1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
15 #define pr_fmt(fmt) "SVM: " fmt
16
17 #include <linux/kvm_types.h>
18 #include <linux/hashtable.h>
19 #include <linux/amd-iommu.h>
20 #include <linux/kvm_host.h>
21
22 #include <asm/irq_remapping.h>
23
24 #include "trace.h"
25 #include "lapic.h"
26 #include "x86.h"
27 #include "irq.h"
28 #include "svm.h"
29
30 #define SVM_AVIC_DOORBELL 0xc001011b
31
32 #define AVIC_HPA_MASK ~((0xFFFULL << 52) | 0xFFF)
33
34 /*
35 * 0xff is broadcast, so the max index allowed for physical APIC ID
36 * table is 0xfe. APIC IDs above 0xff are reserved.
37 */
38 #define AVIC_MAX_PHYSICAL_ID_COUNT 255
39
40 #define AVIC_UNACCEL_ACCESS_WRITE_MASK 1
41 #define AVIC_UNACCEL_ACCESS_OFFSET_MASK 0xFF0
42 #define AVIC_UNACCEL_ACCESS_VECTOR_MASK 0xFFFFFFFF
43
44 /* AVIC GATAG is encoded using VM and VCPU IDs */
45 #define AVIC_VCPU_ID_BITS 8
46 #define AVIC_VCPU_ID_MASK ((1 << AVIC_VCPU_ID_BITS) - 1)
47
48 #define AVIC_VM_ID_BITS 24
49 #define AVIC_VM_ID_NR (1 << AVIC_VM_ID_BITS)
50 #define AVIC_VM_ID_MASK ((1 << AVIC_VM_ID_BITS) - 1)
51
52 #define AVIC_GATAG(x, y) (((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \
53 (y & AVIC_VCPU_ID_MASK))
54 #define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK)
55 #define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
56
57 /* Note:
58 * This hash table is used to map VM_ID to a struct kvm_svm,
59 * when handling AMD IOMMU GALOG notification to schedule in
60 * a particular vCPU.
61 */
62 #define SVM_VM_DATA_HASH_BITS 8
63 static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
64 static u32 next_vm_id = 0;
65 static bool next_vm_id_wrapped = 0;
66 static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
67
68 /*
69 * This is a wrapper of struct amd_iommu_ir_data.
70 */
71 struct amd_svm_iommu_ir {
72 struct list_head node; /* Used by SVM for per-vcpu ir_list */
73 void *data; /* Storing pointer to struct amd_ir_data */
74 };
75
76 enum avic_ipi_failure_cause {
77 AVIC_IPI_FAILURE_INVALID_INT_TYPE,
78 AVIC_IPI_FAILURE_TARGET_NOT_RUNNING,
79 AVIC_IPI_FAILURE_INVALID_TARGET,
80 AVIC_IPI_FAILURE_INVALID_BACKING_PAGE,
81 };
82
83 /* Note:
84 * This function is called from IOMMU driver to notify
85 * SVM to schedule in a particular vCPU of a particular VM.
86 */
avic_ga_log_notifier(u32 ga_tag)87 int avic_ga_log_notifier(u32 ga_tag)
88 {
89 unsigned long flags;
90 struct kvm_svm *kvm_svm;
91 struct kvm_vcpu *vcpu = NULL;
92 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
93 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
94
95 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
96 trace_kvm_avic_ga_log(vm_id, vcpu_id);
97
98 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
99 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
100 if (kvm_svm->avic_vm_id != vm_id)
101 continue;
102 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
103 break;
104 }
105 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
106
107 /* Note:
108 * At this point, the IOMMU should have already set the pending
109 * bit in the vAPIC backing page. So, we just need to schedule
110 * in the vcpu.
