in hardware
229 * 2) Generate page fault when 'A' and/or 'D' bits are not set
230 * PTE so that software can update these bits.
231 *
232 * We support both options mentioned above. To achieve this, we
233 * always set 'A' and 'D' PTE bits at time of creating stage2
234 * mapping. To support KVM dirty page logging with both options
235 * mentioned above, we will write-protect stage2 PTEs to track
236 * dirty pages.
237 */
238
239 if (page_exec) {
240 if (page_rdonly)
241 prot = PAGE_READ_EXEC;
242 else
243 prot = PAGE_WRITE_EXEC;
244 } else {
245 if (page_rdonly)
246 prot = PAGE_READ;
247 else
248 prot = PAGE_WRITE;
249 }
250 new_pte = pfn_pte(PFN_DOWN(hpa), prot);
251 new_pte = pte_mkdirty(new_pte);
252
253 return stage2_set_pte(kvm, level, pcache, gpa, &new_pte);
254 }
255
256 enum stage2_op {
257 STAGE2_OP_NOP = 0, /* Nothing */
258 STAGE2_OP_CLEAR, /* Clear/Unmap */
259 STAGE2_OP_WP, /* Write-protect */
260 };
261
stage2_op_pte(struct kvm * kvm,gpa_t addr,pte_t * ptep,u32 ptep_level,enum stage2_op op)262 static void stage2_op_pte(struct kvm *kvm, gpa_t addr,
263 pte_t *ptep, u32 ptep_level, enum stage2_op op)
264 {
265 int i, ret;
266 pte_t *next_ptep;
267 u32 next_ptep_level;
268 unsigned long next_page_size, page_size;
269
270 ret = stage2_level_to_page_size(ptep_level, &page_size);
271 if (ret)
272 return;
273
274 BUG_ON(addr & (page_size - 1));
275
276 if (!pte_val(*ptep))
277 return;
278
279 if (ptep_level && !stage2_pte_leaf(ptep)) {
280 next_ptep = (pte_t *)stage2_pte_page_vaddr(*ptep);
281 next_ptep_level = ptep_level - 1;
282 ret = stage2_level_to_page_size(next_ptep_level,
283 &next_page_size);
284 if (ret)
285 return;
286
287 if (op == STAGE2_OP_CLEAR)
288 set_pte(ptep, __pte(0));
289 for (i = 0; i < PTRS_PER_PTE; i++)
290 stage2_op_pte(kvm, addr + i * next_page_size,
291 &next_ptep[i], next_ptep_level, op);
292 if (op == STAGE2_OP_CLEAR)
293 put_page(virt_to_page(next_ptep));
294 } else {
295 if (op == STAGE2_OP_CLEAR)
296 set_pte(ptep, __pte(0));
297 else if (op == STAGE2_OP_WP)
298 set_pte(ptep, __pte(pte_val(*ptep) & ~_PAGE_WRITE));
299 stage2_remote_tlb_flush(kvm, ptep_level, addr);
300 }
301 }
302
stage2_unmap_range(struct kvm * kvm,gpa_t start,gpa_t size,bool may_block)303 static void stage2_unmap_range(struct kvm *kvm, gpa_t start,
304 gpa_t size, bool may_block)
305 {
306 int ret;
307 pte_t *ptep;
308 u32 ptep_level;
309 bool found_leaf;
310 unsigned long page_size;
311 gpa_t addr = start, end = start + size;
312
313 while (addr < end) {
314 found_leaf = stage2_get_leaf_entry(kvm, addr,
315 &ptep, &ptep_level);
316 ret = stage2_level_to_page_size(ptep_level, &page_size);
317 if (ret)
318 break;
319
320 if (!found_leaf)
321 goto next;
322
323 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
324 stage2_op_pte(kvm, addr, ptep,
325 ptep_level, STAGE2_OP_CLEAR);
326
327 next:
328 addr += page_size;
329
330 /*
331 * If the range is too large, release the kvm->mmu_lock
332 * to prevent starvation and lockup detector warnings.
