1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Suspend support specific for i386/x86-64.
4 *
5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
8 */
9
10 #include <linux/suspend.h>
11 #include <linux/export.h>
12 #include <linux/smp.h>
13 #include <linux/perf_event.h>
14 #include <linux/tboot.h>
15 #include <linux/dmi.h>
16 #include <linux/pgtable.h>
17
18 #include <asm/proto.h>
19 #include <asm/mtrr.h>
20 #include <asm/page.h>
21 #include <asm/mce.h>
22 #include <asm/suspend.h>
23 #include <asm/fpu/api.h>
24 #include <asm/debugreg.h>
25 #include <asm/cpu.h>
26 #include <asm/mmu_context.h>
27 #include <asm/cpu_device_id.h>
28
29 #ifdef CONFIG_X86_32
30 __visible unsigned long saved_context_ebx;
31 __visible unsigned long saved_context_esp, saved_context_ebp;
32 __visible unsigned long saved_context_esi, saved_context_edi;
33 __visible unsigned long saved_context_eflags;
34 #endif
35 struct saved_context saved_context;
36
msr_save_context(struct saved_context * ctxt)37 static void msr_save_context(struct saved_context *ctxt)
38 {
39 struct saved_msr *msr = ctxt->saved_msrs.array;
40 struct saved_msr *end = msr + ctxt->saved_msrs.num;
41
42 while (msr < end) {
43 msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
44 msr++;
45 }
46 }
47
msr_restore_context(struct saved_context * ctxt)48 static void msr_restore_context(struct saved_context *ctxt)
49 {
50 struct saved_msr *msr = ctxt->saved_msrs.array;
51 struct saved_msr *end = msr + ctxt->saved_msrs.num;
52
53 while (msr < end) {
54 if (msr->valid)
55 wrmsrl(msr->info.msr_no, msr->info.reg.q);
56 msr++;
57 }
58 }
59
60 /**
61 * __save_processor_state() - Save CPU registers before creating a
62 * hibernation image and before restoring
63 * the memory state from it
64 * @ctxt: Structure to store the registers contents in.
65 *
66 * NOTE: If there is a CPU register the modification of which by the
67 * boot kernel (ie. the kernel used for loading the hibernation image)
68 * might affect the operations of the restored target kernel (ie. the one
69 * saved in the hibernation image), then its contents must be saved by this
70 * function. In other words, if kernel A is hibernated and different
71 * kernel B is used for loading the hibernation image into memory, the
72 * kernel A's __save_processor_state() function must save all registers
73 * needed by kernel A, so that it can operate correctly after the resume
74 * regardless of what kernel B does in the meantime.
75 */
__save_processor_state(struct saved_context * ctxt)76 static void __save_processor_state(struct saved_context *ctxt)
77 {
78 #ifdef CONFIG_X86_32
79 mtrr_save_fixed_ranges(NULL);
80 #endif
81 kernel_fpu_begin();
82
83 /*
84 * descriptor tables
85 */
86 store_idt(&ctxt->idt);
87
88 /*
89 * We save it here, but restore it only in the hibernate case.
90 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
91 * mode in "secondary_startup_64". In 32-bit mode it is done via
92 * 'pmode_gdt' in wakeup_start.
93 */
94 ctxt->gdt_desc.size = GDT_SIZE - 1;
95 ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
96
97 store_tr(ctxt->tr);
98
99 /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
100 /*
101 * segment registers
102 */
103 savesegment(gs, ctxt->gs);
104 #ifdef CONFIG_X86_64
105 savesegment(fs, ctxt->fs);
106 savesegment(ds, ctxt->ds);
107 savesegment(es, ctxt->es);
108
109 rdmsrl(MSR_FS_BASE, ctxt->fs_base);
110 rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
111 rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
112 mtrr_save_fixed_ranges(NULL);
113
114 rdmsrl(MSR_EFER, ctxt->efer);
115 #endif
116
117 /*
118 * control registers
119 */
120 ctxt->cr0 = read_cr0();
121 ctxt->cr2 = read_cr2();
122 ctxt->cr3 = __read_cr3();
123 ctxt->cr4 = __read_cr4();
124 ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
125 &ctxt->misc_enable);
126 msr_save_context(ctxt);
127 }
128
129 /* Needed by apm.c */
save_processor_state(void)130 void save_processor_state(void)
131 {
132 __save_processor_state(&saved_context);
133 x86_platform.save_sched_clock_state();
134 }
135 #ifdef CONFIG_X86_32
136 EXPORT_SYMBOL(save_processor_state);
137 #endif
138
do_fpu_end(void)139 static void do_fpu_end(void)
140 {
141 /*
142 * Restore FPU regs if necessary.