111 */
112 if (vcpu)
113 kvm_vcpu_wake_up(vcpu);
114
115 return 0;
116 }
117
avic_vm_destroy(struct kvm * kvm)118 void avic_vm_destroy(struct kvm *kvm)
119 {
120 unsigned long flags;
121 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
122
123 if (!enable_apicv)
124 return;
125
126 if (kvm_svm->avic_logical_id_table_page)
127 __free_page(kvm_svm->avic_logical_id_table_page);
128 if (kvm_svm->avic_physical_id_table_page)
129 __free_page(kvm_svm->avic_physical_id_table_page);
130
131 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
132 hash_del(&kvm_svm->hnode);
133 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
134 }
135
avic_vm_init(struct kvm * kvm)136 int avic_vm_init(struct kvm *kvm)
137 {
138 unsigned long flags;
139 int err = -ENOMEM;
140 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
141 struct kvm_svm *k2;
142 struct page *p_page;
143 struct page *l_page;
144 u32 vm_id;
145
146 if (!enable_apicv)
147 return 0;
148
149 /* Allocating physical APIC ID table (4KB) */
150 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
151 if (!p_page)
152 goto free_avic;
153
154 kvm_svm->avic_physical_id_table_page = p_page;
155
156 /* Allocating logical APIC ID table (4KB) */
157 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
158 if (!l_page)
159 goto free_avic;
160
161 kvm_svm->avic_logical_id_table_page = l_page;
162
163 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
164 again:
165 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
166 if (vm_id == 0) { /* id is 1-based, zero is not okay */
167 next_vm_id_wrapped = 1;
168 goto again;
169 }
170 /* Is it still in use? Only possible if wrapped at least once */
171 if (next_vm_id_wrapped) {
172 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
173 if (k2->avic_vm_id == vm_id)
174 goto again;
175 }
176 }
177 kvm_svm->avic_vm_id = vm_id;
178 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
179 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
180
181 return 0;
182
183 free_avic:
184 avic_vm_destroy(kvm);
185 return err;
186 }
187
avic_init_vmcb(struct vcpu_svm * svm)188 void avic_init_vmcb(struct vcpu_svm *svm)
189 {
190 struct vmcb *vmcb = svm->vmcb;
191 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
192 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
193 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
194 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
195
196 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
197 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
198 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
199 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT;
200 vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
201
202 if (kvm_apicv_activated(svm->vcpu.kvm))
203 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
204 else
205 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
206 }
207
avic_get_physical_id_entry(struct kvm_vcpu * vcpu,unsigned int index)208 static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
209 unsigned int index)
210 {
211 u64 *avic_physical_id_table;
212 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
213
214 if (index >= AVIC_MAX_PHYSICAL_ID_COUNT)
215 return NULL;
216
217 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
218
219 return &avic_physical_id_table[index];
220 }
221
222 /*
223 * Note:
224 * AVIC hardware walks the nested page table to check permissions,
225 * but does not use the SPA address specified in the leaf page
226 * table entry since it uses address in the AVIC_BACKING_PAGE pointer
227 * field of the VMCB. Therefore, we set up the
228 * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here.
