1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * handle transition of Linux booting another kernel
4 * Copyright (C) 2002-2005 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) "kexec: " fmt
8
9 #include <linux/mm.h>
10 #include <linux/kexec.h>
11 #include <linux/string.h>
12 #include <linux/gfp.h>
13 #include <linux/reboot.h>
14 #include <linux/numa.h>
15 #include <linux/ftrace.h>
16 #include <linux/io.h>
17 #include <linux/suspend.h>
18 #include <linux/vmalloc.h>
19 #include <linux/efi.h>
20 #include <linux/cc_platform.h>
21
22 #include <asm/init.h>
23 #include <asm/tlbflush.h>
24 #include <asm/mmu_context.h>
25 #include <asm/io_apic.h>
26 #include <asm/debugreg.h>
27 #include <asm/kexec-bzimage64.h>
28 #include <asm/setup.h>
29 #include <asm/set_memory.h>
30
31 #ifdef CONFIG_ACPI
32 /*
33 * Used while adding mapping for ACPI tables.
34 * Can be reused when other iomem regions need be mapped
35 */
36 struct init_pgtable_data {
37 struct x86_mapping_info *info;
38 pgd_t *level4p;
39 };
40
mem_region_callback(struct resource * res,void * arg)41 static int mem_region_callback(struct resource *res, void *arg)
42 {
43 struct init_pgtable_data *data = arg;
44 unsigned long mstart, mend;
45
46 mstart = res->start;
47 mend = mstart + resource_size(res) - 1;
48
49 return kernel_ident_mapping_init(data->info, data->level4p, mstart, mend);
50 }
51
52 static int
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)53 map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
54 {
55 struct init_pgtable_data data;
56 unsigned long flags;
57 int ret;
58
59 data.info = info;
60 data.level4p = level4p;
61 flags = IORESOURCE_MEM | IORESOURCE_BUSY;
62
63 ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
64 &data, mem_region_callback);
65 if (ret && ret != -EINVAL)
66 return ret;
67
68 /* ACPI tables could be located in ACPI Non-volatile Storage region */
69 ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
70 &data, mem_region_callback);
71 if (ret && ret != -EINVAL)
72 return ret;
73
74 return 0;
75 }
76 #else
map_acpi_tables(struct x86_mapping_info * info,pgd_t * level4p)77 static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
78 #endif
79
80 #ifdef CONFIG_KEXEC_FILE
81 const struct kexec_file_ops * const kexec_file_loaders[] = {
82 &kexec_bzImage64_ops,
83 NULL
84 };
85 #endif
86
87 static int
map_efi_systab(struct x86_mapping_info * info,pgd_t * level4p)88 map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
89 {
90 #ifdef CONFIG_EFI
91 unsigned long mstart, mend;
92
93 if (!efi_enabled(EFI_BOOT))
94 return 0;
95
96 mstart = (boot_params.efi_info.efi_systab |
97 ((u64)boot_params.efi_info.efi_systab_hi<<32));
98
99 if (efi_enabled(EFI_64BIT))
100 mend = mstart + sizeof(efi_system_table_64_t);
101 else
102 mend = mstart + sizeof(efi_system_table_32_t);
103
104 if (!mstart)
105 return 0;
106
107 return kernel_ident_mapping_init(info, level4p, mstart, mend);
108 #endif
109 return 0;
110 }
111
free_transition_pgtable(struct kimage * image)112 static void free_transition_pgtable(struct kimage *image)
113 {
114 free_page((unsigned long)image->arch.p4d);
115 image->arch.p4d = NULL;
116 free_page((unsigned long)image->arch.pud);
117 image->arch.pud = NULL;
118 free_page((unsigned long)image->arch.pmd);
119 image->arch.pmd = NULL;
120 free_page((unsigned long)image->arch.pte);
121 image->arch.pte = NULL;
122 }
123
init_transition_pgtable(struct kimage * image,pgd_t * pgd)124 static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
125 {
126 pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
127 unsigned long vaddr, paddr;
128 int result = -ENOMEM;
129 p4d_t *p4d;
130 pud_t *pud;
131 pmd_t *pmd;
132 pte_t *pte;
133
134 vaddr = (unsigned long)relocate_kernel;
135 paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
136 pgd += pgd_index(vaddr);
137 if (!pgd_present(*pgd)) {
138 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
139 if (!p4d)
140 goto err;
141 image->arch.p4d = p4d;
142 set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
143 }
