1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/sections.h>
21 #include <asm/bug.h>
22 #include <asm/page.h>
23 #include <asm/uv.h>
24
25 extern pgd_t swapper_pg_dir[];
26 extern void paging_init(void);
27 extern unsigned long s390_invalid_asce;
28
29 enum {
30 PG_DIRECT_MAP_4K = 0,
31 PG_DIRECT_MAP_1M,
32 PG_DIRECT_MAP_2G,
33 PG_DIRECT_MAP_MAX
34 };
35
36 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
37
update_page_count(int level,long count)38 static inline void update_page_count(int level, long count)
39 {
40 if (IS_ENABLED(CONFIG_PROC_FS))
41 atomic_long_add(count, &direct_pages_count[level]);
42 }
43
44 struct seq_file;
45 void arch_report_meminfo(struct seq_file *m);
46
47 /*
48 * The S390 doesn't have any external MMU info: the kernel page
49 * tables contain all the necessary information.
50 */
51 #define update_mmu_cache(vma, address, ptep) do { } while (0)
52 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
53
54 /*
55 * ZERO_PAGE is a global shared page that is always zero; used
56 * for zero-mapped memory areas etc..
57 */
58
59 extern unsigned long empty_zero_page;
60 extern unsigned long zero_page_mask;
61
62 #define ZERO_PAGE(vaddr) \
63 (virt_to_page((void *)(empty_zero_page + \
64 (((unsigned long)(vaddr)) &zero_page_mask))))
65 #define __HAVE_COLOR_ZERO_PAGE
66
67 /* TODO: s390 cannot support io_remap_pfn_range... */
68
69 #define pte_ERROR(e) \
70 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
71 #define pmd_ERROR(e) \
72 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
73 #define pud_ERROR(e) \
74 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
75 #define p4d_ERROR(e) \
76 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
77 #define pgd_ERROR(e) \
78 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
79
80 /*
81 * The vmalloc and module area will always be on the topmost area of the
82 * kernel mapping. 512GB are reserved for vmalloc by default.
83 * At the top of the vmalloc area a 2GB area is reserved where modules
84 * will reside. That makes sure that inter module branches always
85 * happen without trampolines and in addition the placement within a
86 * 2GB frame is branch prediction unit friendly.
87 */
88 extern unsigned long __bootdata_preserved(VMALLOC_START);
89 extern unsigned long __bootdata_preserved(VMALLOC_END);
90 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
91 extern struct page *__bootdata_preserved(vmemmap);
92 extern unsigned long __bootdata_preserved(vmemmap_size);
93
94 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
95
96 extern unsigned long __bootdata_preserved(MODULES_VADDR);
97 extern unsigned long __bootdata_preserved(MODULES_END);
98 #define MODULES_VADDR MODULES_VADDR
99 #define MODULES_END MODULES_END
100 #define MODULES_LEN (1UL << 31)
101
is_module_addr(void * addr)102 static inline int is_module_addr(void *addr)
103 {
104 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
105 if (addr < (void *)MODULES_VADDR)
106 return 0;
107 if (addr > (void *)MODULES_END)
108 return 0;
109 return 1;
110 }
111
112 /*
113 * A 64 bit pagetable entry of S390 has following format:
114 * | PFRA |0IPC| OS |
115 * 0000000000111111111122222222223333333333444444444455555555556666
116 * 0123456789012345678901234567890123456789012345678901234567890123
117 *
118 * I Page-Invalid Bit: Page is not available for address-translation
119 * P Page-Protection Bit: Store access not possible for page
120 * C Change-bit override: HW is not required to set change bit
121 *
122 * A 64 bit segmenttable entry of S390 has following format:
123 * | P-table origin | TT
124 * 0000000000111111111122222222223333333333444444444455555555556666
125 * 0123456789012345678901234567890123456789012345678901234567890123
126 *
127 * I Segment-Invalid Bit: Segment is not available for address-translation
128 * C Common-Segment Bit: Segment is not private (PoP 3-30)
129 * P Page-Protection Bit: Store access not possible for page
130 * TT Type 00
131 *
132 * A 64 bit region table entry of S390 has following format:
133 * | S-table origin | TF TTTL
134 * 0000000000111111111122222222223333333333444444444455555555556666
135 * 0123456789012345678901234567890123456789012345678901234567890123
136 *
137 * I Segment-Invalid Bit: Segment is not available for address-translation
138 * TT Type 01
139 * TF
140 * TL Table length
141 *
142 * The 64 bit regiontable origin of S390 has following format:
143 * | region table origon | DTTL
144 * 0000000000111111111122222222223333333333444444444455555555556666
145 * 0123456789012345678901234567890123456789012345678901234567890123
146 *
147 * X Space-Switch event:
148 * G Segment-Invalid Bit:
149 * P Private-Space Bit:
150 * S Storage-Alteration:
151 * R Real space
152 * TL Table-Length:
153 *
154 * A storage key has the following format:
155 * | ACC |F|R|C|0|
156 * 0 3 4 5 6 7
157 * ACC: access key
158 * F : fetch protection bit
159 * R : referenced bit
160 * C : changed bit
161 */
162
163 /* Hardware bits in the page table entry */
164 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
165 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
166 #define _PAGE_INVALID 0x400 /* HW invalid bit */
167 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
168
169 /* Software bits in the page table entry */
170 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
171 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
172 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
173 #define _PAGE_READ 0x010 /* SW pte read bit */
174 #define _PAGE_WRITE 0x020 /* SW pte write bit */
175 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
176 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
177
178 #ifdef CONFIG_MEM_SOFT_DIRTY
179 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
180 #else
181 #define _PAGE_SOFT_DIRTY 0x000
182 #endif
183
184 /* Set of bits not changed in pte_modify */
185 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
186 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
187
188 /*
189 * handle_pte_fault uses pte_present and pte_none to find out the pte type
190 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
191 * distinguish present from not-present ptes. It is changed only with the page
192 * table lock held.