229 */
avic_alloc_access_page(struct kvm * kvm)230 static int avic_alloc_access_page(struct kvm *kvm)
231 {
232 void __user *ret;
233 int r = 0;
234
235 mutex_lock(&kvm->slots_lock);
236
237 if (kvm->arch.apic_access_memslot_enabled)
238 goto out;
239
240 ret = __x86_set_memory_region(kvm,
241 APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
242 APIC_DEFAULT_PHYS_BASE,
243 PAGE_SIZE);
244 if (IS_ERR(ret)) {
245 r = PTR_ERR(ret);
246 goto out;
247 }
248
249 kvm->arch.apic_access_memslot_enabled = true;
250 out:
251 mutex_unlock(&kvm->slots_lock);
252 return r;
253 }
254
avic_init_backing_page(struct kvm_vcpu * vcpu)255 static int avic_init_backing_page(struct kvm_vcpu *vcpu)
256 {
257 u64 *entry, new_entry;
258 int id = vcpu->vcpu_id;
259 struct vcpu_svm *svm = to_svm(vcpu);
260
261 if (id >= AVIC_MAX_PHYSICAL_ID_COUNT)
262 return -EINVAL;
263
264 if (!vcpu->arch.apic->regs)
265 return -EINVAL;
266
267 if (kvm_apicv_activated(vcpu->kvm)) {
268 int ret;
269
270 ret = avic_alloc_access_page(vcpu->kvm);
271 if (ret)
272 return ret;
273 }
274
275 svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
276
277 /* Setting AVIC backing page address in the phy APIC ID table */
278 entry = avic_get_physical_id_entry(vcpu, id);
279 if (!entry)
280 return -EINVAL;
281
282 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
283 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
284 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
285 WRITE_ONCE(*entry, new_entry);
286
287 svm->avic_physical_id_cache = entry;
288
289 return 0;
290 }
291
avic_kick_target_vcpus(struct kvm * kvm,struct kvm_lapic * source,u32 icrl,u32 icrh)292 static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
293 u32 icrl, u32 icrh)
294 {
295 struct kvm_vcpu *vcpu;
296 int i;
297
298 kvm_for_each_vcpu(i, vcpu, kvm) {
299 bool m = kvm_apic_match_dest(vcpu, source,
300 icrl & APIC_SHORT_MASK,
301 GET_APIC_DEST_FIELD(icrh),
302 icrl & APIC_DEST_MASK);
303
304 if (m && !avic_vcpu_is_running(vcpu))
305 kvm_vcpu_wake_up(vcpu);
306 }
307 }
308
avic_incomplete_ipi_interception(struct kvm_vcpu * vcpu)309 int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
310 {
311 struct vcpu_svm *svm = to_svm(vcpu);
312 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
313 u32 icrl = svm->vmcb->control.exit_info_1;
314 u32 id = svm->vmcb->control.exit_info_2 >> 32;
315 u32 index = svm->vmcb->control.exit_info_2 & 0xFF;
316 struct kvm_lapic *apic = vcpu->arch.apic;
317
318 trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
319
320 switch (id) {
321 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
322 /*
323 * AVIC hardware handles the generation of
324 * IPIs when the specified Message Type is Fixed
325 * (also known as fixed delivery mode) and
326 * the Trigger Mode is edge-triggered. The hardware
327 * also supports self and broadcast delivery modes
328 * specified via the Destination Shorthand(DSH)
329 * field of the ICRL. Logical and physical APIC ID
330 * formats are supported. All other IPI types cause
331 * a #VMEXIT, which needs to emulated.
332 */
333 kvm_lapic_reg_write(apic, APIC_ICR2, icrh);
334 kvm_lapic_reg_write(apic, APIC_ICR, icrl);
335 break;
336 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
337 /*
338 * At this point, we expect that the AVIC HW has already
339 * set the appropriate IRR bits on the valid target
340 * vcpus. So, we just need to kick the appropriate vcpu.
341 */
342 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh);
343 break;
344 case AVIC_IPI_FAILURE_INVALID_TARGET:
345 WARN_ONCE(1, "Invalid IPI target: index=%u, vcpu=%d, icr=%#0x:%#0x\n",
346 index, vcpu->vcpu_id, icrh, icrl);
347 break;
348 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
349 WARN_ONCE(1, "Invalid backing page\n");
350 break;
351 default:
352 pr_err("Unknown IPI interception\n");
353 }
354
355 return 1;
356 }
357
avic_get_logical_id_entry(struct kvm_vcpu * vcpu,u32 ldr,bool flat)358 static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
