1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Machine check handler.
4 *
5 * K8 parts Copyright 2002,2003 Andi Kleen, SuSE Labs.
6 * Rest from unknown author(s).
7 * 2004 Andi Kleen. Rewrote most of it.
8 * Copyright 2008 Intel Corporation
9 * Author: Andi Kleen
10 */
11
12 #include <linux/thread_info.h>
13 #include <linux/capability.h>
14 #include <linux/miscdevice.h>
15 #include <linux/ratelimit.h>
16 #include <linux/rcupdate.h>
17 #include <linux/kobject.h>
18 #include <linux/uaccess.h>
19 #include <linux/kdebug.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/string.h>
23 #include <linux/device.h>
24 #include <linux/syscore_ops.h>
25 #include <linux/delay.h>
26 #include <linux/ctype.h>
27 #include <linux/sched.h>
28 #include <linux/sysfs.h>
29 #include <linux/types.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/kmod.h>
33 #include <linux/poll.h>
34 #include <linux/nmi.h>
35 #include <linux/cpu.h>
36 #include <linux/ras.h>
37 #include <linux/smp.h>
38 #include <linux/fs.h>
39 #include <linux/mm.h>
40 #include <linux/debugfs.h>
41 #include <linux/irq_work.h>
42 #include <linux/export.h>
43 #include <linux/set_memory.h>
44 #include <linux/sync_core.h>
45 #include <linux/task_work.h>
46 #include <linux/hardirq.h>
47
48 #include <asm/intel-family.h>
49 #include <asm/processor.h>
50 #include <asm/traps.h>
51 #include <asm/tlbflush.h>
52 #include <asm/mce.h>
53 #include <asm/msr.h>
54 #include <asm/reboot.h>
55
56 #include "internal.h"
57
58 /* sysfs synchronization */
59 static DEFINE_MUTEX(mce_sysfs_mutex);
60
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/mce.h>
63
64 #define SPINUNIT 100 /* 100ns */
65
66 DEFINE_PER_CPU(unsigned, mce_exception_count);
67
68 DEFINE_PER_CPU_READ_MOSTLY(unsigned int, mce_num_banks);
69
70 struct mce_bank {
71 u64 ctl; /* subevents to enable */
72 bool init; /* initialise bank? */
73 };
74 static DEFINE_PER_CPU_READ_MOSTLY(struct mce_bank[MAX_NR_BANKS], mce_banks_array);
75
76 #define ATTR_LEN 16
77 /* One object for each MCE bank, shared by all CPUs */
78 struct mce_bank_dev {
79 struct device_attribute attr; /* device attribute */
80 char attrname[ATTR_LEN]; /* attribute name */
81 u8 bank; /* bank number */
82 };
83 static struct mce_bank_dev mce_bank_devs[MAX_NR_BANKS];
84
85 struct mce_vendor_flags mce_flags __read_mostly;
86
87 struct mca_config mca_cfg __read_mostly = {
88 .bootlog = -1,
89 /*
90 * Tolerant levels:
91 * 0: always panic on uncorrected errors, log corrected errors
92 * 1: panic or SIGBUS on uncorrected errors, log corrected errors
93 * 2: SIGBUS or log uncorrected errors (if possible), log corr. errors
94 * 3: never panic or SIGBUS, log all errors (for testing only)
95 */
96 .tolerant = 1,
97 .monarch_timeout = -1
98 };
99
100 static DEFINE_PER_CPU(struct mce, mces_seen);
101 static unsigned long mce_need_notify;
102 static int cpu_missing;
103
104 /*
105 * MCA banks polled by the period polling timer for corrected events.
106 * With Intel CMCI, this only has MCA banks which do not support CMCI (if any).
107 */
108 DEFINE_PER_CPU(mce_banks_t, mce_poll_banks) = {
109 [0 ... BITS_TO_LONGS(MAX_NR_BANKS)-1] = ~0UL
110 };
111
112 /*
113 * MCA banks controlled through firmware first for corrected errors.
114 * This is a global list of banks for which we won't enable CMCI and we
115 * won't poll. Firmware controls these banks and is responsible for
116 * reporting corrected errors through GHES. Uncorrected/recoverable
117 * errors are still notified through a machine check.
118 */
119 mce_banks_t mce_banks_ce_disabled;
120
121 static struct work_struct mce_work;
122 static struct irq_work mce_irq_work;
123
124 /*
125 * CPU/chipset specific EDAC code can register a notifier call here to print
126 * MCE errors in a human-readable form.
127 */
128 BLOCKING_NOTIFIER_HEAD(x86_mce_decoder_chain);
129
130 /* Do initial initialization of a struct mce */
mce_setup(struct mce * m)131 noinstr void mce_setup(struct mce *m)
132 {
133 memset(m, 0, sizeof(struct mce));
134 m->cpu = m->extcpu = smp_processor_id();
135 /* need the internal __ version to avoid deadlocks */
136 m->time = __ktime_get_real_seconds();
137 m->cpuvendor = boot_cpu_data.x86_vendor;
138 m->cpuid = cpuid_eax(1);
139 m->socketid = cpu_data(m->extcpu).phys_proc_id;
140 m->apicid = cpu_data(m->extcpu).initial_apicid;
141 m->mcgcap = __rdmsr(MSR_IA32_MCG_CAP);
142
143 if (this_cpu_has(X86_FEATURE_INTEL_PPIN))
144 m->ppin = __rdmsr(MSR_PPIN);
145 else if (this_cpu_has(X86_FEATURE_AMD_PPIN))
146 m->ppin = __rdmsr(MSR_AMD_PPIN);
147
148 m->microcode = boot_cpu_data.microcode;
149 }
150
151 DEFINE_PER_CPU(struct mce, injectm);
152 EXPORT_PER_CPU_SYMBOL_GPL(injectm);
153
mce_log(struct mce * m)154 void mce_log(struct mce *m)
155 {
156 if (!mce_gen_pool_add(m))
157 irq_work_queue(&mce_irq_work);
158 }
159 EXPORT_SYMBOL_GPL(mce_log);
160
mce_register_decode_chain(struct notifier_block * nb)161 void mce_register_decode_chain(struct notifier_block *nb)
162 {
163 if (WARN_ON(nb->priority < MCE_PRIO_LOWEST ||
164 nb->priority > MCE_PRIO_HIGHEST))
165 return;
166
167 blocking_notifier_chain_register(&x86_mce_decoder_chain, nb);
168 }
169 EXPORT_SYMBOL_GPL(mce_register_decode_chain);
170
mce_unregister_decode_chain(struct notifier_block * nb)171 void mce_unregister_decode_chain(struct notifier_block *nb)
172 {
173 blocking_notifier_chain_unregister(&x86_mce_decoder_chain, nb);
174 }
175 EXPORT_SYMBOL_GPL(mce_unregister_decode_chain);
176
mca_msr_reg(int bank,enum mca_msr reg)177 u32 mca_msr_reg(int bank, enum mca_msr reg)
178 {
179 if (mce_flags.smca) {
180 switch (reg) {
181 case MCA_CTL: return MSR_AMD64_SMCA_MCx_CTL(bank);
182 case MCA_ADDR: return MSR_AMD64_SMCA_MCx_ADDR(bank);
183 case MCA_MISC: return MSR_AMD64_SMCA_MCx_MISC(bank);
184 case MCA_STATUS: return MSR_AMD64_SMCA_MCx_STATUS(bank);
185 }
186 }
187
188 switch (reg) {
189 case MCA_CTL: return MSR_IA32_MCx_CTL(bank);
190 case MCA_ADDR: return MSR_IA32_MCx_ADDR(bank);
191 case MCA_MISC: return MSR_IA32_MCx_MISC(bank);
192 case MCA_STATUS: return MSR_IA32_MCx_STATUS(bank);
193 }
194
195 return 0;
196 }
197
__print_mce(struct mce * m)198 static void __print_mce(struct mce *m)
199 {
200 pr_emerg(HW_ERR "CPU %d: Machine Check%s: %Lx Bank %d: %016Lx\n",
201 m->extcpu,
202 (m->mcgstatus & MCG_STATUS_MCIP ? " Exception" : ""),
203 m->mcgstatus, m->bank, m->status);
204
205 if (m->ip) {
206 pr_emerg(HW_ERR "RIP%s %02x:<%016Lx> ",
207 !(m->mcgstatus & MCG_STATUS_EIPV) ? " !INEXACT!" : "",
208 m->cs, m->ip);
209
210 if (m->cs == __KERNEL_CS)
211 pr_cont("{%pS}", (void *)(unsigned long)m->ip);
212 pr_cont("\n");
213 }
214
215 pr_emerg(HW_ERR "TSC %llx ", m->tsc);
216 if (m->addr)
217 pr_cont("ADDR %llx ", m->addr);
218 if (m->misc)
219 pr_cont("MISC %llx ", m->misc);
220 if (m->ppin)
221 pr_cont("PPIN %llx ", m->ppin);
222
223 if (mce_flags.smca) {
224 if (m->synd)
225 pr_cont("SYND %llx ", m->synd);
226 if (m->ipid)
227 pr_cont("IPID %llx ", m->ipid);
228 }
229
230 pr_cont("\n");
231
232 /*
233 * Note this output is parsed by external tools and old fields
234 * should not be changed.
235 */
236 pr_emerg(HW_ERR "PROCESSOR %u:%x TIME %llu SOCKET %u APIC %x microcode %x\n",
237 m->cpuvendor, m->cpuid, m->time, m->socketid, m->apicid,
238 m->microcode);
239 }
240
print_mce(struct mce * m)241 static void print_mce(struct mce *m)
242 {
243 __print_mce(m);
244
245 if (m->cpuvendor != X86_VENDOR_AMD && m->cpuvendor != X86_VENDOR_HYGON)
246 pr_emerg_ratelimited(HW_ERR "Run the above through 'mcelog --ascii'\n");
247 }
248
249 #define PANIC_TIMEOUT 5 /* 5 seconds */
250
251 static atomic_t mce_panicked;
252
253 static int fake_panic;
254 static atomic_t mce_fake_panicked;
255
256 /* Panic in progress. Enable interrupts and wait for final IPI */
wait_for_panic(void)257 static void wait_for_panic(void)
258 {
259 long timeout = PANIC_TIMEOUT*USEC_PER_SEC;
260
261 preempt_disable();
262 local_irq_enable();
263 while (timeout-- > 0)
264 udelay(1);
265 if (panic_timeout == 0)
266 panic_timeout = mca_cfg.panic_timeout;
267 panic("Panicing machine check CPU died");
268 }
269
mce_panic(const char * msg,struct mce * final,char * exp)270 static void mce_panic(const char *msg, struct mce *final, char *exp)
271 {
272 int apei_err = 0;
273 struct llist_node *pending;
274 struct mce_evt_llist *l;
275
276 if (!fake_panic) {
277 /*
278 * Make sure only one CPU runs in machine check panic
279 */
280 if (atomic_inc_return(&mce_panicked) > 1)
281 wait_for_panic();
282 barrier();
283
284 bust_spinlocks(1);
285 console_verbose();
286 } else {
287 /* Don't log too much for fake panic */
288 if (atomic_inc_return(&mce_fake_panicked) > 1)
289 return;
290 }
291 pending = mce_gen_pool_prepare_records();
292 /* First print corrected ones that are still unlogged */
293 llist_for_each_entry(l, pending, llnode) {
294 struct mce *m = &l->mce;
295 if (!(m->status & MCI_STATUS_UC)) {
296 print_mce(m);
297 if (!apei_err)
298 apei_err = apei_write_mce(m);
299 }
300 }
301 /* Now print uncorrected but with the final one last */
302 llist_for_each_entry(l, pending, llnode) {
303 struct mce *m = &l->mce;
304 if (!(m->status & MCI_STATUS_UC))
305 continue;
306 if (!final || mce_cmp(m, final)) {
307 print_mce(m);
308 if (!apei_err)
309 apei_err = apei_write_mce(m);
310 }
311 }
312 if (final) {
313 print_mce(final);
314 if (!apei_err)
315 apei_err = apei_write_mce(final);
316 }
317 if (cpu_missing)
318 pr_emerg(HW_ERR "Some CPUs didn't answer in synchronization\n");
319 if (exp)
320 pr_emerg(HW_ERR "Machine check: %s\n", exp);
321 if (!fake_panic) {
322 if (panic_timeout == 0)
323 panic_timeout = mca_cfg.panic_timeout;
324 panic(msg);
325 } else
326 pr_emerg(HW_ERR "Fake kernel panic: %s\n", msg);
327 }
328
329 /* Support code for software error injection */
330
msr_to_offset(u32 msr)331 static int msr_to_offset(u32 msr)
332 {
333 unsigned bank = __this_cpu_read(injectm.bank);
334
335 if (msr == mca_cfg.rip_msr)
336 return offsetof(struct mce, ip);
337 if (msr == mca_msr_reg(bank, MCA_STATUS))
338 return offsetof(struct mce, status);
339 if (msr == mca_msr_reg(bank, MCA_ADDR))
340 return offsetof(struct mce, addr);
341 if (msr == mca_msr_reg(bank, MCA_MISC))
342 return offsetof(struct mce, misc);
343 if (msr == MSR_IA32_MCG_STATUS)
344 return offsetof(struct mce, mcgstatus);
345 return -1;
346 }
347
ex_handler_msr_mce(struct pt_regs * regs,bool wrmsr)348 void ex_handler_msr_mce(struct pt_regs *regs, bool wrmsr)
349 {
350 if (wrmsr) {
351 pr_emerg("MSR access error: WRMSR to 0x%x (tried to write 0x%08x%08x) at rIP: 0x%lx (%pS)\n",
352 (unsigned int)regs->cx, (unsigned int)regs->dx, (unsigned int)regs->ax,
353 regs->ip, (void *)regs->ip);
354 } else {
355 pr_emerg("MSR access error: RDMSR from 0x%x at rIP: 0x%lx (%pS)\n",
356 (unsigned int)regs->cx, regs->ip, (void *)regs->ip);
357 }
358
359 show_stack_regs(regs);
360
361 panic("MCA architectural violation!\n");
362
363 while (true)
364 cpu_relax();
365 }
366
367 /* MSR access wrappers used for error injection */
mce_rdmsrl(u32 msr)368 static noinstr u64 mce_rdmsrl(u32 msr)
369 {
370 DECLARE_ARGS(val, low, high);
371
372 if (__this_cpu_read(injectm.finished)) {
373 int offset;
374 u64 ret;
375
376 instrumentation_begin();
377
378 offset = msr_to_offset(msr);
379 if (offset < 0)
380 ret = 0;
381 else
382 ret = *(u64 *)((char *)this_cpu_ptr(&injectm) + offset);
383
384 instrumentation_end();
385
386 return ret;
387 }
388
389 /*
390 * RDMSR on MCA MSRs should not fault. If they do, this is very much an
391 * architectural violation and needs to be reported to hw vendor. Panic
392 * the box to not allow any further progress.