193 *
194 * The following table gives the different possible bit combinations for
195 * the pte hardware and software bits in the last 12 bits of a pte
196 * (. unassigned bit, x don't care, t swap type):
197 *
198 * 842100000000
199 * 000084210000
200 * 000000008421
201 * .IR.uswrdy.p
202 * empty .10.00000000
203 * swap .11..ttttt.0
204 * prot-none, clean, old .11.xx0000.1
205 * prot-none, clean, young .11.xx0001.1
206 * prot-none, dirty, old .11.xx0010.1
207 * prot-none, dirty, young .11.xx0011.1
208 * read-only, clean, old .11.xx0100.1
209 * read-only, clean, young .01.xx0101.1
210 * read-only, dirty, old .11.xx0110.1
211 * read-only, dirty, young .01.xx0111.1
212 * read-write, clean, old .11.xx1100.1
213 * read-write, clean, young .01.xx1101.1
214 * read-write, dirty, old .10.xx1110.1
215 * read-write, dirty, young .00.xx1111.1
216 * HW-bits: R read-only, I invalid
217 * SW-bits: p present, y young, d dirty, r read, w write, s special,
218 * u unused, l large
219 *
220 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
221 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
222 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
223 */
224
225 /* Bits in the segment/region table address-space-control-element */
226 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
227 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
228 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
229 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
230 #define _ASCE_REAL_SPACE 0x20 /* real space control */
231 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
232 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
233 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
234 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
235 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
236 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
237
238 /* Bits in the region table entry */
239 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
240 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
241 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
242 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
243 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
244 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
245 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
246 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
247 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
248 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
249
250 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
251 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
252 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
253 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
254 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
255 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
256
257 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
258 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
259 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
260 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
261 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
262 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
263
264 #ifdef CONFIG_MEM_SOFT_DIRTY
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
266 #else
267 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
268 #endif
269
270 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
271
272 /* Bits in the segment table entry */
273 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
274 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
276 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
277 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
278 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
279 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
280 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
281 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
282
283 #define _SEGMENT_ENTRY (0)
284 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
285
286 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
287 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
288 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
289 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
290 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
291
292 #ifdef CONFIG_MEM_SOFT_DIRTY
293 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
294 #else
295 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
296 #endif
297
298 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
299 #define _PAGE_ENTRIES 256 /* number of page table entries */
300
301 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
302 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
303
304 #define _REGION1_SHIFT 53
305 #define _REGION2_SHIFT 42
306 #define _REGION3_SHIFT 31
307 #define _SEGMENT_SHIFT 20
308
309 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
310 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
311 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
312 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
313 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
314
315 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
316 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
317 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
318 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
319
320 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
321 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
322 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
323 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
324
325 #define PMD_SHIFT _SEGMENT_SHIFT
326 #define PUD_SHIFT _REGION3_SHIFT
327 #define P4D_SHIFT _REGION2_SHIFT
328 #define PGDIR_SHIFT _REGION1_SHIFT
329
330 #define PMD_SIZE _SEGMENT_SIZE
331 #define PUD_SIZE _REGION3_SIZE
332 #define P4D_SIZE _REGION2_SIZE
333 #define PGDIR_SIZE _REGION1_SIZE
334
335 #define PMD_MASK _SEGMENT_MASK
336 #define PUD_MASK _REGION3_MASK
337 #define P4D_MASK _REGION2_MASK
338 #define PGDIR_MASK _REGION1_MASK
339
340 #define PTRS_PER_PTE _PAGE_ENTRIES
341 #define PTRS_PER_PMD _CRST_ENTRIES
342 #define PTRS_PER_PUD _CRST_ENTRIES
343 #define PTRS_PER_P4D _CRST_ENTRIES
344 #define PTRS_PER_PGD _CRST_ENTRIES
345
346 /*
347 * Segment table and region3 table entry encoding
348 * (R = read-only, I = invalid, y = young bit):
349 * dy..R...I...wr
350 * prot-none, clean, old 00..1...1...00
351 * prot-none, clean, young 01..1...1...00
352 * prot-none, dirty, old 10..1...1...00
353 * prot-none, dirty, young 11..1...1...00
354 * read-only, clean, old 00..1...1...01
355 * read-only, clean, young 01..1...0...01
356 * read-only, dirty, old 10..1...1...01
357 * read-only, dirty, young 11..1...0...01
358 * read-write, clean, old 00..1...1...11
359 * read-write, clean, young 01..1...0...11
360 * read-write, dirty, old 10..0...1...11
361 * read-write, dirty, young 11..0...0...11
362 * The segment table origin is used to distinguish empty (origin==0) from
363 * read-write, old segment table entries (origin!=0)
364 * HW-bits: R read-only, I invalid
365 * SW-bits: y young, d dirty, r read, w write
366 */
367
368 /* Page status table bits for virtualization */
369 #define PGSTE_ACC_BITS 0xf000000000000000UL
370 #define PGSTE_FP_BIT 0x0800000000000000UL
371 #define PGSTE_PCL_BIT 0x0080000000000000UL
372 #define PGSTE_HR_BIT 0x0040000000000000UL
373 #define PGSTE_HC_BIT 0x0020000000000000UL
374 #define PGSTE_GR_BIT 0x0004000000000000UL
375 #define PGSTE_GC_BIT 0x0002000000000000UL
376 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
377 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
378 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
379
380 /* Guest Page State used for virtualization */
381 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
382 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
383 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
384 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
385 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
386 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
387 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
388
389 /*
390 * A user page table pointer has the space-switch-event bit, the
391 * private-space-control bit and the storage-alteration-event-control
392 * bit set. A kernel page table pointer doesn't need them.
393 */
394 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
395 _ASCE_ALT_EVENT)
396
397 /*
398 * Page protection definitions.
399 */
400 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
406 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
407 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_INVALID | _PAGE_PROTECT)
409
410 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
412 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
414 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
415 _PAGE_PROTECT | _PAGE_NOEXEC)
416 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_YOUNG | _PAGE_DIRTY)
418
419 /*
420 * On s390 the page table entry has an invalid bit and a read-only bit.
421 * Read permission implies execute permission and write permission
422 * implies read permission.