359 {
360 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
361 int index;
362 u32 *logical_apic_id_table;
363 int dlid = GET_APIC_LOGICAL_ID(ldr);
364
365 if (!dlid)
366 return NULL;
367
368 if (flat) { /* flat */
369 index = ffs(dlid) - 1;
370 if (index > 7)
371 return NULL;
372 } else { /* cluster */
373 int cluster = (dlid & 0xf0) >> 4;
374 int apic = ffs(dlid & 0x0f) - 1;
375
376 if ((apic < 0) || (apic > 7) ||
377 (cluster >= 0xf))
378 return NULL;
379 index = (cluster << 2) + apic;
380 }
381
382 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
383
384 return &logical_apic_id_table[index];
385 }
386
avic_ldr_write(struct kvm_vcpu * vcpu,u8 g_physical_id,u32 ldr)387 static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
388 {
389 bool flat;
390 u32 *entry, new_entry;
391
392 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
393 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
394 if (!entry)
395 return -EINVAL;
396
397 new_entry = READ_ONCE(*entry);
398 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
399 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
400 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
401 WRITE_ONCE(*entry, new_entry);
402
403 return 0;
404 }
405
avic_invalidate_logical_id_entry(struct kvm_vcpu * vcpu)406 static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
407 {
408 struct vcpu_svm *svm = to_svm(vcpu);
409 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
410 u32 *entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
411
412 if (entry)
413 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
414 }
415
avic_handle_ldr_update(struct kvm_vcpu * vcpu)416 static int avic_handle_ldr_update(struct kvm_vcpu *vcpu)
417 {
418 int ret = 0;
419 struct vcpu_svm *svm = to_svm(vcpu);
420 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
421 u32 id = kvm_xapic_id(vcpu->arch.apic);
422
423 if (ldr == svm->ldr_reg)
424 return 0;
425
426 avic_invalidate_logical_id_entry(vcpu);
427
428 if (ldr)
429 ret = avic_ldr_write(vcpu, id, ldr);
430
431 if (!ret)
432 svm->ldr_reg = ldr;
433
434 return ret;
435 }
436
avic_handle_apic_id_update(struct kvm_vcpu * vcpu)437 static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu)
438 {
439 u64 *old, *new;
440 struct vcpu_svm *svm = to_svm(vcpu);
441 u32 id = kvm_xapic_id(vcpu->arch.apic);
442
443 if (vcpu->vcpu_id == id)
444 return 0;
445
446 old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id);
447 new = avic_get_physical_id_entry(vcpu, id);
448 if (!new || !old)
449 return 1;
450
451 /* We need to move physical_id_entry to new offset */
452 *new = *old;
453 *old = 0ULL;
454 to_svm(vcpu)->avic_physical_id_cache = new;
455
456 /*
457 * Also update the guest physical APIC ID in the logical
458 * APIC ID table entry if already setup the LDR.
459 */
460 if (svm->ldr_reg)
461 avic_handle_ldr_update(vcpu);
462
463 return 0;
464 }
465
avic_handle_dfr_update(struct kvm_vcpu * vcpu)466 static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
467 {
468 struct vcpu_svm *svm = to_svm(vcpu);
469 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
470
471 if (svm->dfr_reg == dfr)
472 return;
473
474 avic_invalidate_logical_id_entry(vcpu);
475 svm->dfr_reg = dfr;
476 }
477
avic_unaccel_trap_write(struct vcpu_svm * svm)478 static int avic_unaccel_trap_write(struct vcpu_svm *svm)
479 {
480 struct kvm_lapic *apic = svm->vcpu.arch.apic;
481 u32 offset = svm->vmcb->control.exit_info_1 &
482 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
483
484 switch (offset) {
485 case APIC_ID:
486 if (avic_handle_apic_id_update(&svm->vcpu))
487 return 0;
488 break;
489 case APIC_LDR:
490 if (avic_handle_ldr_update(&svm->vcpu))
491 return 0;
492 break;
493 case APIC_DFR:
494 avic_handle_dfr_update(&svm->vcpu);
495 break;
496 default:
497 break;
498 }
499
500 kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset));
501
502 return 1;
503 }
504
is_avic_unaccelerated_access_trap(u32 offset)505 static bool is_avic_unaccelerated_access_trap(u32 offset)