393 */
394 asm volatile("1: rdmsr\n"
395 "2:\n"
396 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_RDMSR_IN_MCE)
397 : EAX_EDX_RET(val, low, high) : "c" (msr));
398
399
400 return EAX_EDX_VAL(val, low, high);
401 }
402
mce_wrmsrl(u32 msr,u64 v)403 static noinstr void mce_wrmsrl(u32 msr, u64 v)
404 {
405 u32 low, high;
406
407 if (__this_cpu_read(injectm.finished)) {
408 int offset;
409
410 instrumentation_begin();
411
412 offset = msr_to_offset(msr);
413 if (offset >= 0)
414 *(u64 *)((char *)this_cpu_ptr(&injectm) + offset) = v;
415
416 instrumentation_end();
417
418 return;
419 }
420
421 low = (u32)v;
422 high = (u32)(v >> 32);
423
424 /* See comment in mce_rdmsrl() */
425 asm volatile("1: wrmsr\n"
426 "2:\n"
427 _ASM_EXTABLE_TYPE(1b, 2b, EX_TYPE_WRMSR_IN_MCE)
428 : : "c" (msr), "a"(low), "d" (high) : "memory");
429 }
430
431 /*
432 * Collect all global (w.r.t. this processor) status about this machine
433 * check into our "mce" struct so that we can use it later to assess
434 * the severity of the problem as we read per-bank specific details.
435 */
mce_gather_info(struct mce * m,struct pt_regs * regs)436 static inline void mce_gather_info(struct mce *m, struct pt_regs *regs)
437 {
438 mce_setup(m);
439
440 m->mcgstatus = mce_rdmsrl(MSR_IA32_MCG_STATUS);
441 if (regs) {
442 /*
443 * Get the address of the instruction at the time of
444 * the machine check error.
445 */
446 if (m->mcgstatus & (MCG_STATUS_RIPV|MCG_STATUS_EIPV)) {
447 m->ip = regs->ip;
448 m->cs = regs->cs;
449
450 /*
451 * When in VM86 mode make the cs look like ring 3
452 * always. This is a lie, but it's better than passing
453 * the additional vm86 bit around everywhere.
454 */
455 if (v8086_mode(regs))
456 m->cs |= 3;
457 }
458 /* Use accurate RIP reporting if available. */
459 if (mca_cfg.rip_msr)
460 m->ip = mce_rdmsrl(mca_cfg.rip_msr);
461 }
462 }
463
mce_available(struct cpuinfo_x86 * c)464 int mce_available(struct cpuinfo_x86 *c)
465 {
466 if (mca_cfg.disabled)
467 return 0;
468 return cpu_has(c, X86_FEATURE_MCE) && cpu_has(c, X86_FEATURE_MCA);
469 }
470
mce_schedule_work(void)471 static void mce_schedule_work(void)
472 {
473 if (!mce_gen_pool_empty())
474 schedule_work(&mce_work);
475 }
476
mce_irq_work_cb(struct irq_work * entry)477 static void mce_irq_work_cb(struct irq_work *entry)
478 {
479 mce_schedule_work();
480 }
481
482 /*
483 * Check if the address reported by the CPU is in a format we can parse.
484 * It would be possible to add code for most other cases, but all would
485 * be somewhat complicated (e.g. segment offset would require an instruction
486 * parser). So only support physical addresses up to page granularity for now.
487 */
mce_usable_address(struct mce * m)488 int mce_usable_address(struct mce *m)
489 {
490 if (!(m->status & MCI_STATUS_ADDRV))
491 return 0;
492
493 /* Checks after this one are Intel/Zhaoxin-specific: */
494 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL &&
495 boot_cpu_data.x86_vendor != X86_VENDOR_ZHAOXIN)
496 return 1;
497
498 if (!(m->status & MCI_STATUS_MISCV))
499 return 0;
500
501 if (MCI_MISC_ADDR_LSB(m->misc) > PAGE_SHIFT)
502 return 0;
503
504 if (MCI_MISC_ADDR_MODE(m->misc) != MCI_MISC_ADDR_PHYS)
505 return 0;
506
507 return 1;
508 }
509 EXPORT_SYMBOL_GPL(mce_usable_address);
510
mce_is_memory_error(struct mce * m)511 bool mce_is_memory_error(struct mce *m)
512 {
513 switch (m->cpuvendor) {
514 case X86_VENDOR_AMD:
515 case X86_VENDOR_HYGON:
516 return amd_mce_is_memory_error(m);
517
518 case X86_VENDOR_INTEL:
519 case X86_VENDOR_ZHAOXIN:
520 /*
521 * Intel SDM Volume 3B - 15.9.2 Compound Error Codes
522 *
523 * Bit 7 of the MCACOD field of IA32_MCi_STATUS is used for
524 * indicating a memory error. Bit 8 is used for indicating a
525 * cache hierarchy error. The combination of bit 2 and bit 3
526 * is used for indicating a `generic' cache hierarchy error
527 * But we can't just blindly check the above bits, because if
528 * bit 11 is set, then it is a bus/interconnect error - and
529 * either way the above bits just gives more detail on what
530 * bus/interconnect error happened. Note that bit 12 can be
531 * ignored, as it's the "filter" bit.
532 */
533 return (m->status & 0xef80) == BIT(7) ||
534 (m->status & 0xef00) == BIT(8) ||
535 (m->status & 0xeffc) == 0xc;
536
537 default:
538 return false;
539 }
540 }
541 EXPORT_SYMBOL_GPL(mce_is_memory_error);
542
whole_page(struct mce * m)543 static bool whole_page(struct mce *m)
544 {
545 if (!mca_cfg.ser || !(m->status & MCI_STATUS_MISCV))
546 return true;
547
548 return MCI_MISC_ADDR_LSB(m->misc) >= PAGE_SHIFT;
549 }
550
mce_is_correctable(struct mce * m)551 bool mce_is_correctable(struct mce *m)
552 {
553 if (m->cpuvendor == X86_VENDOR_AMD && m->status & MCI_STATUS_DEFERRED)
554 return false;
555
556 if (m->cpuvendor == X86_VENDOR_HYGON && m->status & MCI_STATUS_DEFERRED)
557 return false;
558
559 if (m->status & MCI_STATUS_UC)
560 return false;
561
562 return true;
563 }
564 EXPORT_SYMBOL_GPL(mce_is_correctable);
565
mce_early_notifier(struct notifier_block * nb,unsigned long val,void * data)566 static int mce_early_notifier(struct notifier_block *nb, unsigned long val,
567 void *data)
568 {
569 struct mce *m = (struct mce *)data;
570
571 if (!m)
572 return NOTIFY_DONE;
573
574 /* Emit the trace record: */
575 trace_mce_record(m);
576
577 set_bit(0, &mce_need_notify);
578
579 mce_notify_irq();
580
581 return NOTIFY_DONE;
582 }
583
584 static struct notifier_block early_nb = {
585 .notifier_call = mce_early_notifier,
586 .priority = MCE_PRIO_EARLY,
587 };
588
uc_decode_notifier(struct notifier_block * nb,unsigned long val,void * data)589 static int uc_decode_notifier(struct notifier_block *nb, unsigned long val,
590 void *data)
591 {
592 struct mce *mce = (struct mce *)data;
593 unsigned long pfn;
594
595 if (!mce || !mce_usable_address(mce))
596 return NOTIFY_DONE;
597
598 if (mce->severity != MCE_AO_SEVERITY &&
599 mce->severity != MCE_DEFERRED_SEVERITY)
600 return NOTIFY_DONE;
601
602 pfn = mce->addr >> PAGE_SHIFT;
603 if (!memory_failure(pfn, 0)) {
604 set_mce_nospec(pfn, whole_page(mce));
605 mce->kflags |= MCE_HANDLED_UC;
606 }
607
608 return NOTIFY_OK;
609 }
610
611 static struct notifier_block mce_uc_nb = {
612 .notifier_call = uc_decode_notifier,
613 .priority = MCE_PRIO_UC,
614 };
615
mce_default_notifier(struct notifier_block * nb,unsigned long val,void * data)616 static int mce_default_notifier(struct notifier_block *nb, unsigned long val,
617 void *data)
618 {
619 struct mce *m = (struct mce *)data;
620
621 if (!m)
622 return NOTIFY_DONE;
623
624 if (mca_cfg.print_all || !m->kflags)
625 __print_mce(m);
626
627 return NOTIFY_DONE;
628 }
629
630 static struct notifier_block mce_default_nb = {
631 .notifier_call = mce_default_notifier,
632 /* lowest prio, we want it to run last. */
633 .priority = MCE_PRIO_LOWEST,
634 };
635
636 /*
637 * Read ADDR and MISC registers.
638 */
mce_read_aux(struct mce * m,int i)639 static void mce_read_aux(struct mce *m, int i)
640 {
641 if (m->status & MCI_STATUS_MISCV)
642 m->misc = mce_rdmsrl(mca_msr_reg(i, MCA_MISC));
643
644 if (m->status & MCI_STATUS_ADDRV) {
645 m->addr = mce_rdmsrl(mca_msr_reg(i, MCA_ADDR));
646
647 /*
648 * Mask the reported address by the reported granularity.
649 */
650 if (mca_cfg.ser && (m->status & MCI_STATUS_MISCV)) {
651 u8 shift = MCI_MISC_ADDR_LSB(m->misc);
652 m->addr >>= shift;
653 m->addr <<= shift;
654 }
655
656 /*
657 * Extract [55:<lsb>] where lsb is the least significant
658 * *valid* bit of the address bits.
659 */
660 if (mce_flags.smca) {
661 u8 lsb = (m->addr >> 56) & 0x3f;
662
663 m->addr &= GENMASK_ULL(55, lsb);
664 }
665 }
666
667 if (mce_flags.smca) {
668 m->ipid = mce_rdmsrl(MSR_AMD64_SMCA_MCx_IPID(i));
669
670 if (m->status & MCI_STATUS_SYNDV)
671 m->synd = mce_rdmsrl(MSR_AMD64_SMCA_MCx_SYND(i));
672 }
673 }
674
675 DEFINE_PER_CPU(unsigned, mce_poll_count);
676
677 /*
678 * Poll for corrected events or events that happened before reset.