423 */
424 /*xwr*/
425 #define __P000 PAGE_NONE
426 #define __P001 PAGE_RO
427 #define __P010 PAGE_RO
428 #define __P011 PAGE_RO
429 #define __P100 PAGE_RX
430 #define __P101 PAGE_RX
431 #define __P110 PAGE_RX
432 #define __P111 PAGE_RX
433
434 #define __S000 PAGE_NONE
435 #define __S001 PAGE_RO
436 #define __S010 PAGE_RW
437 #define __S011 PAGE_RW
438 #define __S100 PAGE_RX
439 #define __S101 PAGE_RX
440 #define __S110 PAGE_RWX
441 #define __S111 PAGE_RWX
442
443 /*
444 * Segment entry (large page) protection definitions.
445 */
446 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
447 _SEGMENT_ENTRY_PROTECT)
448 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_NOEXEC)
451 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ)
453 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE | \
455 _SEGMENT_ENTRY_NOEXEC)
456 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE)
458 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
459 _SEGMENT_ENTRY_LARGE | \
460 _SEGMENT_ENTRY_READ | \
461 _SEGMENT_ENTRY_WRITE | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_DIRTY | \
464 _SEGMENT_ENTRY_NOEXEC)
465 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_YOUNG | \
469 _SEGMENT_ENTRY_PROTECT | \
470 _SEGMENT_ENTRY_NOEXEC)
471 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
472 _SEGMENT_ENTRY_LARGE | \
473 _SEGMENT_ENTRY_READ | \
474 _SEGMENT_ENTRY_WRITE | \
475 _SEGMENT_ENTRY_YOUNG | \
476 _SEGMENT_ENTRY_DIRTY)
477
478 /*
479 * Region3 entry (large page) protection definitions.
480 */
481
482 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
483 _REGION3_ENTRY_LARGE | \
484 _REGION3_ENTRY_READ | \
485 _REGION3_ENTRY_WRITE | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION3_ENTRY_DIRTY | \
488 _REGION_ENTRY_NOEXEC)
489 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_YOUNG | \
493 _REGION_ENTRY_PROTECT | \
494 _REGION_ENTRY_NOEXEC)
495
mm_p4d_folded(struct mm_struct * mm)496 static inline bool mm_p4d_folded(struct mm_struct *mm)
497 {
498 return mm->context.asce_limit <= _REGION1_SIZE;
499 }
500 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
501
mm_pud_folded(struct mm_struct * mm)502 static inline bool mm_pud_folded(struct mm_struct *mm)
503 {
504 return mm->context.asce_limit <= _REGION2_SIZE;
505 }
506 #define mm_pud_folded(mm) mm_pud_folded(mm)
507
mm_pmd_folded(struct mm_struct * mm)508 static inline bool mm_pmd_folded(struct mm_struct *mm)
509 {
510 return mm->context.asce_limit <= _REGION3_SIZE;
511 }
512 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
513
mm_has_pgste(struct mm_struct * mm)514 static inline int mm_has_pgste(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.has_pgste))
518 return 1;
519 #endif
520 return 0;
521 }
522
mm_is_protected(struct mm_struct * mm)523 static inline int mm_is_protected(struct mm_struct *mm)
524 {
525 #ifdef CONFIG_PGSTE
526 if (unlikely(atomic_read(&mm->context.is_protected)))
527 return 1;
528 #endif
529 return 0;
530 }
531
mm_alloc_pgste(struct mm_struct * mm)532 static inline int mm_alloc_pgste(struct mm_struct *mm)
533 {
534 #ifdef CONFIG_PGSTE
535 if (unlikely(mm->context.alloc_pgste))
536 return 1;
537 #endif
538 return 0;
539 }
540
541 /*
542 * In the case that a guest uses storage keys
543 * faults should no longer be backed by zero pages
544 */
545 #define mm_forbids_zeropage mm_has_pgste
mm_uses_skeys(struct mm_struct * mm)546 static inline int mm_uses_skeys(struct mm_struct *mm)
547 {
548 #ifdef CONFIG_PGSTE
549 if (mm->context.uses_skeys)
550 return 1;
551 #endif
552 return 0;
553 }
554
csp(unsigned int * ptr,unsigned int old,unsigned int new)555 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
556 {
557 union register_pair r1 = { .even = old, .odd = new, };
558 unsigned long address = (unsigned long)ptr | 1;
559
560 asm volatile(
561 " csp %[r1],%[address]"
562 : [r1] "+&d" (r1.pair), "+m" (*ptr)
563 : [address] "d" (address)
564 : "cc");
565 }
566
cspg(unsigned long * ptr,unsigned long old,unsigned long new)567 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
568 {
569 union register_pair r1 = { .even = old, .odd = new, };
570 unsigned long address = (unsigned long)ptr | 1;
571
572 asm volatile(
573 " .insn rre,0xb98a0000,%[r1],%[address]"
574 : [r1] "+&d" (r1.pair), "+m" (*ptr)
575 : [address] "d" (address)
576 : "cc");
577 }
578
579 #define CRDTE_DTT_PAGE 0x00UL
580 #define CRDTE_DTT_SEGMENT 0x10UL
581 #define CRDTE_DTT_REGION3 0x14UL
582 #define CRDTE_DTT_REGION2 0x18UL
583 #define CRDTE_DTT_REGION1 0x1cUL
584
crdte(unsigned long old,unsigned long new,unsigned long * table,unsigned long dtt,unsigned long address,unsigned long asce)585 static inline void crdte(unsigned long old, unsigned long new,
586 unsigned long *table, unsigned long dtt,
587 unsigned long address, unsigned long asce)
588 {
589 union register_pair r1 = { .even = old, .odd = new, };
590 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
591
592 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
593 : [r1] "+&d" (r1.pair)
594 : [r2] "d" (r2.pair), [asce] "a" (asce)
595 : "memory", "cc");
596 }
597
598 /*
599 * pgd/p4d/pud/pmd/pte query functions
600 */
pgd_folded(pgd_t pgd)601 static inline int pgd_folded(pgd_t pgd)
602 {
603 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
604 }
605
pgd_present(pgd_t pgd)606 static inline int pgd_present(pgd_t pgd)
607 {
608 if (pgd_folded(pgd))
609 return 1;
610 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
611 }
612
pgd_none(pgd_t pgd)613 static inline int pgd_none(pgd_t pgd)
614 {
615 if (pgd_folded(pgd))
616 return 0;
617 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
618 }
619
pgd_bad(pgd_t pgd)620 static inline int pgd_bad(pgd_t pgd)
621 {
622 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
623 return 0;
624 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
625 }
626
pgd_pfn(pgd_t pgd)627 static inline unsigned long pgd_pfn(pgd_t pgd)