333 */
334 if (may_block && addr < end)
335 cond_resched_lock(&kvm->mmu_lock);
336 }
337 }
338
stage2_wp_range(struct kvm * kvm,gpa_t start,gpa_t end)339 static void stage2_wp_range(struct kvm *kvm, gpa_t start, gpa_t end)
340 {
341 int ret;
342 pte_t *ptep;
343 u32 ptep_level;
344 bool found_leaf;
345 gpa_t addr = start;
346 unsigned long page_size;
347
348 while (addr < end) {
349 found_leaf = stage2_get_leaf_entry(kvm, addr,
350 &ptep, &ptep_level);
351 ret = stage2_level_to_page_size(ptep_level, &page_size);
352 if (ret)
353 break;
354
355 if (!found_leaf)
356 goto next;
357
358 if (!(addr & (page_size - 1)) && ((end - addr) >= page_size))
359 stage2_op_pte(kvm, addr, ptep,
360 ptep_level, STAGE2_OP_WP);
361
362 next:
363 addr += page_size;
364 }
365 }
366
stage2_wp_memory_region(struct kvm * kvm,int slot)367 static void stage2_wp_memory_region(struct kvm *kvm, int slot)
368 {
369 struct kvm_memslots *slots = kvm_memslots(kvm);
370 struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
371 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
372 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
373
374 spin_lock(&kvm->mmu_lock);
375 stage2_wp_range(kvm, start, end);
376 spin_unlock(&kvm->mmu_lock);
377 kvm_flush_remote_tlbs(kvm);
378 }
379
stage2_ioremap(struct kvm * kvm,gpa_t gpa,phys_addr_t hpa,unsigned long size,bool writable)380 static int stage2_ioremap(struct kvm *kvm, gpa_t gpa, phys_addr_t hpa,
381 unsigned long size, bool writable)
382 {
383 pte_t pte;
384 int ret = 0;
385 unsigned long pfn;
386 phys_addr_t addr, end;
387 struct kvm_mmu_page_cache pcache = { 0, };
388
389 end = (gpa + size + PAGE_SIZE - 1) & PAGE_MASK;
390 pfn = __phys_to_pfn(hpa);
391
392 for (addr = gpa; addr < end; addr += PAGE_SIZE) {
393 pte = pfn_pte(pfn, PAGE_KERNEL);
394
395 if (!writable)
396 pte = pte_wrprotect(pte);
397
398 ret = stage2_cache_topup(&pcache,
399 stage2_pgd_levels,
400 KVM_MMU_PAGE_CACHE_NR_OBJS);
401 if (ret)
402 goto out;
403
404 spin_lock(&kvm->mmu_lock);
405 ret = stage2_set_pte(kvm, 0, &pcache, addr, &pte);
406 spin_unlock(&kvm->mmu_lock);
407 if (ret)
408 goto out;
409
410 pfn++;
411 }
412
413 out:
414 stage2_cache_flush(&pcache);
415 return ret;
416 }
417
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)418 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
419 struct kvm_memory_slot *slot,
420 gfn_t gfn_offset,
421 unsigned long mask)
422 {
423 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
424 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
425 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
426
427 stage2_wp_range(kvm, start, end);
428 }
429
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)430 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
431 {
432 }
433
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,const struct kvm_memory_slot * memslot)434 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
435 const struct kvm_memory_slot *memslot)
436 {
437 kvm_flush_remote_tlbs(kvm);
438 }
439
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * free)440 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free)
441 {
442 }
443
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)444 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
445 {
446 }
447
kvm_arch_flush_shadow_all(struct kvm * kvm)448 void kvm_arch_flush_shadow_all(struct kvm *kvm)
449 {
450 kvm_riscv_stage2_free_pgd(kvm);
451 }
452
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)453 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
454 struct kvm_memory_slot *slot)
455 {
456 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
457 phys_addr_t size = slot->npages << PAGE_SHIFT;
458
459 spin_lock(&kvm->mmu_lock);
460 stage2_unmap_range(kvm, gpa, size, false);
461 spin_unlock(&kvm->mmu_lock);
462 }
463
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)464 void kvm_arch_commit_memory_region(struct kvm *kvm,
465 const struct kvm_userspace_memory_region *mem,
466 struct kvm_memory_slot *old,
467 const struct kvm_memory_slot *new,
468 enum kvm_mr_change change)
469 {
470 /*
471 * At this point memslot has been committed and there is an
472 * allocated dirty_bitmap[], dirty pages will be tracked while
473 * the memory slot is write protected.