679 * Those are just logged through /dev/mcelog.
680 *
681 * This is executed in standard interrupt context.
682 *
683 * Note: spec recommends to panic for fatal unsignalled
684 * errors here. However this would be quite problematic --
685 * we would need to reimplement the Monarch handling and
686 * it would mess up the exclusion between exception handler
687 * and poll handler -- * so we skip this for now.
688 * These cases should not happen anyways, or only when the CPU
689 * is already totally * confused. In this case it's likely it will
690 * not fully execute the machine check handler either.
691 */
machine_check_poll(enum mcp_flags flags,mce_banks_t * b)692 bool machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
693 {
694 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
695 bool error_seen = false;
696 struct mce m;
697 int i;
698
699 this_cpu_inc(mce_poll_count);
700
701 mce_gather_info(&m, NULL);
702
703 if (flags & MCP_TIMESTAMP)
704 m.tsc = rdtsc();
705
706 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
707 if (!mce_banks[i].ctl || !test_bit(i, *b))
708 continue;
709
710 m.misc = 0;
711 m.addr = 0;
712 m.bank = i;
713
714 barrier();
715 m.status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
716
717 /* If this entry is not valid, ignore it */
718 if (!(m.status & MCI_STATUS_VAL))
719 continue;
720
721 /*
722 * If we are logging everything (at CPU online) or this
723 * is a corrected error, then we must log it.
724 */
725 if ((flags & MCP_UC) || !(m.status & MCI_STATUS_UC))
726 goto log_it;
727
728 /*
729 * Newer Intel systems that support software error
730 * recovery need to make additional checks. Other
731 * CPUs should skip over uncorrected errors, but log
732 * everything else.
733 */
734 if (!mca_cfg.ser) {
735 if (m.status & MCI_STATUS_UC)
736 continue;
737 goto log_it;
738 }
739
740 /* Log "not enabled" (speculative) errors */
741 if (!(m.status & MCI_STATUS_EN))
742 goto log_it;
743
744 /*
745 * Log UCNA (SDM: 15.6.3 "UCR Error Classification")
746 * UC == 1 && PCC == 0 && S == 0
747 */
748 if (!(m.status & MCI_STATUS_PCC) && !(m.status & MCI_STATUS_S))
749 goto log_it;
750
751 /*
752 * Skip anything else. Presumption is that our read of this
753 * bank is racing with a machine check. Leave the log alone
754 * for do_machine_check() to deal with it.
755 */
756 continue;
757
758 log_it:
759 error_seen = true;
760
761 if (flags & MCP_DONTLOG)
762 goto clear_it;
763
764 mce_read_aux(&m, i);
765 m.severity = mce_severity(&m, NULL, mca_cfg.tolerant, NULL, false);
766 /*
767 * Don't get the IP here because it's unlikely to
768 * have anything to do with the actual error location.
769 */
770
771 if (mca_cfg.dont_log_ce && !mce_usable_address(&m))
772 goto clear_it;
773
774 if (flags & MCP_QUEUE_LOG)
775 mce_gen_pool_add(&m);
776 else
777 mce_log(&m);
778
779 clear_it:
780 /*
781 * Clear state for this bank.
782 */
783 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
784 }
785
786 /*
787 * Don't clear MCG_STATUS here because it's only defined for
788 * exceptions.
789 */
790
791 sync_core();
792
793 return error_seen;
794 }
795 EXPORT_SYMBOL_GPL(machine_check_poll);
796
797 /*
798 * During IFU recovery Sandy Bridge -EP4S processors set the RIPV and
799 * EIPV bits in MCG_STATUS to zero on the affected logical processor (SDM
800 * Vol 3B Table 15-20). But this confuses both the code that determines
801 * whether the machine check occurred in kernel or user mode, and also
802 * the severity assessment code. Pretend that EIPV was set, and take the
803 * ip/cs values from the pt_regs that mce_gather_info() ignored earlier.
804 */
quirk_sandybridge_ifu(int bank,struct mce * m,struct pt_regs * regs)805 static void quirk_sandybridge_ifu(int bank, struct mce *m, struct pt_regs *regs)
806 {
807 if (bank != 0)
808 return;
809 if ((m->mcgstatus & (MCG_STATUS_EIPV|MCG_STATUS_RIPV)) != 0)
810 return;
811 if ((m->status & (MCI_STATUS_OVER|MCI_STATUS_UC|
812 MCI_STATUS_EN|MCI_STATUS_MISCV|MCI_STATUS_ADDRV|
813 MCI_STATUS_PCC|MCI_STATUS_S|MCI_STATUS_AR|
814 MCACOD)) !=
815 (MCI_STATUS_UC|MCI_STATUS_EN|
816 MCI_STATUS_MISCV|MCI_STATUS_ADDRV|MCI_STATUS_S|
817 MCI_STATUS_AR|MCACOD_INSTR))
818 return;
819
820 m->mcgstatus |= MCG_STATUS_EIPV;
821 m->ip = regs->ip;
822 m->cs = regs->cs;
823 }
824
825 /*
826 * Do a quick check if any of the events requires a panic.
827 * This decides if we keep the events around or clear them.
828 */
mce_no_way_out(struct mce * m,char ** msg,unsigned long * validp,struct pt_regs * regs)829 static int mce_no_way_out(struct mce *m, char **msg, unsigned long *validp,
830 struct pt_regs *regs)
831 {
832 char *tmp = *msg;
833 int i;
834
835 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
836 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
837 if (!(m->status & MCI_STATUS_VAL))
838 continue;
839
840 __set_bit(i, validp);
841 if (mce_flags.snb_ifu_quirk)
842 quirk_sandybridge_ifu(i, m, regs);
843
844 m->bank = i;
845 if (mce_severity(m, regs, mca_cfg.tolerant, &tmp, true) >= MCE_PANIC_SEVERITY) {
846 mce_read_aux(m, i);
847 *msg = tmp;
848 return 1;
849 }
850 }
851 return 0;
852 }
853
854 /*
855 * Variable to establish order between CPUs while scanning.
856 * Each CPU spins initially until executing is equal its number.
857 */
858 static atomic_t mce_executing;
859
860 /*
861 * Defines order of CPUs on entry. First CPU becomes Monarch.
862 */
863 static atomic_t mce_callin;
864
865 /*
866 * Track which CPUs entered the MCA broadcast synchronization and which not in
867 * order to print holdouts.
868 */
869 static cpumask_t mce_missing_cpus = CPU_MASK_ALL;
870
871 /*
872 * Check if a timeout waiting for other CPUs happened.
873 */
mce_timed_out(u64 * t,const char * msg)874 static int mce_timed_out(u64 *t, const char *msg)
875 {
876 /*
877 * The others already did panic for some reason.
878 * Bail out like in a timeout.
879 * rmb() to tell the compiler that system_state
880 * might have been modified by someone else.
881 */
882 rmb();
883 if (atomic_read(&mce_panicked))
884 wait_for_panic();
885 if (!mca_cfg.monarch_timeout)
886 goto out;
887 if ((s64)*t < SPINUNIT) {
888 if (mca_cfg.tolerant <= 1) {
889 if (cpumask_and(&mce_missing_cpus, cpu_online_mask, &mce_missing_cpus))
890 pr_emerg("CPUs not responding to MCE broadcast (may include false positives): %*pbl\n",
891 cpumask_pr_args(&mce_missing_cpus));
892 mce_panic(msg, NULL, NULL);
893 }
894 cpu_missing = 1;
895 return 1;
896 }
897 *t -= SPINUNIT;
898 out:
899 touch_nmi_watchdog();
900 return 0;
901 }
902
903 /*
904 * The Monarch's reign. The Monarch is the CPU who entered
905 * the machine check handler first. It waits for the others to
906 * raise the exception too and then grades them. When any
907 * error is fatal panic. Only then let the others continue.
908 *
909 * The other CPUs entering the MCE handler will be controlled by the
910 * Monarch. They are called Subjects.
911 *
912 * This way we prevent any potential data corruption in a unrecoverable case
913 * and also makes sure always all CPU's errors are examined.
914 *
915 * Also this detects the case of a machine check event coming from outer
916 * space (not detected by any CPUs) In this case some external agent wants
917 * us to shut down, so panic too.
918 *
919 * The other CPUs might still decide to panic if the handler happens
920 * in a unrecoverable place, but in this case the system is in a semi-stable
921 * state and won't corrupt anything by itself. It's ok to let the others
922 * continue for a bit first.
923 *
924 * All the spin loops have timeouts; when a timeout happens a CPU
925 * typically elects itself to be Monarch.
926 */
mce_reign(void)927 static void mce_reign(void)
928 {
929 int cpu;
930 struct mce *m = NULL;
931 int global_worst = 0;
932 char *msg = NULL;
933
934 /*
935 * This CPU is the Monarch and the other CPUs have run
936 * through their handlers.
937 * Grade the severity of the errors of all the CPUs.
938 */
939 for_each_possible_cpu(cpu) {
940 struct mce *mtmp = &per_cpu(mces_seen, cpu);
941
942 if (mtmp->severity > global_worst) {
943 global_worst = mtmp->severity;
944 m = &per_cpu(mces_seen, cpu);
945 }
946 }
947
948 /*
949 * Cannot recover? Panic here then.
950 * This dumps all the mces in the log buffer and stops the
951 * other CPUs.
952 */
953 if (m && global_worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
954 /* call mce_severity() to get "msg" for panic */
955 mce_severity(m, NULL, mca_cfg.tolerant, &msg, true);
956 mce_panic("Fatal machine check", m, msg);
957 }
958
959 /*
960 * For UC somewhere we let the CPU who detects it handle it.
961 * Also must let continue the others, otherwise the handling
962 * CPU could deadlock on a lock.
963 */
964
965 /*
966 * No machine check event found. Must be some external
967 * source or one CPU is hung. Panic.
968 */
969 if (global_worst <= MCE_KEEP_SEVERITY && mca_cfg.tolerant < 3)
970 mce_panic("Fatal machine check from unknown source", NULL, NULL);
971
972 /*
973 * Now clear all the mces_seen so that they don't reappear on
974 * the next mce.
975 */
976 for_each_possible_cpu(cpu)
977 memset(&per_cpu(mces_seen, cpu), 0, sizeof(struct mce));
978 }
979
980 static atomic_t global_nwo;
981
982 /*
983 * Start of Monarch synchronization. This waits until all CPUs have
984 * entered the exception handler and then determines if any of them
985 * saw a fatal event that requires panic. Then it executes them
986 * in the entry order.
987 * TBD double check parallel CPU hotunplug
988 */
mce_start(int * no_way_out)989 static int mce_start(int *no_way_out)
990 {
991 int order;
992 int cpus = num_online_cpus();
993 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
994
995 if (!timeout)
996 return -1;
997
998 atomic_add(*no_way_out, &global_nwo);
999 /*
1000 * Rely on the implied barrier below, such that global_nwo
1001 * is updated before mce_callin.
1002 */
1003 order = atomic_inc_return(&mce_callin);
1004 cpumask_clear_cpu(smp_processor_id(), &mce_missing_cpus);
1005
1006 /*
1007 * Wait for everyone.
1008 */
1009 while (atomic_read(&mce_callin) != cpus) {
1010 if (mce_timed_out(&timeout,
1011 "Timeout: Not all CPUs entered broadcast exception handler")) {
1012 atomic_set(&global_nwo, 0);
1013 return -1;
1014 }
1015 ndelay(SPINUNIT);
1016 }
1017
1018 /*
1019 * mce_callin should be read before global_nwo
1020 */
1021 smp_rmb();
1022
1023 if (order == 1) {
1024 /*
1025 * Monarch: Starts executing now, the others wait.
1026 */
1027 atomic_set(&mce_executing, 1);
1028 } else {
1029 /*
1030 * Subject: Now start the scanning loop one by one in
1031 * the original callin order.
1032 * This way when there are any shared banks it will be
1033 * only seen by one CPU before cleared, avoiding duplicates.