506 {
507 bool ret = false;
508
509 switch (offset) {
510 case APIC_ID:
511 case APIC_EOI:
512 case APIC_RRR:
513 case APIC_LDR:
514 case APIC_DFR:
515 case APIC_SPIV:
516 case APIC_ESR:
517 case APIC_ICR:
518 case APIC_LVTT:
519 case APIC_LVTTHMR:
520 case APIC_LVTPC:
521 case APIC_LVT0:
522 case APIC_LVT1:
523 case APIC_LVTERR:
524 case APIC_TMICT:
525 case APIC_TDCR:
526 ret = true;
527 break;
528 default:
529 break;
530 }
531 return ret;
532 }
533
avic_unaccelerated_access_interception(struct kvm_vcpu * vcpu)534 int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
535 {
536 struct vcpu_svm *svm = to_svm(vcpu);
537 int ret = 0;
538 u32 offset = svm->vmcb->control.exit_info_1 &
539 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
540 u32 vector = svm->vmcb->control.exit_info_2 &
541 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
542 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
543 AVIC_UNACCEL_ACCESS_WRITE_MASK;
544 bool trap = is_avic_unaccelerated_access_trap(offset);
545
546 trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
547 trap, write, vector);
548 if (trap) {
549 /* Handling Trap */
550 WARN_ONCE(!write, "svm: Handling trap read.\n");
551 ret = avic_unaccel_trap_write(svm);
552 } else {
553 /* Handling Fault */
554 ret = kvm_emulate_instruction(vcpu, 0);
555 }
556
557 return ret;
558 }
559
avic_init_vcpu(struct vcpu_svm * svm)560 int avic_init_vcpu(struct vcpu_svm *svm)
561 {
562 int ret;
563 struct kvm_vcpu *vcpu = &svm->vcpu;
564
565 if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
566 return 0;
567
568 ret = avic_init_backing_page(vcpu);
569 if (ret)
570 return ret;
571
572 INIT_LIST_HEAD(&svm->ir_list);
573 spin_lock_init(&svm->ir_list_lock);
574 svm->dfr_reg = APIC_DFR_FLAT;
575
576 return ret;
577 }
578
avic_post_state_restore(struct kvm_vcpu * vcpu)579 void avic_post_state_restore(struct kvm_vcpu *vcpu)
580 {
581 if (avic_handle_apic_id_update(vcpu) != 0)
582 return;
583 avic_handle_dfr_update(vcpu);
584 avic_handle_ldr_update(vcpu);
585 }
586
svm_set_virtual_apic_mode(struct kvm_vcpu * vcpu)587 void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
588 {
589 return;
590 }
591
svm_hwapic_irr_update(struct kvm_vcpu * vcpu,int max_irr)592 void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
593 {
594 }
595
svm_hwapic_isr_update(struct kvm_vcpu * vcpu,int max_isr)596 void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
597 {
598 }
599
svm_set_pi_irte_mode(struct kvm_vcpu * vcpu,bool activate)600 static int svm_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
601 {
602 int ret = 0;
603 unsigned long flags;
604 struct amd_svm_iommu_ir *ir;
605 struct vcpu_svm *svm = to_svm(vcpu);
606
607 if (!kvm_arch_has_assigned_device(vcpu->kvm))
608 return 0;
609
610 /*
611 * Here, we go through the per-vcpu ir_list to update all existing
612 * interrupt remapping table entry targeting this vcpu.
613 */
614 spin_lock_irqsave(&svm->ir_list_lock, flags);
615
616 if (list_empty(&svm->ir_list))
617 goto out;
618
619 list_for_each_entry(ir, &svm->ir_list, node) {
620 if (activate)
621 ret = amd_iommu_activate_guest_mode(ir->data);
622 else
623 ret = amd_iommu_deactivate_guest_mode(ir->data);
624 if (ret)
625 break;
626 }
627 out:
628 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
629 return ret;
630 }
631
svm_refresh_apicv_exec_ctrl(struct kvm_vcpu * vcpu)632 void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
633 {
634 struct vcpu_svm *svm = to_svm(vcpu);
635 struct vmcb *vmcb = svm->vmcb01.ptr;
636 bool activated = kvm_vcpu_apicv_active(vcpu);
637
638 if (!enable_apicv)
639 return;
640
641 if (activated) {
642 /**
643 * During AVIC temporary deactivation, guest could update
644 * APIC ID, DFR and LDR registers, which would not be trapped
645 * by avic_unaccelerated_access_interception(). In this case,
646 * we need to check and update the AVIC logical APIC ID table
647 * accordingly before re-activating.