143 */
144 kernel_fpu_end();
145 }
146
fix_processor_context(void)147 static void fix_processor_context(void)
148 {
149 int cpu = smp_processor_id();
150 #ifdef CONFIG_X86_64
151 struct desc_struct *desc = get_cpu_gdt_rw(cpu);
152 tss_desc tss;
153 #endif
154
155 /*
156 * We need to reload TR, which requires that we change the
157 * GDT entry to indicate "available" first.
158 *
159 * XXX: This could probably all be replaced by a call to
160 * force_reload_TR().
161 */
162 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
163
164 #ifdef CONFIG_X86_64
165 memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
166 tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
167 write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
168
169 syscall_init(); /* This sets MSR_*STAR and related */
170 #else
171 if (boot_cpu_has(X86_FEATURE_SEP))
172 enable_sep_cpu();
173 #endif
174 load_TR_desc(); /* This does ltr */
175 load_mm_ldt(current->active_mm); /* This does lldt */
176 initialize_tlbstate_and_flush();
177
178 fpu__resume_cpu();
179
180 /* The processor is back on the direct GDT, load back the fixmap */
181 load_fixmap_gdt(cpu);
182 }
183
184 /**
185 * __restore_processor_state() - Restore the contents of CPU registers saved
186 * by __save_processor_state()
187 * @ctxt: Structure to load the registers contents from.
188 *
189 * The asm code that gets us here will have restored a usable GDT, although
190 * it will be pointing to the wrong alias.
191 */
__restore_processor_state(struct saved_context * ctxt)192 static void notrace __restore_processor_state(struct saved_context *ctxt)
193 {
194 struct cpuinfo_x86 *c;
195
196 if (ctxt->misc_enable_saved)
197 wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
198 /*
199 * control registers
200 */
201 /* cr4 was introduced in the Pentium CPU */
202 #ifdef CONFIG_X86_32
203 if (ctxt->cr4)
204 __write_cr4(ctxt->cr4);
205 #else
206 /* CONFIG X86_64 */
207 wrmsrl(MSR_EFER, ctxt->efer);
208 __write_cr4(ctxt->cr4);
209 #endif
210 write_cr3(ctxt->cr3);
211 write_cr2(ctxt->cr2);
212 write_cr0(ctxt->cr0);
213
214 /* Restore the IDT. */
215 load_idt(&ctxt->idt);
216
217 /*
218 * Just in case the asm code got us here with the SS, DS, or ES
219 * out of sync with the GDT, update them.
220 */
221 loadsegment(ss, __KERNEL_DS);
222 loadsegment(ds, __USER_DS);
223 loadsegment(es, __USER_DS);
224
225 /*
226 * Restore percpu access. Percpu access can happen in exception
227 * handlers or in complicated helpers like load_gs_index().
228 */
229 #ifdef CONFIG_X86_64
230 wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
231 #else
232 loadsegment(fs, __KERNEL_PERCPU);
233 #endif
234
235 /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
236 fix_processor_context();
237
238 /*
239 * Now that we have descriptor tables fully restored and working
240 * exception handling, restore the usermode segments.
241 */
242 #ifdef CONFIG_X86_64
243 loadsegment(ds, ctxt->es);
244 loadsegment(es, ctxt->es);
245 loadsegment(fs, ctxt->fs);
246 load_gs_index(ctxt->gs);
247
248 /*
249 * Restore FSBASE and GSBASE after restoring the selectors, since
250 * restoring the selectors clobbers the bases. Keep in mind
251 * that MSR_KERNEL_GS_BASE is horribly misnamed.