628 {
629 unsigned long origin_mask;
630
631 origin_mask = _REGION_ENTRY_ORIGIN;
632 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
633 }
634
p4d_folded(p4d_t p4d)635 static inline int p4d_folded(p4d_t p4d)
636 {
637 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
638 }
639
p4d_present(p4d_t p4d)640 static inline int p4d_present(p4d_t p4d)
641 {
642 if (p4d_folded(p4d))
643 return 1;
644 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
645 }
646
p4d_none(p4d_t p4d)647 static inline int p4d_none(p4d_t p4d)
648 {
649 if (p4d_folded(p4d))
650 return 0;
651 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
652 }
653
p4d_pfn(p4d_t p4d)654 static inline unsigned long p4d_pfn(p4d_t p4d)
655 {
656 unsigned long origin_mask;
657
658 origin_mask = _REGION_ENTRY_ORIGIN;
659 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
660 }
661
pud_folded(pud_t pud)662 static inline int pud_folded(pud_t pud)
663 {
664 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
665 }
666
pud_present(pud_t pud)667 static inline int pud_present(pud_t pud)
668 {
669 if (pud_folded(pud))
670 return 1;
671 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
672 }
673
pud_none(pud_t pud)674 static inline int pud_none(pud_t pud)
675 {
676 if (pud_folded(pud))
677 return 0;
678 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
679 }
680
681 #define pud_leaf pud_large
pud_large(pud_t pud)682 static inline int pud_large(pud_t pud)
683 {
684 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
685 return 0;
686 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
687 }
688
689 #define pmd_leaf pmd_large
pmd_large(pmd_t pmd)690 static inline int pmd_large(pmd_t pmd)
691 {
692 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
693 }
694
pmd_bad(pmd_t pmd)695 static inline int pmd_bad(pmd_t pmd)
696 {
697 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
698 return 1;
699 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
700 }
701
pud_bad(pud_t pud)702 static inline int pud_bad(pud_t pud)
703 {
704 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
705
706 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
707 return 1;
708 if (type < _REGION_ENTRY_TYPE_R3)
709 return 0;
710 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
711 }
712
p4d_bad(p4d_t p4d)713 static inline int p4d_bad(p4d_t p4d)
714 {
715 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
716
717 if (type > _REGION_ENTRY_TYPE_R2)
718 return 1;
719 if (type < _REGION_ENTRY_TYPE_R2)
720 return 0;
721 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
722 }
723
pmd_present(pmd_t pmd)724 static inline int pmd_present(pmd_t pmd)
725 {
726 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
727 }
728
pmd_none(pmd_t pmd)729 static inline int pmd_none(pmd_t pmd)
730 {
731 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
732 }
733
734 #define pmd_write pmd_write
pmd_write(pmd_t pmd)735 static inline int pmd_write(pmd_t pmd)
736 {
737 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
738 }
739
740 #define pud_write pud_write
pud_write(pud_t pud)741 static inline int pud_write(pud_t pud)
742 {
743 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
744 }
745
pmd_dirty(pmd_t pmd)746 static inline int pmd_dirty(pmd_t pmd)
747 {
748 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
749 }
750
pmd_young(pmd_t pmd)751 static inline int pmd_young(pmd_t pmd)
752 {
753 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
754 }
755
pte_present(pte_t pte)756 static inline int pte_present(pte_t pte)
757 {
758 /* Bit pattern: (pte & 0x001) == 0x001 */
759 return (pte_val(pte) & _PAGE_PRESENT) != 0;
760 }
761
pte_none(pte_t pte)762 static inline int pte_none(pte_t pte)
763 {
764 /* Bit pattern: pte == 0x400 */
765 return pte_val(pte) == _PAGE_INVALID;
766 }
767
pte_swap(pte_t pte)768 static inline int pte_swap(pte_t pte)
769 {
770 /* Bit pattern: (pte & 0x201) == 0x200 */
771 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
772 == _PAGE_PROTECT;
773 }
774
pte_special(pte_t pte)775 static inline int pte_special(pte_t pte)
776 {
777 return (pte_val(pte) & _PAGE_SPECIAL);
778 }
779
780 #define __HAVE_ARCH_PTE_SAME
pte_same(pte_t a,pte_t b)781 static inline int pte_same(pte_t a, pte_t b)
782 {
783 return pte_val(a) == pte_val(b);
784 }
785
786 #ifdef CONFIG_NUMA_BALANCING
pte_protnone(pte_t pte)787 static inline int pte_protnone(pte_t pte)
788 {
789 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
790 }
791
pmd_protnone(pmd_t pmd)792 static inline int pmd_protnone(pmd_t pmd)
793 {
794 /* pmd_large(pmd) implies pmd_present(pmd) */
795 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
796 }
797 #endif
798
pte_soft_dirty(pte_t pte)799 static inline int pte_soft_dirty(pte_t pte)
800 {
801 return pte_val(pte) & _PAGE_SOFT_DIRTY;
802 }
803 #define pte_swp_soft_dirty pte_soft_dirty
804
pte_mksoft_dirty(pte_t pte)805 static inline pte_t pte_mksoft_dirty(pte_t pte)
806 {
807 pte_val(pte) |= _PAGE_SOFT_DIRTY;
808 return pte;
809 }
810 #define pte_swp_mksoft_dirty pte_mksoft_dirty
811
pte_clear_soft_dirty(pte_t pte)812 static inline pte_t pte_clear_soft_dirty(pte_t pte)
813 {
814 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
815 return pte;
816 }
817 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
818
pmd_soft_dirty(pmd_t pmd)819 static inline int pmd_soft_dirty(pmd_t pmd)
820 {
821 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
822 }
823
pmd_mksoft_dirty(pmd_t pmd)824 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
825 {
826 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
827 return pmd;
828 }
829
pmd_clear_soft_dirty(pmd_t pmd)830 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
831 {
832 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
833 return pmd;
834 }
835
836 /*
837 * query functions pte_write/pte_dirty/pte_young only work if
838 * pte_present() is true. Undefined behaviour if not..