648 */
649 avic_post_state_restore(vcpu);
650 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
651 } else {
652 vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK;
653 }
654 vmcb_mark_dirty(vmcb, VMCB_AVIC);
655
656 if (activated)
657 avic_vcpu_load(vcpu, vcpu->cpu);
658 else
659 avic_vcpu_put(vcpu);
660
661 svm_set_pi_irte_mode(vcpu, activated);
662 }
663
svm_load_eoi_exitmap(struct kvm_vcpu * vcpu,u64 * eoi_exit_bitmap)664 void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
665 {
666 return;
667 }
668
svm_deliver_avic_intr(struct kvm_vcpu * vcpu,int vec)669 int svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec)
670 {
671 if (!vcpu->arch.apicv_active)
672 return -1;
673
674 kvm_lapic_set_irr(vec, vcpu->arch.apic);
675 smp_mb__after_atomic();
676
677 if (avic_vcpu_is_running(vcpu)) {
678 int cpuid = vcpu->cpu;
679
680 if (cpuid != get_cpu())
681 wrmsrl(SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpuid));
682 put_cpu();
683 } else
684 kvm_vcpu_wake_up(vcpu);
685
686 return 0;
687 }
688
svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu * vcpu)689 bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu)
690 {
691 return false;
692 }
693
svm_ir_list_del(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)694 static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
695 {
696 unsigned long flags;
697 struct amd_svm_iommu_ir *cur;
698
699 spin_lock_irqsave(&svm->ir_list_lock, flags);
700 list_for_each_entry(cur, &svm->ir_list, node) {
701 if (cur->data != pi->ir_data)
702 continue;
703 list_del(&cur->node);
704 kfree(cur);
705 break;
706 }
707 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
708 }
709
svm_ir_list_add(struct vcpu_svm * svm,struct amd_iommu_pi_data * pi)710 static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
711 {
712 int ret = 0;
713 unsigned long flags;
714 struct amd_svm_iommu_ir *ir;
715
716 /**
717 * In some cases, the existing irte is updated and re-set,
718 * so we need to check here if it's already been * added
719 * to the ir_list.
720 */
721 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
722 struct kvm *kvm = svm->vcpu.kvm;
723 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
724 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
725 struct vcpu_svm *prev_svm;
726
727 if (!prev_vcpu) {
728 ret = -EINVAL;
729 goto out;
730 }
731
732 prev_svm = to_svm(prev_vcpu);
733 svm_ir_list_del(prev_svm, pi);
734 }
735
736 /**
737 * Allocating new amd_iommu_pi_data, which will get
738 * add to the per-vcpu ir_list.
739 */
740 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
741 if (!ir) {
742 ret = -ENOMEM;
743 goto out;
744 }
745 ir->data = pi->ir_data;
746
747 spin_lock_irqsave(&svm->ir_list_lock, flags);
748 list_add(&ir->node, &svm->ir_list);
749 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
750 out:
751 return ret;
752 }
753
754 /*
755 * Note:
756 * The HW cannot support posting multicast/broadcast
757 * interrupts to a vCPU. So, we still use legacy interrupt
758 * remapping for these kind of interrupts.
759 *
760 * For lowest-priority interrupts, we only support
761 * those with single CPU as the destination, e.g. user
762 * configures the interrupts via /proc/irq or uses
763 * irqbalance to make the interrupts single-CPU.