1034 */
1035 while (atomic_read(&mce_executing) < order) {
1036 if (mce_timed_out(&timeout,
1037 "Timeout: Subject CPUs unable to finish machine check processing")) {
1038 atomic_set(&global_nwo, 0);
1039 return -1;
1040 }
1041 ndelay(SPINUNIT);
1042 }
1043 }
1044
1045 /*
1046 * Cache the global no_way_out state.
1047 */
1048 *no_way_out = atomic_read(&global_nwo);
1049
1050 return order;
1051 }
1052
1053 /*
1054 * Synchronize between CPUs after main scanning loop.
1055 * This invokes the bulk of the Monarch processing.
1056 */
mce_end(int order)1057 static int mce_end(int order)
1058 {
1059 int ret = -1;
1060 u64 timeout = (u64)mca_cfg.monarch_timeout * NSEC_PER_USEC;
1061
1062 if (!timeout)
1063 goto reset;
1064 if (order < 0)
1065 goto reset;
1066
1067 /*
1068 * Allow others to run.
1069 */
1070 atomic_inc(&mce_executing);
1071
1072 if (order == 1) {
1073 /* CHECKME: Can this race with a parallel hotplug? */
1074 int cpus = num_online_cpus();
1075
1076 /*
1077 * Monarch: Wait for everyone to go through their scanning
1078 * loops.
1079 */
1080 while (atomic_read(&mce_executing) <= cpus) {
1081 if (mce_timed_out(&timeout,
1082 "Timeout: Monarch CPU unable to finish machine check processing"))
1083 goto reset;
1084 ndelay(SPINUNIT);
1085 }
1086
1087 mce_reign();
1088 barrier();
1089 ret = 0;
1090 } else {
1091 /*
1092 * Subject: Wait for Monarch to finish.
1093 */
1094 while (atomic_read(&mce_executing) != 0) {
1095 if (mce_timed_out(&timeout,
1096 "Timeout: Monarch CPU did not finish machine check processing"))
1097 goto reset;
1098 ndelay(SPINUNIT);
1099 }
1100
1101 /*
1102 * Don't reset anything. That's done by the Monarch.
1103 */
1104 return 0;
1105 }
1106
1107 /*
1108 * Reset all global state.
1109 */
1110 reset:
1111 atomic_set(&global_nwo, 0);
1112 atomic_set(&mce_callin, 0);
1113 cpumask_setall(&mce_missing_cpus);
1114 barrier();
1115
1116 /*
1117 * Let others run again.
1118 */
1119 atomic_set(&mce_executing, 0);
1120 return ret;
1121 }
1122
mce_clear_state(unsigned long * toclear)1123 static void mce_clear_state(unsigned long *toclear)
1124 {
1125 int i;
1126
1127 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1128 if (test_bit(i, toclear))
1129 mce_wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1130 }
1131 }
1132
1133 /*
1134 * Cases where we avoid rendezvous handler timeout:
1135 * 1) If this CPU is offline.
1136 *
1137 * 2) If crashing_cpu was set, e.g. we're entering kdump and we need to
1138 * skip those CPUs which remain looping in the 1st kernel - see
1139 * crash_nmi_callback().
1140 *
1141 * Note: there still is a small window between kexec-ing and the new,
1142 * kdump kernel establishing a new #MC handler where a broadcasted MCE
1143 * might not get handled properly.
1144 */
mce_check_crashing_cpu(void)1145 static noinstr bool mce_check_crashing_cpu(void)
1146 {
1147 unsigned int cpu = smp_processor_id();
1148
1149 if (arch_cpu_is_offline(cpu) ||
1150 (crashing_cpu != -1 && crashing_cpu != cpu)) {
1151 u64 mcgstatus;
1152
1153 mcgstatus = __rdmsr(MSR_IA32_MCG_STATUS);
1154
1155 if (boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN) {
1156 if (mcgstatus & MCG_STATUS_LMCES)
1157 return false;
1158 }
1159
1160 if (mcgstatus & MCG_STATUS_RIPV) {
1161 __wrmsr(MSR_IA32_MCG_STATUS, 0, 0);
1162 return true;
1163 }
1164 }
1165 return false;
1166 }
1167
__mc_scan_banks(struct mce * m,struct pt_regs * regs,struct mce * final,unsigned long * toclear,unsigned long * valid_banks,int no_way_out,int * worst)1168 static void __mc_scan_banks(struct mce *m, struct pt_regs *regs, struct mce *final,
1169 unsigned long *toclear, unsigned long *valid_banks,
1170 int no_way_out, int *worst)
1171 {
1172 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1173 struct mca_config *cfg = &mca_cfg;
1174 int severity, i;
1175
1176 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1177 __clear_bit(i, toclear);
1178 if (!test_bit(i, valid_banks))
1179 continue;
1180
1181 if (!mce_banks[i].ctl)
1182 continue;
1183
1184 m->misc = 0;
1185 m->addr = 0;
1186 m->bank = i;
1187
1188 m->status = mce_rdmsrl(mca_msr_reg(i, MCA_STATUS));
1189 if (!(m->status & MCI_STATUS_VAL))
1190 continue;
1191
1192 /*
1193 * Corrected or non-signaled errors are handled by
1194 * machine_check_poll(). Leave them alone, unless this panics.
1195 */
1196 if (!(m->status & (cfg->ser ? MCI_STATUS_S : MCI_STATUS_UC)) &&
1197 !no_way_out)
1198 continue;
1199
1200 /* Set taint even when machine check was not enabled. */
1201 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_NOW_UNRELIABLE);
1202
1203 severity = mce_severity(m, regs, cfg->tolerant, NULL, true);
1204
1205 /*
1206 * When machine check was for corrected/deferred handler don't
1207 * touch, unless we're panicking.
1208 */
1209 if ((severity == MCE_KEEP_SEVERITY ||
1210 severity == MCE_UCNA_SEVERITY) && !no_way_out)
1211 continue;
1212
1213 __set_bit(i, toclear);
1214
1215 /* Machine check event was not enabled. Clear, but ignore. */
1216 if (severity == MCE_NO_SEVERITY)
1217 continue;
1218
1219 mce_read_aux(m, i);
1220
1221 /* assuming valid severity level != 0 */
1222 m->severity = severity;
1223
1224 mce_log(m);
1225
1226 if (severity > *worst) {
1227 *final = *m;
1228 *worst = severity;
1229 }
1230 }
1231
1232 /* mce_clear_state will clear *final, save locally for use later */
1233 *m = *final;
1234 }
1235
kill_me_now(struct callback_head * ch)1236 static void kill_me_now(struct callback_head *ch)
1237 {
1238 struct task_struct *p = container_of(ch, struct task_struct, mce_kill_me);
1239
1240 p->mce_count = 0;
1241 force_sig(SIGBUS);
1242 }
1243
kill_me_maybe(struct callback_head * cb)1244 static void kill_me_maybe(struct callback_head *cb)
1245 {
1246 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1247 int flags = MF_ACTION_REQUIRED;
1248 int ret;
1249
1250 p->mce_count = 0;
1251 pr_err("Uncorrected hardware memory error in user-access at %llx", p->mce_addr);
1252
1253 if (!p->mce_ripv)
1254 flags |= MF_MUST_KILL;
1255
1256 ret = memory_failure(p->mce_addr >> PAGE_SHIFT, flags);
1257 if (!ret) {
1258 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1259 sync_core();
1260 return;
1261 }
1262
1263 /*
1264 * -EHWPOISON from memory_failure() means that it already sent SIGBUS
1265 * to the current process with the proper error info, so no need to
1266 * send SIGBUS here again.
1267 */
1268 if (ret == -EHWPOISON)
1269 return;
1270
1271 pr_err("Memory error not recovered");
1272 kill_me_now(cb);
1273 }
1274
kill_me_never(struct callback_head * cb)1275 static void kill_me_never(struct callback_head *cb)
1276 {
1277 struct task_struct *p = container_of(cb, struct task_struct, mce_kill_me);
1278
1279 p->mce_count = 0;
1280 pr_err("Kernel accessed poison in user space at %llx\n", p->mce_addr);
1281 if (!memory_failure(p->mce_addr >> PAGE_SHIFT, 0))
1282 set_mce_nospec(p->mce_addr >> PAGE_SHIFT, p->mce_whole_page);
1283 }
1284
queue_task_work(struct mce * m,char * msg,void (* func)(struct callback_head *))1285 static void queue_task_work(struct mce *m, char *msg, void (*func)(struct callback_head *))
1286 {
1287 int count = ++current->mce_count;
1288
1289 /* First call, save all the details */
1290 if (count == 1) {
1291 current->mce_addr = m->addr;
1292 current->mce_kflags = m->kflags;
1293 current->mce_ripv = !!(m->mcgstatus & MCG_STATUS_RIPV);
1294 current->mce_whole_page = whole_page(m);
1295 current->mce_kill_me.func = func;
1296 }
1297
1298 /* Ten is likely overkill. Don't expect more than two faults before task_work() */
1299 if (count > 10)
1300 mce_panic("Too many consecutive machine checks while accessing user data", m, msg);
1301
1302 /* Second or later call, make sure page address matches the one from first call */
1303 if (count > 1 && (current->mce_addr >> PAGE_SHIFT) != (m->addr >> PAGE_SHIFT))
1304 mce_panic("Consecutive machine checks to different user pages", m, msg);
1305
1306 /* Do not call task_work_add() more than once */
1307 if (count > 1)
1308 return;
1309
1310 task_work_add(current, ¤t->mce_kill_me, TWA_RESUME);
1311 }
1312
1313 /* Handle unconfigured int18 (should never happen) */
unexpected_machine_check(struct pt_regs * regs)1314 static noinstr void unexpected_machine_check(struct pt_regs *regs)
1315 {
1316 instrumentation_begin();
1317 pr_err("CPU#%d: Unexpected int18 (Machine Check)\n",
1318 smp_processor_id());
1319 instrumentation_end();
1320 }
1321
1322 /*
1323 * The actual machine check handler. This only handles real
1324 * exceptions when something got corrupted coming in through int 18.
1325 *
1326 * This is executed in NMI context not subject to normal locking rules. This
1327 * implies that most kernel services cannot be safely used. Don't even
1328 * think about putting a printk in there!
1329 *
1330 * On Intel systems this is entered on all CPUs in parallel through
1331 * MCE broadcast. However some CPUs might be broken beyond repair,
1332 * so be always careful when synchronizing with others.
1333 *
1334 * Tracing and kprobes are disabled: if we interrupted a kernel context
1335 * with IF=1, we need to minimize stack usage. There are also recursion
1336 * issues: if the machine check was due to a failure of the memory
1337 * backing the user stack, tracing that reads the user stack will cause
1338 * potentially infinite recursion.
1339 */
do_machine_check(struct pt_regs * regs)1340 noinstr void do_machine_check(struct pt_regs *regs)
1341 {
1342 int worst = 0, order, no_way_out, kill_current_task, lmce;
1343 DECLARE_BITMAP(valid_banks, MAX_NR_BANKS);
1344 DECLARE_BITMAP(toclear, MAX_NR_BANKS);
1345 struct mca_config *cfg = &mca_cfg;
1346 struct mce m, *final;
1347 char *msg = NULL;
1348
1349 if (unlikely(mce_flags.p5))
1350 return pentium_machine_check(regs);
1351 else if (unlikely(mce_flags.winchip))
1352 return winchip_machine_check(regs);
1353 else if (unlikely(!mca_cfg.initialized))
1354 return unexpected_machine_check(regs);
1355
1356 /*
1357 * Establish sequential order between the CPUs entering the machine
1358 * check handler.
1359 */
1360 order = -1;
1361
1362 /*
1363 * If no_way_out gets set, there is no safe way to recover from this
1364 * MCE. If mca_cfg.tolerant is cranked up, we'll try anyway.
1365 */
1366 no_way_out = 0;
1367
1368 /*
1369 * If kill_current_task is not set, there might be a way to recover from this
1370 * error.
1371 */
1372 kill_current_task = 0;
1373
1374 /*
1375 * MCEs are always local on AMD. Same is determined by MCG_STATUS_LMCES
1376 * on Intel.
1377 */
1378 lmce = 1;
1379
1380 this_cpu_inc(mce_exception_count);
1381
1382 mce_gather_info(&m, regs);
1383 m.tsc = rdtsc();
1384
1385 final = this_cpu_ptr(&mces_seen);
1386 *final = m;
1387
1388 memset(valid_banks, 0, sizeof(valid_banks));
1389 no_way_out = mce_no_way_out(&m, &msg, valid_banks, regs);
1390
1391 barrier();
1392
1393 /*
1394 * When no restart IP might need to kill or panic.