252 */
253 wrmsrl(MSR_FS_BASE, ctxt->fs_base);
254 wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
255 #else
256 loadsegment(gs, ctxt->gs);
257 #endif
258
259 do_fpu_end();
260 tsc_verify_tsc_adjust(true);
261 x86_platform.restore_sched_clock_state();
262 mtrr_bp_restore();
263 perf_restore_debug_store();
264 msr_restore_context(ctxt);
265
266 c = &cpu_data(smp_processor_id());
267 if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
268 init_ia32_feat_ctl(c);
269 }
270
271 /* Needed by apm.c */
restore_processor_state(void)272 void notrace restore_processor_state(void)
273 {
274 __restore_processor_state(&saved_context);
275 }
276 #ifdef CONFIG_X86_32
277 EXPORT_SYMBOL(restore_processor_state);
278 #endif
279
280 #if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
resume_play_dead(void)281 static void resume_play_dead(void)
282 {
283 play_dead_common();
284 tboot_shutdown(TB_SHUTDOWN_WFS);
285 hlt_play_dead();
286 }
287
hibernate_resume_nonboot_cpu_disable(void)288 int hibernate_resume_nonboot_cpu_disable(void)
289 {
290 void (*play_dead)(void) = smp_ops.play_dead;
291 int ret;
292
293 /*
294 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
295 * during hibernate image restoration, because it is likely that the
296 * monitored address will be actually written to at that time and then
297 * the "dead" CPU will attempt to execute instructions again, but the
298 * address in its instruction pointer may not be possible to resolve
299 * any more at that point (the page tables used by it previously may
300 * have been overwritten by hibernate image data).
301 *
302 * First, make sure that we wake up all the potentially disabled SMT
303 * threads which have been initially brought up and then put into
304 * mwait/cpuidle sleep.
305 * Those will be put to proper (not interfering with hibernation
306 * resume) sleep afterwards, and the resumed kernel will decide itself
307 * what to do with them.
308 */
309 ret = cpuhp_smt_enable();
310 if (ret)
311 return ret;
312 smp_ops.play_dead = resume_play_dead;
313 ret = freeze_secondary_cpus(0);
314 smp_ops.play_dead = play_dead;
315 return ret;
316 }
317 #endif
318
319 /*
320 * When bsp_check() is called in hibernate and suspend, cpu hotplug
321 * is disabled already. So it's unnecessary to handle race condition between
322 * cpumask query and cpu hotplug.
323 */
bsp_check(void)324 static int bsp_check(void)
325 {
326 if (cpumask_first(cpu_online_mask) != 0) {
327 pr_warn("CPU0 is offline.\n");
328 return -ENODEV;
329 }
330
331 return 0;
332 }
333
bsp_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)334 static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
335 void *ptr)
336 {
337 int ret = 0;
338
339 switch (action) {
340 case PM_SUSPEND_PREPARE:
341 case PM_HIBERNATION_PREPARE:
342 ret = bsp_check();
343 break;
344 #ifdef CONFIG_DEBUG_HOTPLUG_CPU0
345 case PM_RESTORE_PREPARE:
346 /*
347 * When system resumes from hibernation, online CPU0 because
348 * 1. it's required for resume and
349 * 2. the CPU was online before hibernation
350 */
351 if (!cpu_online(0))
352 _debug_hotplug_cpu(0, 1);
353 break;
354 case PM_POST_RESTORE:
355 /*
356 * When a resume really happens, this code won't be called.
357 *
358 * This code is called only when user space hibernation software
359 * prepares for snapshot device during boot time. So we just
360 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
361 * preparing the snapshot device.
362 *
363 * This works for normal boot case in our CPU0 hotplug debug
364 * mode, i.e. CPU0 is offline and user mode hibernation
365 * software initializes during boot time.
366 *
367 * If CPU0 is online and user application accesses snapshot
368 * device after boot time, this will offline CPU0 and user may
369 * see different CPU0 state before and after accessing
370 * the snapshot device. But hopefully this is not a case when
371 * user debugging CPU0 hotplug. Even if users hit this case,
372 * they can easily online CPU0 back.
