1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD CPU Microcode Update Driver for Linux
4 *
5 * This driver allows to upgrade microcode on F10h AMD
6 * CPUs and later.
7 *
8 * Copyright (C) 2008-2011 Advanced Micro Devices Inc.
9 * 2013-2018 Borislav Petkov <bp@alien8.de>
10 *
11 * Author: Peter Oruba <peter.oruba@amd.com>
12 *
13 * Based on work by:
14 * Tigran Aivazian <aivazian.tigran@gmail.com>
15 *
16 * early loader:
17 * Copyright (C) 2013 Advanced Micro Devices, Inc.
18 *
19 * Author: Jacob Shin <jacob.shin@amd.com>
20 * Fixes: Borislav Petkov <bp@suse.de>
21 */
22 #define pr_fmt(fmt) "microcode: " fmt
23
24 #include <linux/earlycpio.h>
25 #include <linux/firmware.h>
26 #include <linux/uaccess.h>
27 #include <linux/vmalloc.h>
28 #include <linux/initrd.h>
29 #include <linux/kernel.h>
30 #include <linux/pci.h>
31
32 #include <asm/microcode_amd.h>
33 #include <asm/microcode.h>
34 #include <asm/processor.h>
35 #include <asm/setup.h>
36 #include <asm/cpu.h>
37 #include <asm/msr.h>
38
39 static struct equiv_cpu_table {
40 unsigned int num_entries;
41 struct equiv_cpu_entry *entry;
42 } equiv_table;
43
44 /*
45 * This points to the current valid container of microcode patches which we will
46 * save from the initrd/builtin before jettisoning its contents. @mc is the
47 * microcode patch we found to match.
48 */
49 struct cont_desc {
50 struct microcode_amd *mc;
51 u32 cpuid_1_eax;
52 u32 psize;
53 u8 *data;
54 size_t size;
55 };
56
57 static u32 ucode_new_rev;
58 static u8 amd_ucode_patch[PATCH_MAX_SIZE];
59
60 /*
61 * Microcode patch container file is prepended to the initrd in cpio
62 * format. See Documentation/x86/microcode.rst
63 */
64 static const char
65 ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
66
find_equiv_id(struct equiv_cpu_table * et,u32 sig)67 static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
68 {
69 unsigned int i;
70
71 if (!et || !et->num_entries)
72 return 0;
73
74 for (i = 0; i < et->num_entries; i++) {
75 struct equiv_cpu_entry *e = &et->entry[i];
76
77 if (sig == e->installed_cpu)
78 return e->equiv_cpu;
79
80 e++;
81 }
82 return 0;
83 }
84
85 /*
86 * Check whether there is a valid microcode container file at the beginning
87 * of @buf of size @buf_size. Set @early to use this function in the early path.
88 */
verify_container(const u8 * buf,size_t buf_size,bool early)89 static bool verify_container(const u8 *buf, size_t buf_size, bool early)
90 {
91 u32 cont_magic;
92
93 if (buf_size <= CONTAINER_HDR_SZ) {
94 if (!early)
95 pr_debug("Truncated microcode container header.\n");
96
97 return false;
98 }
99
100 cont_magic = *(const u32 *)buf;
101 if (cont_magic != UCODE_MAGIC) {
102 if (!early)
103 pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
104
105 return false;
106 }
107
108 return true;
109 }
110
111 /*
112 * Check whether there is a valid, non-truncated CPU equivalence table at the
113 * beginning of @buf of size @buf_size. Set @early to use this function in the
114 * early path.
115 */
verify_equivalence_table(const u8 * buf,size_t buf_size,bool early)116 static bool verify_equivalence_table(const u8 *buf, size_t buf_size, bool early)
117 {
118 const u32 *hdr = (const u32 *)buf;
119 u32 cont_type, equiv_tbl_len;
120
121 if (!verify_container(buf, buf_size, early))
122 return false;
123
124 cont_type = hdr[1];
125 if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
126 if (!early)
127 pr_debug("Wrong microcode container equivalence table type: %u.\n",
128 cont_type);
129
130 return false;
131 }
132
133 buf_size -= CONTAINER_HDR_SZ;
134
135 equiv_tbl_len = hdr[2];
136 if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
137 buf_size < equiv_tbl_len) {
138 if (!early)
139 pr_debug("Truncated equivalence table.\n");
140
141 return false;
142 }
143
144 return true;
145 }
146
147 /*
148 * Check whether there is a valid, non-truncated microcode patch section at the
149 * beginning of @buf of size @buf_size. Set @early to use this function in the
150 * early path.