474 */
475 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
476 stage2_wp_memory_region(kvm, mem->slot);
477 }
478
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)479 int kvm_arch_prepare_memory_region(struct kvm *kvm,
480 struct kvm_memory_slot *memslot,
481 const struct kvm_userspace_memory_region *mem,
482 enum kvm_mr_change change)
483 {
484 hva_t hva = mem->userspace_addr;
485 hva_t reg_end = hva + mem->memory_size;
486 bool writable = !(mem->flags & KVM_MEM_READONLY);
487 int ret = 0;
488
489 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
490 change != KVM_MR_FLAGS_ONLY)
491 return 0;
492
493 /*
494 * Prevent userspace from creating a memory region outside of the GPA
495 * space addressable by the KVM guest GPA space.
496 */
497 if ((memslot->base_gfn + memslot->npages) >=
498 (stage2_gpa_size >> PAGE_SHIFT))
499 return -EFAULT;
500
501 mmap_read_lock(current->mm);
502
503 /*
504 * A memory region could potentially cover multiple VMAs, and
505 * any holes between them, so iterate over all of them to find
506 * out if we can map any of them right now.
507 *
508 * +--------------------------------------------+
509 * +---------------+----------------+ +----------------+
510 * | : VMA 1 | VMA 2 | | VMA 3 : |
511 * +---------------+----------------+ +----------------+
512 * | memory region |
513 * +--------------------------------------------+
514 */
515 do {
516 struct vm_area_struct *vma = find_vma(current->mm, hva);
517 hva_t vm_start, vm_end;
518
519 if (!vma || vma->vm_start >= reg_end)
520 break;
521
522 /*
523 * Mapping a read-only VMA is only allowed if the
524 * memory region is configured as read-only.
525 */
526 if (writable && !(vma->vm_flags & VM_WRITE)) {
527 ret = -EPERM;
528 break;
529 }
530
531 /* Take the intersection of this VMA with the memory region */
532 vm_start = max(hva, vma->vm_start);
533 vm_end = min(reg_end, vma->vm_end);
534
535 if (vma->vm_flags & VM_PFNMAP) {
536 gpa_t gpa = mem->guest_phys_addr +
537 (vm_start - mem->userspace_addr);
538 phys_addr_t pa;
539
540 pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
541 pa += vm_start - vma->vm_start;
542
543 /* IO region dirty page logging not allowed */
544 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
545 ret = -EINVAL;
546 goto out;
547 }
548
549 ret = stage2_ioremap(kvm, gpa, pa,
550 vm_end - vm_start, writable);
551 if (ret)
552 break;
553 }
554 hva = vm_end;
555 } while (hva < reg_end);
556
557 if (change == KVM_MR_FLAGS_ONLY)
558 goto out;
559
560 spin_lock(&kvm->mmu_lock);
561 if (ret)
562 stage2_unmap_range(kvm, mem->guest_phys_addr,
563 mem->memory_size, false);
564 spin_unlock(&kvm->mmu_lock);
565
566 out:
567 mmap_read_unlock(current->mm);
568 return ret;
569 }
570
kvm_unmap_gfn_range(struct kvm * kvm,struct kvm_gfn_range * range)571 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
572 {
573 if (!kvm->arch.pgd)
574 return false;
575
576 stage2_unmap_range(kvm, range->start << PAGE_SHIFT,
577 (range->end - range->start) << PAGE_SHIFT,
578 range->may_block);
579 return false;
580 }
581
kvm_set_spte_gfn(struct kvm * kvm,struct kvm_gfn_range * range)582 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
583 {
584 int ret;
585 kvm_pfn_t pfn = pte_pfn(range->pte);
586
587 if (!kvm->arch.pgd)
588 return false;
589
590 WARN_ON(range->end - range->start != 1);
591