764 */
765 static int
get_pi_vcpu_info(struct kvm * kvm,struct kvm_kernel_irq_routing_entry * e,struct vcpu_data * vcpu_info,struct vcpu_svm ** svm)766 get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
767 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
768 {
769 struct kvm_lapic_irq irq;
770 struct kvm_vcpu *vcpu = NULL;
771
772 kvm_set_msi_irq(kvm, e, &irq);
773
774 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
775 !kvm_irq_is_postable(&irq)) {
776 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
777 __func__, irq.vector);
778 return -1;
779 }
780
781 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
782 irq.vector);
783 *svm = to_svm(vcpu);
784 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
785 vcpu_info->vector = irq.vector;
786
787 return 0;
788 }
789
790 /*
791 * svm_update_pi_irte - set IRTE for Posted-Interrupts
792 *
793 * @kvm: kvm
794 * @host_irq: host irq of the interrupt
795 * @guest_irq: gsi of the interrupt
796 * @set: set or unset PI
797 * returns 0 on success, < 0 on failure
798 */
svm_update_pi_irte(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)799 int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
800 uint32_t guest_irq, bool set)
801 {
802 struct kvm_kernel_irq_routing_entry *e;
803 struct kvm_irq_routing_table *irq_rt;
804 int idx, ret = -EINVAL;
805
806 if (!kvm_arch_has_assigned_device(kvm) ||
807 !irq_remapping_cap(IRQ_POSTING_CAP))
808 return 0;
809
810 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
811 __func__, host_irq, guest_irq, set);
812
813 idx = srcu_read_lock(&kvm->irq_srcu);
814 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
815 WARN_ON(guest_irq >= irq_rt->nr_rt_entries);
816
817 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
818 struct vcpu_data vcpu_info;
819 struct vcpu_svm *svm = NULL;
820
821 if (e->type != KVM_IRQ_ROUTING_MSI)
822 continue;
823
824 /**
825 * Here, we setup with legacy mode in the following cases:
826 * 1. When cannot target interrupt to a specific vcpu.
827 * 2. Unsetting posted interrupt.
828 * 3. APIC virtualization is disabled for the vcpu.
829 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
830 */
831 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
832 kvm_vcpu_apicv_active(&svm->vcpu)) {
833 struct amd_iommu_pi_data pi;
834
835 /* Try to enable guest_mode in IRTE */
836 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
837 AVIC_HPA_MASK);
838 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
839 svm->vcpu.vcpu_id);
840 pi.is_guest_mode = true;
841 pi.vcpu_data = &vcpu_info;
842 ret = irq_set_vcpu_affinity(host_irq, &pi);
843
844 /**
845 * Here, we successfully setting up vcpu affinity in
846 * IOMMU guest mode. Now, we need to store the posted
847 * interrupt information in a per-vcpu ir_list so that
848 * we can reference to them directly when we update vcpu
849 * scheduling information in IOMMU irte.
850 */
851 if (!ret && pi.is_guest_mode)
852 svm_ir_list_add(svm, &pi);
853 } else {
854 /* Use legacy mode in IRTE */
855 struct amd_iommu_pi_data pi;
856
857 /**
858 * Here, pi is used to:
859 * - Tell IOMMU to use legacy mode for this interrupt.
860 * - Retrieve ga_tag of prior interrupt remapping data.
861 */
862 pi.prev_ga_tag = 0;
863 pi.is_guest_mode = false;
864 ret = irq_set_vcpu_affinity(host_irq, &pi);
865
866 /**
867 * Check if the posted interrupt was previously
868 * setup with the guest_mode by checking if the ga_tag
869 * was cached. If so, we need to clean up the per-vcpu
870 * ir_list.