839 */
pte_write(pte_t pte)840 static inline int pte_write(pte_t pte)
841 {
842 return (pte_val(pte) & _PAGE_WRITE) != 0;
843 }
844
pte_dirty(pte_t pte)845 static inline int pte_dirty(pte_t pte)
846 {
847 return (pte_val(pte) & _PAGE_DIRTY) != 0;
848 }
849
pte_young(pte_t pte)850 static inline int pte_young(pte_t pte)
851 {
852 return (pte_val(pte) & _PAGE_YOUNG) != 0;
853 }
854
855 #define __HAVE_ARCH_PTE_UNUSED
pte_unused(pte_t pte)856 static inline int pte_unused(pte_t pte)
857 {
858 return pte_val(pte) & _PAGE_UNUSED;
859 }
860
861 /*
862 * Extract the pgprot value from the given pte while at the same time making it
863 * usable for kernel address space mappings where fault driven dirty and
864 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
865 * must not be set.
866 */
pte_pgprot(pte_t pte)867 static inline pgprot_t pte_pgprot(pte_t pte)
868 {
869 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
870
871 if (pte_write(pte))
872 pte_flags |= pgprot_val(PAGE_KERNEL);
873 else
874 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
875 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
876
877 return __pgprot(pte_flags);
878 }
879
880 /*
881 * pgd/pmd/pte modification functions
882 */
883
pgd_clear(pgd_t * pgd)884 static inline void pgd_clear(pgd_t *pgd)
885 {
886 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
887 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
888 }
889
p4d_clear(p4d_t * p4d)890 static inline void p4d_clear(p4d_t *p4d)
891 {
892 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
893 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
894 }
895
pud_clear(pud_t * pud)896 static inline void pud_clear(pud_t *pud)
897 {
898 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
899 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
900 }
901
pmd_clear(pmd_t * pmdp)902 static inline void pmd_clear(pmd_t *pmdp)
903 {
904 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
905 }
906
pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)907 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
908 {
909 pte_val(*ptep) = _PAGE_INVALID;
910 }
911
912 /*
913 * The following pte modification functions only work if
914 * pte_present() is true. Undefined behaviour if not..
915 */
pte_modify(pte_t pte,pgprot_t newprot)916 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
917 {
918 pte_val(pte) &= _PAGE_CHG_MASK;
919 pte_val(pte) |= pgprot_val(newprot);
920 /*
921 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
922 * has the invalid bit set, clear it again for readable, young pages
923 */
924 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
925 pte_val(pte) &= ~_PAGE_INVALID;
926 /*
927 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
928 * protection bit set, clear it again for writable, dirty pages
929 */
930 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
931 pte_val(pte) &= ~_PAGE_PROTECT;
932 return pte;
933 }
934
pte_wrprotect(pte_t pte)935 static inline pte_t pte_wrprotect(pte_t pte)
936 {
937 pte_val(pte) &= ~_PAGE_WRITE;
938 pte_val(pte) |= _PAGE_PROTECT;
939 return pte;
940 }
941
pte_mkwrite(pte_t pte)942 static inline pte_t pte_mkwrite(pte_t pte)
943 {
944 pte_val(pte) |= _PAGE_WRITE;
945 if (pte_val(pte) & _PAGE_DIRTY)
946 pte_val(pte) &= ~_PAGE_PROTECT;
947 return pte;
948 }
949
pte_mkclean(pte_t pte)950 static inline pte_t pte_mkclean(pte_t pte)
951 {
952 pte_val(pte) &= ~_PAGE_DIRTY;
953 pte_val(pte) |= _PAGE_PROTECT;
954 return pte;
955 }
956
pte_mkdirty(pte_t pte)957 static inline pte_t pte_mkdirty(pte_t pte)
958 {
959 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
960 if (pte_val(pte) & _PAGE_WRITE)
961 pte_val(pte) &= ~_PAGE_PROTECT;
962 return pte;
963 }
964
pte_mkold(pte_t pte)965 static inline pte_t pte_mkold(pte_t pte)
966 {
967 pte_val(pte) &= ~_PAGE_YOUNG;
968 pte_val(pte) |= _PAGE_INVALID;
969 return pte;
970 }
971
pte_mkyoung(pte_t pte)972 static inline pte_t pte_mkyoung(pte_t pte)
973 {
974 pte_val(pte) |= _PAGE_YOUNG;
975 if (pte_val(pte) & _PAGE_READ)
976 pte_val(pte) &= ~_PAGE_INVALID;
977 return pte;
978 }
979
pte_mkspecial(pte_t pte)980 static inline pte_t pte_mkspecial(pte_t pte)
981 {
982 pte_val(pte) |= _PAGE_SPECIAL;
983 return pte;
984 }
985
986 #ifdef CONFIG_HUGETLB_PAGE
pte_mkhuge(pte_t pte)987 static inline pte_t pte_mkhuge(pte_t pte)
988 {
989 pte_val(pte) |= _PAGE_LARGE;
990 return pte;
991 }
992 #endif
993
994 #define IPTE_GLOBAL 0
995 #define IPTE_LOCAL 1
996
997 #define IPTE_NODAT 0x400
998 #define IPTE_GUEST_ASCE 0x800
999
__ptep_ipte(unsigned long address,pte_t * ptep,unsigned long opt,unsigned long asce,int local)1000 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1001 unsigned long opt, unsigned long asce,
1002 int local)
1003 {
1004 unsigned long pto = __pa(ptep);
1005
1006 if (__builtin_constant_p(opt) && opt == 0) {
1007 /* Invalidation + TLB flush for the pte */
1008 asm volatile(
1009 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
1010 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1011 [m4] "i" (local));
1012 return;
1013 }
1014
1015 /* Invalidate ptes with options + TLB flush of the ptes */
1016 opt = opt | (asce & _ASCE_ORIGIN);
1017 asm volatile(
1018 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1019 : [r2] "+a" (address), [r3] "+a" (opt)
1020 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1021 }
1022
__ptep_ipte_range(unsigned long address,int nr,pte_t * ptep,int local)1023 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1024 pte_t *ptep, int local)
1025 {
1026 unsigned long pto = __pa(ptep);
1027
1028 /* Invalidate a range of ptes + TLB flush of the ptes */
1029 do {
1030 asm volatile(
1031 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1032 : [r2] "+a" (address), [r3] "+a" (nr)
1033 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1034 } while (nr != 255);
1035 }
1036
1037 /*
1038 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1039 * both clear the TLB for the unmapped pte. The reason is that
1040 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1041 * to modify an active pte. The sequence is
1042 * 1) ptep_get_and_clear
1043 * 2) set_pte_at
1044 * 3) flush_tlb_range
1045 * On s390 the tlb needs to get flushed with the modification of the pte
1046 * if the pte is active. The only way how this can be implemented is to
1047 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1048 * is a nop.