592 ret = stage2_map_page(kvm, NULL, range->start << PAGE_SHIFT,
593 __pfn_to_phys(pfn), PAGE_SIZE, true, true);
594 if (ret) {
595 kvm_debug("Failed to map stage2 page (error %d)\n", ret);
596 return true;
597 }
598
599 return false;
600 }
601
kvm_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)602 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
603 {
604 pte_t *ptep;
605 u32 ptep_level = 0;
606 u64 size = (range->end - range->start) << PAGE_SHIFT;
607
608 if (!kvm->arch.pgd)
609 return false;
610
611 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
612
613 if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
614 &ptep, &ptep_level))
615 return false;
616
617 return ptep_test_and_clear_young(NULL, 0, ptep);
618 }
619
kvm_test_age_gfn(struct kvm * kvm,struct kvm_gfn_range * range)620 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
621 {
622 pte_t *ptep;
623 u32 ptep_level = 0;
624 u64 size = (range->end - range->start) << PAGE_SHIFT;
625
626 if (!kvm->arch.pgd)
627 return false;
628
629 WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PGDIR_SIZE);
630
631 if (!stage2_get_leaf_entry(kvm, range->start << PAGE_SHIFT,
632 &ptep, &ptep_level))
633 return false;
634
635 return pte_young(*ptep);
636 }
637
kvm_riscv_stage2_map(struct kvm_vcpu * vcpu,struct kvm_memory_slot * memslot,gpa_t gpa,unsigned long hva,bool is_write)638 int kvm_riscv_stage2_map(struct kvm_vcpu *vcpu,
639 struct kvm_memory_slot *memslot,
640 gpa_t gpa, unsigned long hva, bool is_write)
641 {
642 int ret;
643 kvm_pfn_t hfn;
644 bool writeable;
645 short vma_pageshift;
646 gfn_t gfn = gpa >> PAGE_SHIFT;
647 struct vm_area_struct *vma;
648 struct kvm *kvm = vcpu->kvm;
649 struct kvm_mmu_page_cache *pcache = &vcpu->arch.mmu_page_cache;
650 bool logging = (memslot->dirty_bitmap &&
651 !(memslot->flags & KVM_MEM_READONLY)) ? true : false;
652 unsigned long vma_pagesize, mmu_seq;
653
654 mmap_read_lock(current->mm);
655
656 vma = find_vma_intersection(current->mm, hva, hva + 1);
657 if (unlikely(!vma)) {
658 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
659 mmap_read_unlock(current->mm);
660 return -EFAULT;
661 }
662
663 if (is_vm_hugetlb_page(vma))
664 vma_pageshift = huge_page_shift(hstate_vma(vma));
665 else
666 vma_pageshift = PAGE_SHIFT;
667 vma_pagesize = 1ULL << vma_pageshift;
668 if (logging || (vma->vm_flags & VM_PFNMAP))
669 vma_pagesize = PAGE_SIZE;
670
671 if (vma_pagesize == PMD_SIZE || vma_pagesize == PGDIR_SIZE)
672 gfn = (gpa & huge_page_mask(hstate_vma(vma))) >> PAGE_SHIFT;
673
674 mmap_read_unlock(current->mm);
675
676 if (vma_pagesize != PGDIR_SIZE &&
677 vma_pagesize != PMD_SIZE &&
678 vma_pagesize != PAGE_SIZE) {
679 kvm_err("Invalid VMA page size 0x%lx\n", vma_pagesize);
680 return -EFAULT;
681 }
682
683 /* We need minimum second+third level pages */
684 ret = stage2_cache_topup(pcache, stage2_pgd_levels,
685 KVM_MMU_PAGE_CACHE_NR_OBJS);
686 if (ret) {
687 kvm_err("Failed to topup stage2 cache\n");
688 return ret;
689 }
690
691 mmu_seq = kvm->mmu_notifier_seq;
692
693 hfn = gfn_to_pfn_prot(kvm, gfn, is_write, &writeable);
694 if (hfn == KVM_PFN_ERR_HWPOISON) {
695 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)hva,
696 vma_pageshift, current);
697 return 0;
698 }
699 if (is_error_noslot_pfn(hfn))
700 return -EFAULT;
701
702 /*
703 * If logging is active then we allow writable pages only
704 * for write faults.