144 p4d = p4d_offset(pgd, vaddr);
145 if (!p4d_present(*p4d)) {
146 pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
147 if (!pud)
148 goto err;
149 image->arch.pud = pud;
150 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
151 }
152 pud = pud_offset(p4d, vaddr);
153 if (!pud_present(*pud)) {
154 pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
155 if (!pmd)
156 goto err;
157 image->arch.pmd = pmd;
158 set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
159 }
160 pmd = pmd_offset(pud, vaddr);
161 if (!pmd_present(*pmd)) {
162 pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
163 if (!pte)
164 goto err;
165 image->arch.pte = pte;
166 set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
167 }
168 pte = pte_offset_kernel(pmd, vaddr);
169
170 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
171 prot = PAGE_KERNEL_EXEC;
172
173 set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
174 return 0;
175 err:
176 return result;
177 }
178
alloc_pgt_page(void * data)179 static void *alloc_pgt_page(void *data)
180 {
181 struct kimage *image = (struct kimage *)data;
182 struct page *page;
183 void *p = NULL;
184
185 page = kimage_alloc_control_pages(image, 0);
186 if (page) {
187 p = page_address(page);
188 clear_page(p);
189 }
190
191 return p;
192 }
193
init_pgtable(struct kimage * image,unsigned long start_pgtable)194 static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
195 {
196 struct x86_mapping_info info = {
197 .alloc_pgt_page = alloc_pgt_page,
198 .context = image,
199 .page_flag = __PAGE_KERNEL_LARGE_EXEC,
200 .kernpg_flag = _KERNPG_TABLE_NOENC,
201 };
202 unsigned long mstart, mend;
203 pgd_t *level4p;
204 int result;
205 int i;
206
207 level4p = (pgd_t *)__va(start_pgtable);
208 clear_page(level4p);
209
210 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
211 info.page_flag |= _PAGE_ENC;
212 info.kernpg_flag |= _PAGE_ENC;
213 }
214
215 if (direct_gbpages)
216 info.direct_gbpages = true;
217
218 for (i = 0; i < nr_pfn_mapped; i++) {
219 mstart = pfn_mapped[i].start << PAGE_SHIFT;
220 mend = pfn_mapped[i].end << PAGE_SHIFT;
221
222 result = kernel_ident_mapping_init(&info,
223 level4p, mstart, mend);
224 if (result)
225 return result;
226 }
227
228 /*
229 * segments's mem ranges could be outside 0 ~ max_pfn,
230 * for example when jump back to original kernel from kexeced kernel.
231 * or first kernel is booted with user mem map, and second kernel
232 * could be loaded out of that range.
233 */
234 for (i = 0; i < image->nr_segments; i++) {
235 mstart = image->segment[i].mem;
236 mend = mstart + image->segment[i].memsz;
237
238 result = kernel_ident_mapping_init(&info,
239 level4p, mstart, mend);
240
241 if (result)
242 return result;
243 }
244
245 /*
246 * Prepare EFI systab and ACPI tables for kexec kernel since they are
247 * not covered by pfn_mapped.
248 */
249 result = map_efi_systab(&info, level4p);
250 if (result)
251 return result;
252
253 result = map_acpi_tables(&info, level4p);
254 if (result)
255 return result;
256
257 return init_transition_pgtable(image, level4p);
258 }
259
load_segments(void)260 static void load_segments(void)
261 {
262 __asm__ __volatile__ (
263 "\tmovl %0,%%ds\n"
264 "\tmovl %0,%%es\n"
265 "\tmovl %0,%%ss\n"
266 "\tmovl %0,%%fs\n"
267 "\tmovl %0,%%gs\n"
268 : : "a" (__KERNEL_DS) : "memory"
269 );
270 }
271
machine_kexec_prepare(struct kimage * image)272 int machine_kexec_prepare(struct kimage *image)
273 {
274 unsigned long start_pgtable;
275 int result;
276
277 /* Calculate the offsets */
278 start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
279
280 /* Setup the identity mapped 64bit page table */
281 result = init_pgtable(image, start_pgtable);
282 if (result)
283 return result;
284
285 return 0;
286 }
287
machine_kexec_cleanup(struct kimage * image)288 void machine_kexec_cleanup(struct kimage *image)
289 {
290 free_transition_pgtable(image);
291 }
292
293 /*
294 * Do not allocate memory (or fail in any way) in machine_kexec().
295 * We are past the point of no return, committed to rebooting now.