151 *
152 * On success, @sh_psize returns the patch size according to the section header,
153 * to the caller.
154 */
155 static bool
__verify_patch_section(const u8 * buf,size_t buf_size,u32 * sh_psize,bool early)156 __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize, bool early)
157 {
158 u32 p_type, p_size;
159 const u32 *hdr;
160
161 if (buf_size < SECTION_HDR_SIZE) {
162 if (!early)
163 pr_debug("Truncated patch section.\n");
164
165 return false;
166 }
167
168 hdr = (const u32 *)buf;
169 p_type = hdr[0];
170 p_size = hdr[1];
171
172 if (p_type != UCODE_UCODE_TYPE) {
173 if (!early)
174 pr_debug("Invalid type field (0x%x) in container file section header.\n",
175 p_type);
176
177 return false;
178 }
179
180 if (p_size < sizeof(struct microcode_header_amd)) {
181 if (!early)
182 pr_debug("Patch of size %u too short.\n", p_size);
183
184 return false;
185 }
186
187 *sh_psize = p_size;
188
189 return true;
190 }
191
192 /*
193 * Check whether the passed remaining file @buf_size is large enough to contain
194 * a patch of the indicated @sh_psize (and also whether this size does not
195 * exceed the per-family maximum). @sh_psize is the size read from the section
196 * header.
197 */
__verify_patch_size(u8 family,u32 sh_psize,size_t buf_size)198 static unsigned int __verify_patch_size(u8 family, u32 sh_psize, size_t buf_size)
199 {
200 u32 max_size;
201
202 if (family >= 0x15)
203 return min_t(u32, sh_psize, buf_size);
204
205 #define F1XH_MPB_MAX_SIZE 2048
206 #define F14H_MPB_MAX_SIZE 1824
207
208 switch (family) {
209 case 0x10 ... 0x12:
210 max_size = F1XH_MPB_MAX_SIZE;
211 break;
212 case 0x14:
213 max_size = F14H_MPB_MAX_SIZE;
214 break;
215 default:
216 WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
217 return 0;
218 }
219
220 if (sh_psize > min_t(u32, buf_size, max_size))
221 return 0;
222
223 return sh_psize;
224 }
225
226 /*
227 * Verify the patch in @buf.
228 *
229 * Returns:
230 * negative: on error
231 * positive: patch is not for this family, skip it
232 * 0: success
233 */
234 static int
verify_patch(u8 family,const u8 * buf,size_t buf_size,u32 * patch_size,bool early)235 verify_patch(u8 family, const u8 *buf, size_t buf_size, u32 *patch_size, bool early)
236 {
237 struct microcode_header_amd *mc_hdr;
238 unsigned int ret;
239 u32 sh_psize;
240 u16 proc_id;
241 u8 patch_fam;
242
243 if (!__verify_patch_section(buf, buf_size, &sh_psize, early))
244 return -1;
245
246 /*
247 * The section header length is not included in this indicated size
248 * but is present in the leftover file length so we need to subtract
249 * it before passing this value to the function below.
250 */
251 buf_size -= SECTION_HDR_SIZE;
252
253 /*
254 * Check if the remaining buffer is big enough to contain a patch of
255 * size sh_psize, as the section claims.
256 */
257 if (buf_size < sh_psize) {
258 if (!early)
259 pr_debug("Patch of size %u truncated.\n", sh_psize);
260
261 return -1;
262 }
263
264 ret = __verify_patch_size(family, sh_psize, buf_size);
265 if (!ret) {
266 if (!early)
267 pr_debug("Per-family patch size mismatch.\n");
268 return -1;
269 }
270
271 *patch_size = sh_psize;
272
273 mc_hdr = (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
274 if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
275 if (!early)
276 pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
277 return -1;
278 }
279
280 proc_id = mc_hdr->processor_rev_id;
281 patch_fam = 0xf + (proc_id >> 12);
282 if (patch_fam != family)
283 return 1;
284
285 return 0;
286 }
287
288 /*
289 * This scans the ucode blob for the proper container as we can have multiple
290 * containers glued together. Returns the equivalence ID from the equivalence
291 * table or 0 if none found.