1049 */
1050 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1051 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1052
1053 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1054 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1055 unsigned long addr, pte_t *ptep)
1056 {
1057 pte_t pte = *ptep;
1058
1059 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1060 return pte_young(pte);
1061 }
1062
1063 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
ptep_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)1064 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1065 unsigned long address, pte_t *ptep)
1066 {
1067 return ptep_test_and_clear_young(vma, address, ptep);
1068 }
1069
1070 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1071 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1072 unsigned long addr, pte_t *ptep)
1073 {
1074 pte_t res;
1075
1076 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1077 /* At this point the reference through the mapping is still present */
1078 if (mm_is_protected(mm) && pte_present(res))
1079 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1080 return res;
1081 }
1082
1083 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1084 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1085 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1086 pte_t *, pte_t, pte_t);
1087
1088 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
ptep_clear_flush(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1089 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1090 unsigned long addr, pte_t *ptep)
1091 {
1092 pte_t res;
1093
1094 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1095 /* At this point the reference through the mapping is still present */
1096 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1097 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1098 return res;
1099 }
1100
1101 /*
1102 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1103 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1104 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1105 * cannot be accessed while the batched unmap is running. In this case
1106 * full==1 and a simple pte_clear is enough. See tlb.h.
1107 */
1108 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long addr,pte_t * ptep,int full)1109 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1110 unsigned long addr,
1111 pte_t *ptep, int full)
1112 {
1113 pte_t res;
1114
1115 if (full) {
1116 res = *ptep;
1117 *ptep = __pte(_PAGE_INVALID);
1118 } else {
1119 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1120 }
1121 /* At this point the reference through the mapping is still present */
1122 if (mm_is_protected(mm) && pte_present(res))
1123 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1124 return res;
1125 }
1126
1127 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
ptep_set_wrprotect(struct mm_struct * mm,unsigned long addr,pte_t * ptep)1128 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1129 unsigned long addr, pte_t *ptep)
1130 {
1131 pte_t pte = *ptep;
1132
1133 if (pte_write(pte))
1134 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1135 }
1136
1137 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t entry,int dirty)1138 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1139 unsigned long addr, pte_t *ptep,
1140 pte_t entry, int dirty)
1141 {
1142 if (pte_same(*ptep, entry))
1143 return 0;
1144 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1145 return 1;
1146 }
1147
1148 /*
1149 * Additional functions to handle KVM guest page tables
1150 */
1151 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1152 pte_t *ptep, pte_t entry);
1153 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1154 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1155 pte_t *ptep, unsigned long bits);
1156 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1157 pte_t *ptep, int prot, unsigned long bit);
1158 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1159 pte_t *ptep , int reset);
1160 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1161 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1162 pte_t *sptep, pte_t *tptep, pte_t pte);
1163 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1164
1165 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1166 pte_t *ptep);
1167 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1168 unsigned char key, bool nq);
1169 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1170 unsigned char key, unsigned char *oldkey,
1171 bool nq, bool mr, bool mc);
1172 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1173 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1174 unsigned char *key);
1175
1176 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1177 unsigned long bits, unsigned long value);
1178 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1179 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1180 unsigned long *oldpte, unsigned long *oldpgste);
1181 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1182 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1183 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1184 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1185
1186 #define pgprot_writecombine pgprot_writecombine
1187 pgprot_t pgprot_writecombine(pgprot_t prot);
1188
1189 #define pgprot_writethrough pgprot_writethrough
1190 pgprot_t pgprot_writethrough(pgprot_t prot);
1191
1192 /*
1193 * Certain architectures need to do special things when PTEs
1194 * within a page table are directly modified. Thus, the following
1195 * hook is made available.
1196 */
set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t entry)1197 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1198 pte_t *ptep, pte_t entry)
1199 {
1200 if (pte_present(entry))
1201 pte_val(entry) &= ~_PAGE_UNUSED;
1202 if (mm_has_pgste(mm))
1203 ptep_set_pte_at(mm, addr, ptep, entry);
1204 else
1205 *ptep = entry;
1206 }
1207
1208 /*
1209 * Conversion functions: convert a page and protection to a page entry,
1210 * and a page entry and page directory to the page they refer to.
1211 */
mk_pte_phys(unsigned long physpage,pgprot_t pgprot)1212 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1213 {
1214 pte_t __pte;
1215
1216 pte_val(__pte) = physpage | pgprot_val(pgprot);
1217 if (!MACHINE_HAS_NX)
1218 pte_val(__pte) &= ~_PAGE_NOEXEC;
1219 return pte_mkyoung(__pte);
1220 }
1221
mk_pte(struct page * page,pgprot_t pgprot)1222 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1223 {
1224 unsigned long physpage = page_to_phys(page);
1225 pte_t __pte = mk_pte_phys(physpage, pgprot);
1226
1227 if (pte_write(__pte) && PageDirty(page))
1228 __pte = pte_mkdirty(__pte);
1229 return __pte;
1230 }
1231
1232 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1233 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1234 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1235 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1236
1237 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1238 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1239
pmd_deref(pmd_t pmd)1240 static inline unsigned long pmd_deref(pmd_t pmd)
1241 {
1242 unsigned long origin_mask;
1243
1244 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1245 if (pmd_large(pmd))
1246 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1247 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1248 }
1249
pmd_pfn(pmd_t pmd)1250 static inline unsigned long pmd_pfn(pmd_t pmd)
1251 {
1252 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1253 }
1254
pud_deref(pud_t pud)1255 static inline unsigned long pud_deref(pud_t pud)
1256 {
1257 unsigned long origin_mask;
1258
1259 origin_mask = _REGION_ENTRY_ORIGIN;
1260 if (pud_large(pud))
1261 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1262 return (unsigned long)__va(pud_val(pud) & origin_mask);
1263 }
1264
pud_pfn(pud_t pud)1265 static inline unsigned long pud_pfn(pud_t pud)
1266 {
1267 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1268 }
1269
1270 /*
1271 * The pgd_offset function *always* adds the index for the top-level
1272 * region/segment table. This is done to get a sequence like the
1273 * following to work:
1274 * pgdp = pgd_offset(current->mm, addr);
1275 * pgd = READ_ONCE(*pgdp);
1276 * p4dp = p4d_offset(&pgd, addr);
1277 * ...