1395 * Assume the worst for now, but if we find the
1396 * severity is MCE_AR_SEVERITY we have other options.
1397 */
1398 if (!(m.mcgstatus & MCG_STATUS_RIPV))
1399 kill_current_task = (cfg->tolerant == 3) ? 0 : 1;
1400 /*
1401 * Check if this MCE is signaled to only this logical processor,
1402 * on Intel, Zhaoxin only.
1403 */
1404 if (m.cpuvendor == X86_VENDOR_INTEL ||
1405 m.cpuvendor == X86_VENDOR_ZHAOXIN)
1406 lmce = m.mcgstatus & MCG_STATUS_LMCES;
1407
1408 /*
1409 * Local machine check may already know that we have to panic.
1410 * Broadcast machine check begins rendezvous in mce_start()
1411 * Go through all banks in exclusion of the other CPUs. This way we
1412 * don't report duplicated events on shared banks because the first one
1413 * to see it will clear it.
1414 */
1415 if (lmce) {
1416 if (no_way_out && cfg->tolerant < 3)
1417 mce_panic("Fatal local machine check", &m, msg);
1418 } else {
1419 order = mce_start(&no_way_out);
1420 }
1421
1422 __mc_scan_banks(&m, regs, final, toclear, valid_banks, no_way_out, &worst);
1423
1424 if (!no_way_out)
1425 mce_clear_state(toclear);
1426
1427 /*
1428 * Do most of the synchronization with other CPUs.
1429 * When there's any problem use only local no_way_out state.
1430 */
1431 if (!lmce) {
1432 if (mce_end(order) < 0) {
1433 if (!no_way_out)
1434 no_way_out = worst >= MCE_PANIC_SEVERITY;
1435
1436 if (no_way_out && cfg->tolerant < 3)
1437 mce_panic("Fatal machine check on current CPU", &m, msg);
1438 }
1439 } else {
1440 /*
1441 * If there was a fatal machine check we should have
1442 * already called mce_panic earlier in this function.
1443 * Since we re-read the banks, we might have found
1444 * something new. Check again to see if we found a
1445 * fatal error. We call "mce_severity()" again to
1446 * make sure we have the right "msg".
1447 */
1448 if (worst >= MCE_PANIC_SEVERITY && mca_cfg.tolerant < 3) {
1449 mce_severity(&m, regs, cfg->tolerant, &msg, true);
1450 mce_panic("Local fatal machine check!", &m, msg);
1451 }
1452 }
1453
1454 if (worst != MCE_AR_SEVERITY && !kill_current_task)
1455 goto out;
1456
1457 /* Fault was in user mode and we need to take some action */
1458 if ((m.cs & 3) == 3) {
1459 /* If this triggers there is no way to recover. Die hard. */
1460 BUG_ON(!on_thread_stack() || !user_mode(regs));
1461
1462 if (kill_current_task)
1463 queue_task_work(&m, msg, kill_me_now);
1464 else
1465 queue_task_work(&m, msg, kill_me_maybe);
1466
1467 } else {
1468 /*
1469 * Handle an MCE which has happened in kernel space but from
1470 * which the kernel can recover: ex_has_fault_handler() has
1471 * already verified that the rIP at which the error happened is
1472 * a rIP from which the kernel can recover (by jumping to
1473 * recovery code specified in _ASM_EXTABLE_FAULT()) and the
1474 * corresponding exception handler which would do that is the
1475 * proper one.
1476 */
1477 if (m.kflags & MCE_IN_KERNEL_RECOV) {
1478 if (!fixup_exception(regs, X86_TRAP_MC, 0, 0))
1479 mce_panic("Failed kernel mode recovery", &m, msg);
1480 }
1481
1482 if (m.kflags & MCE_IN_KERNEL_COPYIN)
1483 queue_task_work(&m, msg, kill_me_never);
1484 }
1485 out:
1486 mce_wrmsrl(MSR_IA32_MCG_STATUS, 0);
1487 }
1488 EXPORT_SYMBOL_GPL(do_machine_check);
1489
1490 #ifndef CONFIG_MEMORY_FAILURE
memory_failure(unsigned long pfn,int flags)1491 int memory_failure(unsigned long pfn, int flags)
1492 {
1493 /* mce_severity() should not hand us an ACTION_REQUIRED error */
1494 BUG_ON(flags & MF_ACTION_REQUIRED);
1495 pr_err("Uncorrected memory error in page 0x%lx ignored\n"
1496 "Rebuild kernel with CONFIG_MEMORY_FAILURE=y for smarter handling\n",
1497 pfn);
1498
1499 return 0;
1500 }
1501 #endif
1502
1503 /*
1504 * Periodic polling timer for "silent" machine check errors. If the
1505 * poller finds an MCE, poll 2x faster. When the poller finds no more
1506 * errors, poll 2x slower (up to check_interval seconds).
1507 */
1508 static unsigned long check_interval = INITIAL_CHECK_INTERVAL;
1509
1510 static DEFINE_PER_CPU(unsigned long, mce_next_interval); /* in jiffies */
1511 static DEFINE_PER_CPU(struct timer_list, mce_timer);
1512
mce_adjust_timer_default(unsigned long interval)1513 static unsigned long mce_adjust_timer_default(unsigned long interval)
1514 {
1515 return interval;
1516 }
1517
1518 static unsigned long (*mce_adjust_timer)(unsigned long interval) = mce_adjust_timer_default;
1519
__start_timer(struct timer_list * t,unsigned long interval)1520 static void __start_timer(struct timer_list *t, unsigned long interval)
1521 {
1522 unsigned long when = jiffies + interval;
1523 unsigned long flags;
1524
1525 local_irq_save(flags);
1526
1527 if (!timer_pending(t) || time_before(when, t->expires))
1528 mod_timer(t, round_jiffies(when));
1529
1530 local_irq_restore(flags);
1531 }
1532
mce_timer_fn(struct timer_list * t)1533 static void mce_timer_fn(struct timer_list *t)
1534 {
1535 struct timer_list *cpu_t = this_cpu_ptr(&mce_timer);
1536 unsigned long iv;
1537
1538 WARN_ON(cpu_t != t);
1539
1540 iv = __this_cpu_read(mce_next_interval);
1541
1542 if (mce_available(this_cpu_ptr(&cpu_info))) {
1543 machine_check_poll(0, this_cpu_ptr(&mce_poll_banks));
1544
1545 if (mce_intel_cmci_poll()) {
1546 iv = mce_adjust_timer(iv);
1547 goto done;
1548 }
1549 }
1550
1551 /*
1552 * Alert userspace if needed. If we logged an MCE, reduce the polling
1553 * interval, otherwise increase the polling interval.
1554 */
1555 if (mce_notify_irq())
1556 iv = max(iv / 2, (unsigned long) HZ/100);
1557 else
1558 iv = min(iv * 2, round_jiffies_relative(check_interval * HZ));
1559
1560 done:
1561 __this_cpu_write(mce_next_interval, iv);
1562 __start_timer(t, iv);
1563 }
1564
1565 /*
1566 * Ensure that the timer is firing in @interval from now.
1567 */
mce_timer_kick(unsigned long interval)1568 void mce_timer_kick(unsigned long interval)
1569 {
1570 struct timer_list *t = this_cpu_ptr(&mce_timer);
1571 unsigned long iv = __this_cpu_read(mce_next_interval);
1572
1573 __start_timer(t, interval);
1574
1575 if (interval < iv)
1576 __this_cpu_write(mce_next_interval, interval);
1577 }
1578
1579 /* Must not be called in IRQ context where del_timer_sync() can deadlock */
mce_timer_delete_all(void)1580 static void mce_timer_delete_all(void)
1581 {
1582 int cpu;
1583
1584 for_each_online_cpu(cpu)
1585 del_timer_sync(&per_cpu(mce_timer, cpu));
1586 }
1587
1588 /*
1589 * Notify the user(s) about new machine check events.
1590 * Can be called from interrupt context, but not from machine check/NMI
1591 * context.
1592 */
mce_notify_irq(void)1593 int mce_notify_irq(void)
1594 {
1595 /* Not more than two messages every minute */
1596 static DEFINE_RATELIMIT_STATE(ratelimit, 60*HZ, 2);
1597
1598 if (test_and_clear_bit(0, &mce_need_notify)) {
1599 mce_work_trigger();
1600
1601 if (__ratelimit(&ratelimit))
1602 pr_info(HW_ERR "Machine check events logged\n");
1603
1604 return 1;
1605 }
1606 return 0;
1607 }
1608 EXPORT_SYMBOL_GPL(mce_notify_irq);
1609
__mcheck_cpu_mce_banks_init(void)1610 static void __mcheck_cpu_mce_banks_init(void)
1611 {
1612 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1613 u8 n_banks = this_cpu_read(mce_num_banks);
1614 int i;
1615
1616 for (i = 0; i < n_banks; i++) {
1617 struct mce_bank *b = &mce_banks[i];
1618
1619 /*
1620 * Init them all, __mcheck_cpu_apply_quirks() is going to apply
1621 * the required vendor quirks before
1622 * __mcheck_cpu_init_clear_banks() does the final bank setup.
1623 */
1624 b->ctl = -1ULL;
1625 b->init = true;
1626 }
1627 }
1628
1629 /*
1630 * Initialize Machine Checks for a CPU.
1631 */
__mcheck_cpu_cap_init(void)1632 static void __mcheck_cpu_cap_init(void)
1633 {
1634 u64 cap;
1635 u8 b;
1636
1637 rdmsrl(MSR_IA32_MCG_CAP, cap);
1638
1639 b = cap & MCG_BANKCNT_MASK;
1640
1641 if (b > MAX_NR_BANKS) {
1642 pr_warn("CPU%d: Using only %u machine check banks out of %u\n",
1643 smp_processor_id(), MAX_NR_BANKS, b);
1644 b = MAX_NR_BANKS;
1645 }
1646
1647 this_cpu_write(mce_num_banks, b);
1648
1649 __mcheck_cpu_mce_banks_init();
1650
1651 /* Use accurate RIP reporting if available. */
1652 if ((cap & MCG_EXT_P) && MCG_EXT_CNT(cap) >= 9)
1653 mca_cfg.rip_msr = MSR_IA32_MCG_EIP;
1654
1655 if (cap & MCG_SER_P)
1656 mca_cfg.ser = 1;
1657 }
1658
__mcheck_cpu_init_generic(void)1659 static void __mcheck_cpu_init_generic(void)
1660 {
1661 enum mcp_flags m_fl = 0;
1662 mce_banks_t all_banks;
1663 u64 cap;
1664
1665 if (!mca_cfg.bootlog)
1666 m_fl = MCP_DONTLOG;
1667
1668 /*
1669 * Log the machine checks left over from the previous reset. Log them
1670 * only, do not start processing them. That will happen in mcheck_late_init()
1671 * when all consumers have been registered on the notifier chain.
1672 */
1673 bitmap_fill(all_banks, MAX_NR_BANKS);
1674 machine_check_poll(MCP_UC | MCP_QUEUE_LOG | m_fl, &all_banks);
1675
1676 cr4_set_bits(X86_CR4_MCE);
1677
1678 rdmsrl(MSR_IA32_MCG_CAP, cap);
1679 if (cap & MCG_CTL_P)
1680 wrmsr(MSR_IA32_MCG_CTL, 0xffffffff, 0xffffffff);
1681 }
1682
__mcheck_cpu_init_clear_banks(void)1683 static void __mcheck_cpu_init_clear_banks(void)
1684 {
1685 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1686 int i;
1687
1688 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1689 struct mce_bank *b = &mce_banks[i];
1690
1691 if (!b->init)
1692 continue;
1693 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
1694 wrmsrl(mca_msr_reg(i, MCA_STATUS), 0);
1695 }
1696 }
1697
1698 /*
1699 * Do a final check to see if there are any unused/RAZ banks.
1700 *
1701 * This must be done after the banks have been initialized and any quirks have
1702 * been applied.
1703 *
1704 * Do not call this from any user-initiated flows, e.g. CPU hotplug or sysfs.
1705 * Otherwise, a user who disables a bank will not be able to re-enable it
1706 * without a system reboot.