296 */
machine_kexec(struct kimage * image)297 void machine_kexec(struct kimage *image)
298 {
299 unsigned long page_list[PAGES_NR];
300 void *control_page;
301 int save_ftrace_enabled;
302
303 #ifdef CONFIG_KEXEC_JUMP
304 if (image->preserve_context)
305 save_processor_state();
306 #endif
307
308 save_ftrace_enabled = __ftrace_enabled_save();
309
310 /* Interrupts aren't acceptable while we reboot */
311 local_irq_disable();
312 hw_breakpoint_disable();
313
314 if (image->preserve_context) {
315 #ifdef CONFIG_X86_IO_APIC
316 /*
317 * We need to put APICs in legacy mode so that we can
318 * get timer interrupts in second kernel. kexec/kdump
319 * paths already have calls to restore_boot_irq_mode()
320 * in one form or other. kexec jump path also need one.
321 */
322 clear_IO_APIC();
323 restore_boot_irq_mode();
324 #endif
325 }
326
327 control_page = page_address(image->control_code_page) + PAGE_SIZE;
328 memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
329
330 page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
331 page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
332 page_list[PA_TABLE_PAGE] =
333 (unsigned long)__pa(page_address(image->control_code_page));
334
335 if (image->type == KEXEC_TYPE_DEFAULT)
336 page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
337 << PAGE_SHIFT);
338
339 /*
340 * The segment registers are funny things, they have both a
341 * visible and an invisible part. Whenever the visible part is
342 * set to a specific selector, the invisible part is loaded
343 * with from a table in memory. At no other time is the
344 * descriptor table in memory accessed.
345 *
346 * I take advantage of this here by force loading the
347 * segments, before I zap the gdt with an invalid value.
348 */
349 load_segments();
350 /*
351 * The gdt & idt are now invalid.
352 * If you want to load them you must set up your own idt & gdt.
353 */
354 native_idt_invalidate();
355 native_gdt_invalidate();
356
357 /* now call it */
358 image->start = relocate_kernel((unsigned long)image->head,
359 (unsigned long)page_list,
360 image->start,
361 image->preserve_context,
362 cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
363
364 #ifdef CONFIG_KEXEC_JUMP
365 if (image->preserve_context)
366 restore_processor_state();
367 #endif
368
369 __ftrace_enabled_restore(save_ftrace_enabled);
370 }
371
372 /* arch-dependent functionality related to kexec file-based syscall */
373
374 #ifdef CONFIG_KEXEC_FILE
arch_kexec_kernel_image_load(struct kimage * image)375 void *arch_kexec_kernel_image_load(struct kimage *image)
376 {
377 vfree(image->elf_headers);
378 image->elf_headers = NULL;
379
380 if (!image->fops || !image->fops->load)
381 return ERR_PTR(-ENOEXEC);
382
383 return image->fops->load(image, image->kernel_buf,
384 image->kernel_buf_len, image->initrd_buf,
385 image->initrd_buf_len, image->cmdline_buf,
386 image->cmdline_buf_len);
387 }
388
389 /*
390 * Apply purgatory relocations.
391 *
392 * @pi: Purgatory to be relocated.
393 * @section: Section relocations applying to.
394 * @relsec: Section containing RELAs.
395 * @symtabsec: Corresponding symtab.
396 *
397 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
398 */
arch_kexec_apply_relocations_add(struct purgatory_info * pi,Elf_Shdr * section,const Elf_Shdr * relsec,const Elf_Shdr * symtabsec)399 int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
400 Elf_Shdr *section, const Elf_Shdr *relsec,
401 const Elf_Shdr *symtabsec)
402 {
403 unsigned int i;
404 Elf64_Rela *rel;
405 Elf64_Sym *sym;
406 void *location;
407 unsigned long address, sec_base, value;
408 const char *strtab, *name, *shstrtab;
409 const Elf_Shdr *sechdrs;
410
411 /* String & section header string table */
412 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
413 strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
414 shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
415
416 rel = (void *)pi->ehdr + relsec->sh_offset;
417
418 pr_debug("Applying relocate section %s to %u\n",
419 shstrtab + relsec->sh_name, relsec->sh_info);
420
421 for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
422
423 /*
424 * rel[i].r_offset contains byte offset from beginning
425 * of section to the storage unit affected.
426 *
427 * This is location to update. This is temporary buffer
428 * where section is currently loaded. This will finally be
429 * loaded to a different address later, pointed to by
430 * ->sh_addr. kexec takes care of moving it
431 * (kexec_load_segment()).
432 */
433 location = pi->purgatory_buf;
434 location += section->sh_offset;
435 location += rel[i].r_offset;
436
437 /* Final address of the location */
438 address = section->sh_addr + rel[i].r_offset;
439
440 /*
441 * rel[i].r_info contains information about symbol table index
442 * w.r.t which relocation must be made and type of relocation
443 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
444 * these respectively.