1278 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1279 * only add an index if they dereferenced the pointer.
1280 */
pgd_offset_raw(pgd_t * pgd,unsigned long address)1281 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1282 {
1283 unsigned long rste;
1284 unsigned int shift;
1285
1286 /* Get the first entry of the top level table */
1287 rste = pgd_val(*pgd);
1288 /* Pick up the shift from the table type of the first entry */
1289 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1290 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1291 }
1292
1293 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1294
p4d_offset_lockless(pgd_t * pgdp,pgd_t pgd,unsigned long address)1295 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1296 {
1297 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1298 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1299 return (p4d_t *) pgdp;
1300 }
1301 #define p4d_offset_lockless p4d_offset_lockless
1302
p4d_offset(pgd_t * pgdp,unsigned long address)1303 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1304 {
1305 return p4d_offset_lockless(pgdp, *pgdp, address);
1306 }
1307
pud_offset_lockless(p4d_t * p4dp,p4d_t p4d,unsigned long address)1308 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1309 {
1310 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1311 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1312 return (pud_t *) p4dp;
1313 }
1314 #define pud_offset_lockless pud_offset_lockless
1315
pud_offset(p4d_t * p4dp,unsigned long address)1316 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1317 {
1318 return pud_offset_lockless(p4dp, *p4dp, address);
1319 }
1320 #define pud_offset pud_offset
1321
pmd_offset_lockless(pud_t * pudp,pud_t pud,unsigned long address)1322 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1323 {
1324 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1325 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1326 return (pmd_t *) pudp;
1327 }
1328 #define pmd_offset_lockless pmd_offset_lockless
1329
pmd_offset(pud_t * pudp,unsigned long address)1330 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1331 {
1332 return pmd_offset_lockless(pudp, *pudp, address);
1333 }
1334 #define pmd_offset pmd_offset
1335
pmd_page_vaddr(pmd_t pmd)1336 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1337 {
1338 return (unsigned long) pmd_deref(pmd);
1339 }
1340
gup_fast_permitted(unsigned long start,unsigned long end)1341 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1342 {
1343 return end <= current->mm->context.asce_limit;
1344 }
1345 #define gup_fast_permitted gup_fast_permitted
1346
1347 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1348 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1349 #define pte_page(x) pfn_to_page(pte_pfn(x))
1350
1351 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1352 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1353 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1354 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1355
pmd_wrprotect(pmd_t pmd)1356 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1357 {
1358 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1359 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1360 return pmd;
1361 }
1362
pmd_mkwrite(pmd_t pmd)1363 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1364 {
1365 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1366 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1367 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1368 return pmd;
1369 }
1370
pmd_mkclean(pmd_t pmd)1371 static inline pmd_t pmd_mkclean(pmd_t pmd)
1372 {
1373 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1374 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1375 return pmd;
1376 }
1377
pmd_mkdirty(pmd_t pmd)1378 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1379 {
1380 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1381 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1382 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1383 return pmd;
1384 }
1385
pud_wrprotect(pud_t pud)1386 static inline pud_t pud_wrprotect(pud_t pud)
1387 {
1388 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1389 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1390 return pud;
1391 }
1392
pud_mkwrite(pud_t pud)1393 static inline pud_t pud_mkwrite(pud_t pud)
1394 {
1395 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1396 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1397 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1398 return pud;
1399 }
1400
pud_mkclean(pud_t pud)1401 static inline pud_t pud_mkclean(pud_t pud)
1402 {
1403 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1404 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1405 return pud;
1406 }
1407
pud_mkdirty(pud_t pud)1408 static inline pud_t pud_mkdirty(pud_t pud)
1409 {
1410 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1411 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1412 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1413 return pud;
1414 }
1415
1416 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
massage_pgprot_pmd(pgprot_t pgprot)1417 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1418 {
1419 /*
1420 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1421 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1422 */
1423 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1424 return pgprot_val(SEGMENT_NONE);
1425 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1426 return pgprot_val(SEGMENT_RO);
1427 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1428 return pgprot_val(SEGMENT_RX);
1429 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1430 return pgprot_val(SEGMENT_RW);
1431 return pgprot_val(SEGMENT_RWX);
1432 }
1433
pmd_mkyoung(pmd_t pmd)1434 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1435 {
1436 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1437 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1438 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1439 return pmd;
1440 }
1441
pmd_mkold(pmd_t pmd)1442 static inline pmd_t pmd_mkold(pmd_t pmd)
1443 {
1444 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1445 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1446 return pmd;
1447 }
1448
pmd_modify(pmd_t pmd,pgprot_t newprot)1449 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1450 {
1451 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1452 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1453 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1454 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1455 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1456 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1457 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1458 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1459 return pmd;
1460 }
1461
mk_pmd_phys(unsigned long physpage,pgprot_t pgprot)1462 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1463 {
1464 pmd_t __pmd;
1465 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1466 return __pmd;
1467 }
1468
1469 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1470
__pmdp_csp(pmd_t * pmdp)1471 static inline void __pmdp_csp(pmd_t *pmdp)
1472 {
1473 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1474 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1475 }
1476
1477 #define IDTE_GLOBAL 0
1478 #define IDTE_LOCAL 1
1479
1480 #define IDTE_PTOA 0x0800
1481 #define IDTE_NODAT 0x1000
1482 #define IDTE_GUEST_ASCE 0x2000
1483
__pmdp_idte(unsigned long addr,pmd_t * pmdp,unsigned long opt,unsigned long asce,int local)1484 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1485 unsigned long opt, unsigned long asce,
1486 int local)
1487 {
1488 unsigned long sto;
1489
1490 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1491 if (__builtin_constant_p(opt) && opt == 0) {
1492 /* flush without guest asce */
1493 asm volatile(
1494 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1495 : "+m" (*pmdp)
1496 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1497 [m4] "i" (local)
1498 : "cc" );
1499 } else {
1500 /* flush with guest asce */