292 * Returns the amount of bytes consumed while scanning. @desc contains all the
293 * data we're going to use in later stages of the application.
294 */
parse_container(u8 * ucode,size_t size,struct cont_desc * desc)295 static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
296 {
297 struct equiv_cpu_table table;
298 size_t orig_size = size;
299 u32 *hdr = (u32 *)ucode;
300 u16 eq_id;
301 u8 *buf;
302
303 if (!verify_equivalence_table(ucode, size, true))
304 return 0;
305
306 buf = ucode;
307
308 table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
309 table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
310
311 /*
312 * Find the equivalence ID of our CPU in this table. Even if this table
313 * doesn't contain a patch for the CPU, scan through the whole container
314 * so that it can be skipped in case there are other containers appended.
315 */
316 eq_id = find_equiv_id(&table, desc->cpuid_1_eax);
317
318 buf += hdr[2] + CONTAINER_HDR_SZ;
319 size -= hdr[2] + CONTAINER_HDR_SZ;
320
321 /*
322 * Scan through the rest of the container to find where it ends. We do
323 * some basic sanity-checking too.
324 */
325 while (size > 0) {
326 struct microcode_amd *mc;
327 u32 patch_size;
328 int ret;
329
330 ret = verify_patch(x86_family(desc->cpuid_1_eax), buf, size, &patch_size, true);
331 if (ret < 0) {
332 /*
333 * Patch verification failed, skip to the next
334 * container, if there's one:
335 */
336 goto out;
337 } else if (ret > 0) {
338 goto skip;
339 }
340
341 mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
342 if (eq_id == mc->hdr.processor_rev_id) {
343 desc->psize = patch_size;
344 desc->mc = mc;
345 }
346
347 skip:
348 /* Skip patch section header too: */
349 buf += patch_size + SECTION_HDR_SIZE;
350 size -= patch_size + SECTION_HDR_SIZE;
351 }
352
353 /*
354 * If we have found a patch (desc->mc), it means we're looking at the
355 * container which has a patch for this CPU so return 0 to mean, @ucode
356 * already points to the proper container. Otherwise, we return the size
357 * we scanned so that we can advance to the next container in the
358 * buffer.
359 */
360 if (desc->mc) {
361 desc->data = ucode;
362 desc->size = orig_size - size;
363
364 return 0;
365 }
366
367 out:
368 return orig_size - size;
369 }
370
371 /*
372 * Scan the ucode blob for the proper container as we can have multiple
373 * containers glued together.
374 */
scan_containers(u8 * ucode,size_t size,struct cont_desc * desc)375 static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
376 {
377 while (size) {
378 size_t s = parse_container(ucode, size, desc);
379 if (!s)
380 return;
381
382 /* catch wraparound */
383 if (size >= s) {
384 ucode += s;
385 size -= s;
386 } else {
387 return;
388 }
389 }
390 }
391
__apply_microcode_amd(struct microcode_amd * mc)392 static int __apply_microcode_amd(struct microcode_amd *mc)
393 {
394 u32 rev, dummy;
395
396 native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc->hdr.data_code);
397
398 /* verify patch application was successful */
399 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
400 if (rev != mc->hdr.patch_id)
401 return -1;
402
403 return 0;
404 }
405
406 /*
407 * Early load occurs before we can vmalloc(). So we look for the microcode
408 * patch container file in initrd, traverse equivalent cpu table, look for a
409 * matching microcode patch, and update, all in initrd memory in place.
410 * When vmalloc() is available for use later -- on 64-bit during first AP load,
411 * and on 32-bit during save_microcode_in_initrd_amd() -- we can call
412 * load_microcode_amd() to save equivalent cpu table and microcode patches in
413 * kernel heap memory.
414 *
415 * Returns true if container found (sets @desc), false otherwise.