373 *
374 * To simplify this debug code, we only consider normal boot
375 * case. Otherwise we need to remember CPU0's state and restore
376 * to that state and resolve racy conditions etc.
377 */
378 _debug_hotplug_cpu(0, 0);
379 break;
380 #endif
381 default:
382 break;
383 }
384 return notifier_from_errno(ret);
385 }
386
bsp_pm_check_init(void)387 static int __init bsp_pm_check_init(void)
388 {
389 /*
390 * Set this bsp_pm_callback as lower priority than
391 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
392 * earlier to disable cpu hotplug before bsp online check.
393 */
394 pm_notifier(bsp_pm_callback, -INT_MAX);
395 return 0;
396 }
397
398 core_initcall(bsp_pm_check_init);
399
msr_build_context(const u32 * msr_id,const int num)400 static int msr_build_context(const u32 *msr_id, const int num)
401 {
402 struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
403 struct saved_msr *msr_array;
404 int total_num;
405 int i, j;
406
407 total_num = saved_msrs->num + num;
408
409 msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
410 if (!msr_array) {
411 pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
412 return -ENOMEM;
413 }
414
415 if (saved_msrs->array) {
416 /*
417 * Multiple callbacks can invoke this function, so copy any
418 * MSR save requests from previous invocations.
419 */
420 memcpy(msr_array, saved_msrs->array,
421 sizeof(struct saved_msr) * saved_msrs->num);
422
423 kfree(saved_msrs->array);
424 }
425
426 for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
427 msr_array[i].info.msr_no = msr_id[j];
428 msr_array[i].valid = false;
429 msr_array[i].info.reg.q = 0;
430 }
431 saved_msrs->num = total_num;
432 saved_msrs->array = msr_array;
433
434 return 0;
435 }
436
437 /*
438 * The following sections are a quirk framework for problematic BIOSen:
439 * Sometimes MSRs are modified by the BIOSen after suspended to
440 * RAM, this might cause unexpected behavior after wakeup.
441 * Thus we save/restore these specified MSRs across suspend/resume
442 * in order to work around it.
443 *
444 * For any further problematic BIOSen/platforms,
445 * please add your own function similar to msr_initialize_bdw.
446 */
msr_initialize_bdw(const struct dmi_system_id * d)447 static int msr_initialize_bdw(const struct dmi_system_id *d)
448 {
449 /* Add any extra MSR ids into this array. */
450 u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
451
452 pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
453 return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
454 }
455
456 static const struct dmi_system_id msr_save_dmi_table[] = {
457 {
458 .callback = msr_initialize_bdw,
459 .ident = "BROADWELL BDX_EP",
460 .matches = {
461 DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
462 DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
463 },
464 },
465 {}
466 };
467
msr_save_cpuid_features(const struct x86_cpu_id * c)468 static int msr_save_cpuid_features(const struct x86_cpu_id *c)
469 {
470 u32 cpuid_msr_id[] = {
471 MSR_AMD64_CPUID_FN_1,
472 };
473
474 pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
475 c->family);
476
477 return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
478 }
479
480 static const struct x86_cpu_id msr_save_cpu_table[] = {
481 X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
482 X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
483 {}
484 };
485
486 typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
pm_cpu_check(const struct x86_cpu_id * c)487 static int pm_cpu_check(const struct x86_cpu_id *c)
488 {
489 const struct x86_cpu_id *m;
490 int ret = 0;
491
492 m = x86_match_cpu(msr_save_cpu_table);
493 if (m) {
494 pm_cpu_match_t fn;
495
496 fn = (pm_cpu_match_t)m->driver_data;
497 ret = fn(m);
498 }
499
500 return ret;
501 }
502
pm_check_save_msr(void)503 static int pm_check_save_msr(void)
504 {
505 dmi_check_system(msr_save_dmi_table);
506 pm_cpu_check(msr_save_cpu_table);
507
508 return 0;
509 }
510
511 device_initcall(pm_check_save_msr);
512