1501 asm volatile(
1502 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1503 : "+m" (*pmdp)
1504 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1505 [r3] "a" (asce), [m4] "i" (local)
1506 : "cc" );
1507 }
1508 }
1509
__pudp_idte(unsigned long addr,pud_t * pudp,unsigned long opt,unsigned long asce,int local)1510 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1511 unsigned long opt, unsigned long asce,
1512 int local)
1513 {
1514 unsigned long r3o;
1515
1516 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1517 r3o |= _ASCE_TYPE_REGION3;
1518 if (__builtin_constant_p(opt) && opt == 0) {
1519 /* flush without guest asce */
1520 asm volatile(
1521 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1522 : "+m" (*pudp)
1523 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1524 [m4] "i" (local)
1525 : "cc");
1526 } else {
1527 /* flush with guest asce */
1528 asm volatile(
1529 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1530 : "+m" (*pudp)
1531 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1532 [r3] "a" (asce), [m4] "i" (local)
1533 : "cc" );
1534 }
1535 }
1536
1537 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1538 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1539 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1540
1541 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1542
1543 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1544 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1545 pgtable_t pgtable);
1546
1547 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1548 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1549
1550 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,pmd_t entry,int dirty)1551 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1552 unsigned long addr, pmd_t *pmdp,
1553 pmd_t entry, int dirty)
1554 {
1555 VM_BUG_ON(addr & ~HPAGE_MASK);
1556
1557 entry = pmd_mkyoung(entry);
1558 if (dirty)
1559 entry = pmd_mkdirty(entry);
1560 if (pmd_val(*pmdp) == pmd_val(entry))
1561 return 0;
1562 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1563 return 1;
1564 }
1565
1566 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1567 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1568 unsigned long addr, pmd_t *pmdp)
1569 {
1570 pmd_t pmd = *pmdp;
1571
1572 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1573 return pmd_young(pmd);
1574 }
1575
1576 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1577 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1578 unsigned long addr, pmd_t *pmdp)
1579 {
1580 VM_BUG_ON(addr & ~HPAGE_MASK);
1581 return pmdp_test_and_clear_young(vma, addr, pmdp);
1582 }
1583
set_pmd_at(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp,pmd_t entry)1584 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1585 pmd_t *pmdp, pmd_t entry)
1586 {
1587 if (!MACHINE_HAS_NX)
1588 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1589 *pmdp = entry;
1590 }
1591
pmd_mkhuge(pmd_t pmd)1592 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1593 {
1594 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1595 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1596 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1597 return pmd;
1598 }
1599
1600 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1601 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1602 unsigned long addr, pmd_t *pmdp)
1603 {
1604 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1605 }
1606
1607 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp,int full)1608 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1609 unsigned long addr,
1610 pmd_t *pmdp, int full)
1611 {
1612 if (full) {
1613 pmd_t pmd = *pmdp;
1614 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1615 return pmd;
1616 }
1617 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1618 }
1619
1620 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
pmdp_huge_clear_flush(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1621 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1622 unsigned long addr, pmd_t *pmdp)
1623 {
1624 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1625 }
1626
1627 #define __HAVE_ARCH_PMDP_INVALIDATE
pmdp_invalidate(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1628 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1629 unsigned long addr, pmd_t *pmdp)
1630 {
1631 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1632
1633 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1634 }
1635
1636 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long addr,pmd_t * pmdp)1637 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1638 unsigned long addr, pmd_t *pmdp)
1639 {
1640 pmd_t pmd = *pmdp;
1641
1642 if (pmd_write(pmd))
1643 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1644 }
1645
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)1646 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1647 unsigned long address,
1648 pmd_t *pmdp)
1649 {
1650 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1651 }
1652 #define pmdp_collapse_flush pmdp_collapse_flush
1653
1654 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1655 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1656
pmd_trans_huge(pmd_t pmd)1657 static inline int pmd_trans_huge(pmd_t pmd)
1658 {
1659 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1660 }
1661
1662 #define has_transparent_hugepage has_transparent_hugepage
has_transparent_hugepage(void)1663 static inline int has_transparent_hugepage(void)
1664 {
1665 return MACHINE_HAS_EDAT1 ? 1 : 0;
1666 }
1667 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1668
1669 /*
1670 * 64 bit swap entry format:
1671 * A page-table entry has some bits we have to treat in a special way.
1672 * Bits 52 and bit 55 have to be zero, otherwise a specification
1673 * exception will occur instead of a page translation exception. The
1674 * specification exception has the bad habit not to store necessary
1675 * information in the lowcore.
1676 * Bits 54 and 63 are used to indicate the page type.
1677 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1678 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1679 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1680 * for the offset.
1681 * | offset |01100|type |00|
1682 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1683 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1684 */
1685
1686 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1687 #define __SWP_OFFSET_SHIFT 12
1688 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1689 #define __SWP_TYPE_SHIFT 2
1690
mk_swap_pte(unsigned long type,unsigned long offset)1691 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1692 {
1693 pte_t pte;
1694
1695 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1696 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1697 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1698 return pte;
1699 }
1700
__swp_type(swp_entry_t entry)1701 static inline unsigned long __swp_type(swp_entry_t entry)
1702 {
1703 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1704 }
1705
__swp_offset(swp_entry_t entry)1706 static inline unsigned long __swp_offset(swp_entry_t entry)
1707 {
1708 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1709 }
1710
__swp_entry(unsigned long type,unsigned long offset)1711 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1712 {
1713 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1714 }
1715
1716 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1717 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1718
1719 #define kern_addr_valid(addr) (1)
1720
1721 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1722 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1723 extern int s390_enable_sie(void);
1724 extern int s390_enable_skey(void);
1725 extern void s390_reset_cmma(struct mm_struct *mm);
1726
1727 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1728 #define HAVE_ARCH_UNMAPPED_AREA
1729 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1730
1731 #define pmd_pgtable(pmd) \
1732 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1733
1734 #endif /* _S390_PAGE_H */
1735