416 */
417 static bool
apply_microcode_early_amd(u32 cpuid_1_eax,void * ucode,size_t size,bool save_patch)418 apply_microcode_early_amd(u32 cpuid_1_eax, void *ucode, size_t size, bool save_patch)
419 {
420 struct cont_desc desc = { 0 };
421 u8 (*patch)[PATCH_MAX_SIZE];
422 struct microcode_amd *mc;
423 u32 rev, dummy, *new_rev;
424 bool ret = false;
425
426 #ifdef CONFIG_X86_32
427 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
428 patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch);
429 #else
430 new_rev = &ucode_new_rev;
431 patch = &amd_ucode_patch;
432 #endif
433
434 desc.cpuid_1_eax = cpuid_1_eax;
435
436 scan_containers(ucode, size, &desc);
437
438 mc = desc.mc;
439 if (!mc)
440 return ret;
441
442 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
443 if (rev >= mc->hdr.patch_id)
444 return ret;
445
446 if (!__apply_microcode_amd(mc)) {
447 *new_rev = mc->hdr.patch_id;
448 ret = true;
449
450 if (save_patch)
451 memcpy(patch, mc, min_t(u32, desc.psize, PATCH_MAX_SIZE));
452 }
453
454 return ret;
455 }
456
get_builtin_microcode(struct cpio_data * cp,unsigned int family)457 static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family)
458 {
459 char fw_name[36] = "amd-ucode/microcode_amd.bin";
460 struct firmware fw;
461
462 if (IS_ENABLED(CONFIG_X86_32))
463 return false;
464
465 if (family >= 0x15)
466 snprintf(fw_name, sizeof(fw_name),
467 "amd-ucode/microcode_amd_fam%.2xh.bin", family);
468
469 if (firmware_request_builtin(&fw, fw_name)) {
470 cp->size = fw.size;
471 cp->data = (void *)fw.data;
472 return true;
473 }
474
475 return false;
476 }
477
__load_ucode_amd(unsigned int cpuid_1_eax,struct cpio_data * ret)478 static void __load_ucode_amd(unsigned int cpuid_1_eax, struct cpio_data *ret)
479 {
480 struct ucode_cpu_info *uci;
481 struct cpio_data cp;
482 const char *path;
483 bool use_pa;
484
485 if (IS_ENABLED(CONFIG_X86_32)) {
486 uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info);
487 path = (const char *)__pa_nodebug(ucode_path);
488 use_pa = true;
489 } else {
490 uci = ucode_cpu_info;
491 path = ucode_path;
492 use_pa = false;
493 }
494
495 if (!get_builtin_microcode(&cp, x86_family(cpuid_1_eax)))
496 cp = find_microcode_in_initrd(path, use_pa);
497
498 /* Needed in load_microcode_amd() */
499 uci->cpu_sig.sig = cpuid_1_eax;
500
501 *ret = cp;
502 }
503
load_ucode_amd_bsp(unsigned int cpuid_1_eax)504 void __init load_ucode_amd_bsp(unsigned int cpuid_1_eax)
505 {
506 struct cpio_data cp = { };
507
508 __load_ucode_amd(cpuid_1_eax, &cp);
509 if (!(cp.data && cp.size))
510 return;
511
512 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, true);
513 }
514
load_ucode_amd_ap(unsigned int cpuid_1_eax)515 void load_ucode_amd_ap(unsigned int cpuid_1_eax)
516 {
517 struct microcode_amd *mc;
518 struct cpio_data cp;
519 u32 *new_rev, rev, dummy;
520
521 if (IS_ENABLED(CONFIG_X86_32)) {
522 mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch);
523 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev);
524 } else {
525 mc = (struct microcode_amd *)amd_ucode_patch;
526 new_rev = &ucode_new_rev;
527 }
528
529 native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
530
531 /* Check whether we have saved a new patch already: */
532 if (*new_rev && rev < mc->hdr.patch_id) {
533 if (!__apply_microcode_amd(mc)) {
534 *new_rev = mc->hdr.patch_id;
535 return;
536 }
537 }
538
539 __load_ucode_amd(cpuid_1_eax, &cp);
540 if (!(cp.data && cp.size))
541 return;
542
543 apply_microcode_early_amd(cpuid_1_eax, cp.data, cp.size, false);
544 }
545
546 static enum ucode_state
547 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size);
548
save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)549 int __init save_microcode_in_initrd_amd(unsigned int cpuid_1_eax)