445 */
446 sym = (void *)pi->ehdr + symtabsec->sh_offset;
447 sym += ELF64_R_SYM(rel[i].r_info);
448
449 if (sym->st_name)
450 name = strtab + sym->st_name;
451 else
452 name = shstrtab + sechdrs[sym->st_shndx].sh_name;
453
454 pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
455 name, sym->st_info, sym->st_shndx, sym->st_value,
456 sym->st_size);
457
458 if (sym->st_shndx == SHN_UNDEF) {
459 pr_err("Undefined symbol: %s\n", name);
460 return -ENOEXEC;
461 }
462
463 if (sym->st_shndx == SHN_COMMON) {
464 pr_err("symbol '%s' in common section\n", name);
465 return -ENOEXEC;
466 }
467
468 if (sym->st_shndx == SHN_ABS)
469 sec_base = 0;
470 else if (sym->st_shndx >= pi->ehdr->e_shnum) {
471 pr_err("Invalid section %d for symbol %s\n",
472 sym->st_shndx, name);
473 return -ENOEXEC;
474 } else
475 sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
476
477 value = sym->st_value;
478 value += sec_base;
479 value += rel[i].r_addend;
480
481 switch (ELF64_R_TYPE(rel[i].r_info)) {
482 case R_X86_64_NONE:
483 break;
484 case R_X86_64_64:
485 *(u64 *)location = value;
486 break;
487 case R_X86_64_32:
488 *(u32 *)location = value;
489 if (value != *(u32 *)location)
490 goto overflow;
491 break;
492 case R_X86_64_32S:
493 *(s32 *)location = value;
494 if ((s64)value != *(s32 *)location)
495 goto overflow;
496 break;
497 case R_X86_64_PC32:
498 case R_X86_64_PLT32:
499 value -= (u64)address;
500 *(u32 *)location = value;
501 break;
502 default:
503 pr_err("Unknown rela relocation: %llu\n",
504 ELF64_R_TYPE(rel[i].r_info));
505 return -ENOEXEC;
506 }
507 }
508 return 0;
509
510 overflow:
511 pr_err("Overflow in relocation type %d value 0x%lx\n",
512 (int)ELF64_R_TYPE(rel[i].r_info), value);
513 return -ENOEXEC;
514 }
515 #endif /* CONFIG_KEXEC_FILE */
516
517 static int
kexec_mark_range(unsigned long start,unsigned long end,bool protect)518 kexec_mark_range(unsigned long start, unsigned long end, bool protect)
519 {
520 struct page *page;
521 unsigned int nr_pages;
522
523 /*
524 * For physical range: [start, end]. We must skip the unassigned
525 * crashk resource with zero-valued "end" member.
526 */
527 if (!end || start > end)
528 return 0;
529
530 page = pfn_to_page(start >> PAGE_SHIFT);
531 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
532 if (protect)
533 return set_pages_ro(page, nr_pages);
534 else
535 return set_pages_rw(page, nr_pages);
536 }
537
kexec_mark_crashkres(bool protect)538 static void kexec_mark_crashkres(bool protect)
539 {
540 unsigned long control;
541
542 kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
543
544 /* Don't touch the control code page used in crash_kexec().*/
545 control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
546 /* Control code page is located in the 2nd page. */
547 kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
548 control += KEXEC_CONTROL_PAGE_SIZE;
549 kexec_mark_range(control, crashk_res.end, protect);
550 }
551
arch_kexec_protect_crashkres(void)552 void arch_kexec_protect_crashkres(void)
553 {
554 kexec_mark_crashkres(true);
555 }
556
arch_kexec_unprotect_crashkres(void)557 void arch_kexec_unprotect_crashkres(void)
558 {
559 kexec_mark_crashkres(false);
560 }
561
562 /*
563 * During a traditional boot under SME, SME will encrypt the kernel,
564 * so the SME kexec kernel also needs to be un-encrypted in order to
565 * replicate a normal SME boot.
566 *
567 * During a traditional boot under SEV, the kernel has already been
568 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
569 * order to replicate a normal SEV boot.
570 */
arch_kexec_post_alloc_pages(void * vaddr,unsigned int pages,gfp_t gfp)571 int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
572 {
573 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
574 return 0;
575
576 /*
577 * If host memory encryption is active we need to be sure that kexec
578 * pages are not encrypted because when we boot to the new kernel the
579 * pages won't be accessed encrypted (initially).
580 */
581 return set_memory_decrypted((unsigned long)vaddr, pages);
582 }
583
arch_kexec_pre_free_pages(void * vaddr,unsigned int pages)584 void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
585 {
586 if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
587 return;
588
589 /*
590 * If host memory encryption is active we need to reset the pages back
591 * to being an encrypted mapping before freeing them.
592 */
593 set_memory_encrypted((unsigned long)vaddr, pages);
594 }
595