871 */
872 if (!ret && pi.prev_ga_tag) {
873 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
874 struct kvm_vcpu *vcpu;
875
876 vcpu = kvm_get_vcpu_by_id(kvm, id);
877 if (vcpu)
878 svm_ir_list_del(to_svm(vcpu), &pi);
879 }
880 }
881
882 if (!ret && svm) {
883 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
884 e->gsi, vcpu_info.vector,
885 vcpu_info.pi_desc_addr, set);
886 }
887
888 if (ret < 0) {
889 pr_err("%s: failed to update PI IRTE\n", __func__);
890 goto out;
891 }
892 }
893
894 ret = 0;
895 out:
896 srcu_read_unlock(&kvm->irq_srcu, idx);
897 return ret;
898 }
899
svm_check_apicv_inhibit_reasons(ulong bit)900 bool svm_check_apicv_inhibit_reasons(ulong bit)
901 {
902 ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
903 BIT(APICV_INHIBIT_REASON_ABSENT) |
904 BIT(APICV_INHIBIT_REASON_HYPERV) |
905 BIT(APICV_INHIBIT_REASON_NESTED) |
906 BIT(APICV_INHIBIT_REASON_IRQWIN) |
907 BIT(APICV_INHIBIT_REASON_PIT_REINJ) |
908 BIT(APICV_INHIBIT_REASON_X2APIC) |
909 BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
910
911 return supported & BIT(bit);
912 }
913
914
915 static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu * vcpu,int cpu,bool r)916 avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
917 {
918 int ret = 0;
919 unsigned long flags;
920 struct amd_svm_iommu_ir *ir;
921 struct vcpu_svm *svm = to_svm(vcpu);
922
923 if (!kvm_arch_has_assigned_device(vcpu->kvm))
924 return 0;
925
926 /*
927 * Here, we go through the per-vcpu ir_list to update all existing
928 * interrupt remapping table entry targeting this vcpu.
929 */
930 spin_lock_irqsave(&svm->ir_list_lock, flags);
931
932 if (list_empty(&svm->ir_list))
933 goto out;
934
935 list_for_each_entry(ir, &svm->ir_list, node) {
936 ret = amd_iommu_update_ga(cpu, r, ir->data);
937 if (ret)
938 break;
939 }
940 out:
941 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
942 return ret;
943 }
944
avic_vcpu_load(struct kvm_vcpu * vcpu,int cpu)945 void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
946 {
947 u64 entry;
948 /* ID = 0xff (broadcast), ID > 0xff (reserved) */
949 int h_physical_id = kvm_cpu_get_apicid(cpu);
950 struct vcpu_svm *svm = to_svm(vcpu);
951
952 /*
953 * Since the host physical APIC id is 8 bits,
954 * we can support host APIC ID upto 255.
955 */
956 if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
957 return;
958
959 entry = READ_ONCE(*(svm->avic_physical_id_cache));
960 WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
961
962 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
963 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
964
965 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
966 if (svm->avic_is_running)
967 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
968
969 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
970 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id,
971 svm->avic_is_running);
972 }
973
avic_vcpu_put(struct kvm_vcpu * vcpu)974 void avic_vcpu_put(struct kvm_vcpu *vcpu)
975 {
976 u64 entry;
977 struct vcpu_svm *svm = to_svm(vcpu);
978
979 entry = READ_ONCE(*(svm->avic_physical_id_cache));
980 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
981 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
982
983 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
984 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
985 }
986
987 /*
988 * This function is called during VCPU halt/unhalt.
989 */
avic_set_running(struct kvm_vcpu * vcpu,bool is_run)990 static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run)
991 {
992 struct vcpu_svm *svm = to_svm(vcpu);
993 int cpu = get_cpu();
994
995 WARN_ON(cpu != vcpu->cpu);
996 svm->avic_is_running = is_run;
997
998 if (kvm_vcpu_apicv_active(vcpu)) {
999 if (is_run)
1000 avic_vcpu_load(vcpu, cpu);
1001 else
1002 avic_vcpu_put(vcpu);
1003 }
1004 put_cpu();
1005 }
1006
svm_vcpu_blocking(struct kvm_vcpu * vcpu)1007 void svm_vcpu_blocking(struct kvm_vcpu *vcpu)
1008 {
1009 avic_set_running(vcpu, false);
1010 }
1011
svm_vcpu_unblocking(struct kvm_vcpu * vcpu)1012 void svm_vcpu_unblocking(struct kvm_vcpu *vcpu)
1013 {
1014 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
1015 kvm_vcpu_update_apicv(vcpu);
1016 avic_set_running(vcpu, true);
1017 }
1018