550 {
551 struct cont_desc desc = { 0 };
552 enum ucode_state ret;
553 struct cpio_data cp;
554
555 cp = find_microcode_in_initrd(ucode_path, false);
556 if (!(cp.data && cp.size))
557 return -EINVAL;
558
559 desc.cpuid_1_eax = cpuid_1_eax;
560
561 scan_containers(cp.data, cp.size, &desc);
562 if (!desc.mc)
563 return -EINVAL;
564
565 ret = load_microcode_amd(true, x86_family(cpuid_1_eax), desc.data, desc.size);
566 if (ret > UCODE_UPDATED)
567 return -EINVAL;
568
569 return 0;
570 }
571
reload_ucode_amd(void)572 void reload_ucode_amd(void)
573 {
574 struct microcode_amd *mc;
575 u32 rev, dummy __always_unused;
576
577 mc = (struct microcode_amd *)amd_ucode_patch;
578
579 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
580
581 if (rev < mc->hdr.patch_id) {
582 if (!__apply_microcode_amd(mc)) {
583 ucode_new_rev = mc->hdr.patch_id;
584 pr_info("reload patch_level=0x%08x\n", ucode_new_rev);
585 }
586 }
587 }
__find_equiv_id(unsigned int cpu)588 static u16 __find_equiv_id(unsigned int cpu)
589 {
590 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
591 return find_equiv_id(&equiv_table, uci->cpu_sig.sig);
592 }
593
594 /*
595 * a small, trivial cache of per-family ucode patches
596 */
cache_find_patch(u16 equiv_cpu)597 static struct ucode_patch *cache_find_patch(u16 equiv_cpu)
598 {
599 struct ucode_patch *p;
600
601 list_for_each_entry(p, µcode_cache, plist)
602 if (p->equiv_cpu == equiv_cpu)
603 return p;
604 return NULL;
605 }
606
update_cache(struct ucode_patch * new_patch)607 static void update_cache(struct ucode_patch *new_patch)
608 {
609 struct ucode_patch *p;
610
611 list_for_each_entry(p, µcode_cache, plist) {
612 if (p->equiv_cpu == new_patch->equiv_cpu) {
613 if (p->patch_id >= new_patch->patch_id) {
614 /* we already have the latest patch */
615 kfree(new_patch->data);
616 kfree(new_patch);
617 return;
618 }
619
620 list_replace(&p->plist, &new_patch->plist);
621 kfree(p->data);
622 kfree(p);
623 return;
624 }
625 }
626 /* no patch found, add it */
627 list_add_tail(&new_patch->plist, µcode_cache);
628 }
629
free_cache(void)630 static void free_cache(void)
631 {
632 struct ucode_patch *p, *tmp;
633
634 list_for_each_entry_safe(p, tmp, µcode_cache, plist) {
635 __list_del(p->plist.prev, p->plist.next);
636 kfree(p->data);
637 kfree(p);
638 }
639 }
640
find_patch(unsigned int cpu)641 static struct ucode_patch *find_patch(unsigned int cpu)
642 {
643 u16 equiv_id;
644
645 equiv_id = __find_equiv_id(cpu);
646 if (!equiv_id)
647 return NULL;
648
649 return cache_find_patch(equiv_id);
650 }
651
collect_cpu_info_amd(int cpu,struct cpu_signature * csig)652 static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
653 {
654 struct cpuinfo_x86 *c = &cpu_data(cpu);
655 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
656 struct ucode_patch *p;
657
658 csig->sig = cpuid_eax(0x00000001);
659 csig->rev = c->microcode;
660
661 /*
662 * a patch could have been loaded early, set uci->mc so that
663 * mc_bp_resume() can call apply_microcode()
664 */
665 p = find_patch(cpu);
666 if (p && (p->patch_id == csig->rev))
667 uci->mc = p->data;
668
669 pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev);
670
671 return 0;
672 }
673
apply_microcode_amd(int cpu)674 static enum ucode_state apply_microcode_amd(int cpu)
675 {
676 struct cpuinfo_x86 *c = &cpu_data(cpu);
677 struct microcode_amd *mc_amd;
678 struct ucode_cpu_info *uci;
679 struct ucode_patch *p;
680 enum ucode_state ret;
681 u32 rev, dummy __always_unused;
682
683 BUG_ON(raw_smp_processor_id() != cpu);
684
685 uci = ucode_cpu_info + cpu;
686
687 p = find_patch(cpu);
688 if (!p)
689 return UCODE_NFOUND;
690
691 mc_amd = p->data;
692 uci->mc = p->data;