1707 */
__mcheck_cpu_check_banks(void)1708 static void __mcheck_cpu_check_banks(void)
1709 {
1710 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1711 u64 msrval;
1712 int i;
1713
1714 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
1715 struct mce_bank *b = &mce_banks[i];
1716
1717 if (!b->init)
1718 continue;
1719
1720 rdmsrl(mca_msr_reg(i, MCA_CTL), msrval);
1721 b->init = !!msrval;
1722 }
1723 }
1724
1725 /* Add per CPU specific workarounds here */
__mcheck_cpu_apply_quirks(struct cpuinfo_x86 * c)1726 static int __mcheck_cpu_apply_quirks(struct cpuinfo_x86 *c)
1727 {
1728 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1729 struct mca_config *cfg = &mca_cfg;
1730
1731 if (c->x86_vendor == X86_VENDOR_UNKNOWN) {
1732 pr_info("unknown CPU type - not enabling MCE support\n");
1733 return -EOPNOTSUPP;
1734 }
1735
1736 /* This should be disabled by the BIOS, but isn't always */
1737 if (c->x86_vendor == X86_VENDOR_AMD) {
1738 if (c->x86 == 15 && this_cpu_read(mce_num_banks) > 4) {
1739 /*
1740 * disable GART TBL walk error reporting, which
1741 * trips off incorrectly with the IOMMU & 3ware
1742 * & Cerberus:
1743 */
1744 clear_bit(10, (unsigned long *)&mce_banks[4].ctl);
1745 }
1746 if (c->x86 < 0x11 && cfg->bootlog < 0) {
1747 /*
1748 * Lots of broken BIOS around that don't clear them
1749 * by default and leave crap in there. Don't log:
1750 */
1751 cfg->bootlog = 0;
1752 }
1753 /*
1754 * Various K7s with broken bank 0 around. Always disable
1755 * by default.
1756 */
1757 if (c->x86 == 6 && this_cpu_read(mce_num_banks) > 0)
1758 mce_banks[0].ctl = 0;
1759
1760 /*
1761 * overflow_recov is supported for F15h Models 00h-0fh
1762 * even though we don't have a CPUID bit for it.
1763 */
1764 if (c->x86 == 0x15 && c->x86_model <= 0xf)
1765 mce_flags.overflow_recov = 1;
1766
1767 }
1768
1769 if (c->x86_vendor == X86_VENDOR_INTEL) {
1770 /*
1771 * SDM documents that on family 6 bank 0 should not be written
1772 * because it aliases to another special BIOS controlled
1773 * register.
1774 * But it's not aliased anymore on model 0x1a+
1775 * Don't ignore bank 0 completely because there could be a
1776 * valid event later, merely don't write CTL0.
1777 */
1778
1779 if (c->x86 == 6 && c->x86_model < 0x1A && this_cpu_read(mce_num_banks) > 0)
1780 mce_banks[0].init = false;
1781
1782 /*
1783 * All newer Intel systems support MCE broadcasting. Enable
1784 * synchronization with a one second timeout.
1785 */
1786 if ((c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xe)) &&
1787 cfg->monarch_timeout < 0)
1788 cfg->monarch_timeout = USEC_PER_SEC;
1789
1790 /*
1791 * There are also broken BIOSes on some Pentium M and
1792 * earlier systems:
1793 */
1794 if (c->x86 == 6 && c->x86_model <= 13 && cfg->bootlog < 0)
1795 cfg->bootlog = 0;
1796
1797 if (c->x86 == 6 && c->x86_model == 45)
1798 mce_flags.snb_ifu_quirk = 1;
1799 }
1800
1801 if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
1802 /*
1803 * All newer Zhaoxin CPUs support MCE broadcasting. Enable
1804 * synchronization with a one second timeout.
1805 */
1806 if (c->x86 > 6 || (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1807 if (cfg->monarch_timeout < 0)
1808 cfg->monarch_timeout = USEC_PER_SEC;
1809 }
1810 }
1811
1812 if (cfg->monarch_timeout < 0)
1813 cfg->monarch_timeout = 0;
1814 if (cfg->bootlog != 0)
1815 cfg->panic_timeout = 30;
1816
1817 return 0;
1818 }
1819
__mcheck_cpu_ancient_init(struct cpuinfo_x86 * c)1820 static int __mcheck_cpu_ancient_init(struct cpuinfo_x86 *c)
1821 {
1822 if (c->x86 != 5)
1823 return 0;
1824
1825 switch (c->x86_vendor) {
1826 case X86_VENDOR_INTEL:
1827 intel_p5_mcheck_init(c);
1828 mce_flags.p5 = 1;
1829 return 1;
1830 case X86_VENDOR_CENTAUR:
1831 winchip_mcheck_init(c);
1832 mce_flags.winchip = 1;
1833 return 1;
1834 default:
1835 return 0;
1836 }
1837
1838 return 0;
1839 }
1840
1841 /*
1842 * Init basic CPU features needed for early decoding of MCEs.
1843 */
__mcheck_cpu_init_early(struct cpuinfo_x86 * c)1844 static void __mcheck_cpu_init_early(struct cpuinfo_x86 *c)
1845 {
1846 if (c->x86_vendor == X86_VENDOR_AMD || c->x86_vendor == X86_VENDOR_HYGON) {
1847 mce_flags.overflow_recov = !!cpu_has(c, X86_FEATURE_OVERFLOW_RECOV);
1848 mce_flags.succor = !!cpu_has(c, X86_FEATURE_SUCCOR);
1849 mce_flags.smca = !!cpu_has(c, X86_FEATURE_SMCA);
1850 mce_flags.amd_threshold = 1;
1851 }
1852 }
1853
mce_centaur_feature_init(struct cpuinfo_x86 * c)1854 static void mce_centaur_feature_init(struct cpuinfo_x86 *c)
1855 {
1856 struct mca_config *cfg = &mca_cfg;
1857
1858 /*
1859 * All newer Centaur CPUs support MCE broadcasting. Enable
1860 * synchronization with a one second timeout.
1861 */
1862 if ((c->x86 == 6 && c->x86_model == 0xf && c->x86_stepping >= 0xe) ||
1863 c->x86 > 6) {
1864 if (cfg->monarch_timeout < 0)
1865 cfg->monarch_timeout = USEC_PER_SEC;
1866 }
1867 }
1868
mce_zhaoxin_feature_init(struct cpuinfo_x86 * c)1869 static void mce_zhaoxin_feature_init(struct cpuinfo_x86 *c)
1870 {
1871 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
1872
1873 /*
1874 * These CPUs have MCA bank 8 which reports only one error type called
1875 * SVAD (System View Address Decoder). The reporting of that error is
1876 * controlled by IA32_MC8.CTL.0.
1877 *
1878 * If enabled, prefetching on these CPUs will cause SVAD MCE when
1879 * virtual machines start and result in a system panic. Always disable
1880 * bank 8 SVAD error by default.
1881 */
1882 if ((c->x86 == 7 && c->x86_model == 0x1b) ||
1883 (c->x86_model == 0x19 || c->x86_model == 0x1f)) {
1884 if (this_cpu_read(mce_num_banks) > 8)
1885 mce_banks[8].ctl = 0;
1886 }
1887
1888 intel_init_cmci();
1889 intel_init_lmce();
1890 mce_adjust_timer = cmci_intel_adjust_timer;
1891 }
1892
mce_zhaoxin_feature_clear(struct cpuinfo_x86 * c)1893 static void mce_zhaoxin_feature_clear(struct cpuinfo_x86 *c)
1894 {
1895 intel_clear_lmce();
1896 }
1897
__mcheck_cpu_init_vendor(struct cpuinfo_x86 * c)1898 static void __mcheck_cpu_init_vendor(struct cpuinfo_x86 *c)
1899 {
1900 switch (c->x86_vendor) {
1901 case X86_VENDOR_INTEL:
1902 mce_intel_feature_init(c);
1903 mce_adjust_timer = cmci_intel_adjust_timer;
1904 break;
1905
1906 case X86_VENDOR_AMD: {
1907 mce_amd_feature_init(c);
1908 break;
1909 }
1910
1911 case X86_VENDOR_HYGON:
1912 mce_hygon_feature_init(c);
1913 break;
1914
1915 case X86_VENDOR_CENTAUR:
1916 mce_centaur_feature_init(c);
1917 break;
1918
1919 case X86_VENDOR_ZHAOXIN:
1920 mce_zhaoxin_feature_init(c);
1921 break;
1922
1923 default:
1924 break;
1925 }
1926 }
1927
__mcheck_cpu_clear_vendor(struct cpuinfo_x86 * c)1928 static void __mcheck_cpu_clear_vendor(struct cpuinfo_x86 *c)
1929 {
1930 switch (c->x86_vendor) {
1931 case X86_VENDOR_INTEL:
1932 mce_intel_feature_clear(c);
1933 break;
1934
1935 case X86_VENDOR_ZHAOXIN:
1936 mce_zhaoxin_feature_clear(c);
1937 break;
1938
1939 default:
1940 break;
1941 }
1942 }
1943
mce_start_timer(struct timer_list * t)1944 static void mce_start_timer(struct timer_list *t)
1945 {
1946 unsigned long iv = check_interval * HZ;
1947
1948 if (mca_cfg.ignore_ce || !iv)
1949 return;
1950
1951 this_cpu_write(mce_next_interval, iv);
1952 __start_timer(t, iv);
1953 }
1954
__mcheck_cpu_setup_timer(void)1955 static void __mcheck_cpu_setup_timer(void)
1956 {
1957 struct timer_list *t = this_cpu_ptr(&mce_timer);
1958
1959 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1960 }
1961
__mcheck_cpu_init_timer(void)1962 static void __mcheck_cpu_init_timer(void)
1963 {
1964 struct timer_list *t = this_cpu_ptr(&mce_timer);
1965
1966 timer_setup(t, mce_timer_fn, TIMER_PINNED);
1967 mce_start_timer(t);
1968 }
1969
filter_mce(struct mce * m)1970 bool filter_mce(struct mce *m)
1971 {
1972 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD)
1973 return amd_filter_mce(m);
1974 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
1975 return intel_filter_mce(m);
1976
1977 return false;
1978 }
1979
exc_machine_check_kernel(struct pt_regs * regs)1980 static __always_inline void exc_machine_check_kernel(struct pt_regs *regs)
1981 {
1982 irqentry_state_t irq_state;
1983
1984 WARN_ON_ONCE(user_mode(regs));
1985
1986 /*
1987 * Only required when from kernel mode. See
1988 * mce_check_crashing_cpu() for details.
1989 */
1990 if (mca_cfg.initialized && mce_check_crashing_cpu())
1991 return;
1992
1993 irq_state = irqentry_nmi_enter(regs);
1994
1995 do_machine_check(regs);
1996
1997 irqentry_nmi_exit(regs, irq_state);
1998 }
1999
exc_machine_check_user(struct pt_regs * regs)2000 static __always_inline void exc_machine_check_user(struct pt_regs *regs)
2001 {
2002 irqentry_enter_from_user_mode(regs);
2003
2004 do_machine_check(regs);
2005
2006 irqentry_exit_to_user_mode(regs);
2007 }
2008
2009 #ifdef CONFIG_X86_64
2010 /* MCE hit kernel mode */
DEFINE_IDTENTRY_MCE(exc_machine_check)2011 DEFINE_IDTENTRY_MCE(exc_machine_check)
2012 {
2013 unsigned long dr7;
2014
2015 dr7 = local_db_save();
2016 exc_machine_check_kernel(regs);
2017 local_db_restore(dr7);
2018 }
2019
2020 /* The user mode variant. */
DEFINE_IDTENTRY_MCE_USER(exc_machine_check)2021 DEFINE_IDTENTRY_MCE_USER(exc_machine_check)
2022 {
2023 unsigned long dr7;
2024
2025 dr7 = local_db_save();
2026 exc_machine_check_user(regs);
2027 local_db_restore(dr7);
2028 }
2029 #else
2030 /* 32bit unified entry point */
DEFINE_IDTENTRY_RAW(exc_machine_check)2031 DEFINE_IDTENTRY_RAW(exc_machine_check)
2032 {
2033 unsigned long dr7;
2034
2035 dr7 = local_db_save();
2036 if (user_mode(regs))
2037 exc_machine_check_user(regs);
2038 else
2039 exc_machine_check_kernel(regs);
2040 local_db_restore(dr7);
2041 }
2042 #endif
2043
2044 /*
2045 * Called for each booted CPU to set up machine checks.