705 */
706 if (logging && !is_write)
707 writeable = false;
708
709 spin_lock(&kvm->mmu_lock);
710
711 if (mmu_notifier_retry(kvm, mmu_seq))
712 goto out_unlock;
713
714 if (writeable) {
715 kvm_set_pfn_dirty(hfn);
716 mark_page_dirty(kvm, gfn);
717 ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
718 vma_pagesize, false, true);
719 } else {
720 ret = stage2_map_page(kvm, pcache, gpa, hfn << PAGE_SHIFT,
721 vma_pagesize, true, true);
722 }
723
724 if (ret)
725 kvm_err("Failed to map in stage2\n");
726
727 out_unlock:
728 spin_unlock(&kvm->mmu_lock);
729 kvm_set_pfn_accessed(hfn);
730 kvm_release_pfn_clean(hfn);
731 return ret;
732 }
733
kvm_riscv_stage2_flush_cache(struct kvm_vcpu * vcpu)734 void kvm_riscv_stage2_flush_cache(struct kvm_vcpu *vcpu)
735 {
736 stage2_cache_flush(&vcpu->arch.mmu_page_cache);
737 }
738
kvm_riscv_stage2_alloc_pgd(struct kvm * kvm)739 int kvm_riscv_stage2_alloc_pgd(struct kvm *kvm)
740 {
741 struct page *pgd_page;
742
743 if (kvm->arch.pgd != NULL) {
744 kvm_err("kvm_arch already initialized?\n");
745 return -EINVAL;
746 }
747
748 pgd_page = alloc_pages(GFP_KERNEL | __GFP_ZERO,
749 get_order(stage2_pgd_size));
750 if (!pgd_page)
751 return -ENOMEM;
752 kvm->arch.pgd = page_to_virt(pgd_page);
753 kvm->arch.pgd_phys = page_to_phys(pgd_page);
754
755 return 0;
756 }
757
kvm_riscv_stage2_free_pgd(struct kvm * kvm)758 void kvm_riscv_stage2_free_pgd(struct kvm *kvm)
759 {
760 void *pgd = NULL;
761
762 spin_lock(&kvm->mmu_lock);
763 if (kvm->arch.pgd) {
764 stage2_unmap_range(kvm, 0UL, stage2_gpa_size, false);
765 pgd = READ_ONCE(kvm->arch.pgd);
766 kvm->arch.pgd = NULL;
767 kvm->arch.pgd_phys = 0;
768 }
769 spin_unlock(&kvm->mmu_lock);
770
771 if (pgd)
772 free_pages((unsigned long)pgd, get_order(stage2_pgd_size));
773 }
774
kvm_riscv_stage2_update_hgatp(struct kvm_vcpu * vcpu)775 void kvm_riscv_stage2_update_hgatp(struct kvm_vcpu *vcpu)
776 {
777 unsigned long hgatp = stage2_mode;
778 struct kvm_arch *k = &vcpu->kvm->arch;
779
780 hgatp |= (READ_ONCE(k->vmid.vmid) << HGATP_VMID_SHIFT) &
781 HGATP_VMID_MASK;
782 hgatp |= (k->pgd_phys >> PAGE_SHIFT) & HGATP_PPN;
783
784 csr_write(CSR_HGATP, hgatp);
785
786 if (!kvm_riscv_stage2_vmid_bits())
787 __kvm_riscv_hfence_gvma_all();
788 }
789
kvm_riscv_stage2_mode_detect(void)790 void kvm_riscv_stage2_mode_detect(void)
791 {
792 #ifdef CONFIG_64BIT
793 /* Try Sv48x4 stage2 mode */
794 csr_write(CSR_HGATP, HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
795 if ((csr_read(CSR_HGATP) >> HGATP_MODE_SHIFT) == HGATP_MODE_SV48X4) {
796 stage2_mode = (HGATP_MODE_SV48X4 << HGATP_MODE_SHIFT);
797 stage2_pgd_levels = 4;
798 }
799 csr_write(CSR_HGATP, 0);
800
801 __kvm_riscv_hfence_gvma_all();
802 #endif
803 }
804
kvm_riscv_stage2_mode(void)805 unsigned long kvm_riscv_stage2_mode(void)
806 {
807 return stage2_mode >> HGATP_MODE_SHIFT;
808 }
809