693
694 rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
695
696 /* need to apply patch? */
697 if (rev >= mc_amd->hdr.patch_id) {
698 ret = UCODE_OK;
699 goto out;
700 }
701
702 if (__apply_microcode_amd(mc_amd)) {
703 pr_err("CPU%d: update failed for patch_level=0x%08x\n",
704 cpu, mc_amd->hdr.patch_id);
705 return UCODE_ERROR;
706 }
707
708 rev = mc_amd->hdr.patch_id;
709 ret = UCODE_UPDATED;
710
711 pr_info("CPU%d: new patch_level=0x%08x\n", cpu, rev);
712
713 out:
714 uci->cpu_sig.rev = rev;
715 c->microcode = rev;
716
717 /* Update boot_cpu_data's revision too, if we're on the BSP: */
718 if (c->cpu_index == boot_cpu_data.cpu_index)
719 boot_cpu_data.microcode = rev;
720
721 return ret;
722 }
723
install_equiv_cpu_table(const u8 * buf,size_t buf_size)724 static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
725 {
726 u32 equiv_tbl_len;
727 const u32 *hdr;
728
729 if (!verify_equivalence_table(buf, buf_size, false))
730 return 0;
731
732 hdr = (const u32 *)buf;
733 equiv_tbl_len = hdr[2];
734
735 equiv_table.entry = vmalloc(equiv_tbl_len);
736 if (!equiv_table.entry) {
737 pr_err("failed to allocate equivalent CPU table\n");
738 return 0;
739 }
740
741 memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
742 equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
743
744 /* add header length */
745 return equiv_tbl_len + CONTAINER_HDR_SZ;
746 }
747
free_equiv_cpu_table(void)748 static void free_equiv_cpu_table(void)
749 {
750 vfree(equiv_table.entry);
751 memset(&equiv_table, 0, sizeof(equiv_table));
752 }
753
cleanup(void)754 static void cleanup(void)
755 {
756 free_equiv_cpu_table();
757 free_cache();
758 }
759
760 /*
761 * Return a non-negative value even if some of the checks failed so that
762 * we can skip over the next patch. If we return a negative value, we
763 * signal a grave error like a memory allocation has failed and the
764 * driver cannot continue functioning normally. In such cases, we tear
765 * down everything we've used up so far and exit.
766 */
verify_and_add_patch(u8 family,u8 * fw,unsigned int leftover,unsigned int * patch_size)767 static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
768 unsigned int *patch_size)
769 {
770 struct microcode_header_amd *mc_hdr;
771 struct ucode_patch *patch;
772 u16 proc_id;
773 int ret;
774
775 ret = verify_patch(family, fw, leftover, patch_size, false);
776 if (ret)
777 return ret;
778
779 patch = kzalloc(sizeof(*patch), GFP_KERNEL);
780 if (!patch) {
781 pr_err("Patch allocation failure.\n");
782 return -EINVAL;
783 }
784
785 patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
786 if (!patch->data) {
787 pr_err("Patch data allocation failure.\n");
788 kfree(patch);
789 return -EINVAL;
790 }
791
792 mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
793 proc_id = mc_hdr->processor_rev_id;
794
795 INIT_LIST_HEAD(&patch->plist);
796 patch->patch_id = mc_hdr->patch_id;
797 patch->equiv_cpu = proc_id;
798
799 pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n",
800 __func__, patch->patch_id, proc_id);
801
802 /* ... and add to cache. */
803 update_cache(patch);
804
805 return 0;
806 }
807
__load_microcode_amd(u8 family,const u8 * data,size_t size)808 static enum ucode_state __load_microcode_amd(u8 family, const u8 *data,
809 size_t size)
810 {
811 u8 *fw = (u8 *)data;
812 size_t offset;
813
814 offset = install_equiv_cpu_table(data, size);
815 if (!offset)
816 return UCODE_ERROR;
817
818 fw += offset;
819 size -= offset;
820
821 if (*(u32 *)fw != UCODE_UCODE_TYPE) {
822 pr_err("invalid type field in container file section header\n");
823 free_equiv_cpu_table();
824 return UCODE_ERROR;
825 }
826
827 while (size > 0) {
828 unsigned int crnt_size = 0;