2046 * Must be called with preempt off:
2047 */
mcheck_cpu_init(struct cpuinfo_x86 * c)2048 void mcheck_cpu_init(struct cpuinfo_x86 *c)
2049 {
2050 if (mca_cfg.disabled)
2051 return;
2052
2053 if (__mcheck_cpu_ancient_init(c))
2054 return;
2055
2056 if (!mce_available(c))
2057 return;
2058
2059 __mcheck_cpu_cap_init();
2060
2061 if (__mcheck_cpu_apply_quirks(c) < 0) {
2062 mca_cfg.disabled = 1;
2063 return;
2064 }
2065
2066 if (mce_gen_pool_init()) {
2067 mca_cfg.disabled = 1;
2068 pr_emerg("Couldn't allocate MCE records pool!\n");
2069 return;
2070 }
2071
2072 mca_cfg.initialized = 1;
2073
2074 __mcheck_cpu_init_early(c);
2075 __mcheck_cpu_init_generic();
2076 __mcheck_cpu_init_vendor(c);
2077 __mcheck_cpu_init_clear_banks();
2078 __mcheck_cpu_check_banks();
2079 __mcheck_cpu_setup_timer();
2080 }
2081
2082 /*
2083 * Called for each booted CPU to clear some machine checks opt-ins
2084 */
mcheck_cpu_clear(struct cpuinfo_x86 * c)2085 void mcheck_cpu_clear(struct cpuinfo_x86 *c)
2086 {
2087 if (mca_cfg.disabled)
2088 return;
2089
2090 if (!mce_available(c))
2091 return;
2092
2093 /*
2094 * Possibly to clear general settings generic to x86
2095 * __mcheck_cpu_clear_generic(c);
2096 */
2097 __mcheck_cpu_clear_vendor(c);
2098
2099 }
2100
__mce_disable_bank(void * arg)2101 static void __mce_disable_bank(void *arg)
2102 {
2103 int bank = *((int *)arg);
2104 __clear_bit(bank, this_cpu_ptr(mce_poll_banks));
2105 cmci_disable_bank(bank);
2106 }
2107
mce_disable_bank(int bank)2108 void mce_disable_bank(int bank)
2109 {
2110 if (bank >= this_cpu_read(mce_num_banks)) {
2111 pr_warn(FW_BUG
2112 "Ignoring request to disable invalid MCA bank %d.\n",
2113 bank);
2114 return;
2115 }
2116 set_bit(bank, mce_banks_ce_disabled);
2117 on_each_cpu(__mce_disable_bank, &bank, 1);
2118 }
2119
2120 /*
2121 * mce=off Disables machine check
2122 * mce=no_cmci Disables CMCI
2123 * mce=no_lmce Disables LMCE
2124 * mce=dont_log_ce Clears corrected events silently, no log created for CEs.
2125 * mce=print_all Print all machine check logs to console
2126 * mce=ignore_ce Disables polling and CMCI, corrected events are not cleared.
2127 * mce=TOLERANCELEVEL[,monarchtimeout] (number, see above)
2128 * monarchtimeout is how long to wait for other CPUs on machine
2129 * check, or 0 to not wait
2130 * mce=bootlog Log MCEs from before booting. Disabled by default on AMD Fam10h
2131 and older.
2132 * mce=nobootlog Don't log MCEs from before booting.
2133 * mce=bios_cmci_threshold Don't program the CMCI threshold
2134 * mce=recovery force enable copy_mc_fragile()
2135 */
mcheck_enable(char * str)2136 static int __init mcheck_enable(char *str)
2137 {
2138 struct mca_config *cfg = &mca_cfg;
2139
2140 if (*str == 0) {
2141 enable_p5_mce();
2142 return 1;
2143 }
2144 if (*str == '=')
2145 str++;
2146 if (!strcmp(str, "off"))
2147 cfg->disabled = 1;
2148 else if (!strcmp(str, "no_cmci"))
2149 cfg->cmci_disabled = true;
2150 else if (!strcmp(str, "no_lmce"))
2151 cfg->lmce_disabled = 1;
2152 else if (!strcmp(str, "dont_log_ce"))
2153 cfg->dont_log_ce = true;
2154 else if (!strcmp(str, "print_all"))
2155 cfg->print_all = true;
2156 else if (!strcmp(str, "ignore_ce"))
2157 cfg->ignore_ce = true;
2158 else if (!strcmp(str, "bootlog") || !strcmp(str, "nobootlog"))
2159 cfg->bootlog = (str[0] == 'b');
2160 else if (!strcmp(str, "bios_cmci_threshold"))
2161 cfg->bios_cmci_threshold = 1;
2162 else if (!strcmp(str, "recovery"))
2163 cfg->recovery = 1;
2164 else if (isdigit(str[0])) {
2165 if (get_option(&str, &cfg->tolerant) == 2)
2166 get_option(&str, &(cfg->monarch_timeout));
2167 } else {
2168 pr_info("mce argument %s ignored. Please use /sys\n", str);
2169 return 0;
2170 }
2171 return 1;
2172 }
2173 __setup("mce", mcheck_enable);
2174
mcheck_init(void)2175 int __init mcheck_init(void)
2176 {
2177 mce_register_decode_chain(&early_nb);
2178 mce_register_decode_chain(&mce_uc_nb);
2179 mce_register_decode_chain(&mce_default_nb);
2180
2181 INIT_WORK(&mce_work, mce_gen_pool_process);
2182 init_irq_work(&mce_irq_work, mce_irq_work_cb);
2183
2184 return 0;
2185 }
2186
2187 /*
2188 * mce_syscore: PM support
2189 */
2190
2191 /*
2192 * Disable machine checks on suspend and shutdown. We can't really handle
2193 * them later.
2194 */
mce_disable_error_reporting(void)2195 static void mce_disable_error_reporting(void)
2196 {
2197 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2198 int i;
2199
2200 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2201 struct mce_bank *b = &mce_banks[i];
2202
2203 if (b->init)
2204 wrmsrl(mca_msr_reg(i, MCA_CTL), 0);
2205 }
2206 return;
2207 }
2208
vendor_disable_error_reporting(void)2209 static void vendor_disable_error_reporting(void)
2210 {
2211 /*
2212 * Don't clear on Intel or AMD or Hygon or Zhaoxin CPUs. Some of these
2213 * MSRs are socket-wide. Disabling them for just a single offlined CPU
2214 * is bad, since it will inhibit reporting for all shared resources on
2215 * the socket like the last level cache (LLC), the integrated memory
2216 * controller (iMC), etc.
2217 */
2218 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL ||
2219 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON ||
2220 boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
2221 boot_cpu_data.x86_vendor == X86_VENDOR_ZHAOXIN)
2222 return;
2223
2224 mce_disable_error_reporting();
2225 }
2226
mce_syscore_suspend(void)2227 static int mce_syscore_suspend(void)
2228 {
2229 vendor_disable_error_reporting();
2230 return 0;
2231 }
2232
mce_syscore_shutdown(void)2233 static void mce_syscore_shutdown(void)
2234 {
2235 vendor_disable_error_reporting();
2236 }
2237
2238 /*
2239 * On resume clear all MCE state. Don't want to see leftovers from the BIOS.
2240 * Only one CPU is active at this time, the others get re-added later using
2241 * CPU hotplug:
2242 */
mce_syscore_resume(void)2243 static void mce_syscore_resume(void)
2244 {
2245 __mcheck_cpu_init_generic();
2246 __mcheck_cpu_init_vendor(raw_cpu_ptr(&cpu_info));
2247 __mcheck_cpu_init_clear_banks();
2248 }
2249
2250 static struct syscore_ops mce_syscore_ops = {
2251 .suspend = mce_syscore_suspend,
2252 .shutdown = mce_syscore_shutdown,
2253 .resume = mce_syscore_resume,
2254 };
2255
2256 /*
2257 * mce_device: Sysfs support
2258 */
2259
mce_cpu_restart(void * data)2260 static void mce_cpu_restart(void *data)
2261 {
2262 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2263 return;
2264 __mcheck_cpu_init_generic();
2265 __mcheck_cpu_init_clear_banks();
2266 __mcheck_cpu_init_timer();
2267 }
2268
2269 /* Reinit MCEs after user configuration changes */
mce_restart(void)2270 static void mce_restart(void)
2271 {
2272 mce_timer_delete_all();
2273 on_each_cpu(mce_cpu_restart, NULL, 1);
2274 }
2275
2276 /* Toggle features for corrected errors */
mce_disable_cmci(void * data)2277 static void mce_disable_cmci(void *data)
2278 {
2279 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2280 return;
2281 cmci_clear();
2282 }
2283
mce_enable_ce(void * all)2284 static void mce_enable_ce(void *all)
2285 {
2286 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2287 return;
2288 cmci_reenable();
2289 cmci_recheck();
2290 if (all)
2291 __mcheck_cpu_init_timer();
2292 }
2293
2294 static struct bus_type mce_subsys = {
2295 .name = "machinecheck",
2296 .dev_name = "machinecheck",
2297 };
2298
2299 DEFINE_PER_CPU(struct device *, mce_device);
2300
attr_to_bank(struct device_attribute * attr)2301 static inline struct mce_bank_dev *attr_to_bank(struct device_attribute *attr)
2302 {
2303 return container_of(attr, struct mce_bank_dev, attr);
2304 }
2305
show_bank(struct device * s,struct device_attribute * attr,char * buf)2306 static ssize_t show_bank(struct device *s, struct device_attribute *attr,
2307 char *buf)
2308 {
2309 u8 bank = attr_to_bank(attr)->bank;
2310 struct mce_bank *b;
2311
2312 if (bank >= per_cpu(mce_num_banks, s->id))
2313 return -EINVAL;
2314
2315 b = &per_cpu(mce_banks_array, s->id)[bank];
2316
2317 if (!b->init)
2318 return -ENODEV;
2319
2320 return sprintf(buf, "%llx\n", b->ctl);
2321 }
2322
set_bank(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2323 static ssize_t set_bank(struct device *s, struct device_attribute *attr,
2324 const char *buf, size_t size)
2325 {
2326 u8 bank = attr_to_bank(attr)->bank;
2327 struct mce_bank *b;
2328 u64 new;
2329
2330 if (kstrtou64(buf, 0, &new) < 0)
2331 return -EINVAL;
2332
2333 if (bank >= per_cpu(mce_num_banks, s->id))
2334 return -EINVAL;
2335
2336 b = &per_cpu(mce_banks_array, s->id)[bank];
2337
2338 if (!b->init)
2339 return -ENODEV;
2340
2341 b->ctl = new;
2342 mce_restart();
2343
2344 return size;
2345 }
2346
set_ignore_ce(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2347 static ssize_t set_ignore_ce(struct device *s,
2348 struct device_attribute *attr,
2349 const char *buf, size_t size)
2350 {
2351 u64 new;
2352
2353 if (kstrtou64(buf, 0, &new) < 0)
2354 return -EINVAL;
2355
2356 mutex_lock(&mce_sysfs_mutex);
2357 if (mca_cfg.ignore_ce ^ !!new) {
2358 if (new) {
2359 /* disable ce features */
2360 mce_timer_delete_all();
2361 on_each_cpu(mce_disable_cmci, NULL, 1);
2362 mca_cfg.ignore_ce = true;
2363 } else {
2364 /* enable ce features */
2365 mca_cfg.ignore_ce = false;
2366 on_each_cpu(mce_enable_ce, (void *)1, 1);
2367 }
2368 }
2369 mutex_unlock(&mce_sysfs_mutex);
2370
2371 return size;
2372 }
2373
set_cmci_disabled(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2374 static ssize_t set_cmci_disabled(struct device *s,
2375 struct device_attribute *attr,
2376 const char *buf, size_t size)
2377 {
2378 u64 new;
2379
2380 if (kstrtou64(buf, 0, &new) < 0)
2381 return -EINVAL;
2382
2383 mutex_lock(&mce_sysfs_mutex);
2384 if (mca_cfg.cmci_disabled ^ !!new) {
2385 if (new) {
2386 /* disable cmci */
2387 on_each_cpu(mce_disable_cmci, NULL, 1);