829 int ret;
830
831 ret = verify_and_add_patch(family, fw, size, &crnt_size);
832 if (ret < 0)
833 return UCODE_ERROR;
834
835 fw += crnt_size + SECTION_HDR_SIZE;
836 size -= (crnt_size + SECTION_HDR_SIZE);
837 }
838
839 return UCODE_OK;
840 }
841
842 static enum ucode_state
load_microcode_amd(bool save,u8 family,const u8 * data,size_t size)843 load_microcode_amd(bool save, u8 family, const u8 *data, size_t size)
844 {
845 struct ucode_patch *p;
846 enum ucode_state ret;
847
848 /* free old equiv table */
849 free_equiv_cpu_table();
850
851 ret = __load_microcode_amd(family, data, size);
852 if (ret != UCODE_OK) {
853 cleanup();
854 return ret;
855 }
856
857 p = find_patch(0);
858 if (!p) {
859 return ret;
860 } else {
861 if (boot_cpu_data.microcode >= p->patch_id)
862 return ret;
863
864 ret = UCODE_NEW;
865 }
866
867 /* save BSP's matching patch for early load */
868 if (!save)
869 return ret;
870
871 memset(amd_ucode_patch, 0, PATCH_MAX_SIZE);
872 memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE));
873
874 return ret;
875 }
876
877 /*
878 * AMD microcode firmware naming convention, up to family 15h they are in
879 * the legacy file:
880 *
881 * amd-ucode/microcode_amd.bin
882 *
883 * This legacy file is always smaller than 2K in size.
884 *
885 * Beginning with family 15h, they are in family-specific firmware files:
886 *
887 * amd-ucode/microcode_amd_fam15h.bin
888 * amd-ucode/microcode_amd_fam16h.bin
889 * ...
890 *
891 * These might be larger than 2K.
892 */
request_microcode_amd(int cpu,struct device * device,bool refresh_fw)893 static enum ucode_state request_microcode_amd(int cpu, struct device *device,
894 bool refresh_fw)
895 {
896 char fw_name[36] = "amd-ucode/microcode_amd.bin";
897 struct cpuinfo_x86 *c = &cpu_data(cpu);
898 bool bsp = c->cpu_index == boot_cpu_data.cpu_index;
899 enum ucode_state ret = UCODE_NFOUND;
900 const struct firmware *fw;
901
902 /* reload ucode container only on the boot cpu */
903 if (!refresh_fw || !bsp)
904 return UCODE_OK;
905
906 if (c->x86 >= 0x15)
907 snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
908
909 if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
910 pr_debug("failed to load file %s\n", fw_name);
911 goto out;
912 }
913
914 ret = UCODE_ERROR;
915 if (!verify_container(fw->data, fw->size, false))
916 goto fw_release;
917
918 ret = load_microcode_amd(bsp, c->x86, fw->data, fw->size);
919
920 fw_release:
921 release_firmware(fw);
922
923 out:
924 return ret;
925 }
926
927 static enum ucode_state
request_microcode_user(int cpu,const void __user * buf,size_t size)928 request_microcode_user(int cpu, const void __user *buf, size_t size)
929 {
930 return UCODE_ERROR;
931 }
932
microcode_fini_cpu_amd(int cpu)933 static void microcode_fini_cpu_amd(int cpu)
934 {
935 struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
936
937 uci->mc = NULL;
938 }
939
940 static struct microcode_ops microcode_amd_ops = {
941 .request_microcode_user = request_microcode_user,
942 .request_microcode_fw = request_microcode_amd,
943 .collect_cpu_info = collect_cpu_info_amd,
944 .apply_microcode = apply_microcode_amd,
945 .microcode_fini_cpu = microcode_fini_cpu_amd,
946 };
947
init_amd_microcode(void)948 struct microcode_ops * __init init_amd_microcode(void)
949 {
950 struct cpuinfo_x86 *c = &boot_cpu_data;
951
952 if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
953 pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
954 return NULL;
955 }
956
957 if (ucode_new_rev)
958 pr_info_once("microcode updated early to new patch_level=0x%08x\n",
959 ucode_new_rev);
960
961 return µcode_amd_ops;
962 }
963
exit_amd_microcode(void)964 void __exit exit_amd_microcode(void)
965 {
966 cleanup();
967 }
968