2388 mca_cfg.cmci_disabled = true;
2389 } else {
2390 /* enable cmci */
2391 mca_cfg.cmci_disabled = false;
2392 on_each_cpu(mce_enable_ce, NULL, 1);
2393 }
2394 }
2395 mutex_unlock(&mce_sysfs_mutex);
2396
2397 return size;
2398 }
2399
store_int_with_restart(struct device * s,struct device_attribute * attr,const char * buf,size_t size)2400 static ssize_t store_int_with_restart(struct device *s,
2401 struct device_attribute *attr,
2402 const char *buf, size_t size)
2403 {
2404 unsigned long old_check_interval = check_interval;
2405 ssize_t ret = device_store_ulong(s, attr, buf, size);
2406
2407 if (check_interval == old_check_interval)
2408 return ret;
2409
2410 mutex_lock(&mce_sysfs_mutex);
2411 mce_restart();
2412 mutex_unlock(&mce_sysfs_mutex);
2413
2414 return ret;
2415 }
2416
2417 static DEVICE_INT_ATTR(tolerant, 0644, mca_cfg.tolerant);
2418 static DEVICE_INT_ATTR(monarch_timeout, 0644, mca_cfg.monarch_timeout);
2419 static DEVICE_BOOL_ATTR(dont_log_ce, 0644, mca_cfg.dont_log_ce);
2420 static DEVICE_BOOL_ATTR(print_all, 0644, mca_cfg.print_all);
2421
2422 static struct dev_ext_attribute dev_attr_check_interval = {
2423 __ATTR(check_interval, 0644, device_show_int, store_int_with_restart),
2424 &check_interval
2425 };
2426
2427 static struct dev_ext_attribute dev_attr_ignore_ce = {
2428 __ATTR(ignore_ce, 0644, device_show_bool, set_ignore_ce),
2429 &mca_cfg.ignore_ce
2430 };
2431
2432 static struct dev_ext_attribute dev_attr_cmci_disabled = {
2433 __ATTR(cmci_disabled, 0644, device_show_bool, set_cmci_disabled),
2434 &mca_cfg.cmci_disabled
2435 };
2436
2437 static struct device_attribute *mce_device_attrs[] = {
2438 &dev_attr_tolerant.attr,
2439 &dev_attr_check_interval.attr,
2440 #ifdef CONFIG_X86_MCELOG_LEGACY
2441 &dev_attr_trigger,
2442 #endif
2443 &dev_attr_monarch_timeout.attr,
2444 &dev_attr_dont_log_ce.attr,
2445 &dev_attr_print_all.attr,
2446 &dev_attr_ignore_ce.attr,
2447 &dev_attr_cmci_disabled.attr,
2448 NULL
2449 };
2450
2451 static cpumask_var_t mce_device_initialized;
2452
mce_device_release(struct device * dev)2453 static void mce_device_release(struct device *dev)
2454 {
2455 kfree(dev);
2456 }
2457
2458 /* Per CPU device init. All of the CPUs still share the same bank device: */
mce_device_create(unsigned int cpu)2459 static int mce_device_create(unsigned int cpu)
2460 {
2461 struct device *dev;
2462 int err;
2463 int i, j;
2464
2465 if (!mce_available(&boot_cpu_data))
2466 return -EIO;
2467
2468 dev = per_cpu(mce_device, cpu);
2469 if (dev)
2470 return 0;
2471
2472 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2473 if (!dev)
2474 return -ENOMEM;
2475 dev->id = cpu;
2476 dev->bus = &mce_subsys;
2477 dev->release = &mce_device_release;
2478
2479 err = device_register(dev);
2480 if (err) {
2481 put_device(dev);
2482 return err;
2483 }
2484
2485 for (i = 0; mce_device_attrs[i]; i++) {
2486 err = device_create_file(dev, mce_device_attrs[i]);
2487 if (err)
2488 goto error;
2489 }
2490 for (j = 0; j < per_cpu(mce_num_banks, cpu); j++) {
2491 err = device_create_file(dev, &mce_bank_devs[j].attr);
2492 if (err)
2493 goto error2;
2494 }
2495 cpumask_set_cpu(cpu, mce_device_initialized);
2496 per_cpu(mce_device, cpu) = dev;
2497
2498 return 0;
2499 error2:
2500 while (--j >= 0)
2501 device_remove_file(dev, &mce_bank_devs[j].attr);
2502 error:
2503 while (--i >= 0)
2504 device_remove_file(dev, mce_device_attrs[i]);
2505
2506 device_unregister(dev);
2507
2508 return err;
2509 }
2510
mce_device_remove(unsigned int cpu)2511 static void mce_device_remove(unsigned int cpu)
2512 {
2513 struct device *dev = per_cpu(mce_device, cpu);
2514 int i;
2515
2516 if (!cpumask_test_cpu(cpu, mce_device_initialized))
2517 return;
2518
2519 for (i = 0; mce_device_attrs[i]; i++)
2520 device_remove_file(dev, mce_device_attrs[i]);
2521
2522 for (i = 0; i < per_cpu(mce_num_banks, cpu); i++)
2523 device_remove_file(dev, &mce_bank_devs[i].attr);
2524
2525 device_unregister(dev);
2526 cpumask_clear_cpu(cpu, mce_device_initialized);
2527 per_cpu(mce_device, cpu) = NULL;
2528 }
2529
2530 /* Make sure there are no machine checks on offlined CPUs. */
mce_disable_cpu(void)2531 static void mce_disable_cpu(void)
2532 {
2533 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2534 return;
2535
2536 if (!cpuhp_tasks_frozen)
2537 cmci_clear();
2538
2539 vendor_disable_error_reporting();
2540 }
2541
mce_reenable_cpu(void)2542 static void mce_reenable_cpu(void)
2543 {
2544 struct mce_bank *mce_banks = this_cpu_ptr(mce_banks_array);
2545 int i;
2546
2547 if (!mce_available(raw_cpu_ptr(&cpu_info)))
2548 return;
2549
2550 if (!cpuhp_tasks_frozen)
2551 cmci_reenable();
2552 for (i = 0; i < this_cpu_read(mce_num_banks); i++) {
2553 struct mce_bank *b = &mce_banks[i];
2554
2555 if (b->init)
2556 wrmsrl(mca_msr_reg(i, MCA_CTL), b->ctl);
2557 }
2558 }
2559
mce_cpu_dead(unsigned int cpu)2560 static int mce_cpu_dead(unsigned int cpu)
2561 {
2562 mce_intel_hcpu_update(cpu);
2563
2564 /* intentionally ignoring frozen here */
2565 if (!cpuhp_tasks_frozen)
2566 cmci_rediscover();
2567 return 0;
2568 }
2569
mce_cpu_online(unsigned int cpu)2570 static int mce_cpu_online(unsigned int cpu)
2571 {
2572 struct timer_list *t = this_cpu_ptr(&mce_timer);
2573 int ret;
2574
2575 mce_device_create(cpu);
2576
2577 ret = mce_threshold_create_device(cpu);
2578 if (ret) {
2579 mce_device_remove(cpu);
2580 return ret;
2581 }
2582 mce_reenable_cpu();
2583 mce_start_timer(t);
2584 return 0;
2585 }
2586
mce_cpu_pre_down(unsigned int cpu)2587 static int mce_cpu_pre_down(unsigned int cpu)
2588 {
2589 struct timer_list *t = this_cpu_ptr(&mce_timer);
2590
2591 mce_disable_cpu();
2592 del_timer_sync(t);
2593 mce_threshold_remove_device(cpu);
2594 mce_device_remove(cpu);
2595 return 0;
2596 }
2597
mce_init_banks(void)2598 static __init void mce_init_banks(void)
2599 {
2600 int i;
2601
2602 for (i = 0; i < MAX_NR_BANKS; i++) {
2603 struct mce_bank_dev *b = &mce_bank_devs[i];
2604 struct device_attribute *a = &b->attr;
2605
2606 b->bank = i;
2607
2608 sysfs_attr_init(&a->attr);
2609 a->attr.name = b->attrname;
2610 snprintf(b->attrname, ATTR_LEN, "bank%d", i);
2611
2612 a->attr.mode = 0644;
2613 a->show = show_bank;
2614 a->store = set_bank;
2615 }
2616 }
2617
2618 /*
2619 * When running on XEN, this initcall is ordered against the XEN mcelog
2620 * initcall:
2621 *
2622 * device_initcall(xen_late_init_mcelog);
2623 * device_initcall_sync(mcheck_init_device);
2624 */
mcheck_init_device(void)2625 static __init int mcheck_init_device(void)
2626 {
2627 int err;
2628
2629 /*
2630 * Check if we have a spare virtual bit. This will only become
2631 * a problem if/when we move beyond 5-level page tables.
2632 */
2633 MAYBE_BUILD_BUG_ON(__VIRTUAL_MASK_SHIFT >= 63);
2634
2635 if (!mce_available(&boot_cpu_data)) {
2636 err = -EIO;
2637 goto err_out;
2638 }
2639
2640 if (!zalloc_cpumask_var(&mce_device_initialized, GFP_KERNEL)) {
2641 err = -ENOMEM;
2642 goto err_out;
2643 }
2644
2645 mce_init_banks();
2646
2647 err = subsys_system_register(&mce_subsys, NULL);
2648 if (err)
2649 goto err_out_mem;
2650
2651 err = cpuhp_setup_state(CPUHP_X86_MCE_DEAD, "x86/mce:dead", NULL,
2652 mce_cpu_dead);
2653 if (err)
2654 goto err_out_mem;
2655
2656 /*
2657 * Invokes mce_cpu_online() on all CPUs which are online when
2658 * the state is installed.
2659 */
2660 err = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "x86/mce:online",
2661 mce_cpu_online, mce_cpu_pre_down);
2662 if (err < 0)
2663 goto err_out_online;
2664
2665 register_syscore_ops(&mce_syscore_ops);
2666
2667 return 0;
2668
2669 err_out_online:
2670 cpuhp_remove_state(CPUHP_X86_MCE_DEAD);
2671
2672 err_out_mem:
2673 free_cpumask_var(mce_device_initialized);
2674
2675 err_out:
2676 pr_err("Unable to init MCE device (rc: %d)\n", err);
2677
2678 return err;
2679 }
2680 device_initcall_sync(mcheck_init_device);
2681
2682 /*
2683 * Old style boot options parsing. Only for compatibility.
2684 */
mcheck_disable(char * str)2685 static int __init mcheck_disable(char *str)
2686 {
2687 mca_cfg.disabled = 1;
2688 return 1;
2689 }
2690 __setup("nomce", mcheck_disable);
2691
2692 #ifdef CONFIG_DEBUG_FS
mce_get_debugfs_dir(void)2693 struct dentry *mce_get_debugfs_dir(void)
2694 {
2695 static struct dentry *dmce;
2696
2697 if (!dmce)
2698 dmce = debugfs_create_dir("mce", NULL);
2699
2700 return dmce;
2701 }
2702
mce_reset(void)2703 static void mce_reset(void)
2704 {
2705 cpu_missing = 0;
2706 atomic_set(&mce_fake_panicked, 0);
2707 atomic_set(&mce_executing, 0);
2708 atomic_set(&mce_callin, 0);
2709 atomic_set(&global_nwo, 0);
2710 cpumask_setall(&mce_missing_cpus);
2711 }
2712
fake_panic_get(void * data,u64 * val)2713 static int fake_panic_get(void *data, u64 *val)
2714 {
2715 *val = fake_panic;
2716 return 0;
2717 }
2718
fake_panic_set(void * data,u64 val)2719 static int fake_panic_set(void *data, u64 val)
2720 {
2721 mce_reset();
2722 fake_panic = val;
2723 return 0;
2724 }
2725
2726 DEFINE_DEBUGFS_ATTRIBUTE(fake_panic_fops, fake_panic_get, fake_panic_set,
2727 "%llu\n");
2728
mcheck_debugfs_init(void)2729 static void __init mcheck_debugfs_init(void)
2730 {
2731 struct dentry *dmce;
2732
2733 dmce = mce_get_debugfs_dir();
2734 debugfs_create_file_unsafe("fake_panic", 0444, dmce, NULL,
2735 &fake_panic_fops);
2736 }
2737 #else
mcheck_debugfs_init(void)2738 static void __init mcheck_debugfs_init(void) { }
2739 #endif
2740
mcheck_late_init(void)2741 static int __init mcheck_late_init(void)
2742 {
2743 if (mca_cfg.recovery)
2744 enable_copy_mc_fragile();
2745
2746 mcheck_debugfs_init();
2747
2748 /*
2749 * Flush out everything that has been logged during early boot, now that
2750 * everything has been initialized (workqueues, decoders, ...).
2751 */
2752 mce_schedule_work();
2753
2754 return 0;
2755 }
2756 late_initcall(mcheck_late_init);
2757